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a b s t r a c t

Transport models are the main method to obtain physics information on the nuclear
equation of state and in-medium properties of particles from low to relativistic-energy
heavy-ion collisions. The Transport Model Evaluation Project (TMEP) has been pursued
to test the robustness of transport model predictions in reaching consistent conclusions
from the same type of physical model. To this end, calculations under controlled
conditions of physical input and set-up were performed with various participating codes.
These included both calculations of nuclear matter in a box with periodic boundary
conditions, which test separately selected ingredients of a transport code, and more
realistic calculations of heavy-ion collisions. Over the years, six studies have been
performed within this project. In this intermediate review, we summarize and discuss
the present status of the project. We also provide condensed descriptions of the 26
participating codes, which contributed to some part of the project. These include the
major codes in use today. After a compact description of the underlying transport
approaches, we review the main results of the studies completed so far. They show,
that in box calculations the differences between the codes can be well understood and
a convergence of the results can be reached. These studies also highlight the systematic
differences between the two families of transport codes, known under the names of
Boltzmann–Uehling–Uhlenbeck (BUU) and Quantum Molecular Dynamics (QMD) type
codes. However, when the codes were compared in full heavy-ion collisions using
different physical models, as recently for pion production, they still yielded substan-
tially different results. This calls for further comparisons of heavy-ion collisions with
controlled models and of box comparisons of important ingredients, like momentum-
dependent fields, which are currently underway. Our evaluation studies often indicate
improved strategies in performing transport simulations and thus can provide guidance
to code developers. Results of transport simulations of heavy-ion collisions from a
given code will have more significance if the code can be validated against benchmark
calculations such as the ones summarized in this review.

© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

One of the great challenges in nuclear physics today is the determination of the nuclear matter equation of state (EoS),
.e., the behavior of the energy or pressure of nuclear matter under the variation of density, temperature and neutron–
roton asymmetry. The last aspect, namely the nuclear symmetry energy, is of particular importance in understanding
he structure of heavy nuclei and complex astrophysical objects. Over the years, information about the EoS has been
btained from astrophysical observations [1] as well as from nuclear physics experiments [2], particularly those involving
eavy-ion collisions, which can achieve densities above the saturation density ρ0 in the laboratory. In astrophysics, a
umber of observations of neutron stars with masses near or above two solar masses have set important limits on the
ressure of neutron-rich matter at high density [3–5]. The observation of a neutron star merger event has provided
imits on the deformability of neutron stars [6], and recent simultaneous determinations of masses and radii from milli-
econd pulsars begin to set limits on the neutron-star mass–radius correlation [7–9]. While astrophysical observations
an provide information on the global behavior of the EoS under stellar conditions, nuclear physics observations and
heir interpretations allow to investigate the EoS in considerable detail, like its density dependence from very low
o supra-saturation densities, its temperature and asymmetry dependence, and its composition under these various
onditions.
For densities below ρ0, rather strict limits on the nuclear symmetry energy have come from nuclear structure

nd reaction measurements and their interpretation [2,10–13]. Precision measurements of masses and isobaric analog
tates [14] are mainly sensitive to the symmetry energy at about (2/3)ρ0. Measurements of the neutron skin thickness
n heavy nuclei show a dependence on the slope L of the symmetry energy at this density [15]. The recent model-
ndependent measurement of the neutron skin of the 208Pb nucleus with parity-violating electron scattering (PREX2) [16],
nd very recently also of the 48Ca nucleus (CREX) [17], has provided additional constraints here. The analysis of the dipole
olarizability of nuclei [18] appears sensitive to the symmetry energy S below 0.5ρ0 [13]. Both the symmetry energy and

its slope obtained below ρ0 have been extrapolated to saturation density ρ0. However, this procedure is not without model
ependence [13].
3
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While nuclear structure experiments are generally limited to investigations below saturation density, heavy-ion
ollisions are an important way to obtain information on the EoS in the laboratory away from saturation. By selecting
ifferent collision systems with different isospins, collision energies, and impact geometries, the phase diagram in the
adronic domain (and similarly for collisions in the partonic regime at ultra-relativistic energies) can be and has been
xplored intensively. For densities below saturation, tight constraints have been obtained from isospin diffusion [19–22]
nd fractionation [23], and from the isotopic content of produced nucleons or light clusters [13,24,25]. At present, one
f the major challenges is to obtain constraints on the density dependence of the symmetry energy above saturation
ensity. Measurements of isospin-dependent momentum distributions (stopping and flow) [26–28] and of light cluster and
article yields [29,30] have been proposed as promising ways to make progress towards this goal. A recent high precision
xperiment of collisions of different isotopes of Sn at 270 MeV/nucleon has already provided important data [31,32] that
s sensitive to the symmetry energy at around 1.5ρ0[27,33], and more data will be forthcoming.

Heavy-ion collisions create short-lived and dynamic states of nuclear matter that are out of equilibrium over large
fractions of the evolution time. The interpretation of such events represents a great challenge to reaction theory. Non-
equilibrium methods have to be applied to interpret the outcome of the collision and to extract information on the EoS
of nuclear matter at equilibrium, and on the in-medium properties and cross sections of hadrons. To do so, semi-classical
transport theory has been used for many years with considerable success, see topical issue on ‘‘Challenges in nuclear
dynamics and thermodynamics’’[34] or Refs. [12,35].

Transport theories are formulated in the full one-body phase space and are highly non-linear. They consist of a
mean-field evolution of the phase-space distribution (Vlasov equation) and a collision term, usually of two-body nature,
to describe the dissipation (Boltzmann collision term). Fluctuations are also of great importance, and they require
the inclusion of stochastic elements into the treatment. There are basically two families of transport approaches for
heavy-ion collisions that are dominated by hadronic degrees of freedom, namely the Boltzmann–Vlasov type (usually
called the Boltzmann–Uehling–Uhlenbeck (BUU) method) and the molecular dynamics type (usually called the Quantum
Molecular Dynamics (QMD) method). A short review of the physical approach used in these two families will be given
in the next section. Because of their complexity, the relevant equations are not solved directly in these models, but
rather by numerical methods, in particular by simulations with test particle or molecular dynamics approaches. Ideally,
conclusions from comparing transport calculations with given experimental data should not depend critically on the
implementation of the simulation. However, any implementation involves choices of strategies and approximations, which
are not directly enforced by the underlying equations. Therefore, the question arises on how tightly the physical modeling
of the collision is connected to the result and thus to the inferences from an experiment, or what role is played by the
particular implementation of the simulation. In fact, recent investigations based on the same experimental data came to
different conclusions. E.g., in interpreting the ratios of produced oppositely charged pions different analyses extracted
very different density dependences of the nuclear symmetry energy without changes of other ingredients of the physical
models, see Ref. [36] and references therein. Another example is the double ratio of neutron over proton pre-equilibrium
emissions [37,38].

In this situation, the idea of a Transport Model Evaluation Project (TMEP), i.e., of code comparisons under controlled
conditions or of benchmark calculations, has arisen already some time ago. It was started in 2005 with a study of K
and π meson production in the energy regime of 1 AGeV [39], and then with workshops in 2009 and 2014 moved
to the intermediate energy regime of 100 to 400 AMeV, where most of the measurements on the longitudinal and
transverse momentum distributions were performed. In the latter case, a comparison of Au+Au heavy-ion collisions
showed differences in the observables between 13 and 30%, depending on the energy [40]. However, in a full simulation of
a heavy-ion collision, it is difficult to tie differences in the results to specific aspects of the simulation, as different effects
influence each other. Thus, to better understand these discrepancies, simulations were made of infinite nuclear matter
in a box with periodic boundary conditions. This method allows to investigate the different ingredients separately and
compare them to exact limits. Several investigations of this kind have already been completed: a study of the mean-field
propagation in a Vlasov calculation [41], a study of the treatment of the collision term in a cascade calculation [42],
and a study of pion production also in the cascade mode [43]. Further investigations in a box are in progress of pion
production in the presence of momentum-dependent mean fields [44]. In parallel, comparative studies are underway of
pion production in relation to experiments of Sn+Sn collisions at 270 MeV/nucleon [31,32,45]. The completed studies
and their results are reviewed in Section 3. It should be noted that controlled comparisons of complex simulations have
also been undertaken in other fields of physics, from atomic traps, through ultra-relativistic heavy ion collisions, to core
collapse supernova calculations, and they have always been very fruitful for the respective fields [46–49].

Transport models are used in many fields of physics, in other sciences, and in applications. Here we mainly discuss
transport models for nuclear systems with the aim to answer questions about the nuclear EoS and consequences for
astrophysical systems. But there are numerous research areas where nuclear transport models can be important outside of
these immediate questions. In many fields of basic research, nuclear targets are used in energetic collisions with electrons,
neutrinos, possibly dark matter particles. However, the energetic particles often disrupt the target or modify it in a way
that cannot be treated perturbatively or statistically. It is then important to know as precisely as possible the final state
of the nuclear target to calibrate the energy of the incoming particle. In many applications a detailed understanding of
nuclear collisions is important: Examples are the design and performance of radiation shielding, the conditions of space
travel, the design and simulation of detector responses, the investigation of the effectiveness of transmutation, and therapy
4
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Table 1
List of transport models that participated in the TMEP code comparisons discussed in this paper. The columns give the
information on the name of the code, the main correspondents of the code, the energy range intended for the code,
the treatment of effects of relativity (see Section 2.1), and the comparisons in which the code participated. The different
comparisons are listed in the last column in the table by a numbers n, which refer to the subsections 3.n, where they are
described in detail: n = 1 for Au+Au collisions around 1 AGeV, n = 2 for Au+Au collision at 100 and 400 AMeV, n = 3 for
box-Vlasov, n = 4 for box-cascade with only nucleons, n = 5 for box-cascade with pion and ∆ resonance production, and n
= 6 for the prediction of pion ratios for Sn+Sn collisions.
BUU Type Code Correspondents Energy Range [A GeV] Relativity Comparisons

BLOB P. Napolitani, M. Colonna 0.01–0.5 non-rel 2
BUU-VM S. Mallik 0.02–1 rel 3,4,5
DJBUU Y. Kim, S. Jeon, M. Kim, C.-H. Lee, K. Kim 0.05–2 cov 3
GiBUU J. Weil, T. Gaitanos, K. Gallmeister, U. Mosel 0.05–40 rel/cov 1,2,3,4
IBL W.J. Xie, F.S. Zhang 0.05–2 rel 2
IBUU J. Xu, L.W. Chen, B.A. Li 0.05–2 rel 2,3,4,5
LBUU(LHV) R. Wang, Z. Zhang, L.-W. Chen 0.01–1.5 rel 3
pBUU P. Danielewicz 0.01–12 rel 1,2,3,4,5,6
PHSD E. Bratkovskaya, W. Cassing 0.1–200 rel/cov 1,6
RBUU T. Gaitanos 0.05–2 cov 1,2
RVUU Z. Zhang, C.M. Ko, T. Song 0.05–2 cov 1,2,3,4,5
SMASH D. Oliinychenko, H. Elfner, A. Sorensen 0.5–200 cov 3,4,5,6
SMF M. Colonna, P. Napolitani 0.01–0.5 non-rel 2,3,4
χBUU Z. Zhang, C.M. Ko 0.01–0.5 non-rel 6

QMD Type Code Corespondents Energy Range [AGeV] Relativity Comparisons

AMD A. Ono 0.01–0.3 non-rel 2
AMD+JAM N. Ikeno, A. Ono 0.01–0.3 non-rel+rel 6
BQMD/IQMD A. Le Fèvre, J. Aichelin, C. Hartnack, R. Kumar 0.05–2 rel 1,2,6
CoMD M. Papa 0.01–0.3 non-rel 2,4
ImQMD Y.X. Zhang, N. Wang, Z.X. Li 0.02–0.4 rel 2,3,4
IQMD-BNU J. Su, F.S. Zhang 0.05–2 rel 2,3,4,5,6
IQMD-SINAP G.Q. Zhang 0.05–2 rel 2
JAM A. Ono, N. Ikeno, Y. Nara, A. Ohnishi 1–158 rel 4,5
JQMD 2.0 T. Ogawa, K. Niita, S. Hashimoto, T. Sato 0.01–3 rel 4,5
LQMD(IQMD-IMP) Z.Q. Feng, H.G. Cheng 0.01–10 rel 2,3,4,5
TuQMD/dcQMD D. Cozma 0.1–2 rel 1,2,3,4,5,6
UrQMD Y. J. Wang, Q. F. Li, Y. X. Zhang 0.05–200 rel 1,2,3,4,6

with particle beams. Transport models are also very good event generators for training deep-learning neural networks.
Thus in many fields, quantitatively reliable transport models for nuclear systems are of great importance, and the TMEP
initiative can contribute towards this goal.

In the TMEP studies, the physics input and collision set-up were usually controlled, but the internal strategies of the
imulations were left as in the normal use for interpreting experimental data from heavy-ion collisions. Due to limitations
n space, we gave some information on these strategies in Refs. [40–43]. However, this only gives limited information on
he ideas of the code developers. Even though detailed descriptions of most codes have been published, they are scattered
n the literature, and thus it is not easy to have rapid access to this information. One objective of the present article is to
rovide compact descriptions, written by the code authors, of all codes that have participated in at least one of the TMEP
omparisons, and these are listed in Table 1. We give the code names and the code correspondents, who usually are also
he authors of the code descriptions, the energy range for which the code is intended, and the treatment of the effects of
elativity, i.e., of non-relativistic or relativistic kinematics and/or of a covariant treatment of the forces. Here we limited
he upper energy range to 200 A GeV, but some codes can also be used for LHC energies up to 10 TeV, as discussed in
he code descriptions. Note also that some codes can be run in different modes, e.g., GiBUU with relativistic kinematics
r with covariant forces, IBUU and ImQMD in the regular mode or with the lattice-Hamiltonian method.
The last column in Table 1 indicates the completed comparisons in which the code participated. It is seen that

ssentially all codes that have been applied to heavy-ion collisions in the hadronic regime in recent years have participated
n part of these studies, which thus give a good representation of the current activity in this field. The description of the
odes collected here presents a unique overview of all the transport codes in use in this field today. Some codes joined
n the later investigations, while others have dropped out partly due to lack of time by the participants to perform the
equired calculations. It should be noted that in the course of the comparisons, some codes introduced modifications,
ither because the result was very different from the general behavior, or because the codes deviated from exact limits
n the box calculations. We see this as the positive effect of the project and a good strategy to evaluate any code.

However, we did not attempt to develop a universal code for transport calculations in this energy regime, which did
ot appear to us a realistic and even desirable goal. Lessons learned from the box comparisons have been extensively
iscussed during the TMEP Collaboration meetings and some of the codes have been improved accordingly. This will
ecome more evident when the codes are compared again for full heavy ion collisions with controlled input, a study of
hich is presently underway. We think that it would be desirable to give version numbers to the codes documenting
5
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their development, to indicate which features and modifications have been included, as is done already by some codes in
the project. In the long run it may also be desirable to have a repository for transport codes in this energy regime, once
they are sufficiently stable in their development. Presently we think that the consistency with benchmark calculations is
the more practical way to assess the performance of a code.

We also emphasize that this study does not attempt to determine the correct physical models to describe an observable,
s, e.g., the above-mentioned pion-ratio. For this the physical models in our comparisons are mostly not realistic enough
nyway. Rather we want to ascertain that simulations with the same physical model reach similar conclusions for an
bservable, or, if they do not, that we can identify the origins in the specific assumptions of a model or a class of models.
n a certain sense such differences constitute a kind of systematic theoretical error in the interpretation of heavy-ion
ollisions by transport models, and in this project we aim to quantify and hopefully reduce this error.
This review is organized as follows. In Section 2, we give a brief characterization of the two main families of transport

pproaches, the BUU- and QMD-type codes, in order to establish a unified framework and terminology. In Section 3, we
ummarize the main results of the comparisons completed so far and discuss the ongoing and planned studies as well
s open problems. In Sections 4 and 5, we then collect the code descriptions provided by the corresponding authors for
heir BUU-type or QMD-type codes. The paper closes with some concluding remarks.

. Transport approaches

In this section, we briefly characterize the two main approaches used for transport simulations. It is not intended as a
omprehensive theoretical discussion of the derivation and validity of transport theories, which can be found in various
eviews [35,50–54]. Rather, it should serve as a guide of the main characteristics, the methods of implementation, and
he physical model ingredients of the transport approaches, and it establishes a terminology and sets a framework for the
escription of the codes. This section follows generally the corresponding sections of Refs. [40,41].
The primary method to describe the dynamics of nuclear collisions from Fermi to relativistic energies is semi-

lassical transport theories, such as the Nordheim approach, in which the Vlasov equation for the one-body phase-space
istribution, f (r⃗, p⃗; t), is extended with a Pauli-blocked Boltzmann collision term [50,54], which accounts for the average
ffect of the two-body residual interaction. The resulting transport equation, often called Boltzmann–Uehling–Uhlenbeck
BUU) equation, contains two main ingredients: the self-consistent mean-field potential and the two-body scattering
ross sections. In order to introduce fluctuations and further (many-body) correlations in the treatment of the reaction
ynamics, two main avenues have been taken (see Refs. [12,35,41,55]). One is the class of molecular dynamics (MD) mod-
ls [56–64], while the other is represented by stochastic extensions of mean-field approaches of the Boltzmann–Langevin
ype [65–70].

