
RESEARCH ARTICLE

PARP1 recruits DNA translocases to restrain

DNA replication and facilitate DNA repair

Yen-Chih Ho1, Chen-Syun Ku1, Siang-Sheng Tsai1, Jia-Lin Shiu1, Yi-Zhen Jiang2, Hui

Emmanuela Miriam1, Han-Wen Zhang1, Yen-Tzu Chen3, Wen-Tai Chiu4, Song-Bin Chang1,

Che-Hung Shen5, Kyungjae Myung6, Peter Chi2,7, Hungjiun LiawID
1*

1 Department of Life Sciences, National Cheng Kung University, Tainan City, Taiwan, 2 Institute of

Biochemical Sciences, National Taiwan University, Taipei City, Taiwan, 3 Department of Public Health &

Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan

University, Taipei City, Taiwan, 4 Department of Biomedical Engineering, National Cheng Kung University,

Tainan City, Taiwan, 5 National Institute of Cancer Research, National Health Research Institutes, Tainan

City, Taiwan, 6 IBS Center for Genomic Integrity, UNIST-gil 50, Ulsan, Republic of Korea, 7 Institute of

Biological Chemistry, Academia Sinica, Taipei City, Taiwan

* liawh@mail.ncku.edu.tw

Abstract

Replication fork reversal which restrains DNA replication progression is an important protec-

tive mechanism in response to replication stress. PARP1 is recruited to stalled forks to

restrain DNA replication. However, PARP1 has no helicase activity, and the mechanism

through which PARP1 participates in DNA replication restraint remains unclear. Here, we

found novel protein-protein interactions between PARP1 and DNA translocases, including

HLTF, SHPRH, ZRANB3, and SMARCAL1, with HLTF showing the strongest interaction

among these DNA translocases. Although HLTF and SHPRH share structural and func-

tional similarity, it remains unclear whether SHPRH contains DNA translocase activity. We

further identified the ability of SHPRH to restrain DNA replication upon replication stress,

indicating that SHPRH itself could be a DNA translocase or a helper to facilitate DNA trans-

location. Although hydroxyurea (HU) and MMS induce different types of replication stress,

they both induce common DNA replication restraint mechanisms independent of intra-S

phase activation. Our results suggest that the PARP1 facilitates DNA translocase recruit-

ment to damaged forks, preventing fork collapse and facilitating DNA repair.

Author summary

Replication stress induces genomic instability and is associated with cancer development.

PARP1 is not only involved in base-excision repair (BER), but also restrains replication

fork progression upon replication stress. However, PARP1 has no helicase activities, and

the mechanism through which PARP1 participates in the formation of reversed replica-

tion forks remains unclear. In the present study, we identified novel protein-protein inter-

actions between PARP1 and DNA translocases, including HLTF, SHPRH, ZRANB3, and

SMARCAL1, with HLTF showing the strongest interaction among these DNA translo-

cases. This finding is particularly important because PARP1 inhibitors are effective against
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homologous recombination deficient cancers. Our study reveals an additional function of

PARP1, which restrains replication progression through interaction with DNA translo-

cases and provides an important protective mechanism in response to replication stress.

Introduction

DNA lesions interfere with DNA replication, posing a threat to genome integrity [1,2]. The

DNA alkylating agent, methyl methanesulfonate (MMS), generates N7-methylguanine,

N3-methyladenine, and N3-methylguanine and is commonly used to study the mechanisms

involved in DNA repair and post-replication repair [3–8]. MMS induced DNA methylation is

primarily repaired by base excision repair (BER) mechanism [9]. N-methyl purine DNA glyco-

sylase (MPG) recognizes and removes N-methylpurine [10], and the resulting apurinic site is

cleaved by apurinic endonuclease 1 (APE1), leading to the formation of a single-strand break

(SSB) [11]. SSBs are repaired by DNA polymerase β (Polβ) and DNA ligase III [12]. BER

requires poly (ADP-ribose) polymerase I (PARP1), which catalyzes the formation of poly

(ADP-ribose) (PAR) onto itself and target proteins [13,14]. PAR serves as a binding motif for

recruiting BER-associated proteins. X-ray repair cross-complementing 1 (XRCC1) and Polβ
are recruited by PARP1 through binding with the PAR moiety [15–19]. Mutations in PARP1

result in BER defects and the accumulation of SSBs.

MMS induces replication stress. X-shaped sister-chromatid junctions (SJCs) appear in yeast

cells after MMS treatment, a process, known as the template switching subpathway of post-

replication repair, which depends on the DNA translocase Rad5 and the DNA recombinase

Rad51 [20]. Rad5 is a ubiquitin E3 ligase that catalyzes the polyubiquitin at K164 in proliferat-

ing cell nuclear antigen (PCNA) and possess helicase activity, promoting SCJs formation

[8,21,22]. SJC is believed to be necessary to fill gaps caused by DNA lesions [23,24]. In higher

eukaryotic cells, recent advances revealed that stalled replication forks are converted into

reversed forks under replication stress conditions, which can be observed by electron micros-

copy [25]. Although SCJ structures have not yet been observed in higher eukaryotes, both SCJs

and reversed forks feature annealing between sister strands. In mammalian cells, helicase-like

transcription factor (HLTF) and SNF2 histone linker PHD RING helicase (SHPRH) are Rad5

orthologs and share both structural and functional similarities. Both HLTF and SHPRH are E3

ligases that promote the polyubiquitination of PCNA, similar to yeast Rad5 [26–35]. Currently,

only HLTF and RAD5 have been identified to function as ATP-dependent DNA translocases

and catalyze fork reversal upon replication stress [22,31]. The fork reversal activity has not yet

been demonstrated for SHPRH. In addition to HLTF, other DNA translocases, including zinc

finger RANBP2-type containing 3 (ZRANB3) and SWI/SNF-related, matrix-associated, actin-

dependent regulator of chromatin, subfamily A-like 1 (SMARCAL1), can convert stalled forks

into reversed forks [36–39]. ZRANB3 contains an NZF domain that interacts with K63-linked

polyubiquitin chains [36,40]. SMARCAL1 interacts with single-strand DNA binding protein

replication protein A (RPA) to localize to damaged forks [41–43]. The current model proposes

that HLTF and SHPRH catalyze the polyubiquitination of PCNA, recruiting ZRANB3 through

binding with the polyubiquitin moiety. HLTF, SHPRH, and ZRANB3 promote the annealing

of sister strands, whereas SMARCAL1 promotes the annealing of parental strands. The coordi-

nation of these DNA translocases leads to the formation of reversed forks [44].

Recent studies reveal that PARP1 is not only involved in BER but is also involved in

restraining replication fork progression and the formation of reversed forks [25,45–47]. How-

ever, PARP1 possesses no helicase, and the mechanism through which PARP1 participates in
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DNA replication restraint remain unknown. In this study, we identified novel protein-protein

interactions between PARP1 and DNA translocases, including HLTF, ZRANB3, SMARCAL1,

and SHPRH. We further revealed that SHPRH restrains fork progression upon replication

stress, indicating that SHPRH plays an important role in fork reversal. These recruitments not

only restrain DNA replication but also facilitate DNA repair.