.1. BUU-like models

In BUU-like approaches, the time evolution of the one-body phase-space distribution function of particle species a,
a(r⃗, p⃗; t), follows the equation( ∂

∂t
+ ∇⃗pϵ · ∇⃗r − ∇⃗rϵ · ∇⃗p

)
fa(r⃗, p⃗; t) = Icoll[fa(r⃗, p⃗; t)] , (1)

where ϵ[f ] is the single-particle energy, which is generally momentum-dependent and can usually be derived from a
density functional, and Icoll is the two-body collision integral due to the two-body scattering p + pb → p′

+ p′

b,

Icoll[fa] =

∑
b

gb
(2π h̄)3

∫
d3pb dΩ ′ vab

dσmed
ab

dΩ ′
[(1 − fa)(1 − fb)f ′

a f
′

b − fafb(1 − f ′

a)(1 − f ′

b)]. (2)

he distribution functions in Eq. (2) are all taken at the same position r⃗ and time t , and the momenta p⃗′ and p⃗′

b are
determined by energy–momentum conservation and the scattering angle Ω ′. The summation b in the simplest case is
over neutrons and protons and gb is the spin degeneracy, but it may be extended to include other particle species with
evolution equations of their own phase-space densities of the type of Eq. (1). In the above, dσmed

ab /dΩ are the in-medium
nucleon–nucleon elastic differential scattering cross sections, or, for the case of other particle species, the corresponding
inelastic cross sections. The relative velocity factor vab is given by the difference in velocities, non-relativistically and
relativistically for collinear velocities, as vab = |v⃗ − v⃗b|, and otherwise as

vab =
[(p · pb)2 − M2

aM
2
b ]

1/2

p0p0b
, (3)

where Ma and Mb are the bare masses, and the numerator on the r.h.s. involves a product of the 4-vectors p = (p0 ≡ ϵ, p⃗)
and pb = (p0b, p⃗b). The particular form of Eq. (3) emphasizes the covariance of the relativistic Boltzmann equation, as p0b in
the denominator can be combined with the momentum integration to yield the invariant momentum measure d3pb/p0b .
Moreover, both sides of the Boltzmann equation can be multiplied by p0 to produce a covariant derivative in the first
term on the l.h.s. The phase-space distribution, averaged over spin, is also a Lorentz scalar. Actually, most codes described
in this review use some kind of relativistic formulation.
6
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To characterize the different formulations of the BUU equation, we introduce for each considered particle species (index
omitted in the following for simplicity) the kinetic momentum p∗µ

= pµ−Vµ and the energy E∗
≡ p∗0

= (p⃗∗
2
+m∗2)1/2.

Here Vµ represents the vector field and m∗ is the Dirac effective mass, given by m∗
= M −Φ , where Φ is the scalar field

and M denotes the bare mass of the particle. The vector field depends on the baryon four-current jµ(r⃗; t) = (ρ, j⃗), which
is given self-consistently by

jµ = g
∫

d3p∗

(2π h̄)3
p∗µ

E∗
f (r⃗, p⃗∗; t), (4)

where g is the degeneracy factor of the considered species (4 in the case of nucleons in symmetric nuclear matter). The
scalar field Φ(ρS) depends on the scalar density ρS(r⃗; t) defined as

ρS = g
∫

d3p∗

(2π h̄)3
m∗

E∗
f (r⃗, p⃗∗; t). (5)

In this case, the single-particle energy in Eq. (1) simply reads as ϵ = p0 = E∗
+ V 0. The specific dependence of the fields

on the densities is detailed below.
The different transport codes can be assigned to three main categories:

(a) Non-relativistic codes (labeled as ‘‘non-rel’’ in Table 1).
These codes can be described in the above general scheme by considering only the vector field and neglecting the

spatial component of the baryon four-current (⃗j = 0). Thus, the energy E∗ becomes E with E =

√
p⃗2 + M2. Moreover, the

non-relativistic limit is taken for E. The single-particle energy can then be written as ϵ =
p⃗2
2M + U(ρ) + M , where U(ρ)

s the mean-field potential. The latter is usually introduced phenomenologically, and very often a Skyrme-like form is
mployed, i.e., U(ρ) = a(ρ/ρ0)+b(ρ/ρ0)σ with ρ0 being the saturation density and the non-linear term taking into account
he effect of many-body forces. In many applications, but not in the comparisons discussed here, a phenomenological
omentum-dependence is also included in the potential U(ρ, p).

b) Codes with relativistic kinematics (labeled as ‘‘rel’’ in Table 1).
The same ingredients as in the ‘‘non-rel’’ case, but the kinematics is treated relativistically. Hence, the single-particle

nergy is expressed as ϵ = E + U(ρ, p).
c) Covariant codes (labeled as ‘‘cov’’ in Table 1).

We place into this category all codes that employ scalar and/or vector fields including the spacial component. Many
odes in this category follow the general scheme of the Walecka or Relativistic Mean-Field (RMF) model. Denoting by
σ and mω the masses of the isoscalar σ (scalar) and ω (vector) mesons, respectively, and by gσ and gω their respective
oupling constants, the following relations hold for the scalar and vector fields:

Φ =
g2
σ

m2
σ

ρS; Vµ =
g2
ω

m2
ω

jµ. (6)

hen one wants to take into account the nuclear symmetry energy, the isovector mesons ρ (vector) and sometimes δ
scalar) are also included in a similar way. For a more realistic description of symmetric and asymmetric nuclear matter,
his model is usually extended, either by adding terms non-linear in the scalar field Φ in the relation between ρS and Φ
nd/or non-linear coupling terms between mesons (non-linear RMF models), or by assuming that the coupling constants
σ and gω , etc., are functions of the density. In these density-dependent coupling models, the functional form of the density
ependence is either determined phenomenologically, e.g., by fitting nuclear masses [71], or by parametrizing results from
uclear-matter models, like the Brueckner Hartree–Fock or the chiral perturbation theory [72,73]. Also, other assumptions
n the scalar and vector fields exist, as detailed in the corresponding code descriptions.
Fluctuations of the one-particle density, which account for the effect of neglected many-body correlations, can be

ntroduced by adding to the r.h.s. of Eq. (1) a stochastic term, representing the fluctuating part of the collision integral [65–
7,74]. This leads to the Boltzmann–Langevin (BL) equation, in close analogy with the Langevin equation for the Brownian
otion.
The integro-differential non-linear BUU equation is solved numerically. To this end, the continuous distribution

unction fa is represented in terms of a sum of finite elements, called test particles (TP) [75], as

fa(r⃗, p⃗; t) =
1

gaNTP

(
2π
h̄

)3 NaNTP∑
i=1

G(r⃗ − R⃗i(t)) G̃(p⃗ − P⃗i(t)) , (7)

here Na is the number of particles of type a (in the case of only nucleons Na ≡ N or Z for the total number of neutron
r protons), NTP the number of TP per particle (often the same for each species a but could also be different), R⃗i and P⃗i

are the time-dependent coordinates and momenta of the TPs, and G and G̃ are the profile functions in coordinate and
momentum space, respectively, with a unit normalization. In particular, when δ functions are adopted for the profile
functions, inserting this ansatz into the left-hand side of Eq. (1) results in Hamiltonian equations of motion for the TP
propagation,

dR⃗i
= ∇⃗P ϵ and

dP⃗i
= −∇⃗R ϵ . (8)
dt i dt i

7
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Solving the test particle equations of motion, Eq. (8), requires the calculation of the local single-particle energy, which
depends on bulk quantities, e.g., the local density ρ(r⃗, t), which can be evaluated from Eq. (4).

The phase-space distribution represented by Eq. (7) fluctuates strongly when δ-functions are used for the profile
functions. In this case, one uses a large number of TPs and/or profile functions of finite size especially for the spacial part
of the TPs, e.g. Gaussians or triangular shapes, to smooth the distributions in coordinate space. A systematic procedure
was introduced by Lenk and Pandharipande [76] by using the lattice-Hamiltonian method. Here, the coordinate space is
divided into cubic cells (typically of volume ∆l3 = 1 fm3) and the spatial density is evaluated at the cell site coordinates
rα as ρα = ρ(r⃗α). The potential part of the total Hamiltonian of the system is then given by Hpot = ∆l3

∑
α epot (ρα), where

pot denotes the potential part of the energy density. We note that these quantities depend on the TP coordinates, R⃗i(t),
ccording to Eq. (7). The resulting canonical equations-of-motion from this Hamiltonian are

dR⃗i

dt
= ∇⃗Piϵ and

dP⃗i
dt

= −∆l3
∑
α

depot
dρα

∇⃗RiGα = −∆l3
∑
α

ϵpot(ρα)∇⃗RiG(r⃗α − R⃗i(t)), (9)

where the sum is over all cells that contribute in a relevant way. It was shown in Ref. [76] that equations-of-motion in
this form strictly conserve the total energy. The Lattice-Hamiltonian method has been used for BUU codes of the type
‘‘non-rel’’ and ‘‘rel’’ and also for QMD codes.

2.2. QMD-like models

In quantum molecular dynamics (QMD) models, the many-body state is represented by a simple product wave
function of single-particle states with or without anti-symmetrization [57,58], usually assumed to have a fixed Gaussian
shape. Although this ansatz corresponds to an independent-particle approximation, the use of localized wave packets
induces classical many-body correlations both in the mean-field propagation and in the collision integral, where the
latter is treated by the same stochastic methods as in BUU (see Section 2.4). This way of introducing many-body
correlations produces possible trajectory branchings, and has been proven to be particularly efficient for the description
of fragmentation events, where nucleons are well localized inside separate fragments in the final state [57]. The time
evolution of nuclear dynamics is formulated in terms of the changes in nucleon coordinates and momenta, i.e., the
centroids of the wave packets, in a similar way as in classical molecular dynamics. They move under the influence of
the mean-field potential, which is usually consistently accounted for by density functionals, but may also be formulated
with two- or many-body interactions. This approach can be viewed as derived from the time-dependent Hartree method
with a product trial wave function of single-particle states of Gaussian form,

Ψ (r⃗1, . . . , r⃗A; t) =

A∏
i=1

φi(r⃗i; t), (10)

φi(r⃗i; t) =
1[

2π (∆x)2
] 3
4
exp

[
−

[r⃗i − R⃗i(t)]2

4(∆x)2

]
exp

[
(i/h̄)P⃗i(t) · [r⃗i − R⃗i(t)]

]
,

ith the centroid positions R⃗i(t) and momenta P⃗i(t) treated as variational parameters. However, the widths∆x are fixed in
rder for the wave function to be able to describe finite distance structures, as observed in the fragmentation of colliding
uclei. The 1-body Wigner function for the wave function of Eq. (10) is

f (r⃗, p⃗) =

A∑
i=1

fi(r⃗, p⃗), with (11)

fi(r⃗, p⃗) =

(
h̄

∆x∆p

)3

exp
[
−

(r⃗ − R⃗i(t))2

2∆x2
−

(p⃗ − P⃗i(t))2

2∆p2

]
.

The prefactor in Eq. (11) reduces to the value 8 due to the relation ∆x∆p = h̄/2 from the ansatz of Eq. (10). However, the
alues of ∆x and ∆p are often used independently of each other in the codes. Eq. (11) shows that the Wigner function is
ormalized to be dimensionless, and is explicitly positive-definite for this ansatz. Although the Wigner function can then
e interpreted as a probability density, it may be larger than unity, which then requires a special treatment for the Pauli
locking in the collision term (see Section 2.4). QMD ansatz with Gaussian wave packets yields the following equations
f motion derived from the time-dependent variational principle

dR⃗i

dt
= ∇⃗Pi

⟨
H

⟩
and

dP⃗i
dt

= −∇⃗Ri

⟨
H

⟩
, (12)

hich are of the same form as those obtained for the TPs in BUU, Eq. (8), written in terms of the centroid positions R⃗i(t)
nd P⃗i(t) of the wave packets and by replacing the single-particle energy ϵ with the expectation value of the many-

body Hamiltonian ⟨H⟩. The approach has been extended to include anti-symmetrization of the wave function in the
Antisymmetrized Molecular Dynamics (AMD) method [77,78], which results in more complicated equations of motion,
but of similar structure.
8
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2.3. Fluctuations

The main difference between the BUU and QMD models lies in the amount of fluctuations and correlations in the
epresentation of the phase-space distribution, which affects the evolution both in the mean-field propagation [41] and the
ollision term [42]. In the standard BUU approach, the phase-space distribution function is seen as a one-body quantity,
hich is a smooth function of coordinate and momentum, and can be approximated increasingly better by increasing
he number of TPs in the representation. In the limit of NTP → ∞, the BUU equation is solved exactly. In this limit, the
olution is deterministic and does not contain fluctuations, also if the collision term is taken into account [41,42]. However,
s mentioned above, suitable stochastic extensions can be formulated, if fluctuations are considered to be important. Of
ourse, numerical fluctuations are present in practical BUU calculations with a finite number of TPs [79].
In QMD, nucleon correlations arise from the representation in terms of a finite number of wave packets of finite width,

eading to enhanced fluctuations of the one-body density relative to BUU. These fluctuations are strongly driven by the
tochastic evaluation of the collision term, since complete nucleons are scattered in QMD, rather than small segments
f phase space as in BUU. Thus, in the philosophy of QMD, one goes beyond the mean-field approach and includes
orrelations and fluctuations in the QMD ansatz of the wave function. However, these fluctuations can lead to a loss
f the fermionic character of the system more rapidly than in BUU, as studied for the mean-field propagation in Ref. [41]
nd for the collision term in Ref. [42]. The fluctuations in QMD-type codes are regulated and smoothed by varying the
arameter ∆x, the width of the wave packet, see Eq. (10). However, the parameter ∆x has also been related to the range
f the nuclear interaction, and as such can only be varied within limits. QMD can be seen as an event generator, where the
ime evolution of different events is solved independently, and therefore the effect of the fluctuations is not suppressed
ven in the limit of averaging over an infinite number of events.

.4. The collision term

In BUU, the collision term is commonly simulated by performing stochastic TP collisions. In QMD, the same procedure
s used for the nucleons, and can formally be derived by putting NTP = 1. This procedure involves two steps: first, to
etermine if two test particles collide in a given time step, and second, to check whether the final state of the collision is
llowed by the Pauli principle. The strategies for both of these steps are discussed in considerable detail in the box cascade
omparison in Ref. [42] and in the code descriptions; thus only some brief remarks are made here. The condition for a
ollision is usually determined by a geometric criterion, often called the Bertsch criterion, as it was first fully formulated
n the review paper by Bertsch and Das Gupta [50]. In this method, two TPs collide in a given time step if they reach a
istance of closest approach given by the TP cross section σ ′

= σmed/NTP within that step. The choice of the final momenta
f the TPs is stochastic, with the condition that the total energy and momentum are conserved. In Ref. [42], it was found
o be important to eliminate consecutive collisions of the same TPs, and sometimes one even has to consider physical
r unphysical higher-order correlations induced by the geometrical prescription. Alternatively, statistical criteria for the
ollision probability have been used, based essentially on the ratio between the mean free path, which depends on the
ensity and the cross section, and the relative distance traveled in time step ∆t by a pair of TPs [42].
For each such ‘‘attempted" collision, the Pauli blocking is checked by calculating the phase-space occupation for the

inal states f ′
a and f ′

b . Here, an average over the phase-space cells of the final states has to be taken to obtain reasonably
mooth results. The Pauli blocking probability is calculated in most cases as 1− (1− f ′

a)(1− f ′

b). As mentioned above, the
MD ansatz may result in an over-occupation of a final cell. Most codes in this case disallow the collision (i.e., force the
ccupation to have the value 1), others constrain the distribution function to remain smaller than one (CoMD, see the
orresponding code description). In principle, with Fermi statistics implemented at the beginning of the reaction and the
auli principle enforced in the collision term, the fermionic nature of the system should be preserved in the evolution.
owever, in Ref. [42], it was seen that the phase-space occupation for the final states is subject to fluctuations, which
ay allow collisions that should have been forbidden. This destroys the Fermi distribution of an isolated system more
r less quickly, depending on the number of TPs. It has been shown [66] that the coarse-graining, which is implicit in
he representation of the phase-space distribution by finite elements, acts as a dissipation, which eventually evolves the
istribution to a classical Maxwell–Boltzmann distribution.
For BUU codes, the method of solving the collision term with a geometric criterion, as explained above, is called the

ull-ensemble method. It is numerically expensive since it scales like (A2
·N2

TP ). By considering that the range of the nuclear
nteraction is finite, one can limit the coordinate space region where one has to check for collision partners, such that the
omputation time scales like (A ·N2

TP ). In most calculations, the parallel-ensemble method is used, where the total number
f test particles is randomly divided into NTP ensembles of A particles each [80]. Collisions are then allowed to occur only
ithin each ensemble with the full cross section σmed, while the Pauli blocking and the mean fields are calculated by
veraging over the test particles from all ensembles. This method then scales like (A2

· NTP ), which often is faster, since
he number of TPs is large. It was checked that, in typical cases, this procedure gives results similar to the full ensemble
ethod. A numerically even less expensive method is related to the lattice-Hamiltonian method [76] and works with
tatistical concepts in sub-ensembles. It was first used in Ref. [81] and was then motivated more rigorously in Ref. [82],
here it was called the local-ensemble method, and where it was shown to scale as (A · NTP ). It does not employ any

geometric interpretation, and is, therefore, free of problems with time-ordering of collisions and Lorentz covariance.
9
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At collision energies above particle production thresholds, new particles appear and particle production observables,
.g., the yields of pions, are considered as promising probes for the investigation of the EoS, but at the same time
his increases the complexity of the simulations. Additional distribution functions appear for each particle with their
orresponding transport equations, which are coupled to those of nucleons by the collision term with inelastic two-body
eactions or by the decay or formation of unstable particles. This requires additional physical input, such as the mean
ields of these particles and the in-medium inelastic cross sections or decay amplitudes, which often are not known from
xperiment and have to be modeled. Additionally, when considering elastic, inelastic, and decay processes simultaneously,
he sequence of treating these processes in the collision term becomes relevant. This was studied in the comparison of
ion production in a periodic box [43].
When considering particle production near the threshold, the newly produced particles will be very rare. To obtain

easonable statistics for the evaluation of observables, one has to simulate a very large number of events, which is
umerically costly. This difficulty can be circumvented in two ways. One can often treat the production perturbatively,
uch that the new particles do not influence the evolution of the nucleonic distribution function. An exact method is the
artition method [83,84], which amounts to using a much larger test-particle number for the rare species and by gauging
he inelastic cross sections accordingly.