Results

PARP1 deletion reduces DNA translocase levels at damaged forks

Previous studies have shown that PARP1 restrains DNA replication upon replication stress.

The depletion of PARP1 or treatment with the PARP1 inhibitor olaparib relieves replication

restraint [25,45–47]. However, PARP1 has no helicase domains or DNA translocase activities,

and the mechanism through which PARP1 restrains DNA replication is unknown. To address

this question, we tested whether PARP1 is able to recruit DNA translocases, such as HLTF,

SHPRH, ZRANB3, and SMARCAL1 to stalled forks. SHPRH is an HLTF homolog with similar

structural and enzymatic activity [26–30]. However, to date, whether SHPRH catalyzes fork

reversal similar to HLTF under replication stress conditions remains unclear. To further

extend our understanding of the role played by SHPRH, we included SHPRH in this study.

We generated a PARP1 knockout (PARP1-KO) T24 bladder cancer cells using the CRISPR-

based gene-knockout strategy. PARP1-KO was confirmed by western blot (S1A Fig). The

PARP1-KO cell line showed an elevated sister chromatid exchange (SCE) frequency, verifying

the phenotype of PARP1-KO cells (S2A and S2B Fig). Interestingly, we also found that overex-

pression of DNA binding domain (DBD) of PARP1 resulted in a high SCE frequency (S2C–

S2E Fig), suggesting that DBD has a dominant negative effect that competes with endogenous

PARP1.

Previously, we have shown that PARP1 and HLTF does not reveal any foci formation simi-

lar to PCNA using confocal microscopy [48], it appears that the association of PARP1 or DNA

translocases to replication forks cannot be accessed by confocal microscopy. In order to test

whether these proteins associated with replication tracks, we performed a robust in situ analy-

sis of protein interactions at DNA replication forks (SIRF), using proximity ligation assay

(PLA) coupled with 5’ ethylene-2’-deoxyuridine (EdU) click chemistry [49]. Replication tracks

are labeled with EdU, which can be conjugated with biotin through the click reaction. Specific

antibodies against biotin and the target protein can be used to detect associations between rep-

lication tracks and the target protein. The resulting PLA foci in the nucleus indicate the associ-

ations between target proteins and replication tracks. To validate the SIRF assay, we used a

single anti-biotin antibody (biotin/-) or microtubule associated protein EB1 (biotin/EB1) to

test the SIRF assay and both failed to show any PLA foci (S3A–S3C Fig). In contrast, two anti-

biotin antibodies derived from mouse and rabbit (biotin (R)/biotin (M)), showed many PLA

foci, ranging from 20 to more than 200 foci in the nuclei (S3A–S3C Fig). Approximately 70%

of cells showed PLA foci, indicating that approximately 70% of cells are in S-phase. Using

PCNA as a positive control revealed very similar results to biotin (R)/biotin (M) (S3A–S3C

Fig).

We then tested whether DNA translocases were associated with replication tracks and

whether MMS induced the recruitment of DNA translocases to damaged forks. The specificity

of these antibodies used in the SIRF assay was tested in immunoblotting (S1A–S1E Fig). We

treated wild-type and PARP1-KO T24 cells with 0.01% MMS for 1 hour to induce DNA dam-

age. Approximately 40%-60% of mock-treated wild-type T24 cells contained between 1 and 10

HLTF, SHPRH, ZRANB3, and SMARCAL1 PLA foci (Figs 1A–1H and S4A–S4D), with more

PLA foci observed for HLTF and SHPRH than for ZRANB3 and SMARCAL1, with
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SMARCAL1 displaying the fewest foci (Fig 1E–1H). Importantly, MMS treatment increased

the number of PLA foci associated with all of these DNA translocases, with HLTF and SHPRH

forming larger numbers of PLA foci than ZRANB3 and SMARCAL1 (Figs 1A–1H and S4A–

S4D). UV treatment also induced an increase of PLA foci of all four DNA translocases (S5A–

S5C Fig). By contrast, the numbers of PLA foci significantly decreased in PARP1-KO cells

upon MMS treatment (Figs 1A–1H and S4A–S4D). We observed similar results using lenti-

viral packaged shRNA to deplete PARP1 expression (S6A–S6F and S7A–S7F Figs). The intro-

duction of exogenous PARP1 into PARP1-KO cells restored the numbers of PLA foci

Fig 1. The levels of DNA translocases are reduced at damaged replication forks in PARP1-KO cells. (A)-(D)

Representative images of HLTF, SHPRH, ZRANB3, and SMARCAL1 PLA foci, respectively, in wild-type and

PARP1-KO T24 cells. Cells were treated with 0.01% MMS for 1 hour. The association of each protein with replication

forks was determined by the SIRF assay. (E)-(H) Distributions of HLTF, SHPRH, ZRANB3, and SMARCAL1 PLA foci

derived from a-d, respectively. At least 200 cells from each condition were measured. (Raw SIRF data in S1 Data).

https://doi.org/10.1371/journal.pgen.1010545.g001
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associated with all four DNA translocases (Figs 2A–2D and S8A–S8D and S9A–S9D). To test

whether the PAR activity mediated by PARP1 facilitates DNA translocase recruitment, we

introduced a PARP1-K893I mutant, which disrupts PAR activity [50,51]. We found that

PARP1-K893I was not able to restore HLTF, SHPRH, SMARCAL1, or ZRANB3 PLA foci

(Figs 2A–2D and S8A–S8D and S9A–S9D). Cells treated with PARP1 inhibitor olaparib also

showed reduced HLTF and SHPRH PLA foci after MMS treatment (S10A–S10F Fig). Our

results suggest that PARP1 facilitates the recruitment of DNA translocases to damaged forks

in a PAR activity dependent manner. Both with and without MMS treatment, the numbers

of PLA foci associated with these DNA translocases were fewer than those observed for

PCNA (Figs 1A–1H and S3A–S3C) indicating that these DNA translocases are associated

with some but not all active replication forks. These DNA translocase-associated replication

forks may represent damaged forks arising from endogenous metabolites or exogenous

MMS treatment.

PARP1 associates with DNA translocases in vivo
To determine whether PARP1 associates with HLTF, SHPRH, ZRANB3, and SMARCAL1

DNA translocases, we performed coimmunoprecipitation assay with anti-PARP1 antibody.

Proteins associated in the PARP1 complex can be determined by immunoblotting. Cells were

either mock-treated or treated with 0.01% MMS for 1 hour. Since PARP1 and HLTF are able

to bind DNA through their DBD domain and HIRAN domain, respectively [16,34,35], cell

lysates were treated with DNase I or EtBr to rule out the possibility that DNA mediates these

interactions. PARP1 was able to pull down all DNA translocases, HLTF, SHPRH, ZRANB3,

and SMARCAL1 with HLTF showing the strongest interaction among these DNA translo-

cases, and MMS treatment did not enhance these interactions. DNase I or EtBr treatment did

not disrupt these interactions, suggesting these interactions are not mediated through DNA

(Fig 3A).