In an inelastic two-body collision, the energy–momentum conservation determines the threshold for particle produc-
ion. Since the collision happens in the medium, the potential energies of all involved particles have to be taken into
ccount, which shifts the thresholds away from their values in the vacuum. These threshold shifts depend on the choices
or the mean fields of the produced particles, which are often not known, e.g., in the case of ∆-resonances, and have to be
pecified in models, which may differ between the codes. The situation becomes even more complicated with momentum-
ependent mean fields. Various schemes have been proposed to ensure the energy–momentum conservation on the local
r global level [85], but we will not describe details here.
In principle, the mean fields or self-energies in quantum transport theories are complex. The imaginary part corre-

ponds to a finite width of the spectral function of the particle due to an intrinsic width and/or the collisional broadening.
his is treated explicitly in off-shell transport theories [86,87]. These have been implemented in the codes GiBUU [88] and
HSD [89], but we will not go into detail here. However, the finite width of a particle may become important in particle
roduction, when the energy of the collision is near or even below the two-particle threshold. This has often been the
ase for pion production at intermediate energies, which proceeds via ∆-resonance excitation, which has a width of
pproximately 120 MeV. Rather than performing off-shell transport calculations, this effect is often treated by assuming a
ass distribution for the unstable particle and choosing the mass stochastically from this distribution under the constraint
f energy–momentum conservation. In such an assumption, the detailed-balance condition is modified from the on-shell
rocess [81]. Returning to on-shell conditions at large times is no problem here, since by then all the unstable particles
ave decayed.
Finally, we would like to mention the treatment of fragment and cluster production. The production of larger fragments

an be seen as triggered by fluctuations when the system is inside the spinodal region, which are amplified to realistic
ragments by the mean field. These can be identified at later times in the simplest case by coalescence methods, but also
y more refined approaches, which can identify fragments already at an earlier stage in the collision [90]. However, the
roduction of light clusters up to He isotopes, is not well described in transport models by this mechanism, because the
tructure of the clusters is due to true quantum correlations with discrete bound states, which are absent in semi-classical
ransport descriptions, and which may additionally be modified by medium effects. At the same time, light clusters
re copious in the final state of an intermediate-energy heavy-on collision and could provide important observables
o determine the EoS, particularly the symmetry energy [91–93]. A few codes treat the production of light clusters
ynamically [55,81,94]. Briefly stated, they either modify the phase-space of the nucleons forming a cluster according
o the cluster wave function (AMD code), or treat light clusters as separate particle species (pBUU code). These have their
wn distribution functions and transport equations, and are coupled to the nucleons by in-medium production vertices,
hich have to involve a third particle to ensure energy–momentum conservation.

. Review of results of comparisons of transport simulations under controlled conditions

Up to now, there have been 6 published papers within the code evaluation project [31,39–43]. These publications go
nto considerable detail to analyze the similarities and differences of the results of the codes under controlled conditions.
hus, it may be useful to summarize the most important findings of these investigations in brief reviews including the
ost significant figures. This is the main goal of this section. These summaries follow a logical order. We start with two
omparisons of full heavy-ion collisions at relativistic and intermediate energies. Realizing that there are rather large
ifferences, which are not easy to disentangle for a full collision, we turn to the simpler set-up of calculations in a box
ith periodic boundary conditions (‘‘box-calculations’’) to study the different aspects of transport simulations in a very
ontrolled way. We investigated, in sequence, the mean-field propagation with a simple density functional, the collision
erm with elastic collisions only, and the collision term including inelastic collisions leading to pion production. In view of
pcoming detailed experimental data of pion production in Sn+Sn collisions at 270 AMeV, we then asked for a prediction
f pion yields by the various codes without prior knowledge of the data. This showed that significant differences among
he codes still remained, which are thought to be due to differences of the physical models, whose implementations are
resently studied in further comparative calculations. These and further extensions of transport models are discussed in
he last two sections of this chapter.
10
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Fig. 1. Longitudinal (left) and transverse (right) momentum distributions of protons from Au+Au collisions at Elab = 1.48 AGeV and b = 1 fm. The
ines with symbols are the results of the participating transport codes, identified in the legend by the names of the authors (for more information
n these codes, see Ref. [39]).
ource: Figure adapted from Ref. [39].

.1. Heavy-ion collisions at energies around 1 AGeV: Pion and Kaon production

An early comparison of several cascade and transport codes with experimental data for La+La collisions at Elab = 800 A
MeV [95] studied coalescence-invariant inclusive proton cross sections and found generally good agreement among the
codes, but systematic deviations from the data, which were later found to be incorrect due to this study. A more systematic
comparison of 8 transport codes for heavy-ion collisions was undertaken during a workshop held in 2004 at the ECT* in
Trento, with the results published in Ref. [39]. In this study, reactions of Au+Au at Elab = 1 and 1.48 AGeV and of Ni+Ni at
1.92 AGeV were compared. The main emphasis was on the production and momentum distributions of π and K mesons,
since at the time the K+ production was of particular interest for the determination of the EoS of symmetric nuclear
matter. The physical input into the codes, such as the parametrization of cross sections, potentials, and decay width,
was left as in the normal use of the codes. Thus, the emphasis was put more on the physics of meson production than
on the convergence of transport simulations. The longitudinal and transverse momentum distributions of protons are
shown in Fig. 1 for Au+Au collisions at 1.48 AGeV for the different codes participating in the comparison at that time.
The results of these codes agree with each other fairly well, which is probably due to the fact that at this energy the
mean field is not very important. It should be noted that the codes in this study are in some cases early versions of the
codes described in Sections 4 and 5 in this paper. There are the following correspondences between the codes in Fig. 1
and codes described here (see also Table 1): Cassing-PHSD, Reiter-UrQMD, Hartnack-IQMD, Larionov-GiBUU, Chen-RVUU,
Fuchs-TuQMD, Gaitanos-RBUU, and Danielewicz-pBUU. Some of the code correspondents of this comparison have changed
in the meantime. The code denoted ’Barz/Wolf’ is no longer active and a description is not included here.

Fig. 2 shows the spectra of positive pions (upper row) and kaons (lower two rows) with and without a kaon potential
for the same Au + Au collision as in Fig. 1. Large differences are seen between the codes. These were partly due to the
use of different models for the production and properties of the ∆ resonances and the cross sections for strangeness
production. This was taken up again in a review paper by Ch. Fuchs on kaon production at intermediate energies, where
it was shown that the discrepancies in the K+ observables resulted mainly from the use of different models of the kaon
interactions, and that a much better convergence can be achieved between codes by using similar models, also between
codes of BUU and QMD type [96]. In any case the differences were less evident when considering ratios of observables.
At this time, a much-discussed observable was the ratio of K+ production in Au+Au and C+C collisions, which is expected
to be sensitive to the iso-scalar compressibility [97] in such a way that it is higher in the Au+Au collision due to the
higher compression reached, while the ratio is not much affected by the absolute K+ yields. It was seen that in spite of
the different absolute values, the ratio was rather consistent between the different codes [39], and thus the evidence for

a soft symmetric EoS with momentum dependence was judged to be robust [98].
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Fig. 2. Longitudinal (left) and transverse (right) momentum distributions for π+ (upper row) and K+ (lower two rows) for the same Au+Au reaction
s in Fig. 1. The kaon spectra are shown without and with the use of a kaon potential. The lines with symbols are the results from the different
articipating transport codes as in Fig. 1.
ource: Figure adapted from Ref. [39].

.2. Heavy-ion collisions at 100 and 400 A MeV

In a further workshop in Trento in 2009, the beam energy of Au+Au collisions was lowered to 100 and 400 A MeV
ith controlled physical input, and substantial differences in the results of the codes were observed. A similar set up was
aken up again during a workshop at Shanghai Jiao Tong University in 2014, with a considerably enlarged participation of
ransport codes, especially codes developed in the 1990’s in China. This formally started the Transport Model Evaluation
roject (TMEP).
The physical input in this project was simple and only roughly realistic, i.e., a Skyrme-like mean field or a non-linear

elativistic mean-field (RMF) in (σω)-parametrization and a constant NN cross section. Conditions were specified for the
initialization (a Woods–Saxon density profile in coordinate space and a local Fermi sphere in momentum space), the
impact parameters, and the number of runs (events). The codes were run in different modes: cascade (only collisions),
Vlasov (only mean field) and full. For each code, the comparison monitored the evolution of the density distributions,
the rate, energy, and final-state blocking of the collisions, and certain observables, namely the rapidity distributions and
transverse flows in the final state. The details and results of this comparison were published in Ref. [40].

An impression of the collision dynamics is given in Fig. 3, which displays the time evolution, in steps of 20 fm/c , of the
density contour plot averaged over the runs of the comparison for BUU (left panel) and QMD (right panel) codes at the
beam energy of 100 AMeV. For BUU models, the averaged density contours are similar to those of a single run, while for
QMD models they strongly fluctuate from event to event. The general progression of a heavy-ion collision is exhibited in
12
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Fig. 3. Average density contours in steps of 20 fm/c in Au+Au collisions at impact parameter b = 7 fm and beam energy 100 A MeV from BUU-type
left) and QMD-type (right) models in the full mode.
ource: Figure adapted from Ref. [40].

ll models: the merging and maximum compression until about 40 fm/c , the development of a sideward flow from about
0 to 80 fm/c , and the formation and subsequent breaking of a neck at about 100 fm/c . From then onward, one observes
he formation and evolution of the projectile- and target-like residues, which are clearly highly excited and develop their
wn dynamics. In this case, one can consider 140 fm/c as the freeze-out time, after which the de-excitation of the primary
ragments can be calculated with a statistical code for a comparison to experiment. The figure shows differences between
he codes already at the initial time, but also significant differences are seen in the subsequent evolution.

A first observation was that the initially prepared nuclei were not necessarily stable in a free propagation. The
rescribed density profiles were not always well reproduced by the codes, particularly in QMD. Moreover, they are not
ecessarily the ground states for the given mean-field interaction, and thus often are not stable, but instead oscillated or
ettled into another configuration. This happens on a time scale of the order of the collision time of the nuclei, and can
ead to differences in the configuration during the collision, which influence the subsequent evolution. As a solution for
his problem, it was proposed to initialize the collision with a configuration consistent with the interaction used in the
ropagation, e.g., with a Thomas–Fermi ground state.
Furthermore, considerable differences in the energy distributions of the attempted (before Pauli blocking) collision

ates were seen. The biggest differences occur for collision energies below the Fermi surface where most of the NN
ollisions happen, while the convergence is better at higher energies (where the blocking is less important). The
istributions of nucleon rapidities and transverse momenta show differences, especially at the collision energy of 100
MeV. This can be traced to the fact that at 100 A MeV, one is near the balance energy, where the attractive mean

ield and the repulsive collisions nearly balance each other, making this a particularly sensitive region. For a quantitative
easure of the differences, the flow value was used, i.e., the slope of the px sideward momentum curve at zero rapidity.
he standard deviation from the average result was about 30% at 100 and 13% at 400 A MeV as shown in Fig. 4. BUU and
MD codes gave similar values, but also show some systematic difference. Subsequently, this was found to be due to a
ystematically lower value of the forces in QMD codes, resulting from a different evaluation of the many-body component
f the density functional (see the next subsection). We also note that the results in this figure represent the status of the
odes at the time of the publication of Ref. [40], and that several codes have since been modified, in particular in response
o the results of the code comparisons.1 The comparison of nucleonic observables in heavy-ion collisions, such as the flow
hown here, is taken up again in the ongoing study of Sn+Sn collisions at 270 AMeV [45], where an improved convergence
f the results will be seen.
It is not easy to trace these differences to particular features of the simulations, but there are indications that the

nitializations and the treatment of the collision term are the main reasons. In full heavy-ion collisions, different effects
nteract with each other, e.g., different collision rates lead to different degrees of violence for the collision and thus
ifferent densities may be probed in the codes. It is also difficult to determine which strategies are more advantageous
urely from a comparison between the codes, since the average result of the codes obviously is not necessarily indicative
f the exact result.

1 In particular, the low value of the code BLOB was found to be due to an early version of the code and very low statistics. A more recent value
from an improved version is given in P. Napolitani, et al. J. Phys.: Conf. Ser. 1014, 012008 (2018).
13
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Fig. 4. Flow values for 8 BUU-type (left) and 9 QMD-type (right) models in Au+Au collisions at the impact parameter b = 7 fm and the beam energy
f 100 A MeV (black squares) and 400 A MeV (red triangles). The sideward flow is defined as the average momentum per nucleon in x-direction with
espect to the reduced rapidity yred = y/ybeam , and the flow is the slope of this curve at zero rapidity. The error bars are the fitting uncertainties,
nd where they are not seen they are smaller than the symbols. (For the open BLOB point, see text and footnote.).
ource: Figure adapted from Ref. [40].

Progress can be made with calculations in a box with periodic boundary conditions, which effectively simulate infinite
uclear matter of a given density and temperature. In a box, identical initial conditions are easily constructed. By
erforming Vlasov and Cascade calculations, one can test the mean-field propagation and the collision term separately.
urthermore, there are exact analytical or numerically obtained values for many quantities, e.g., the collision rates, to
hich the results of the codes may be compared rather than having to compare the codes among each other. In this
ay much more definite statements could be made about the performance of the codes, and, in fact, modifications were

mplemented in many cases.

.3. Mean-field dynamics in a box

The transport equation of Eq. (1) has two aspects: the Vlasov dynamics on the l.h.s., which describes the evolution
f the phase-space distribution function under the action of a self-consistent mean field, and the collision term on the
.h.s., which represents the two-body dissipation. In this comparison, we tested the mean-field dynamics in more detail by
olving the Vlasov equation in a periodic box [41]. The emphasis of this study was to investigate the difference between the
UU and QMD approaches with respect to the different amounts of fluctuations and the method of calculating the forces.
he same simple force parametrizations were used as in the study of the previous subsection. The box was initialized
ith a standing density wave in z-direction oscillating around nuclear matter at saturation density and zero temperature.
his corresponds to the zero-sound propagation, which can be solved for in Landau theory, and can be compared to
he calculations in the limit of small amplitudes. A numerically exact solution is further provided by solving a partial
ifferential equation for the deformed Fermi-surface (DFS) psurf (z, p, θp, t), where p and θp are the values of the momentum

and its angle with respect to the z-axis. These analytical and exact solutions were compared to the results of 9 BUU-type
and 5 QMD-type codes.

In a Vlasov calculation, the initial momentum distribution should be approximately preserved in the evolution. Fig. 5
presents the momentum distributions at the initial (top) and final (bottom) times for BUU (left) and QMD (right) codes.
In many cases, the curves overlap strongly, so that the individual results are difficult to distinguish, but here we want to
discuss the general behavior. The BUU-type codes rather well preserve the Fermi-distribution of the initial condition. By
increasing the number of test particles to 10000 for the LHV code (LHV-10000 TP), the solution is close to that of the DFS
calculation. For the QMD approach, fluctuations are not suppressed even in the limit of many events. The consequence
of this is seen in the lower right panel of Fig. 5 for the final QMD distributions (here the initial distributions are taken to
be identical), where the larger fluctuations relative to BUU act as a stronger dissipation and drive the distributions more
rapidly towards the classical Maxwell–Boltzmann distribution for the temperature corresponding to the initial excitation.
14
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Fig. 5. Momentum distributions as obtained in the different codes at initial (top panels) and final (bottom panels) times: BUU-like in the left panels
and QMD-like in the right panels. The QMD codes have used an identical initialization of the nucleon positions and momenta. In the lower left
panel, the numerical result of the exact Deformed Fermi Surface model (DFS) is shown at the final time.
Source: Figure adapted from Ref. [41].