Furthermore, we found that the interaction between PARP1 and SHPRH can be improved

by overexpression of SHPRH. We transfected HEK293T cells with FLAG-tagged SHPRH and

immunoprecipitated the FLAG-SHPRH complex using anti-FLAG sepharose beads. As shown

in Fig 3B, FLAG-SHPRH was able to pull down PARP1. We further mapped the SHPRH

domains that interact with PARP1. We generated the FLAG-tagged SHPRH (1–605) contain-

ing the helicase ATP binding domain part 1 (HAB1) and H15 domain, SHPRH (606–1090)

containing the PHD domain and helicase ATP binding domain second part (HAB2), and

SHPRH (1090–1683) containing the RING domain and helicase C-terminal domain (HCT)

using in-fusion cloning (S11 Fig). We found that SHPRH (1–605) and SHPRH (606–1090)

were able to interact with PARP1 (Fig 3B). We have to note that SHPRH (606–1090) has lower

expression levels compared to the other constructs. The C-terminal SHPRH (1090–1683) has

marginal interaction with PARP1 (Fig 3B). Since the coimmunoprecipitation assay detects

indirect and direct interactions between proteins, we cannot rule out the possibility that the

interaction between PARP1 and SHPRH are mediated through other intermediates.

We further mapped the PARP1 domains that interact with each DNA translocase. We gen-

erated GFP-tagged PARP1, PARP1 (1–374) containing the DNA binding domain, PARP1

(356–532) containing the BRCT domain, and PARP1 (529–1014) containing the catalytic

domain (S12A Fig). We found that PARP1 (1–374) and PARP1 (356–532) interacts with

HLTF, SHPRH, and SMARCAL1, but interacts with ZRANB3 weakly (S12B Fig). Instead,

ZRANB3 showed stronger interaction with PARP1 (529–1014). Furthermore, PARP1 (529–

1014) also showed weak and marginal interaction with SHPRH and SMARCAL1 (S12B Fig).

We conclude that PARP1 interacts with these DNA translocases through multiple contacts.
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To test whether PARP1-DNA translocase interaction occurs in vivo, we examined protein-

protein interactions using the PLA assay with specific antibodies against PARP1, HLTF,

SHPRH, ZRANB3, and SMARCAL1. PARP1 interactions with DNA translocases appear as

PLA foci. HLTF formed the most abundant PLA foci with PARP1, followed by SHPRH,

SMARCAL1, and ZRANB3 (Figs 3C and 3D and S13). Interestingly, MMS treatment induced

an increase in the numbers of HLTF/PARP1, SHPRH/PARP1, and ZRANB3/PARP1 PLA foci

but only induced a marginal increase in SMARCAL1/PARP1 PLA foci (Figs 3C and 3D and

S13). Similar to the result of MMS treatment, UV treatment also increased the numbers of

HLTF/PARP1, SHPRH/PARP1, ZRANB3/PARP1, and SMARCAL1/PARP1 PLA foci (S14A–

S14C Fig). Combined these results, our findings suggest that PARP1 interacts with DNA trans-

locases and the interaction are not mediated through DNA.

HLTF and SHPRH facilitate the loading of ZRANB3 to damaged

replication forks

Previous studies have shown that HLTF and SHPRH are ubiquitin E3 ligases that catalyze the

K63-linked polyubiquitination of PCNA [26,29,30]. ZRANB3 contains an NZF domain, which

interacts with the K63-linked polyubiquitin chains on PCNA [36,40]. To test whether HLTF

and SHPRH act synergistically to recruit ZRANB3 to damaged replication forks, we performed

the SIRF assay. We found that MMS treatment induced an increase in ZRANB3 PLA foci in

T24 cells (Fig 4A–4C), whereas the numbers of ZRANB3 PLA foci were reduced significantly

in HLTF-KO/SHPRH-knockdown double-depleted cells (Fig 4A–4C). These results indicate

that HLTF and SHPRH act synergistically to recruit ZRANB3 to damaged replication forks.

DNA translocases restrain DNA replication upon HU-induced replication

stress

Several lines of evidence have revealed that PARP1 and DNA translocases, including HLTF

and ZRANB3, restrain DNA replication upon replication stress [25,35,39,46,47]. In the pres-

ence of low-dose hydroxyurea (HU) (50 μM) or camptothecin (50 nM), the depletion of

PARP1, HLTF, or ZRANB3 results in longer replication tracks than in wild-type cells. We

observed similar results in PARP1-KO, HLTF-KO, and ZRANB3-KO cells using a DNA fiber

assay, with longer replication tracks upon 50 μM HU treatment compared to wild type cells

(Fig 5A–5D). SHPRH depletion also exhibited longer replication tracks upon HU treatment

compared to wild type cells (Fig 5E). To the best of our knowledge, this represents the first evi-

dence that SHPRH restrains DNA replication under conditions of replication stress. We have

to note that currently, there is no evidence presented that SHPRH contains DNA translocase

activity, which contributes to fork restraining. It requires further biochemical study to verify

its DNA translocase activity. Alternatively, SHPRH could serve as a helper or scaffold protein

to facilitate fork reversal. It awaits further studies in the future.

Although HLTF and SHPRH share structural and functional similarities, the depletion of

each gene alone was able to relieve replication restraint under conditions of replication stress.

Fig 2. DNA translocase levels at damaged replication forks are rescued by the introduction of PARP1 in

PARP1-KO cells. (A)-(D) Distribution of HLTF, SHPRH, ZRANB3, and SMARCAL1 PLA foci in PARP1-KO,

PAPR1-rescue, and PARP1-K893I expressing T24 cells. The pLNCX vectors carrying wild-type PARP1 or

PARP1-K893I mutant were packaged into retrovirus particles in GP2-293 cell line. PARP1-KO T24 cells were infected

with these retroviruses to stably express wild-type PARP1 or PARP1-K893I mutant. Retrovirus carrying the empty

vector (vec) was used as the control. Cells were treated with 0.01% MMS for 1 hour. The association of each protein

with replication forks was determined by the SIRF assay. At least 200 cells from each condition were measured. (Raw

SIRF data in S2 Data).

https://doi.org/10.1371/journal.pgen.1010545.g002

PLOS GENETICS PARP1 interacts with DNA translocases to restrain DNA replication

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010545 December 13, 2022 7 / 25

https://doi.org/10.1371/journal.pgen.1010545.g002
https://doi.org/10.1371/journal.pgen.1010545


Fig 3. PARP1 interacts with DNA translocases in vivo. (A) The endogenous protein–protein interaction between

PARP1 and translocases. Cells were treated with either mock or 0.01% MMS for 1 hour. Cell lysates were treated with

either 100 μg/ml DNase I or 50 μg/ml EtBr as indicated. The endogenous PARP1 was immunoprecipitated with an

anti-PARP1 antibody and the pulldown translocases were detected with specific antibodies as indicated. The non-

specific mouse IgG was used as a negative control. Input represents 5% of total cell lysates. (B) The N-terminal domain

of SHPRH interacts with PARP1. HEK293T cells were transfected with various FLAG–SHPRH constructs. The

FLAG-SHPRH fusion proteins were immunoprecipitated with anti-FLAG sepharose beads, and the

immunoprecipitates were then subjected to immunoblotting analysis. Input represents 5% of total cell lysates. (C)

Representative images of HLTF, SHPRH, ZRANB3, and SMARCAL1/PARP1-PLA foci in T24 cells, respectively. Cells

were treated with 0.01% MMS for 1 hour. The association of each translocase with PARP1 was determined by the PLA

assay. (D) Distributions of HLTF, SHPRH, ZRANB3, and SMARCAL1/PARP1-PLA foci derived from C. At least 200

cells from each condition were measured. (Raw PLA data in S3 Data).

https://doi.org/10.1371/journal.pgen.1010545.g003
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To verify these results, we used an alternative approach in which active replication tracks were

labeled with fluorescent Cy5, and the intensity of Cy5 correlates with the length of replication

tracks. We labeled cells with EdU for 15 minutes, followed by treatment with 50 μM HU for 1

hour (S15A Fig). EdU incorporated into DNA was then conjugated with a fluorescent probe

Cy5 using the click reaction, and fluorescence intensity was measured by fluorescence micros-

copy. Stronger Cy5 intensity indicates longer replication tracks. Using this alternative method,

we are able to verify the results obtained in the DNA fiber assay. Wild type, PARP1-KO,

HLTF-KO, ZRANB3-KO, and SHPRH-KD cells showed similar Cy5 intensities following

mock treatment, suggesting that the depletion of these genes did not interfere with DNA

Fig 4. ZRANB3 levels are reduced at damaged replication forks in HLTF/SHPRH double-depleted T24 cells. (A)

Representative images of ZRANB3 PLA foci in wild type, HLTF-KO, and HLTF/SHPRH double-depleted T24 cells.

Cells were treated with 0.01% MMS for 1 hour. The association of ZRANB3 with replication forks was determined by

the SIRF assay. (B) Distribution of ZRANB3 PLA foci derived from a. At least 200 cells from each condition were

measured. (C) The number of PLA foci was classified into four groups: 0, 1–5, 6–10, and>11 foci, and the

distributions of each group are shown in the plot. (Raw SIRF data in S4 Data).

https://doi.org/10.1371/journal.pgen.1010545.g004
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replication progression (S15B, S15E, S16A, S16D, S16G and S16J Figs). However, the KO and

KD cell lines all showed stronger Cy5 intensity than wild-type T24 cells upon HU treatment

(S15C, S15F, S16B, S16E, S16H and S16K Figs), suggesting that PARP1, HLTF, SHPRH, and

ZRANB3 restrain DNA replication progression upon replication stress, which is consistent

with DNA fiber analysis.

The levels of DNA damage severity affect the outcome of fork progression

HU and MMS represent two different types of replication stress. During a 30-min treatment,

HU limits DNA replication by depleting cellular dNTP without inducing DNA lesions [52],

whereas MMS blocks DNA replication by inducing DNA lesions without affecting cellular

dNTPs levels [4]. Previous studies demonstrate that MMS treatment further slows fork pro-

gression in HLTF-depleted cells compared with wild-type cells [31,48], and the cellular

response is speculated to differ according to the type of replication stress. To reconcile these

results, we considered the possibility that differences in replication stress severity rather than

Fig 5. PARP1 and DNA translocases restrain DNA replication upon HU-induced replication stress. (A) Labeling

protocols for DNA fiber analysis. (B)-(E) Quantitation of IdU/CldU track length ratios derived from each cell line. At

least 100 DNA fibers derived from each cell line were measured. (Raw DNA fiber data in S5 Data).

https://doi.org/10.1371/journal.pgen.1010545.g005
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replication stress type leads to different outcomes. Treatment with 50 μM HU-induced rela-

tively mild replication stress compared with 0.01% MMS. Treatment with 50 μM HU only

barely or marginally induced the phosphorylation of CHK1, CHK2, and H2AX (Fig 6A). By

contrast, treatment with 0.01% MMS greatly induced CHK1, CHK2, and H2AX phosphoryla-

tion (Fig 6A). Using the same 0.01% MMS treatment (Fig 7A), the replication track length was

further reduced in the PARP1-KO, HLTF-KO, ZRANB3-KO, and SHPRH-KD cells compared

with treatment with 50 μM HU (Fig 7B–7E). These results were also verified by using Cy5-la-

beled replication tracks (S15D, S15G, S16C, S16F, S16I and S16L Figs). We observed similar

results in the U2OS cell line, suggesting that slowed fork progression induced by 0.01% MMS

treatment was common across cell lines (S17 Fig).

To test whether lower-dose MMS treatment resulted in different outcomes, we treated cells

with 0.001% MMS which only marginally induced CHK1, CHK2, and H2AX phosphorylation,

similar to the outcome observed for 50 μM HU treatment (Fig 6A). Strikingly, PARP1-KO,

HLTF-KO, and SHPRH-KD cells showed longer replication tracks upon 0.001% MMS treat-

ment compared with control cells (Fig 7F). Therefore, our data resolved a discrepancy with the

reports from past studies. We conclude that the severity of DNA damage affects the outcomes

of fork progression. Combined with previous studies, these data indicate that the restraint of

DNA replication by PARP1 and DNA translocases under replication stress conditions induced

by HU, camptothecin, or MMS treatment represents a common phenomenon shared across

different types of replication stress.

PARP1-KO, HLTF-KO, and SHPRH-depleted cells have high levels of

CHK1/CHK2 phosphorylation upon 0.01% MMS treatment

PARP1-KO, HLTF-KO, and SHPRH-KD cells slowed fork progression upon 0.01% MMS

treatment. We tested whether this decrease in fork progression was due to the induction of

higher levels of CHK1 and CHK2 phosphorylation. Cells were treated with 0.01% MMS for

30 min and the levels of phospho-CHK1 and phospho-CHK2 were determined by confocal

microscopy. We observed similarly low levels of CHK1/CHK2 phosphorylation among wild

type, PARP1-KO, HLTF-KO, and SHPRH-depleted cells following the mock treatment

(Figs 6B, 6C, S18A and S18B), whereas 0.01% MMS treatment significantly increased

CHK1/CHK2 phosphorylation in PARP1-KO, HLTF-KO, and SHPRH-depleted cells

compared with wild type cells (Figs 6B, 6C, S18A and S18B). Our results suggest that higher

levels of CHK1/CHK2 phosphorylation in PARP1-KO, HLTF-KO, and SHPRH-depleted

cells could trigger a stronger intra-S phase checkpoint response, leading to a further

decrease in DNA replication. These data also suggest that the mild replication stress

induced by 50 μM HU or 0.001% MMS restrains fork progression without activating check-

point signaling.