Fig. 6. Gradient of the mean-field potential. Panels (a)–(c) correspond to SMF calculations, with several options for the TP number, from two-body
2-b), many-body (m-b) and total contributions, respectively, with the legend given by the left panel on top of the figure. Panel (d) corresponds to
mQMD and ImQMD-L calculations using several options for the Gaussian width, with the legend given by the right panel on top of the figure. The
nalytical results are given by dashed green lines.
ource: Figure taken from Ref. [41].

The force in the Vlasov equation, i.e., the gradient of the mean-field potential, drives the evolution of the wave. It is
lotted as a function of z in Fig. 6 to show its dependence on the precision of the representation of the phase-space and on
he type of transport approach. In the left 3 panels, the force is shown for the 2-body term (panel (a)), the effective many-
ody term (panel (b)), and for the total force (panel (c)) at the initial time for a typical BUU-code (SMF) for different TP
umbers, together with the analytical result in each case. With the typical value of 100 TP/nucleon, the simulation is very
15
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Fig. 7. Response function ρk(ω), i.e., the Fourier transform with respect to space and time of the averaged density distribution, from nine BUU-like
and two QMD-like calculations. The results for the BUU codes are grouped according to their treatment of the dynamics (and are distinguished by
the color of the lines): non-relativistic kinematics (blue), relativistic (green), covariant (red). The vertical lines indicate the analytical zero-sound
energies for the different code types. See text and Ref. [41], from which this figure is adapted.

close to the analytical result, while for the extreme case of 1 TP/nucleon (equivalent to QMD) the increased fluctuations
lead to stronger gradients. In panel (d), the gradients are shown for a typical regular QMD code (ImQMD) for different
values of the Gaussian width ∆x and also for the case of the lattice-Hamiltonian formulation of the code (ImQMD-L). The
idth ∆x in QMD influences the magnitude of the fluctuations, and stronger gradients are seen for smaller values. The
egular method leads to systematically smaller gradients due to an approximation usually employed when evaluating the
any-body term. This, however, can be avoided in the lattice-Hamiltonian method. With a properly chosen ∆x, it is also
ossible to come close to the analytical result for the force. Additionally, the mean-field dynamics is strongly influenced
y the amount of fluctuations, which act as a source of damping to the density oscillations.
The behavior of the different codes can be compactly shown by the response function, i.e., the Fourier transform of

he oscillating density with respect to space and time (see, e.g., Eq.(19) of Ref. [41]), which is shown as a function of
nergy E = h̄ω in Fig. 7 for all BUU codes and for one QMD code (ImQMD) (due to the same initialization, all QMD codes
ive identical results in the regular method). The BUU codes have slightly different forces, depending on the treatment
f relativity, which is distinguished by the color of the lines (see Table 1): non-relativistic kinematics (SMF, BUU-VM,
nd, effectively, pBUU and SMASH, blue lines), relativistic kinematics (IBUU, IBUU-L, LHV, DFS, green lines), covariant
reatment (DJBUU, RVUU, red lines). The expectations for the energy of the zero-sound modes from Landau theory are
hown as vertical lines of the corresponding color. The maxima of the different BUU codes generally agree well with
hese values (the greater deviation of RVUU is understood [41]). The exact numerical result (DFS, relativistic kinematics)
s well reproduced by the codes with the same kinematic treatment. The same also holds for the width of the response
unction, which is due to the non-linearity of the Vlasov equation for the chosen density functional with a many-body
erm and the rather large initial amplitude of the density perturbation. The shoulder seen on the high energy side is due
o the excitation of the next harmonic. The QMD code (black line) in the regular mode exhibits a larger width due to the
arger damping effects from increased fluctuations relative to BUU, and a shift of the maximum due to the approximation
sed in calculating the gradients of the potential from many-body forces. In the lattice-Hamiltonian version of the code
ImQMD-L), the maximum of the response function is close to the energy of the corresponding relativistic zero-sound
olution.

.4. Collision integral in a box

In this comparison, we investigated the second main ingredient of a transport code: the treatment of the collision term,
hich describes the dissipation in a collision, and is the important step beyond a quantum or semi-classical mean-field
ropagation. The different aspects of the calculation of the collision integral are discussed in some detail in Section 2.4. The
ollision integral can be tested exclusively in a cascade calculation by turning off the mean field. The comparison of box
16
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Fig. 8. Distribution of occupation probabilities (blue) in the first time step of the simulation for the T = 5 MeV initialization with the mean and
ariance shown by the blue curve and the blue error bars. Left panels show results for BUU-type codes and right panels for QMD-type codes. The
verage effective blocking probabilities are shown as the black curve (see text). The Fermi–Dirac distribution with T = 5 MeV used for initialization
s represented with the solid red line. The gray line and error bars for CoMD are discussed in the description of the code in Section 5.4.
ource: Figure taken from Ref. [42].

alculations in the cascade mode was carried out with 7 BUU-type and 8 QMD-type codes participating in this study [42].
ere, we treated the simplest cascade calculation by including only elastic NN collisions. The system was initialized at
aturation density and for temperatures of 0 and 5 MeV.
As discussed above, the treatment of the collision integral involves two steps: first, making the decision whether two

iven (test) particles collide, and second, determining the Pauli-blocking of the final state of the two particles after the
ollision. In cascade calculations without blocking, one tests the first ingredient. This case corresponds to a classical
deal gas, where the collision rate can be calculated easily from kinetic theory both for non-relativistic and relativistic
inematics. Generally, all codes agreed with this limit within 1%. To achieve this, however, it was necessary to explicitly
liminate repeated collisions between the same particles in the same or subsequent time steps; the latter was not
uaranteed in the original Bertsch prescription [50]. Repeated collisions represent a correlation between collisions that
re not considered in kinetic theory. Very small remaining differences to kinetic theory are seen and are probably caused
y higher-order correlations, which still remain in a simulation. The Bertsch prescription, also in the modified form, relies
n distance and collision time criteria, which can be quite involved with relativistic kinematics, and details are given
n tabular form in Ref. [42] and in the code descriptions in sections 4 and 5. Rather than using the intuitive geometric
riterion, statistical strategies are used locally, by assuring that the density dependence of the mean free path is obeyed
see Section 2.4). These methods lead to slightly better agreement with the exact limits for the ideal gas and are actually
asier to implement.
The second step of determining the Pauli blocking of the collision showed considerably larger differences among the

odes. This step requires to calculate the phase-space occupation probabilities of the two particles in their final states
fter the collision, which has to be done by averaging in a certain neighborhood of the final-state phase-space. In a box,
his average should be given by the initialized Fermi–Dirac (FD) distribution and should be stable in time. The final-state
ccupation probabilities accumulated from all collisions in the first time step are shown in Fig. 8. Because of the discretized
epresentation of phase space in a simulation (different in BUU and QMD), there are considerable fluctuations of these
ccupation probabilities. In BUU, these depend on the number of test particles per nucleon, and in the limit of the TP
umber going to infinity, there are no fluctuations and one should obtain an exact solution of the BUU equation. In the
17
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Fig. 9. Successful collision rates from the different models in simulations with Pauli blocking for T = 5 MeV initializations (called CBOP1T5 mode
in the figure). The square symbols show the results averaged over the time interval 60–140 fm/c , while stars give the successful collision rates for
the first time step. The black line represents the reference value calculated with the basic cascade code for a fixed Fermi–Dirac blocker (CBOP2T5
mode).
Source: Figure adapted from Ref. [42].

simulations, by varying the number of test particles, one can see that, in principle, the limit can be reached. With QMD as
an event generator, the fluctuations are not suppressed in the limit of infinitely many events. The amount of fluctuations
is regulated by the averaging procedure, generally by the width of the wave packet in coordinate and momentum space.
With the parameters usually chosen, fluctuations are considerably larger than in BUU.

Due to fluctuations, the occupations can be larger (even larger than unity), but also smaller than the initialized FD
distribution for the given temperature. In the latter case, collisions that should not occur in the Fermi system take place,
and this leads to collision rates that are higher than the exact or numerically obtained reference values. If the occupation
is larger than unity, most codes block the collision completely, and thus effectively set it to 1. In Fig. 8, the average of
the occupation probabilities determined in this way is given by the black line. It is seen that it is below the prescribed
FD distribution inside the Fermi-sphere, but at the same time reaches much beyond it. This is particularly seen for the
QMD codes as a result of the large fluctuations in the representation of the phase space. As a consequence, the initialized
Fermi–Dirac distribution is not stable, but changes to a classical Maxwell–Boltzmann distribution on a time scale of 10–
100 fm/c , depending on the code. The resulting collision rates for the case of T = 5 MeV are shown in Fig. 9 (for the
UU codes on the left and the QMD codes on the right) for the first time step and for a chosen time interval later in
he collision (the difference is small). These results are compared to the result of a basic cascade code, which enforces
he FD occupation probabilities at each time step, and thus can serve as a reference representing the result of kinetic
heory. It is seen that the collision rates in essentially all models tend to deviate significantly from the reference values,
nd considerably more so for the QMD codes. This strong influence of fluctuations on the collision rates was seen for
he first time in this comparison. The reference line in Fig. 9 is the result of the kinetic theory without any fluctuation.
hus it is not the result that is desirable in a transport simulation, since fluctuations are physical. The deviation from
he kinetic result corresponds to different physical models, how to introduce fluctuations, and is thus connected to the
uestion mentioned in Section 2.3 about the proper treatment of fluctuations in transport simulations.

.5. Collision integral with pions and ∆ resonances in a box

In this comparison, we tested pion production in transport simulations [43]. This is of particular importance since the
harged pion ratio, π−/π+, is expected to be a good probe of the symmetry energy. For densities above saturation, it is
ne of the few probes accessible in the laboratory. At intermediate energies, it reflects the n/p ratio, which is directly
ontrolled by the symmetry energy, at the position where the ∆’s and pions are produced. However, as discussed in
the introduction, the analysis of this pion ratio for Au+Au collisions at intermediate energies [29] by several transport
codes has yielded widely different conclusions on the stiffness of the symmetry energy. Thus, it is of great interest to
investigate the origin of these discrepancies. This is done in this box comparison and in the dedicated study of a full
heavy-ion collision discussed in the next subsection.
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Fig. 10. Time evolution of the numbers of the different charge states of ∆’s and π ’s in an asymmetric system (δ = 0.2) for the full N∆π dynamics,
.e., including both NN ↔ N∆ and ∆ ↔ Nπ processes. In the panel for each code, the evolution of the ∆’s is shown on the left and that of the π ’s
n the right. Solutions of the rate equation are represented by thin black lines.
ource: Figure taken from Ref. [43].

Fig. 11. Higher-order correlation induced between Ni and Nj after the NiNj elastic collision and the scattering of Ni (or Nj) by another particle X .
his correlation enhances the possibility of the second NiNj collision leading to NiNj → N ′

i∆
′

j .

To set up the problem in a simple yet meaningful way, we initialized nuclear matter in a box at saturation density with
/Z = 1 and 1.5 (asymmetry δ = (N−Z)/A = 0 and 0.2) and T = 60 MeV as a typical temperature in heavy-ion collisions

at intermediate energy. We turned off the mean field, which is not crucial for this comparison of pion production, and
also the Pauli blocking to avoid the effects of fluctuations seen in the comparison discussed in the previous section. Thus
we performed a cascade calculation in a box with pions and ∆s. The production of pions was assumed to proceed solely
via the ∆ resonance, which is achieved by implementing inelastic collisions NN ↔ N∆ with energy- and mass-dependent
ross sections, a width of the ∆, and the decay ∆ ↔ Nπ . The results were compared with two exact limits: the ideal
∆π Boltzmann gas at equilibrium for the long-time behavior, and the solution of rate equations for the time evolution,
here thermal (but not chemical) equilibrium is assumed at all times. We monitored the multiplicities of pions and ∆s,
he reaction and decay rates, ratios of isospin states of pions and ∆s, and the isospin conservation. Ten codes of BUU and
MD types participated, and here there should be no systematic differences between them, since the mean field and the
auli blocking are turned off.
The evolution of the multiplicities of the different charge states of pions and∆s as a function of time is shown in Fig. 10.

or each code, the time evolution of the∆s is shown on the left side of the panel and that of the pions on the right. The thin
lack lines represent solutions of the rate equations. One can observe large differences among the codes. A similar figure
not shown here) for the case with the ∆ decay turned off, i.e., where only the NN ↔ N∆ process was considered, showed
uch smaller differences [43]. Thus, the discrepancies have to do with the simultaneous occurrence of two inelastic
rocesses. On the other hand, the spacings between the curves for the different charge states in Fig. 10 is rather similar
mong the codes and relative to the rate equation. From this observation, we expect that ratios of multiplicities could be
ore consistent, as will be seen below.
A detailed analysis revealed two main sources for the differences in the multiplicities. The simulation usually proceeds

n time steps ∆t , during which all particles are first propagated (here in straight lines) and then the different collision
nd decay processes are tested and performed, usually with the geometrical Bertsch prescription as explained above.
ince the multiplicities are monitored at the end of each time step, they can depend on the sequence by which this
s done. If the collisions are performed first and then the decays, the ∆ multiplicities will be low, resulting in high π
ultiplicities. The opposite sequence would result in high ∆ and low π multiplicities. Of course, this effect is smaller

f some intermediate prescription is used, but this is code-dependent. The effect will also be smaller for a smaller time
tep. However, there is a second effect due to correlations between collisions that can also influence the multiplicities. As
iscussed above, the simplest correlation, namely the repeated collision between the same particles, has been eliminated.
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Fig. 12. Relative deviation of the results of different codes from the value obtained in the ideal Boltzmann gas mixture for multiplicities of ∆s and
ions, collision and decay rates, and different isotopic ratios, averaged over 90 < t < 150 fm/c in the asymmetric system (δ = 0.2). Of particular

interest are the particle ratios, highlighted in yellow, and among these especially the πlike ratio (see text), which corresponds to the observable
π−/π+ ratio in heavy-ion collisions. The upper panel shows the case for a time-step ∆t as used in calculations of the codes published in the past.
The lower panel shows the limiting case of ∆t → 0 obtained by linear extrapolation (JAM and SMASH do not rely on time steps). In the lower
panel, the two bars for the multiplicities show the result of linear extrapolations of X (upper bar) and 1/X (lower bar), where X ≡ N∆ and Nπ ,
respectively.
Source: Figure adapted from Ref. [43].

But higher-order correlations, which are not present in the Boltzmann equation, exist and cannot easily be eliminated.
One such correlation is illustrated in Fig. 11 for the process NiNj → N ′

i∆
′

j , in which Ni scatters with another particle X
before it scatters again with Nj. This process is not eliminated and enhances the probability for ∆ production, since the
nucleons Ni and Nj are still close in coordinate space. This effect will be larger if the time step ∆t is smaller. These two
effects on the multiplicities from sequence of collisions and higher-order correlations thus depend in opposite ways on
the time step, so that they counteract each other and cannot altogether be eliminated.

A possible solution here is to do the calculations for two time steps and extrapolate in some way to ∆t → 0. The
values of several quantities using this procedure are shown in Fig. 12: multiplicities of ∆ and π , reaction rates NN → N∆
and ∆ → Nπ , several particle yield ratios, and a quantity testing the isospin symmetry, all averaged over late times of
the collision. The upper part gives the results of the codes for the usual size of the time step used by the code, while the
lower part shows the (linear) extrapolation to ∆t → 0 (the codes JAM and SMASH are time-step-free, see Sections 4.12
and 5.8). Shown is the relative deviation of the various quantities from the values as obtained from the ideal Boltzmann
gas. One can see in the upper part the large deviations in the multiplicities for the finite time step, as already seen in
Fig. 10. As expected from that figure, the deviations are smaller for the multiplicity ratios, which are highlighted by the
yellow bands. Generally, the deviations are significantly reduced after the extrapolation ∆t → 0 in the lower part of the
figure.2

The deviations are particularly small for the yield ratios. Of particular interest is the πlike ratio defined as [99]

R(πlike) =
π−

+∆−
+

1
3∆

0

π+ +∆++ +
1
3∆

+
. (13)

t corresponds to the π−/π+ ratio after all ∆s have decayed, and thus reflects the π−/π+ ratio that is measured in a
eavy-ion collision.3 It is seen that the agreement of this ratio between the codes and with the reference value is of
he order of a few percent and is thus generally very good. Therefore, this ratio appears as a robust observable for the
etermination of the symmetry energy. The fact, that the codes differed very much in their conclusions in the past must be
ue to different physical models in the description of heavy-ion collision not tested in this cascade box-calculation, such
s momentum-dependent mean-field interactions, energy conservation in inelastic processes, or different assumptions
or the inelastic cross sections and for pion and ∆ potentials, but it may also be that codes have been improved in the

2 Time-step-free methods, in which the collisions are performed in the order of their occurrence by a forward-projection of the trajectories of
the particles, are particularly effective in the case of cascade calculations with straight trajectories. In the presence of mean-field potentials they are
less advantageous and rather time-consuming, and anyway their use requires a substantial modification of a code.
3 The ∆(πlike) ratio in Fig. 12 is the π−/π+ratio, which would result, if only the decay of the ∆-resonances was considered R(∆(πlike)) =

∆−
+

1∆0)/(∆++
+

1∆+).
3 3
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course of the code comparisons. The question of the consistency of different codes in predicting pion ratios in heavy-ion
collisions is taken up in the next subsection.

3.6. Symmetry energy investigation in pion production from Sn+Sn systems

In this comparison, we returned to the investigation of pion production close to the threshold in realistic heavy-ion
ollisions [31]. In contrast to the study of Section 3.1, the beam energy is much lower and the mean field plays a much
ore significant role. We consider simultaneously inelastic collisions with particle production and the mean field, which

s of particular interest for obtaining information on the symmetry energy at densities above saturation. From the study
f pion production in a box (Section 3.5), we know that the pion ratios in simple conditions are consistent among codes.
t is now of interest to see how this is reflected in a heavy-ion collision. Finally, we take advantage of a new experiment
esigned to measure the multiplicities of negatively and positively charged pions with high accuracy for central collisions
f 132Sn+124Sn, 112Sn+124Sn, and 108Sn+112Sn at E/A = 270 MeV with the SπRIT Time Projection Chamber. The uncertainties
f the individual pion multiplicities are measured to 4%, and those of the charged pion multiplicity ratios to 2%.
In view of previous experience with the interpretation of the FOPI pion data [29], the comparison was designed to

reclude the adjustment of the input parameters by the code authors to better reproduce the data. Rather, the authors
ere asked to provide predictions prior to the knowledge of the data. Thus, there were no requirements on the physical
odel input, but the authors should use the best settings for their codes as used in previous analyses. This included choices
f the momentum dependence of the mean fields, models for the inelastic cross sections, and choices of the symmetry
nergy density functional. In most cases, these were adjusted to fit the Au+Au data of Ref. [29], and are close to the
nformation given in the code descriptions in the next sections. The authors were asked, however, to provide predictions
or two behaviors of the symmetry energy, a soft and a stiff one of their choice, which had values of the symmetry energy
lope L around 55 and 150 MeV. Thus, this was not a study ‘‘under controlled conditions" as the previous ones, but rather
test of the present state of the predictive power of simulations of heavy-ion collisions with respect to the symmetry
nergy. It also establishes a benchmark for future comparisons. Seven well-known codes participated in this study, and
wo additional ones (IQMD and PHSD) joined later and are also included here.

Fig. 13 shows the predictions of the codes for the single pion yield ratio π−/π+ (left panel), and for the double ratio
or the two reactions with the highest and lowest neutron content (right panel), together with the data of the SπRIT
xperiment. The single pion ratios are plotted against the N/Z ratio of the collision system (only three codes provided
esults for the intermediate system, which was not asked for in the comparison). The color assignment for the codes is
iven in the right panel. The results of the codes are represented as boxes, where the upper and lower boundaries are the
esults of the two choices of the symmetry energy. In most cases, the soft symmetry energy gives higher ratios, but the
pposite is observed for two codes (TuQMD, SMASH). In the left panel, the dotted line shows a quadratic dependence of
he single pion ratio on the neutron to proton ratio, (N/Z)2, which would be expected from a ∆-resonance model for pion
roduction, while the dashed line is a fit to the data, which yields a dependence of (N/Z)3.6. A thermal model for the pion
roduction yields a power-law dependence where the exponent is proportional to Esym/T , thus the stronger dependence
een in the experiment clearly indicates a sensitivity to the symmetry energy.
The calculations follow the trend of the experiment only qualitatively, but the differences among the codes are large

nd are of the same order as the differences from the experiment4. Also, the sensitivity of the calculations to the symmetry
nergy (height of the boxes) is rather small compared to the differences among the codes and from the experiment.
similar picture is seen for the results of the double ratios in the right panel. The calculated values are somewhat
ore consistent between the codes, but the difference from the experiment is still large. Clearly, the predictions of the
alculations by the different codes differ too much to allow the extraction of reliable constraints on the symmetry energy
rom the data, based solely on the pion multiplicities and their ratios. The large differences seen here may also explain
he contradictory conclusions about the density dependence of the symmetry energy obtained previously from the pion
ata in the Au+Au system mentioned in the introduction [29].
In view of the results of the box-pion comparison discussed in Section 3.5, these differences are probably not due to the

reatment of the inelastic processes. Their parametrization may be different here, but this will not be the main reason for
he discrepancies, because they are mostly based on fits to the same experimental data. An important difference, not tested
efore, is the momentum dependence of the isoscalar and isovector mean fields, whose treatment can be rather different
n the codes. In connection with inelastic processes, this also implies questions of threshold effects for pion production at
ubthreshold energies and of energy conservation. Additionally, the algorithms to calculate the Coulomb potential, which
ignificantly affects the pion ratio, is different in the different codes. Generally, different evolutions of the reaction in the
ensity–temperature plane will affect pion production. Therefore, also nucleonic observables, like collective flow, should
e monitored at the same time. A follow-up study of the same systems with more controlled input and analyzed output
s in progress [45].

During this comparison, we realized that the total pion multiplicities may not be the best observables to test the
ymmetry energy at high density. The multiplicities are dominated by low-energy pions, which undergo multiple collisions

4 The PHSD code has been used primarily for collisions studies at GeV energies and was thus not very well adjusted to this energy regime. This
may explain the rather large deviations for the single pion ratios.
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Fig. 13. (Left panel) Charged pion yield ratios as a function of N/Z . The experimental data are shown as crosses with the circles representing the
experimental errors. The results of the calculations are represented by colored boxes for the different codes identified by their color in the right
panel. The upper and lower boundaries of the boxes give the result for the soft and stiff symmetry energy choices for each code, i.e., the height of
the boxes is representative for the sensitivity to the stiffness of the symmetry energy. The dashed blue line is a power-law fit with the function
(N/Z)3.6 , while the dotted blue line represents (N/Z)2 of the system. (Right panel) Double pion yield ratios for 132Sn +124Sn and 108Sn +112Sn. The
data and the uncertainty are given by the red horizontal bar, while the results of the transport models are shown by the colored boxes, in a similar
way as in the left panel.
Source: Figure adapted from Ref. [31].

throughout the evolution of the system and are thus not good probes specifically of the high-density phase of the
collision. The low-energy part of the spectra depends strongly on assumptions on the ∆ and pion potentials, and it is
usually not well described by transport codes, and the results differ widely among each other. As already pointed out
in previous studies [33,100,101], the high-energy part of the pion spectra and the spectral ratios should be a better
probe of the symmetry energy. Recently, a study has been published (outside of the TMEP project) where a single code
(TuQMD/dcQMD) [102] was applied not only to the pion multiplicities, but also to the transverse momentum spectra
of the pions [32]. This calculation included essentially all needed ingredients for calculating pions reliably, which are
partly not included in other codes. Besides conserving total energy, it has a more reliable treatment of the Coulomb
potential and also included the pion potential (see description in Section 5.11). It is found that in the space of the stiffness
of the symmetry energy (slope L) and the isovector momentum-dependence (neutron–proton effective mass splitting
δm∗

np = m∗
n − m∗

p), it is possible to obtain constraints from the comparison with the experimental spectra. Meanwhile a
study appeared of the same reaction [103], which obtains results for the single and double pion total multiplicity ratios
much closer to the experimental values. The main difference relative to the calculations reported here seems to be the use
of a high-momentum tail in the initial distribution attributed to short-range correlations (see Section 3.8). A further study
appeared [104], where the total yield ratios are reproduced by modifying the momentum-dependence of the symmetry
potential. These studies were not part of the comparison reported here, which was a prediction before the experimental
result was known, but were published after Ref. [31] had appeared. These latest results also underscore the conclusions
drawn above that total pion yield multiplicities and their ratios alone are unreliable in extracting the symmetry energy
information.

3.7. Summary of the results of the TMEP project

The TMEP Collaboration was formed in 2014 to address the conflicting conclusions about the symmetry energy
obtained from various transport models from studying the negatively and positively charged pions in central Au+Au
collisions at 1.5 AGeV measured by the FOPI Collaboration [29]. The goal of the Collaboration is to identify reasons for
such conflicting conclusions and try to improve the predictive power of analyses of heavy-ion collisions by the transport
approach. Although one would generally expect transport models to give similar results, as they are supposed to solve
the same kinetic equations for intermediate-energy heavy-ion collisions, comparison studies from the TMEP Collaboration
have shown that this is often not the case. The reasons for this are not easy to uniquely identify in a simulation of a
heavy-ion collision, because differences in the treatment lead to different evolutions of a reaction in density and excitation
energy, and thus test different regions of the EoS. A better insight is obtained by studies in a box with periodic boundary
conditions, which approximates infinite nuclear matter, where the different effects can be studied separately. Additionally,
exact limits are often available, and thus one is not confined only to comparing codes with each other. In these studies, the
various aspects of a transport model, such as mean-field propagation, collision term, and treatment of particle production
and decay, have been investigated. Not only could one identify reasons for different results, but also understand many
details of the transport approach. Through the five papers that have been published by the TMEP Collaboration up to now,
these differences have been mostly understood, and improved methods of treatments have been pointed out.
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An important result has been to identify clearly the differences between the BUU- and QMD-like approaches to
ransport theory. The main difference is the amount of fluctuations in the representation of the phase-space distribution.
his difference is motivated by physics. In BUU, the objective is the evolution of the smooth one-body distribution
unction under the action of a mean field and the dissipation due to nucleon scattering, which does not naturally
nclude fluctuations. To include these, one has to extend the approach to a Boltzmann–Langevin method, which is done
onsistently only by the codes SMF and BLOB [105,106]. In QMD, the ansatz in the form of molecular dynamics goes
eyond the mean field by including classical correlations and fluctuations. These are gauged by the parameter ∆x, the
idth of the nucleon wave packets, which is only roughly constrained by the range of the nuclear interaction, but strongly

nfluences the outcome of a collision. The comparison has highlighted the consequences of these different amounts of
luctuations in the two approaches in a new way. In particular, they strongly influence the Pauli blocking probabilities,
hich in turn impact particle production. Fluctuations also act effectively as a dissipation and thus influence the damping
f the motion, as was seen in differences in the width of the response functions studied in Section 3.2. The calculation
f effective many-body forces in the two approaches can also be different, thus affecting the frequency of the collective
odes, which can be solved by the lattice-Hamiltonian method, as recently implemented in some QMD codes.
For pion production, the box calculations have identified sources of differences in simulations including simultaneously

nelastic processes and particle decay. Here, the sequence in treating the different processes and higher-order correlations
etween collision processes, which are not present in kinetic theory, lead to differences in particle production depending
n calculational parameters such as the size of the time step. However, in the box calculations it was found that these
ifferences are less important for the pion ratios.
This did not lead to a similar consistency of the pion ratios in a realistic heavy-ion collision. This indicates the

mportance of additional effects in a realistic description of pion production. Using momentum-dependent forces leads
o threshold shifts in ∆ and π production and decay in the NN ↔ N∆ and ∆ ↔ Nπ reactions, due to the difference
n the total mean-field potentials in the initial and final states. These effects affect both the pion yield and the ratio
f negatively to positively charged pions. Except for the TuQMD/dcQMD model [107], the RVUU model [36], and the
BUU model [73], none of other transport models in these studies include these threshold effects. Additionally, the total
nergy of the colliding system may be violated in NN , N∆, and ∆∆ scatterings. Although a method has been developed
n Ref. [85] to conserve the total energy in these scatterings, it has only been implemented in the dcQMD model. Medium
ffects on pions have not been included in most transport codes, which can be taken into account either through modified
ion dispersion relations [108] or by pion optical potentials [107]. There is much information on these from the study of
ion scattering from nuclei [109] and from pionic atoms [110]. Two studies are underway within the TMEP collaboration
o study these effects, the pion production in a semi-realistic heavy-ion collision with controlled input but without
omentum-dependence of the forces [45] and medium effects, and box calculations to study specifically the threshold,

he global energy conservation, and medium effects in transport models [44].
An important influence on the momentum spectra of charged pions is due to details of the Coulomb potential. Coulomb

orces are included essentially in all transport codes on protons, charged nucleon resonances, and charged pions. They are
ften calculated using point particles, which, to avoid singularities, involves the introduction of a cutoff distance, below
hich the Coulomb force is assumed not to change. A more accurate treatment of the Coulomb potential is to find the
lectric and magnetic fields acting on a charged particle from the solutions of the Poisson equations with source terms
iven by the local charge and current densities, which for the electric fields is implemented in some codes. The effects
ill be clarified in the ongoing controlled heavy-ion collision study [45].
For observables that involve rare particles, like pions in medium-energy nuclear collisions, it is inefficient to solve

he BUU or QMD codes by treating these particles on the same footing as the nucleons. An efficient way to enhance the
tatistics of these particles is to treat them by the partition method [83,111], i.e., each of these particles is replaced by N
est particles in QMD, while in BUU the number of test particles per particle is enhanced for these species by a factor N .
he scattering cross section of a test particle is then reduced by a factor of N . For example, the number of pions in Sn+Sn
ollisions at 270 A MeV is about one per event, which is a factor of about 200 smaller than the nucleon number, so one
an choose N = 200 to obtain the same statistics for pions and nucleons.

.8. Discussion and outlook

In this subsection, we mention some open problems of transport approaches to heavy-ion collisions with a view on
mprovements and future developments of transport codes, where, however, an exhaustive discussion is beyond the scope
f this review. We also include some comments on the importance in applications of quantitative predictions of transport
odels for collisions of particles or nuclei on nuclei.
Since the abundance of light clusters up to He nuclei produced in medium-energy heavy ion collisions is large [29], their

nclusion is needed in transport models to properly describe the collision dynamics. Adding a cluster-finding algorithm
t the end of a heavy-ion collision has allowed QMD-like codes to address light cluster production in medium energy
eavy-ion collisions, see Section 5.3. A more realistic approach is to include light clusters as dynamic degrees of freedom,
s pioneered in the study of Ref. [81,94] by separate transport equations for the different clusters coupled through the
ollision terms via production and destruction cross sections. E.g., the production cross section of deuterons from the
eaction NNN → Nd can be obtained from the empirical deuteron dissociation cross section by a nucleon, Nd → NNN .
23
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Since light cluster production involves many-nucleon scattering, the traditional geometric method for treating nucleon–
nucleon scattering [50] becomes not applicable. A stochastic method based on the transition probability [46] needs to be
used.