PARP1- and DNA translocase-depleted cells are defective in DNA repair,

resulting in higher levels of DSBs

To test whether PARP1-KO, HLTF-KO, and SHPRH-depleted cells present with defective

DNA repair mechanisms, we performed a DNA recovery assay. We pulse-treated cells with

0.01% MMS for 1 hour. After MMS removal, the cells were allowed to recover for 6 or 24

hours (Fig 8A) and harvested for western blotting. As shown in Fig 8B–8D, the PARP1-KO,

HLTF-KO, and ZRANB3-KO cells showed higher levels of CHK1 and CHK2 phosphorylation

and γH2AX in the immunoblotting analysis. We further generated an HLTF/SHPRH double-

depletion cell line, which showed higher levels of γH2AX and CHK1/CHK2 phosphorylation

than wild-type cells (Fig 8E).
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To determine whether HLTF and SHPRH act synergistically, we compared the levels of

DSBs between HLTF/SHPRH single- and double-depleted cells. We tested the levels of 53BP1

foci using confocal microscopy. Cells were treated with 0.01% MMS for 1 hour to induce DNA

lesions. After the removal of MMS, the cells were allowed to recover for 24 hours. The HLTF/

SHPRH double-depleted cells exhibited a higher intensity of γH2AX and 53BP1 (S19A and

S19B Fig) and an increase in the number of 53BP1 foci compared with wild-type cells (S19C

Fig). The γH2AX and 53BP1 foci were highly correlated (S20 Fig). Our results suggest that

HLTF and SHPRH act synergistically to recover from MMS treatment.

Discussion

In this study, we identified a novel interaction between PARP1 and DNA translocases, with

HLTF showing the strongest interaction with PARP1 among DNA translocases. The interac-

tion not only recruits DNA translocases to DNA damage sites to restrain DNA replication but

Fig 6. Higher levels of CHK1 and CHK2 phosphorylation are induced by 0.01% MMS than 50 μM HU or 0.001%

MMS. (A) Cells were treated with 50 μM HU, 0.001% MMS, or 0.01% MMS for 1 hour. Cells were fixed and

immunostained with antibodies as indicated. (B)(C) PARP1-, HLTF, and SHPRH-deficient cells showed higher levels

of phospho-CHK1 and phospho-CHK2 than control cells. (Raw p-CHK1/pCHK2 data in S6 Data).

https://doi.org/10.1371/journal.pgen.1010545.g006
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also facilitates DNA repair. In support of this notion, we found that the PARP1- and DNA

translocase-deficient cells displayed significantly reduced DNA repair efficiency. After 24

hours recovery from MMS-induced DNA damage, increased levels of γH2AX, 53BP1 foci, and

CHK1 and CHK2 phosphorylation were detected in gene-depleted cells than in wild-type cells.

We believed that these DNA translocases convert stalled forks into reversed forks to protect

stalled fork from collapse and facilitate DNA repair.

Previous studies suggest that HLTF and SHPRH are recruited to replication forks through

interactions with PCNA [26,29]. Here, we further revealed that PARP1 interacts with DNA

translocases, including HLTF, SHPRH, ZRANB3, and SMARCAL1, with HLTF showing the

strongest interaction with PARP1. Consistent with coimmunoprecipitation assay, PLA assay

Fig 7. DNA fiber analysis upon MMS-induced replication stress. (A) Labeling protocols for DNA fiber analysis. (B)-

(F) Quantitation of IdU/CldU track length ratios derived from each cell line. At least 100 DNA fibers derived from

each cell line were measured. (Raw DNA fiber data in S7 Data).

https://doi.org/10.1371/journal.pgen.1010545.g007
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also revealed a similar trend with PARP1/HLTF showing the most PLA foci among the DNA

translocases. Since DNase I or EtBr treatment did not disrupt these interactions, it suggests

these interactions are not mediated through DNA. Interestingly, MMS or UV treatment

increases PARP1/DNA translocase PLA foci. Using SIRF assay, we also found that MMS or

Fig 8. PARP1-, HLTF-, and ZRANB3-depleted cells show higher levels of γH2AX and checkpoint activation than

control cells after MMS treatment. (A) The protocol of DNA damage recovery assay. Cells were treated with 0.01%

MMS for 1 hour (R0), followed by recovery in fresh medium for 6 (R6) and 24 (R24) hours. Cells were fixed and

immunostained with antibodies as indicated. (B)-(E) Immunostaining of DNA damage recovery assay. Proteins were

detected with specific antibodies as indicated. Asterisk (�) indicates non-specific band.

https://doi.org/10.1371/journal.pgen.1010545.g008
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UV treatment induces an increase of HLTF, SHPRH, ZRANB3, and SMARCAL1 levels at rep-

lication forks. We think since PARP1/DNA translocases complex is enriched at damaged forks

upon MMS or UV treatment, the numbers of HLTF/PARP1, SHPRH/PARP1 and ZRANB3/

PARP1 PLA foci increase after MMS or UV treatment. Consistent with our results, a previous

study also revealed that UV irradiation reduces fork progression and increases frequency of

reversed forks using electron microscopy [25]. Taken together, these results suggest that repli-

cation slowing and the formation of reversed forks are global responses to genotoxic treat-

ments and this process requires PARP1/DNA translocases recruitment to damaged forks.

The depletion of PARP1 significantly reduced the numbers of these DNA translocase/biotin

PLA foci (Fig 1A–1H), whereas the introduction of exogenous PARP1 to PARP1-KO cells

was able to rescue these DNA translocase/biotin PLA foci (Fig 2A–2D). Interestingly, fewer

HLTF/biotin, SHPRH/biotin, ZRANB3/biotin, and SMARCAL1/biotin PLA foci were found

in nucleus than PCNA/biotin PLA foci (Figs 1A–1H and S3), suggesting that these DNA

translocases are not components of every replisome; instead, these DNA translocases may be

recruited specifically to damaged replication forks, resulted from intracellular ROS or exoge-

nous genotoxic insults. The introduction of a PARP1-K893I mutant with disrupted PAR activ-

ity failed to fully restore the recruitment of DNA translocases in PARP1-KO cells. The

inhibition of PARP1 with olaparib also significantly reduced HLTF/biotin and SHPRH/biotin

PLA foci. These data indicate that PAR activity is critical for the recruitment of DNA translo-

cases to damaged forks. However, an analysis of the HLTF and SHPRH protein sequences did

not reveal any PAR-binding motifs, macrodomains, PAR-binding zinc fingers (PBZ), WWE

domains, or BRCT domains which are able to interact with PAR [53]. Therefore, PARP1 and