An issue of great current interest concerns how to effectively and correctly incorporate nucleon–nucleon short-range
orrelations (SRCs), within transport theory, which have been clearly identified in nucleon knock-out reactions [112]. In
icroscopic many-body calculations, it is seen that these introduce a high-momentum tail (HMT) into the momentum
istribution, and that the kinetic symmetry energy is reduced relative to the Fermi gas kinetic energy, basically because
RCs are more effective in symmetric relative to asymmetric matter [113,114]. These effects can be important in the
nterpretation of heavy-ion collisions to determine the EoS and particularly the symmetry energy, e.g., in the production of
articles near thresholds. Phenomenological approaches have been proposed to study the above two SRC effects. One is to
odify the phase-space distributions of nucleons in the incident nuclei by adding by hand a high-momentum tail [115] to
tudy initial-state effects from first-chance collisions [103,116,117]. A second is to reduce the kinetic symmetry energy by
phenomenological factor, with the remaining kinetic correlation energy added to the potential symmetry energy [118],
o study the energetic effects of SRCs during the collision. In both approaches strong effects have been observed, but both
ethods are ad-hoc and not consistent in themselves and between each other.
A consistent inclusion of SRCs in transport seems to require an off-shell transport approach, i.e., the inclusion of

ynamical spectral functions for all particles. This has been studied in extensions of transport theories by the groups
f Mosel at al. [119] and Cassing et al. [120], with some differences in detail, and is implemented in the codes GiBUU
nd PHSD (see sections 4.4 and 4.9). In Ref. [121] it is demonstrated that in this approach the momentum distribution
utomatically develops a high momentum tail. The importance for pion production, however, is not large in these
nvestigations and somewhat different in the two approaches, which has, however, not been systematically investigated.
t has also been suggested that three- or many-body collisions may be a way of treating SRCs in transport approaches.
hree-body collisions for pion production processes, like NNN → NN∆, have been investigated by Bertsch, et al. [122],
here it is found that the SRCs between two of the incident nucleons give a noticeable contribution. A different approach,
ased on a mean-free-path approximation to the collision integral, has been proposed by Bonasera, et al. [123], where
ather large effects are observed even on bulk observables. The incorporation of n-body collisions in transport equations
n a schematic cluster approximation was also studied by Batko et al. [124], where effects were found to be rather small.
one of these methods have so far been widely exploited in the description of heavy-ion reactions. The effects of SRCs on
article production close to threshold and the approximations used in treating them thus clearly deserve further study.
Besides using transport models to extract the properties of nuclear matter at various density, temperature, and isospin

symmetry, transport models can also be used to relate the predictions from the nuclear many-body theory based on
ealistic nucleon–nucleon interactions to observables measured in medium-energy nuclear collisions. Some time ago,
connection was made between relativistic Dirac–Brueckner–Hartree–Fock calculations of symmetric and asymmetric
uclear matter at finite temperature and their use in heavy-ion collisions [125–127], where also non-equilibrium effects
ere included in an approximate way. Another step in this direction has recently been taken by the χBUU model [73]
ased on the momentum-dependent nuclear mean-field potentials from chiral effective theory.
Finally, we would like to expand somewhat on the remarks in the Introduction about the importance of reliable

ransport models in other fields of physics and applications. Examples are long-baseline neutrino experiments, which
im to extract neutrino mixing parameters, CP violating phases and the neutrino mass ordering [128]. For this extraction,
he incoming neutrino energy is needed. Due to the generation of the beam, its energy is, however, known only with very
arge uncertainties, and it has to be reconstructed from the observation of the final state. This is often modeled by simple
onte-Carlo cascade approaches, and reliable transport descriptions could add significantly to the success of these studies.
his is of direct concern for the US experiment Deep Underground Neutrino Experiment (DUNE), and also for the ongoing
xperiments NuMI Off-axis νe Appearance (NOvA) and Tokai to Kamioka (T2K) [129,130]. Also, the detection of dark
atter particles faces similar problems. Another example is the semi-inclusive electron scattering at Jefferson Lab (JLAB),
here reactions such as (e,e’p) on nuclear targets need a firm basis to describe the background. These experiments aim for
olving fundamental questions, such as about color transparency [131], short-range correlations [132], and hadronization
nside a nuclear medium [133]. Experiments in the fixed target mode at the planned Electron–Ion Collider (EIC) will also
eed a good description of final state interactions.
In many applications of nuclear research and technology, the quantitative prediction of the effects and products of the

ombardment of material with energetic particles is of great importance. For these applications, special programs have
een developed, e.g., the program PHITS (Particle and Heavy Ion Transport code System) as a general-purpose package
o simulate the transport of many types of particles (nucleons, heavy-ions, electrons, photons) for a wide range of eV to
eV energies [134,135]. As models of nuclear reactions, this package incorporates the cascade model JAM [136] and the
ransport code JQMD2.0 [137], see Sections 5.8 and 5.9, together with the evaporation code GEM [138], but also nuclear
ata libraries like JENDL4.0 [139]. Examples of applications of this codes are the design of accelerator facilities, like the
pallation source and transmutation facility at Japan Proton Accelerator Research Complex (J-PARC) [140] or the fragment
re-separator at Facility for Rare Isotope Beams (FRIB). Dose calculations are essential in particle therapy and have been
erformed with PHITS and other codes [141], and transport models are needed for the calculation of the secondary dose
rom fragments of the first collision [142]. For radiation therapy, the codes SMF and BLOB have also been coupled with
he GEANT4 general purpose Monte-Carlo toolkit [143,144]. Dose calculations are also mandatory for the feasibility of
24
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long-duration space travel. An example is the MATROSHKA experiment in and around the International Space Station
(ISS) [145]. The dose exposition due to solar flares on travel and communications on earth is of great relevance [146].
Transport models are also good event generators and have applications, e.g., to design or simulate new detectors [147,148],
or to provide training and validating events in machine learning projects [149]. The design of the Multi-Purpose Detector
(MPD) at the Nuclotron-based Ion Collider fAcility (NICA) in Dubna was studied using the PHQMD code [150], a variant
of the PHSD code described in Section 4.9. For all these and many other applications, the availability of reliable nuclear
transport models is very important.

4. Boltzmann–Uehling–Uhlenbeck (BUU)-like codes

In this section, we collect the descriptions of the codes of BUU type, and in the next those of QMD type. The genesis
f these descriptions is the same for both families: The code authors were asked to write a brief 2–3 page description of
he code, addressing the history of the code, the initialization, the standard choice of forces, the treatment of the collision
erm with the Pauli blocking, the in-medium cross sections, and to give the main references. These descriptions were cast
nto a uniform appearance but otherwise not much edited. Note, in particular, that the notation in these prescriptions has
ot been standardized, but should be, of course, consistent and self-explanatory for each description. Under each code
eading, we list the names of the main authors who provided the descriptions.

.1. The Boltzmann–Langevin One-Body (BLOB) code

. Napolitani, M. Colonna

.1.1. Boltzmann-Langevin dynamics
A full implementation of the Boltzmann–Langevin (BL) equation in a transport model for heavy-ion collisions is

ecessary to handle large-amplitude phase-space fluctuations, and to describe processes characterized by instabilities.
his requirement applies particularly to the Fermi energy domain, where a variety of exit channels is accessible
hen progressing from the same entrance channel. In this regime, as opposed to more conventional treatments, the

mplementation of the BL equation can describe the competition between energetically favored mechanisms, such as
ulti-fragmentation, fusion, binary splits and neck fragmentation in dissipative collisions. At higher incident energy, the

nclusion of large-amplitude fluctuations, less relevant for the entrance-channel kinematics, becomes important for the
escription of the bulk behavior of the hot sources formed in the system.
The BLOB [69,106] model, as well as the SMF model [105] from which it evolved (see Section 4.13), aims at solving

he BL equation for the distribution function f ,

∂t f − {H[f ], f } = Ī[f ] + δI[f ] . (14)

he left-hand side gives the Vlasov evolution for f in its own self-consistent mean field, and the right-hand side introduces
he unknown N-body correlations through the residual interaction. The latter consists of the average Boltzmann hard
wo-body collision integral Ī[f ] and the fluctuating term δI[f ], both written in terms of the one-body distribution function.

4.1.2. Heritage and specificity of the BLOB code
While the BLOB model inherits the mean-field description from the SMF model, different approaches are involved in

treating the collision integral Ī[f ] and the fluctuation term δI[f ] (i.e., the right hand side of Eq. (14)). The SMF method
consists of projecting the fluctuations on suitable subspaces (in this case the configuration space). The BLOB approach
solves, on the other hand, the BL equation in full phase space. In both SMF and BLOB, the fluctuating term δI[f ] acts
n the dynamical trajectories during the whole evolution, while in some studies aiming at introducing small-amplitude
luctuations, it can be reduced to a stochastic definition of initial states. As will be discussed in the following, the numerical
mplementation of the BLOB approach assures that the residual term Ī[f ] + δI[f ] can affect a more extended portion of
he phase space in each single scattering event.

The BLOB model differs substantially from an earlier similar strategy, used in the approach by Bauer, Bertsch, and Das
upta [151], because it constrains the fluctuating term δI[f ] to act on phase-space volumes with the correct occupancy
ariance. Such constraint ensures that the Pauli blocking is not violated, and it imposes special attention to the metric
f the phase space (see discussion in Ref. [152]). Calculations in a periodic box for unstable nuclear matter, in one
imension [153] and in three dimensions [106,154], have shown that the BLOB approach describes the growth rate of the
orresponding (spinodal) unstable modes consistent with the form of the mean-field potential, as ruled by the dispersion
elation [155].

The BLOB model for heavy-ion collisions is constructed based on this efficient description of the dispersion
elation.
25
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4.1.3. Solution of the Boltzmann-Langevin equation in full phase space
The solution of the BL equation in full phase space is obtained by replacing the conventional Uehling–Uhlenbeck

verage collision integral by a similar form where one given binary collision does not act only on the two test particles
a’ and ‘b’, but rather it involves extended phase-space agglomerates of test particles of equal isospin A= a1, a2, . . ., and
= b1, b2, . . . to simulate wave packets:

Ī[f ] + δI[f ] = g
∫

d3pb

h3

∫
dΩ W (AB↔CD) F (AB→CD) , (15)

here W is the transition rate, given in terms of the relative velocity between the two colliding agglomerates and the
ifferential nucleon–nucleon cross section,

W (AB↔CD) = |vA−vB|
dσ
dΩ

, (16)

nd F contains the products of occupancies and vacancies of initial and final states calculated for the test-particle
gglomerates F (AB→CD) =

[
(1−fA)(1−fB)fCfD− fAfB(1−fC)(1−fD)

]
. At each interval of time, by scanning all phase space in search

f collisions, and by redefining all test-particle agglomerates accordingly in phase-space cells of volume h3, nucleon–
ucleon correlations are introduced. Since Ntest test particles are involved in one collision, and since those test particles
ould be sorted again in new agglomerates to attempt new collisions in the same interval of time when the collision is not
uccessful, the nucleon–nucleon cross section contained in the transition rate W is divided by Ntest: σ = σNN/Ntest. Special
ttention is paid to the metric in defining the test-particle agglomeration, i.e., the agglomerates are searched by requiring
hat they are the most compact configuration in the phase space that violates neither Pauli blocking in the initial and in the
inal states nor the energy conservation in the scattering. The localization in the momentum space makes the collisions
ore effective in agitating the phase space, and the localization in coordinate space is needed to keep hydrodynamic
ffects like the flow dynamics.
The correlations produced through this approach are then exploited within a stochastic procedure, which compares the

ffective collision probability W × F with a random number. As a consequence, fluctuations develop spontaneously in the
hase-space cells of volume h3 with the correct fluctuation amplitude, determined by a variance, which at equilibrium
s equal to f (1 − f ). A precise shape-modulation technique [156] is applied to ensure that the occupancy distribution
oes not exceed unity in any phase-space location in the final states. This leads to the correct Fermi statistics for the
istribution function f in terms of its mean value and variance.

.1.4. Fluctuations and collective effects at intermediate energy
In nuclear reactions, from the deep-inelastic regime to Fermi energy, the inclusion of fluctuations through the BLOB

pproach gives a more accurate description of the variety of mechanisms that are related to a given entrance channel [157].
n central collisions, the variety of mechanisms, which compete with fusion span a larger energy interval in the BLOB
pproach compared to the SMF approach; in particular, the BLOB approach extends this interval to lower energies [69]. In
his energy domain, the BLOB approach can describe the interplay between volume and surface instabilities below nuclear
aturation density. As a consequence it is capable of describing extreme situations ranging from multiple breakups in the
eep-inelastic regime [158] to the stream of clusters around Fermi energy [159].
At intermediate energies, the inclusion of fluctuations has two opposite effects: on the one hand, it enhances the

ragmentation of the system, and on the other hand, it reduces the directed flow. This effect is seen in Fig. 14 for the
97Au+

197Au collision at 100 A MeV for an impact parameter of 7 fm. The simulation is performed with three approaches,
lasov, SMF and BLOB, using identical parameters for the mean field and for the two-body collision term, i.e., for a
omparable number of attempted and effective nucleon–nucleon collisions per time interval. The SMF approach describes
he outward deflection of the trajectory imparted by the directed flow, which is absent in the Vlasov description. The BLOB
pproach exhibits a reduced directed flow with respect to SMF, because it competes with a more explosive dynamics. This
echanism, due to the Langevin fluctuations, results in a large variety of very different fragment configurations; two of

hose are shown with one where the fragmentation of the quasi-target and the quasi-projectile is observed (bottom, left),
nd the other where the emitting source is situated at midrapidity (bottom, right). This example illustrates the main
ifference between the SMF approach and the BLOB approach when applied to intermediate energies.
Applications of the BLOB approach to relativistic energies are so far restricted to spallation reactions (heavy nuclei

ombarded with protons and deuterons) to describe the prompt emission of intermediate-mass fragments [70].
It may be observed that, quite independently of the shapes of the phase-space metric, the fluctuation amplitude is

o longer correct if the occupancy variance in phase space cells is not consistent with the Pauli exclusion principle,
ith the consequence that the dispersion relation and some of the fragmentation patterns are not described. On the
ther hand, the phase-space metric (and therefore the shape of the scattering wave packets in configuration space and in
omentum space) affects the collective effects, and disregarding it would eventually lead to a more transparent dynamics
ith reduced flow.
26



H. Wolter, M. Colonna, D. Cozma et al. Progress in Particle and Nuclear Physics 125 (2022) 103962

w
T
t

4

S

4

o
T
t
r
o
C

4

g
s
f
n

w
f

Fig. 14. Simulation of the 197Au+
197Au collision at 100 A MeV for an impact parameter of 7 fm, at the time t = 140 fm/c, by three approaches

hich share the same initialization: Vlasov (top, left), SMF (top, right) and two different exit-channel configurations obtained with BLOB (bottom).
he arrows indicate the direction of the target and projectile; their origin indicate the centers of target and projectile at the initial time t = 0 in
he simulation.

.2. The BUU@VECC-McGill (BUU-VM) code

. Mallik

.2.1. Code history
BUU@VECC-McGill is a transport model based on the Boltzmann–Uehling–Uhlenbeck (BUU) equation that was devel-

ped at Variable Energy Cyclotron Centre (VECC), Kolkata, India, in collaboration with McGill University, Montréal, Canada.
his model was motivated by the BUU transport model of Bertsch and Das Gupta [50,160]. The one component version of
he model (i.e. only nucleons are considered) was successfully applied to calculate the initial conditions for fragmentation
eactions [161,162], signatures of nuclear liquid–gas phase transition [163–165], etc. Motivated by this, the isospin degrees
f freedom and pion channels were introduced to treat realistic heavy-ion reactions at intermediate energies [166,167].
omparisons of model calculations with experimental data are given in Refs. [162,167].

.2.2. Initialization
The simulation of heavy ion collisions using the BUU@VECC-McGill model is started with two nuclei in their respective

round states approaching each other with specified velocities. An isospin dependent Thomas–Fermi solution for ground
tates is first constructed, and the resulting phase-space distribution is then modeled by choosing Ntest test particles
or each nucleon with appropriate positions and momenta using the Monte-Carlo method. For the collision of projectile
ucleus of mass number Ap (= Zp+Np) with a target nucleus of mass number At (= Zt +Nt ) with Zp (Zt ) and Np (Nt ) being

the proton and neutron numbers of projectile (target) nuclei, respectively, the time evolution of (Ap+At )Ntest test particles
is studied. The test particles move in a mean field U(ρ(r⃗), t), generated by the potential energy density and occasionally
suffer two-body collisions when two of them pass close to each other, and the collisions are not blocked by the Pauli
principle. Details on the mean-field propagation and collision are described in next two sections.

4.2.3. Mean-field propagation
The propagation of test particles can be described by the Hamilton’s canonical equations of motion,

dp⃗i
dt

= −∇rU(ρ(r⃗i), t),

dr⃗i
dt

= v⃗i, i = 1, 2, . . . .., (Ap + At )Ntest , (17)

here, depending on the beam velocity, v⃗i can be calculated relativistically or non-relativistically. The mean-field potential
or a neutron (n) or a proton (p) in Eq. (17) is given by

Un,p(r⃗, t) = A
{
ρ(r⃗, t)

}
+ B

{
ρ(r⃗, t)

}σ
+

C
2/3 ∇

2
r

{
ρ(r⃗, t)

}
+ τzSsym

{
ρn(r⃗, t) − ρp(r⃗, t)

}
+

1
(1 − τz)Uc, (18)
ρ0 ρ0 ρ0
ρ0 ρ0 2
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where the first two terms represent the zero-range Skyrme interactions, and the derivative term, which does not affect
nuclear matter properties, is introduced for nuclei. A realistic description of the diffuse surfaces and binding energies of
finite nuclei can be achieved with A =-356.8 MeV, B = 303.9 MeV, σ =7/6, ρ0=0.16 fm−3 and C=-6.5 MeVfm5/2. ρ(r⃗, t),
ρp(r⃗, t) and ρn(r⃗, t) are, respectively, the total, proton and neutron densities at position r⃗ and time t , τz is the z-component
of isospin, which is +1 and −1 for neutrons and protons, respectively, and Uc is the Coulomb potential. The coefficient
of the symmetry potential (Ssym) is 32 MeV [167].

Recently, the bulk part of the isospin-dependent mean-field potential in the BUU@VECC-McGill model has been
updated [166] by a recently proposed meta-functional [168] based on a polynomial expansion in density around saturation
and including deviations from the parabolic isospin dependence through the effective mass splitting in the kinetic term.
The resulting mean-field potential for neutrons (n) or protons (p) in Eq. (17) can be expressed as

Un,p(r⃗, t) = (vis0 + viv0 δ
2) +

4∑
k=1

k + 1
k!

(visk + vivk δ
2)xk +

1
3

4∑
k=1

1
(k − 1)!

(visk + vivk δ
2)xk−1

+ 2δτz(1 − δτz)
4∑

k=1

1
k!
vivk xk + exp{−b(1 + 3x)}

[
(ais + aivδ2)

{
5
3
x4 + (6 − b)x5 − 3bx6

}
+ 2δτz(1 − δτz)aivx5

]
+

3C

ρ
2/3
0

∇
2x +

1
2
(1 − τz)Uc, (19)

where x = (ρ(r⃗, t) − ρ0)/3ρ0 and δ = (ρn(r⃗, t) − ρp(r⃗, t))/ρ(r⃗, t). The parameters visk with k= 1 to 4 can be linked
with the usual isoscalar empirical parameters of the saturation energy (Esat ), incompressibility modulus (Ksat ), isospin
symmetric skewness (Qsat ) and kurtosis (Zsat ), respectively, and vivk with k= 1 to 4 can be linked with the usual isovector
empirical parameters of the symmetry energy (Esym), slope (Lsym), and associated incompressibility (Ksym), skewness (Qsym)
and kurtosis (Zsym), respectively. These empirical parameters are taken from the SLY5 EoS. The details can be found in
Ref. [166].

The density dependence of the effective masses induces the following extra term to Eq. (19) for the mean field:

Ueff
q =

∑
q=n,p

τq
∂

∂ρq

(
mq

m∗
q

)
= τq

κ0 + κsym

ρ0
+ τq′

κ0 − κsym

ρ0
. (20)

The numerical method employed to compute trajectories of test particles from Eq. (17) need a high accuracy in energy
and momentum conservation. This is achieved by using the Lattice Hamiltonian method, which was proposed in Ref. [76]
and has proven to be phenomenally accurate. According to this method, the configuration space is divided into cubic
lattices with the lattice points l fm apart. Thus, the configuration space is discretized into boxes of size l3 fm3. The density
t lattice point rα is defined by

ρL(r⃗α) =

AtNtest∑
i=1

S(r⃗α − r⃗i), (21)

here α stands for values of the three co-ordinates of the lattice point α = (xl, ym, zn), r⃗α is the position of site α and
(r⃗) is the form factor given by

S(r⃗) =
1

Ntest (nl)6
g(x)g(y)g(z), (22)

g(q) = (nl − |q|)Θ(nl − |q|), (23)

where Θ is the Heaviside function and n is an integer which determines the range of S. A test particle contributes to the
average density ρL at exactly (2n)3 lattice sites, and the movement of a particle results in a continuous change in ρL at
nearby lattice sites. In our calculation, we always use l=1 fm and n=1. Therefore, by knowing test particle positions, the
density at a lattice point can be calculated from Eq. (21), and, if required, the potential at a lattice point can be calculated.
Then, the positions and momenta of test particles are modified using Eq. (17).

4.2.4. Collisions term
The effect of collisions in the BUU@VECC-McGill model is included by using the Monte-Carlo methods, which was

formerly used in the intra-nuclear cascade model [169]. In the cascade calculation, the frequency of collisions is governed
by the scattering cross-section only, whereas in the BUU@VECC-McGill model, the Pauli blocking effect is also included
as is described in the next section. The main aim of a cascade program is to decide where and when particles collide.
This is achieved by dividing the collision time into small time intervals δt and examine all pairs of particles in each time
interval to check whether they scatter. The collision between two nucleons is performed in their local center of mass
frame. There are two conditions that need to be fulfilled, i.e., the two nucleons must pass the point of closest approach in
the time interval and the distance of closest approach must be less than b =

√
σ t (

√
s)/π . Here σ t (

√
s) is the total
max NN NN
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cross section for the nucleon–nucleon scattering with center of mass energy
√
s, and can be different for proton–proton,

eutron–neutron and neutron–proton scattering, i.e., σpp, σnn and σnp. The time interval should be small enough that
the probability for the same nucleon being scattered more than once in one time interval is very small. After a collision
occurs, the two particles can scatter elastically or inelastically. If the beam energy is 200 MeV/nucleon or less, the inelastic
channel is suppressed and non-relativistic kinematics can be used with considerable simplification. In general, the only
inelastic channel in the BUU@VECC-McGill model is the pion channel, and this is included via the ∆ state of the nucleon.
If two particles collide and if both elastic and inelastic channels are allowed, a Monte-Carlo decision is made for the
channel. The magnitude of the momentum of the final-state particles is determined according to the energy–momentum
conservation, and another Monte-Carlo decision is taken to fix the angle of scattering. The elastic scattering differential
scattering cross-section it is taken from experiments. Isotropic scattering is assumed in the inelastic channel. Details of the
cross-section parametrization in the BUU@VECC-McGill model can be found in Appendix C of Ref. [160]. After determining
the final momenta, one can go back to the global frame of reference of the colliding nuclei and check whether the final
states are Pauli unblocked or not.

After a sufficient time, when the collisions are almost over, the nucleons and also pions at higher beam energies are
freely streaming, and one can consider it as one event. The BUU@VECC-McGill model includes both a mean field and hard
collisions. Instead of deriving it formally, it will be more useful to consider it as an extension of the cascade model. Each
cascade model run will produce a different result as the positions of nucleons are generated by Monte-Carlo sampling.
To obtain an average answer, many runs are needed. It is advantageous to have Ntest runs simultaneously. In the cascade
model, different runs do not communicate with each other i.e., nucleus 1 hits nucleus 1′, nucleus 2 hits nucleus 2′....
etc. Communication between runs is, however, introduced in the BUU@VECC-McGill code for the mean field calculation
described in previous section. In usual applications of the BUU@VECC-McGill code, different test particles scatter with
each other with a reduced cross-section σNN/Ntest . In another way of performing the collisions, described in more detail
in Ref. [163], Ntest neighboring test particles scatter together with the cross section σNN , which will reduce substantially
the computation time.

4.2.5. Pauli blocking
Consider two test particles of any isospin, that come within the distance of closest approach during a given time step,

and due to the above collision criteria they change their momenta from (r⃗1, p⃗1), (r⃗2, p⃗2) to (r⃗1, p⃗′

1), (r⃗2, p⃗
′

2). Since the
colliding particles are Fermions, one has to check whether the final states are allowed or not, i.e., whether the collision
will actually take place or whether it will be Pauli blocked.

To obtain the Uehling–Uhlenbeck term for intermediate energy heavy ion reactions, the phase-space densities about
the final states (r⃗1, p⃗′

1) and (r⃗2, p⃗′

2) are required. Therefore, a radius rp around r⃗1 in configuration space and a radius pp
around p⃗′

1 in momentum space are selected, such that Np similar kinds of test particles inside this phase-space volume
imply a complete filling [50,170], i.e.,

2
h3

∫ rp

0

∫ pp

0
d3rd3p =

Np

Ntest
. (24)

p should be small so that one is examining the phase-space densities near the collision points, but not so small that
luctuations inherent in the Monte-Carlo sampling become severe. For Ntest = 100, past works indicate that Np = 8 is a
good choice. From Eq. (24), it is clear that specifying Np does not determine both rp and pp, and one has to add an extra
condition. In the present model, rp/pp = R/PF is used with R being the hard sphere radius of the static nucleus and PF
being the Fermi momentum of proton or neutron (depending upon the nature of the test particle for which Pauli blocking
is checked) at normal nuclear matter density. The blocking factor at (r⃗1, p⃗′

1) is then given by f1 = N1/Np, where N1 is the
number of test particles of similar kind (excluding the colliding test particle) at (r⃗1, p⃗′

1) within a radius rp around r⃗1 in
configuration space and a radius pp around p⃗′

1 in momentum space. So, the collision probability factor, is then equal to
1 − f1. Similarly, for the second particle the blocking factor is f2 = N2/Np and the collision probability factor is equal
to 1 − f2. Therefore, the probability of successful scattering is taken to be (1 − f1)(1 − f2), and this is calculated by the
Monte-Carlo method [50].

4.3. DaeJeon Boltzmann–Uehling–Uhlenbeck (DJBUU) code

Y. Kim, S. Jeon, M. Kim, C.-H. Lee, K. Kim

Though DJBUU in many cases adopts a widely-used or standard method in transport theory, it has also its distinctive
features. Here, we present a brief introduction to DJBUU. The main references are Refs. [171,172].

4.3.1. Code history
The primary version of DJBUU was written when Sangyong Jeon from McGill University was visiting RISP (Rare Isotope

Science Project) of IBS (Institute for Basic Science) in Korea. DJ stands for Daejeon, which is a city in south Korea where
the rare isotope beam facility, dubbed RAON, is being constructed. RAON was one of thrusts for us to develop a new
transport code. Since RAON will provide heavy ion beams in the lab frame energy up to a few hundreds AMeV, currently
nucleons, and the nucleon resonances ∆(1232), N*(1440) and N*(1520) are included in the code.
29
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• October 2015–January 2016:
The primary version of DJBUU was completed. The DJBUU code is written in C/C++ and programmed in OpenMP
(Open Multi-Processing).

• 2016–2017:
We reviewed the DJBUU code and performed innumerable test-runs to fix typos and errors. Meanwhile, we published
a short article about DJBUU in a domestic journal (New Physics: Sae Mulli).

• 2018–present:
We have joined the Transport Code Evaluation project with DJBUU.

• 2019–2020:
To see if we can address the issue of the origin of the nucleon mass in heavy ion collisions, we have added a parity
doublet model to DJBUU.

4.3.2. Initialization
We adopt the widely used method for initialization: In coordinate space, we sample from parametrized nucleon

istribution functions. In momentum space, the (test) particle momenta are randomly distributed in an isotropic Fermi
phere whose radius is the local Fermi-momentum.
For the reference nucleon density distributions in coordinate space, we initially used the Wood–Saxon parametrization

F (r) =
1

1 + exp[(r − R)/a]
. (25)

fter developing a nuclear structure code based on the relativistic Thomas–Fermi (RTF) approximation, we now mainly
se the nucleon density profiles from the RTF calculations.
The profile function of the test particle is given by the following non-Gaussian type function,

g(u) = g(u) = Nm,n(1 − (u/a)m)n for 0 < u/a < 1 (26)

where u = |u|, Nm,n is the normalization constant, and m > 1 and n > 1 are positive integers. For |u/a| > 1, g(u) = 0.
e use this profile function instead of the usual truncated Gaussian because it is not only exactly integrable but also

moothly vanishes at a. That is, g(a) = 0 and g ′(a) = 0. The default values are m = 2, n = 3 and ax = 4.2 fm for the
osition profile and ap = sh̄/ax for the momentum profile with s ≈ 0.6.

.3.3. Potentials
We adopt the relativistic mean-field model in Ref. [173] with scalar (σ ) and vector (ρ, ω) mesons to obtain a mean-field

otential. We take the Thomas–Fermi approximation for nucleons in which nucleon bilinear fields are replaced by scalar
r vector densities. Since the relativistic mean-field model [173] has been widely used in nuclear transport models, we
ill not explicitly write down the corresponding relativistic Lagrangian density. We note here that the σ -field in Ref. [173]

s not related to the chiral symmetry in QCD and its vacuum expectation value in free space is zero.
To address the issue about the origin of the nucleon mass and (partial) chiral symmetry restoration in heavy ion

ollisions, we incorporate a parity doublet model in DJBUU. In the parity doublet model [174], the nucleon mass comes
rom chiral symmetry breaking but the chiral-invariant mass is unrelated to the QCD chiral symmetry.

We use an extended parity doublet model in Refs. [175,176]. The Lagrangian density is given by

L = ψ̄1i ̸ ∂ψ1 + ψ̄2i ̸ ∂ψ2 + m0(ψ̄2γ5ψ1 − ψ̄1γ5ψ2) + g1ψ̄1(σ + iγ5τ⃗ · π⃗ )ψ1 + g2ψ̄2(σ − iγ5τ⃗ · π⃗ )ψ2

− gωNN ψ̄1γµω
µψ1 − gωNN ψ̄2γµω

µψ2 − gρNN ψ̄1γµρ⃗
µ

· τ⃗ψ1 − gρNN ψ̄2γµρ⃗
µ

· τ⃗ψ2

− eψ̄1γ
µAµ

1 − τ3

2
ψ1 − eψ̄2γ

µAµ
1 − τ3

2
ψ2 + LM , (27)

here the nucleon fields ψ1 and ψ2 transform as

ψ1R → Rψ1R , ψ1L → Lψ1L, ψ2R → Lψ2R , ψ2L → Rψ2L . (28)

ere, L and R denote the elements of SU(2)L and SU(2)R chiral symmetry group, respectively. The mesonic part of the
agrangian reads

LM =
1
2
∂µσ∂

µσ +
1
2
∂µπ⃗ · ∂µπ⃗ −

1
4
ΩµνΩ

µν
−

1
4
R⃗µν · R⃗µν −

1
4
FµνFµν

+
µ̄2

2
(σ 2

+ π⃗2) −
λ

4
(σ 2

+ π⃗2)2 +
λ6

6
(σ 2

+ π⃗2)3 + ϵσ +
1
2
m2
ωωµω

µ
+

1
2
m2
ρ ρ⃗µ · ρ⃗ µ . (29)

e then take the mean-field approximation: σ → ⟨σ ⟩, ωµ → δµ0⟨ωµ⟩, and ρiµ → δi3δµ0⟨ρ
i
µ⟩. We remark here that the

-field in this model is the chiral partner of the pion field, which is a Goldstone boson from spontaneous chiral symmetry
reaking. The vacuum expectation value of this σ -field in free space is nonzero, and its value is equal to the pion decay
onstant.
30
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4.3.4. Collisions
For the nucleon–nucleon collision, we adopt the following criterion

d ≤

√
σ̂

π
, (30)

here d is the transverse distance of two particles in their center-of-mass (CM) frame. It is given by

d2 = |∆xCM × nCM|
2 , (31)

here ∆xCM is the distance between the two particles and nCM is the unit vector along the momentum direction in the
M frame. The time of the collision in the common-time frame is set to

tcoll = tprev +∆tcoll , (32)

here tprev is time at the end of the previous time step and

∆tcoll = −
∆x ·∆v
|∆v|2

. (33)

or a collision to occur within this time interval, we must have 0 < ∆tcoll < ∆t [177]. We usually take ∆t = 0.1, 0.2
m/c. If resonances do not undergo a scattering within the time interval, then they could decay with the total decay rate
aken as the Breit–Wigner width. Even though the pairs meet the criterion for collision, decay could happen when the
ecay probability is high enough within ∆tcoll.
In DJBUU, a collision proceeds as follows. We first decide which pairs collide or which resonances decay within ∆t . To

dentify the pairs, we use the nearest neighbor pair searching method. We remark here that in DJBUU, space is divided
nto Nx × Ny × Nz cells and each cell has about 1 fm3 in volume. If the pairs do not scatter or decay, we update the
osition and momentum of the pairs. If the pairs satisfy the criterion for collision, they collide with each other. In case
ecay happens, we update the position and momentum of the daughters after decay. We then check if the final state is
llowed by drawing a random number and comparing it with the Pauli-Blocking factor 1 − fa(x, p).

.4. The Giessen Boltzmann–Uehling–Uhlenbeck (GiBUU) code

. Weil, T. Gaitanos, K. Gallmeister, U. Mosel

.4.1. Introduction
The Giessen-BUU-model (GiBUU) is a hadronic transport framework to handle a variety of reaction types in a wide

nergy range. One of its specialties is the ability to describe heavy-ion collisions (AA) and other hadronic collisions (pA,
A, p̄A) as also elementary reactions on nuclei (γA, eA, νA) on the same footing. Other noteworthy features include the
vailability of two different mean-field models (non-relativistic Skyrme potentials as well as relativistic mean fields, RMF)
nd a treatment of high-energy collisions via the Pythia string-fragmentation model. The model is based on hadronic
egrees of freedom and currently contains 61 baryon and 22 meson states. A comprehensive overview of the model can
e found in Ref. [88]. In the following we restrict ourselves to the discussion of the features important for low-energy
eavy-ion collisions, as performed for the code comparison.
The origins of the model reach back into the year 1986, initiated by W. Bauer and U. Mosel. Many notable scientists

ontributed during the following decades. It is in order to mention particularly the code versions of S. Teis and
. Effenberger (1997) and the new rewrite of O. Buss (2008). For more details of the historical development of the code
e refer to Ref. [178].
GiBUU is implemented in a rather modern Fortran dialect (Fortran 95/2003) using modularization and some simple

bject-oriented techniques. The code base is managed through a subversion version control since the year 2008, which
s essential for reproducibility of results and the collaboration of multiple authors on the same code base. The code
nd its usage is well-documented by means of a wiki [179] and semi-automatic code documentation [180]. The code
s available on the base of public releases approx. every second year, superimposed with actual code patches, hosted at
nd downloadable from the hepforge server [181].