DNA translocases could form a complex and the interaction is not mediated through PAR

modification. However, PARP1 activity is critical for the recruitment of the PARP1/DNA

translocases complex to damaged forks (Figs 2 and S4 and S6–S10). We speculate that PARP1

activity regulates chromatin compaction by recruiting ALC1 and APLF [54,55] or by PARylat-

ing histones [56–58], which results in local chromatin structure change and allows the access

of DNA translocases to chromatin. Consistent with this notion, HLTF is found in APLF and

ALC1 complex in a large scale affinity purification mass spectrometry project [59]. Both HLTF

and SHPRH interact with PCNA [26]. The HIRAN domain of HLTF interacts with 3’ ssDNA

[35]. These multivalent interactions induce the recruitment of PARP1/DNA translocases com-

plex to damaged forks. However, the detailed mechanism of how PARP1 activity coordinates

the recruitment of DNA translocases to damage forks requires further investigation in the

future. Since PARP1 contains a DNA binding domain (DBD) that binds and is activated by

stalled forks containing small gaps [16], we speculate that in addition to its role in BER,

PARP1 could serve as a replication stress sensor that binds to the stressed replication fork and

recruits DNA translocases to the stressed fork to restrain fork progression upon replication

stress.

HLTF and SHPRH share structural and functional similarity [28]. Both of them are ubiqui-

tin E3 ligases that polyubiquitinate PCNA. To date, only HLTF has been characterized to be an

ATP-dependent DNA translocase that catalyze fork reversal formation. It remains unclear

whether SHPRH has such function. Our DNA fiber analysis, together with results derived

from EdU-conjugated Cy5 fluorescence microscopy revealed that SHPRH restrains fork pro-

gression upon replication stress, a function similar to HLTF. Interestingly, an in silico analysis

also revealed that N-terminal domain of SHPRH also includes a potential HIRAN-like

domain, which could play a role in recognition of 3’DNA ends [60]. Therefore, SHPRH could

contain DNA translocase activity. Alternatively, SHPRH could serve as a helper or scaffold

protein to facilitate fork reversal. It requires further biochemical study to verify its function.

PLOS GENETICS PARP1 interacts with DNA translocases to restrain DNA replication

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010545 December 13, 2022 15 / 25

https://doi.org/10.1371/journal.pgen.1010545


Replication stress results in DNA translocases-mediated DNA replication restraint. Here,

we revealed that the restraint of replication fork progression is a common mechanism in

response to different DNA damaging-inducing agents. Previous studies showed that HLTF-

depletion slowed fork progression upon MMS treatment due to high levels of DNA damage

[31,48], which activates intra-S-phase, leading to further replication fork progression restraint.

By contrast, low levels of replication stress (e.g. 50 μM HU or 0.001% MMS) restrains fork pro-

gression through the recruitment of DNA translocases without activating the intra-S phase

checkpoint pathway. These findings suggest that the recruitment of DNA translocases to

stalled replication forks does not require checkpoint activation but depends on the binding of

PARP1 to stalled forks. However, we cannot exclude the possibility that even marginal or local

CHK1 activation is able to promote fork reversal.

We found that PARP1- and DNA translocase-depleted cells display DNA damage recovery

defects, suggesting that DNA translocases-mediated replication fork reversal protects stalled

replication forks from collapse and facilitates DNA repair by BER. In conclusion, we uncov-

ered a DNA damage response mechanism in which PARP1 binds to stalled replication forks

and recruits DNA translocases. HLTF and SHPRH mediated PCNA polyubiquitination, which

could facilitate ZRANB3 recruitment to damaged forks. These reversed forks not only protect

damaged forks from collapse, but also facilitate DNA repair.

Material and methods

Cell culture

The bladder cancer cell line T24 (ATCC HTB) was maintained in McCoy’s 5A media supple-

mented with 10% fetal bovine serum (CORNING), 1% glutamine (CORNING), and 1% peni-

cillin/streptomycin (CORNING) in a 37˚C incubator containing 5% CO2. The human

embryonic kidney cell line HEK293T was maintained in DMEM medium supplemented with

10% fetal bovine serum, 1% glutamine, and 1% penicillin/streptomycin in a 37˚C incubator

containing 5% CO2.

SIRF assay

Cells were harvested in 8-well chamber slides (Millipore) at a density of 3 x 104 cells and pulse-

labeled with 10 μM EdU for 15 minutes followed by treatment with 1.2 mM (0.01%) MMS for

1hour or treatment with 60 J/m2 UV irradiation (254 nm, Ultraviolet crosslinker CL-1000,

UVP Inc). we then used extraction buffer (25 mM HEPES, pH7.4, 50 mM NaCl, 3 mM

MgCl2,1 mM EDTA, 0.3 M sucrose, 0.5% Triton X-100) to remove the cytoplasmic fraction.

The cells were fixed with 3.5% paraformaldehyde in PBS for 30 minutes at room temperature.

The click reaction was performed with biotin-azide for 30 minutes and quenched with block-

ing solution for 30 minutes. Two primary antibodies against biotin and target proteins were

used to detect nascent synthesized DNA and the target proteins, respectively. The primary

antibodies used in this study are listed in S2 Table. Two oligonucleotide-conjugated secondary

antibodies, anti-rabbit PLUS and anti-mouse MINUS antibodies (Duolink, Sigma-Aldrich),

were incubated with samples for 60 minutes at 37˚C. Ligases and DNA polymerases were then

applied to the samples according to the manufacturer’s protocol (Duolink, Sigma-Aldrich).

Finally, the samples were mounted with Duolink In Situ Mounting Medium with DAPI for 15

minutes at room temperature and analyzed using a Nikon Eclipse 80i microscope equipped

with a Plan Fluor 40x/0.75 DIC M/N2 objective. The resulting images were measured using

NIS Elements D4.20.00 software (Nikon).
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Immunofluorescence microscopy

Cells were cultured in 8-well chamber slides at a density of 3 x 104 cells/well overnight and

treated with 0.01% MMS for 1 hr. Then, the cells were fixed with 3.5% paraformaldehyde for

30 minutes at room temperature. The fixed cells were incubated in blocking buffer (10% FBS,

0.1% Triton X100 in PBS) for 30 minutes at room temperature and further incubated with

anti-γH2AX antibody (1:100, Millipore, 05–636) and anti-53BP1 antibody (1:100, Abcam,

ab36823) at 4˚C overnight. Alexa Fluor 594-labeled goat anti-mouse IgG (H+L) antibody

(1:500, ThermoFisher Scientific, A-11032) and Alexa Fluor 488-labeled goat anti-rabbit IgG

(H+L) antibody (1,500, ThermoFisher Scientific, A-11001) were then used to detect γH2AX

and 53BP1 foci. ProLong Gold Antifade Mountant with DAPI (ThermoFisher Scientific,

P36935) was used to stain nuclei. Images were captured using a Zeiss LSM 780 confocal Micro-

scope, and the intensity of γH2AX and 53BP1 was quantified with ZEN 3.3 (blue edition) in at

least 100 cells were measured per cell line.

DNA fiber analysis

Cells were cultured in a 100-mm culture dish at a density of 2 x 106 cells for 16 hours and

pulse-labeled with 25 μM CldU for 20 minutes, followed by treatment with MMS or HU and

pulse-labeling with 250 μM IdU for 30 minutes. The nuclear fraction was isolated with buffer

A (10 mM HEPES, pH 7.9, 10 mM KCl, 1.5 mM MgCl2, 0.34 M sucrose, 10% glycerol). The

nuclear fraction was plated onto glass slides and lysed with spreading buffer. Each slide was

tilted 15˚ to 30˚ to allow the droplet to slowly run down the slide, spreading DNA fibers along

the slide. The DNA fibers were fixed in a 3:1 methanol/acetic acid buffer for 10 minutes, dena-

tured with 2N HCl for 1 hour at room temperature, and blocked in PBS buffer (1% BSA, 0.1%

Tween20 in PBS). Slides were incubated at 4˚C overnight with rat anti-BrdU primary antibody

(1:200, Abcam, ab6353) against CldU and the mouse anti-BrdU primary antibody (1:200, BD

Biosciences, 347580) against IdU. The goat anti-rat Alexa Fluor-594-conjugated secondary

antibody (1:500, ThermoFisher Scientific, 1301853) and the anti-mouse Alexa Fluor-488-con-

jugated secondary antibody (1,500, ThermoFisher Scientific, 1613346) were added to the slides

for 90 minutes at room temperature. Images were acquired by a Nikon Eclipse 80i microscope

equipped with a Nikon Plan Apo 100x/1.40 Oil DIC objective. At least 100 fibers were analyzed

in each cell line using NIS Elements D4.20.00 software (Nikon), and graphs were plotted with

GraphPad Prism software (Version 5.0).

The detailed Materials and Methods are described in S1 Text.

Supporting information

S1 Text. Supplementary Materials and Methods.

(PDF)

S1 Fig. The immunoblotting of the knockdown or knockout cell lines. (A)-(E) The knock-

down (KD) or knockout (KO) of each gene was verified by western blot analysis using specific

antibodies as indicated. Two shRNAs, KD#1 and KD#2, against SMARCAL1 were used as

indicated.

(TIF)

S2 Fig. Sister chromatid exchange (SCE) in wild-type and PARP1-KO T24 cells. (A) SCE

analysis of control T24 cells and PARP1-KO T24 cells. SCE was scored in 50 metaphase cells in

each cell line. (B) Representative images of SCE derived from each cell line. (C) Overexpres-

sion of DNA binding domain of PARP1 increases SCE frequency. HONE6 cells were trans-

fected with an empty vector pEGFP or pEGFP-DBD. The expression of DBD-GFP fusion
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protein was determined using western blotting with an anti-GFP antibody. (D) Representative

images of SCE for each cell line. (E) Quantification of SCE was scored from at least 50 meta-

phase cells per cell line. (Raw SCE data in S8 Data).

(TIF)

S3 Fig. PCNA SIRF assay. (A) Representative images of control PLA and PCNA SIRF assays.

PLA foci are shown in red, and DAPI staining is shown in blue. (B) Distribution of PLA foci

from each cell derived from (A). At least 100 cells from each condition were measured. (C)

The numbers of PLA foci from each cell were classified into four groups: 0, 1–50, 51–100, and

>100 foci. The distributions of each group are indicated in the plot. (Raw SIRF data in S9

Data).

(TIF)

S4 Fig. The levels of DNA translocases are reduced at damaged replication forks in

PARP1-KO cells. (A)-(D) The numbers of PLA foci (Fig 1A–1D) were classified into four

groups: 0, 1–5, 6–10, and>11 foci, and the distributions of each group are shown in the plots.

(Raw SIRF data in S1 Data).

(TIF)

S5 Fig. UV treatment induces an increase of DNA translocases at damaged forks. (A) Rep-

resentative images of PLA foci of each DNA translocase in mock or UV-treated T24 cells. Cells

were treated with 60 J/cm2 of UV irradiation. The association of each DNA translocase with

replication forks was determined by the SIRF assay. (B) Distribution of PLA foci derived from

a, respectively. At least 200 cells from each condition were measured. (C) The number of PLA

foci was classified into four groups: 0, 1–5, 6–10, and >11 foci, and the distributions of each

group were shown in the plot. (Raw SIRF data in S10 Data).

(TIF)

S6 Fig. The levels of DNA translocases are reduced at damaged replication forks in PARP1

knockdown T24 cells. (A)(D) Representative images of HLTF and SHPRH PLA foci in wild-

type and PARP1-knockdown T24 cells. The expression of PARP1 was depleted using shRNA

lentivirus. Cells were treated with 0.01% MMS for 1 hour. The association of each protein with

replication forks was determined by the SIRF assay. (B)(E) Distribution of HLTF and SHPRH

PLA foci derived from (A)(D), respectively. At least 200 cells from each condition were mea-

sured. (C)(F) The numbers of PLA foci were classified into four groups: 0, 1–5, 6–10, and >11

foci, and the distributions of each group are shown in the plot. (Raw SIRF data in S11 Data).

(TIF)

S7 Fig. The levels of DNA translocases are reduced at damaged replication forks in PARP1

knockdown T24 cells. (A)(D) Representative images of ZRANB3 and SMARCAL1 PLA foci

in wild-type and PARP1-knockdown T24 cells. The expression of PARP1 was depleted using

shRNA lentivirus. Cells were treated with 0.01% MMS for 1 hour. The association of each pro-

tein with replication forks was determined by the SIRF assay. (B)(E) Distribution of ZRANB3

and SMARCAL1 PLA foci derived from (A)(D), respectively. At least 200 cells from each con-

dition were measured. (C)(F) The numbers of PLA foci were classified into four groups: 0,

1–5, 6–10, and>11 foci, and the distributions of each group are shown in the plot. (Raw SIRF

data in S11 Data).

(TIF)

S8 Fig. DNA translocase levels at damaged replication forks are rescued by the introduc-

tion of PARP1 in PARP1-KO cells. (A)-(D) Representative images of HLTF, SHPRH,

ZRANB3, and SMARCAL1 PLA foci, respectively, in PARP1-KO, PAPR1-rescue, and
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PARP1-K893I expressing T24 cells. The pLNCX vectors carrying wild-type PARP1 or

PARP1-K893I mutant, respectively, were packaged into retrovirus particles in GP2-293 cell

line. PARP1-KO T24 cells were infected with these retroviruses to stably express wild-type

PARP1 or PARP1-K893I mutant. Retrovirus carrying the empty vector (vec) was used as the

control. Cells were treated with 0.01% MMS for 1 hour. The association of each protein with

replication forks was determined by the SIRF assay. (Raw SIRF data in S2 Data).

(TIF)

S9 Fig. DNA translocase levels at damaged replication forks are rescued by the introduc-

tion of PARP1 in PARP1-KO cells. (A)-(D) The numbers of PLA foci were classified into

four groups: 0, 1–5, 6–10, and >11 foci, and the distributions of each group are shown in the

plot. (Raw SIRF data in S2 Data).

(TIF)

S10 Fig. HLTF and SHPRH levels are reduced at damaged forks in olaparib- treated T24

cells. (A)(D) Representative images of HLTF and SHPRH PLA foci in mock or olaparib-

treated T24 cells. Cells were treated with olaparib for 2 hours, followed by 0.01% MMS treat-

ment for 1 hr. The association of each protein with replication forks was determined by the

SIRF assay. (B)(E) Distributions of HLTF and SHPRH-PLA foci derived from a, d, respec-

tively. At least 200 cells from each condition were measured. (C)(F) The numbers of PLA foci

were classified into four groups: 0, 1–5, 6–10, and>11 foci, and the distributions of each

group are shown in the plot. (Raw SIRF data in S12 Data).

(TIF)

S11 Fig. The schematic representation of SHPRH constructs. The helicase ATP binding

domain first part (HAB1), H15, PHD, helicase ATP binding domain second part (HAB2),

RING, and helicase C-terminal domain (HCT) are based on UniProt Knowledgebase (Uni-

ProtKB) analysis.

(TIF)

S12 Fig. PARP1 domains interact with DNA translocases. (A) The schematic representation

of PARP1 constructs. The DNA binding domain (DBD), BRCT domain, and catalytic domain

(CAT) are based on UniProt Knowledgebase (UniProtKB) analysis. (B) HEK293T cells were

transfected with various GFP-PARP1 constructs. The GFP-PARP1 fusion proteins were

immunoprecipitated with a GFP antibody followed by protein G-agarose pulldown. The

immunoprecipitates were then subjected to immunoblotting analysis with specific antibodies

as indicated. Input represents 5% of total cell lysates.

(TIF)

S13 Fig. PARP1 interacts with DNA translocases in vivo. The number of PLA foci (Fig 3C)

was classified into four groups: 0, 1–5, 6–10, and >11 foci, and the distributions of each group

are shown in the plot. (Raw PLA data in S3 Data).

(TIF)

S14 Fig. PARP1 interacts with DNA translocases in vivo. (A) Representative images of

PARP1/translocases PLA foci in mock or UV-treated T24 cells. T24 cells were treated with 60

J/cm2 of UV irradiation. (B) Distributions of PARP1/HLTF, PARP1/SHPRH, PARP1/

ZRANB3, and PARP1/SMARCAL1 PLA foci derived from a. At least 200 cells from each con-

dition were measured. (C) The numbers of PLA foci were classified into four groups: 0, 1–5,

6–10, and>11 foci, and the distributions of each group are shown in the plot. (Raw PLA data

in S13 Data).

(TIF)
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S15 Fig. 0.01% MMS- and 50 μM HU-induced replication stress have different effect on the

progression of replication tracks. (A) The schematic representation of EdU click reaction

assay. (B)(C)(D) Representative images of Cy5 fluorescent intensity derived from each cell line

and treatment. Wild-type and PARP1-KO T24 cells were labeled with EdU for 15 min (mock),

followed by treatment with 50 μM HU or 0.01% MMS for 1 hour before fixation. Cy5 (pink)

was conjugated to EdU by the click reaction, and images were acquired using a Zeiss LSM 780

confocal microscope. (E)(F)(G) The intensity of Cy5 was quantified from at least 100 cells per

condition. (Raw Cy5 data in S14 Data).

(TIF)

S16 Fig. 0.01% MMS- and 50 μM HU-induced replication stress have different effect on the

progression of replication tracks. (A)(B)(C)(G)(H)(I) Representative images of Cy5 fluores-

cent intensity derived from each cell line and treatment. The wild type, HLTF-KO,

ZRANB3-KO, and SHPRH-knockdown (shSHPRH) T24 cells were labeled with EdU for 15

min (mock), followed by treatment with 50 μM HU or 0.01% MMS for 1 hour before fixation.

Cy5 (pink) was conjugated to EdU by the click reaction, and images were acquired using a

Zeiss LSM 780 confocal microscope. (D)(E)(F)(J)(K)(L) The intensity of Cy5 was quantified

from at least 100 cells per condition. (Raw Cy5 data in S14 Data).

(TIF)

S17 Fig. Depletion of PARP1, HLTF, or SHPRH further reduced replication tracks follow-

ing 0.01% MMS treatment in U2OS cells. Quantitation of IdU/CldU track length ratios

derived from each cell line. At least 100 DNA fibers derived from each cell line were measured.

(Raw DNA fiber data in S15 Data).

(TIF)

S18 Fig. 0.01% MMS induces high levels of CHK1 and CHK2 phosphorylation in

PARP1-KO, HLTF-KO, and SHPRH-depleted cells compared with control cells. (A)(B)

The numbers of phospho-CHK1 and phospho-CHK2 foci from each cell were classified into

four groups: 0, 1–5, 6–10,>11 foci. The distributions of each group are indicated in the plot.

(Raw pCHK1/pCHK2 data in S6 Data).

(TIF)

S19 Fig. The HLTF-KO and HLTF/SHPRH-double depleted cells show higher levels of

DSBs. (A)(B) The intensity of 53BP1 and γH2AX in each cell was quantified using ZEN 3.3

software. Cells were treated with 0.01% MMS for 1 hour, followed by recovery in fresh

medium for 24 hours. Cells were fixed and immunostained with 53BP1 and γH2AX antibod-

ies. At least 100 cells from each cell line were quantified. (C) The number of 53BP1 foci from

each cell was classified into two groups: <10 and >10, and the distributions of each group are

indicated in the plot. (Raw 53BP1/γH2AX data in S16 Data).

(TIF)

S20 Fig. The γH2AX and 53BP1 foci are highly correlated. The confocal microscopy results

of 53BP1 and γH2AX derived from each cell line. Cells were chronically treated with 0.01%

MMS for 1 hr, followed by recovery in fresh medium for 24 hr. Cells were fixed and immunos-

tained with 53BP1 and γH2AX antibodies.

(TIF)

S1 Table. The list of targeting sequences of shRNA used in this study.

(PDF)
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S2 Table. The list of antibodies used in this study.

(PDF)

S1 Data. Raw SIRF data.

(XLSX)

S2 Data. Raw SIRF data.

(XLSX)

S3 Data. Raw PLA data.

(XLSX)

S4 Data. Raw SIRF data.

(XLSX)

S5 Data. Raw DNA fiber data.

(XLSX)

S6 Data. Raw pCHK1/pCHK2 data.

(XLSX)

S7 Data. Raw DNA fiber data.
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S8 Data. Raw SCE data.

(XLSX)

S9 Data. Raw SIRF data.
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S10 Data. Raw SIRF data.
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S11 Data. Raw SIRF data.
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S12 Data. Raw SIRF data.

(XLSX)
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