.4.2. Initialization
In order to prepare the phase-space density of the nuclear ground state, the coordinates of neutrons and protons are

ampled according to density profiles, either (i) taken from empirical systematics (Woods–Saxon or harmonic oscillator
ype) or (ii) determined from relativistic Thomas–Fermi (RTF) calculations with the same mean-fields as those used in
he dynamical propagation afterwards. Method (i) is used in the transport calculations with non-relativistic Skyrme-type
otentials, whereas method (ii) is used in transport simulations with relativistic mean-fields.
In the default prescription, the particle momenta are distributed according to a local Thomas–Fermi (LTF) approxima-

ion,

f (r, p) = Θ
[
p (r) − |p|

]
, (34)
n,p F ,n,p
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where the momentum distribution is given by an isotropic Fermi sphere at each point in space with the radius in
momentum space determined by the local Fermi momentum,

pF ,n,p(r) = [3π2ρn,p(r)]1/3. (35)

he normalization is chosen such that the proton and neutron densities (which serve as an input) are retrieved by

ρn,p(r) = g
∫

fn,p(r, p)
d3p
(2π )3

. (36)

In order to overcome the usual pitfalls of this LTF approach, an additional mode has been implemented, where the
density profile of particles is adjusted such, that the binding energy of the particles is a constant for all radii.

Both methods provide us with the full phase-space information at the initial time, before starting the propagation
according to the Hamilton equations of motion. Smooth distributions in coordinate and momentum space are achieved
by using ∼ 103 test particles per nucleon, which is an important issue for the numerical treatment of mean-field gradients
in the Hamilton equations of motion. The smoothness of the test particle distribution in phase space is also important for
numerical evaluation of the Pauli-blocking factors, (1 − fn,p(r, p)), which enter the collision term of the BUU equation.

4.4.3. Potentials: Skyrme potentials
The first kind of mean-field potential which is available in GiBUU is a non-relativistic Skyrme-type nucleon potential

with momentum dependence of the form

Ui(x, p) = A
ρ(x)
ρ0

+ B
(
ρ(x)
ρ0

)γ
+

2C
ρ0

∑
i=n,p

∫
g d3p′

(2π )3
fi(x, p′)

1 + (p − p′)2/Λ2

+ dsymm
ρp(x) − ρn(x)

ρ0
τ 3i ,

(37)

here i = p, n with τ 3p = 1 and τ 3n = −1. The first two terms are the common Skyrme form, while the third one
implements an (optional) momentum dependence according to Ref. [182] and the fourth one is the asymmetry term,
which carries the isospin dependence.

To reduce the computation time for calculating the momentum-dependent part of the potential, we approximate in
the integral the (dashed) nucleon phase-space distribution by a Fermi distribution. This allows to evaluate the momentum
integral as an analytic function of |p| and of the local baryon density ρ(x) (see Ref. [182] for details). The six free
arameters, A, B, γ , C , Λ, and dsymm, of the nucleon potential are determined from various properties of nuclear matter
like the nuclear binding energy and nuclear-matter incompressibility K ). For the code comparison, we used the values
= −209.2MeV, B = 156.4MeV, γ = 1.35, C = 0 (i.e. no momentum dependence) and dsymm = 30MeV, corresponding

o a rather soft equation of state with K = 240MeV.
In order to avoid problems with Lorentz invariance, it is important to choose a proper frame, where the mean-field

otentials should be calculated. For this purpose, we have chosen the local rest frame (LRF) of the nuclear medium, where
he spatial components of the baryon four-current, jµ = (j0, j), vanish, i.e., j = 0 at the space position of the particle under
onsideration. This choice is only possible if the antibaryons (contributing with negative sign to the baryon four-current)
re not abundant.

.4.4. Potentials: Relativistic mean fields
The second type of interaction that is available in the GiBUU code is the Walecka model in the well-known relativistic

ean-field (RMF) approximation. Here the mean-field potential consists of two contributions, a Lorentz-scalar attractive
≡ Σs and a Lorentz-vector repulsive Σµ (V ≡ Σ0) selfenergies. Both fields are rather strong and in the order of the
ucleon mass, however, their particular cancellation leads to the small binding of a nuclear system in its ground state.
The corresponding potential in the relativistic case can be expressed in terms of the in-medium Schrödinger-equivalent

otential, which reads as

Uopt (E) = −S +
E
m

V +
1
2m

(S2 − V 2) (38)

ith the energy E extracted from in-medium dispersion relations of protons and neutrons.
The parameters of the RMF-model are the meson–nucleon coupling constants and the additional constants of the non-

inear self-interactions between the σ -meson. These parameters are usually adjusted either to the bulk nuclear matter
roperties or to properties of finite nuclei. Several parameter sets are available in the GiBUU code, which differ from each
ther in the stiffness of the nuclear equation of state at densities just above saturation. For the code comparison we have
sed parameter set I from [173], whose properties roughly match the Skyrme parametrization described above.
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4.4.5. Collision term
The GiBUU collision term is divided into two energy domains: A low-energy regime that is dominated by resonance

xcitation, and a high-energy regime that is treated via a string-fragmentation model (PYTHIA 6.4) [183].
The transition is currently performed at energies of

√
s = 2.2±0.2GeV for meson–baryon collisions (which corresponds

to the mass of the heaviest included nucleon resonances) and
√
s = 3.4 ± 0.1GeV for baryon–baryon collisions (because

resonance production channels like NN → NR,∆R start to fail saturating the total NN cross sections at this point,
cf. Ref. [184]).

For the purpose of the code comparison, solely a constant isotropic elastic cross section of σel = 40mb was used.
Therefore we refrain here from discussing the details of all the reactions implemented in the GiBUU collision term and
instead refer to Ref. [88]. The calculation of the collision term is speeded up by using the local-ensemble method of
Ref. [82].

4.4.6. Pauli blocking
The phase-space distribution, fi(r, p), which enters in the Pauli blocking factor, 1 − fi(r, p), is calculated by counting

the number of test particles in the phase-space volume element composed of small spherical volumes ∆Vr with radius rr
centered at r in coordinate space and ∆Vp with radius rp centered at p in momentum space,

fi(r, p) =

∑
j: pj∈∆Vp

1
κ(2πσ 2)3/2

∫
∆Vr ,|r−r j|<rc

d3r exp
{
−

(r − r j)2

2σ 2

}
, (39)

where

κ =
2∆Vr ∆Vp N

(2π )3
4π

(2πσ 2)3/2

∫ rc

0
dr r2exp

{
−

r2

2σ 2

}
(40)

s a normalization factor. In Eq. (39), the sum is taken over all test particles, j, of the type i = p, n whose momenta
belong to the volume ∆Vp. In coordinate space, the test particles are represented by Gaussians of the width, σ , cut off at
he radial distance rc , in a similar way as done for the folding of the density fields with Gaussians. The default values of
arameters are rp = 80MeV/c , rr = 1.86 fm, σ = 1 fm, rc = 2.2 fm. This set of parameters is a compromise between the
uality of the Pauli blocking in the ground state and the smallness of statistical fluctuations in the case of simulations
ith N ∼ 200 test particles per nucleon. Typically, this is sufficient in accuracy for modeling heavy-ion collisions at beam
nergies above ∼ 100 AMeV.
However, for small-amplitude dynamics near the nuclear ground state, like the giant monopole resonance vibrations

tudied in Ref. [185], the accuracy provided by Eqs. (39) and (40) is not sufficient, when the default parameters are used.
he main reason is the constant, i.e., momentum-independent radius, rp, which introduces a spurious temperature of
he order of several MeV. To reduce this effect, we have introduced a position- and momentum-dependent radius of the
omentum-space volume ∆Vp by rp(r, |p|) = max[20MeV/c, pF ,i(r) − |p|], which provides a sharper Fermi surface. This
llows us to use the reduced parameters also in coordinate space (rr = 0.9–1.86 fm, σ = 0.5 fm, rc = 1.1 fm).

4.4.7. Off-shell transport
Inside the nuclear medium hadronic properties, and in particular their spectral functions, may change. When hadrons

are getting knocked out of the nucleus their in-medium spectral functions have to change into the free ones. In GiBUU this
change can be achieved by turning on the off-shell transport [88], which is essential for any investigation of observable
effects of in-medium changes.

4.5. The isospin-dependent Boltzmann–Langevin (IBL) code

W.J. Xie, F.S. Zhang

The most important features of the IBL model are presented in the following. The main references are [66,186,187].

4.5.1. Code history
• 1988–1990:

The physics idea of the Boltzmann–Langevin (BL) code was proposed by S. Ayik and C. Gregoire in 1988 [65]. That
is, the correlated part of the two-body collisions acts as a random force and the correlation function of the random
force is calculated within the semi-classical approximation.

• 1990–1993:
The BL method was applied to nuclear reactions by E. Suraud and M. Belkacem [188,189]. An approximate method to
obtain numerical solutions of the Boltzmann–Langevin equation was proposed, in which fluctuations were evaluated
based on the first two non-vanishing terms of the multipole expansion of the local momentum distribution, namely
the quadrupole and octupole ones. The method was used to describe sub-threshold kaon production.
33
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• 1993–1995:
The BL method was used to describe the multifragmentation phenomenon in heavy-ion collisions by F.S. Zhang and
E. Suraud [186,190].

• 2000–2001:
Isospin effects were incorporated into the BL method (called IBL thereafter) by Z.Y. Ming and L.W. Chen [191,192].

• 2008:
The symmetry potential was introduced into the IBL method by B.A. Bian [193].

• 2011–2013:
Further improvements of the IBL method through incorporating the various density-dependent symmetry potentials,
momentum-dependent mean-field potential and pion production inelastic reaction channels were implemented by
W.J. Xie and J. Su [187].

4.5.2. Initialization
There are three steps for the initialization of nuclei in the IBL code. The first step is the initialization of the space

oordinates and momenta of nucleons. We use the Skyrme–Hartree–Fock approach to obtain the neutron and proton
ensity distributions and the radial coordinates of the nucleons are obtained by using Monte Carlo sampling approach.
he local Fermi momenta of nucleons is obtained by making use of the following formula:

piF (r) = h̄[3π2ρi(r)]1/3, i = n, p. (41)

omenta of nucleons are then obtained by using Monte Carlo sampling in the interval [0, piF ].
The second step consists of checking the initialization results. Two requirements need to be simultaneously fulfilled:

(1) The binding energy of the initialized nucleus is consistent with its experimental value; (2) The root mean square radius
is within certain specified limits. If one of the above two conditions is not satisfied, the initialization is redone.

The third step consists of initializing the system. Firstly, the nuclei are rotated around the x,y,z axes by random Euler
angles. The projectile and target nuclei are boosted to the desired kinetic energy values. Finally, the initial distance
between the nuclei and the impact parameter are set.

4.5.3. Forces
The test particle method is used to solve the BL equation. For the numerical implementation, the propagation of the

particles is realized through the simple relation

p(t + δt) = p(t) − δt∇U(r, t + 0.5δt),
r(t + 0.5δt) = r(t − 0.5δt) + δtp(t)/m.

(42)

he force field ∇U is calculated as in the case of the usual BUU method. The single-particle potential in the IBL code is
s follows,

Uτ (ρ, δ, p) = α
ρ

ρ0
+ β(

ρ

ρ0
)γ + E loc

sym(ρ)δ
2
+
∂E loc

sym(ρ)

∂ρ
ρδ2 + E loc

sym(ρ)ρ
∂δ2

∂ρτ
+ U iso

MDI , (43)

here the E loc
sym(ρ) is the local part of the symmetry energy. The U iso

MDI is the momentum-dependent mean-field potential,
hich can be written as

U iso
MDI =

Cτ ,τ
ρ0

∫
dp′fτ (r, p) ln2

[0.0005(p − p′)2 + 1] +
Cτ ,τ ′

ρ0

∫
dp′fτ ′ (r, p) ln2

[0.0005(p − p′)2 + 1]. (44)

he parameter values of Eqs. (43) and (44) can be found in Ref. [194].

.5.4. Collision
The collision term in the IBL code originates from the cascade model [50]. There are two conditions that are required

o be fulfilled for a two-nucleon collision to take place. Firstly, the two nucleons must pass the point of closest approach
ithin the specified time interval and secondly, the distance of closest approach must be less than

√
σtot/π . The elastic

nucleon–nucleon cross section parametrization of Cugnon et al. [195] is used. For the inelastic channels involving
resonance (∆(1232), N∗(1440)) production, the parametrization by Huber and Aichelin is used [196]. Free space and
in-medium cross sections are considered for the elastic and inelastic channels, respectively. The in-medium effects are
introduced by a medium correction of ρ-meson mass [197].

4.5.5. Pauli-blocking
The Pauli blocking algorithm implemented in the IBL code resembles closely the one of the CoMD model by M. Papa

et al. [63]. Firstly, we calculate the phase space occupancy of the two scattered nucleons. Secondly, if one of the phase
space occupancy of the two nucleons has the value greater than 1, the collision is blocked.
34
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4.5.6. Fluctuation
The fluctuating collision term in the IBL code can be interpreted as a stochastic force acting on density and is

haracterized by a correlation function

⟨δK (r1, p1, t1)δK (r2, p2, t2)⟩ = C(p1, p2)δ(r1 − r2)δ(t1 − t2). (45)

projection method is used in the IBL model. The fluctuations are projected on a set of low-order multipole moments of
he momentum distribution. The fluctuations of these multipole moments are characterized by a diffusion matrix

CLML′M ′ =

∫
dpdp′QLM (p)QL′M ′ (p′)C(p, p′)

=

∫
dp1dp2dp3dp4∆QLM∆QL′M ′W (12, 34)f1f2(1 − f3)(1 − f4). (46)

t is found that only the Q20 and Q30 are not negligible, that is

Q̂20(r, t +∆t) = Q20(r, t +∆t) +

√
∆tC20(r, t)W2,

Q̂30(r, t +∆t) = Q30(r, t +∆t) +

√
∆tC30(r, t)W3.

(47)

here the W2 and W3 are Gaussian random numbers with mean 0 and variance 1. Q̂20 and Q̂30 are the fluctuating values,
hile Q20 and Q30 are their averaged values. The last terms on the right side are the fluctuation terms. The fluctuations
re inserted back into the phase-space through scaling the local momentum distribution to the new values of QLM .

.6. The isospin-dependent Boltzmann–Uehling–Uhlenbeck (IBUU) code

. Xu, L. W. Chen, B. A. Li

.6.1. About the IBUU model
The isospin-dependent Boltzmann–Uehling–Uhlenbeck (IBUU) transport model was developed by including the isospin

egree of freedom [198,198,199] into the original BUU model by Bertsch et al. [50]. Later, an isospin- and momentum-
ependent nuclear interaction (MDI) was incorporated into the IBUU transport model [200,201]. The IBUU transport
odel together with the MDI interaction has been used to study extensively the isospin dynamics in intermediate-energy
eavy-ion collisions, e.g., constrain the symmetry energy at subsaturation densities with isospin diffusion [20,202] and
xplore the symmetry energy at suprasaturation densities with π−/π+ yield ratios [203,204]. Most studies using the IBUU
ransport model before 2008 can be found in Ref. [205].

.6.2. Initialization
The initial coordinates of protons and neutrons in the projectile and target nuclei are sampled according to those

btained by a Skyrme-Hartree–Fock (SHF) calculation. With the standard SHF functional form, we can get the desired
alues of Skyrme parameters from empirical macroscopic quantities [206]. If we want to investigate, for instance, the
ffects due to the uncertainty of neutron skin thickness in heavy-ion collisions [207], we use Skyrme forces with different
lope parameters of the symmetry energy, while keeping all other macroscopic quantities the same.
Knowing the spatial distribution of nucleons, one can get the initial momenta of nucleons according to the local density

pproximation, i.e., sampling the nucleon momentum within [0, pF ], where pF is the Fermi momentum from the local
ensity and is isospin dependent. The local momentum distribution is sampled isotropically. Besides the above standard
reatments, the high-momentum tail due to the nucleon–nucleon short-range correlations in nuclei has recently been
onsidered [208], and deformed Fermi distributions are also used [209].
Finally, the spatial coordinates are shifted according to the collision impact parameter, and modified by the Lorentz

ontraction according to the given beam energy. The momenta of all nucleons are also boosted according to the collision
nergy. This finishes the initialization of the IBUU transport model.

.6.3. The isospin- and momentum-dependent interaction
The isospin- and momentum-dependent mean-field potential generally used in the IBUU transport model can be

ritten as [201]

Uτ (ρ, δ, p⃗) = Au
ρ−τ

ρ0
+ Al

ρτ

ρ0
+ B

(
ρ

ρ0

)σ
(1 − xδ2) − 4τx

B
σ + 1

ρσ−1

ρσ0
δρ−τ

+
2Cτ ,τ
ρ0

∫
d3p′

fτ (r⃗, p⃗′)
1 + (p⃗ − p⃗′)2/Λ2 +

2Cτ ,−τ
ρ0

∫
d3p′

f−τ (r⃗, p⃗′)
1 + (p⃗ − p⃗′)2/Λ2 . (48)

In the above, τ = 1(−1) for neutrons (protons) is the isospin index, ρ = ρn + ρp is the total number density with ρn
and ρp being the neutron and proton number densities, respectively, δ = (ρn − ρp)/(ρn + ρp) is the isospin asymmetry,
and f (r⃗, p⃗) is the phase-space distribution function. ρ is the saturation density, and A , A , B, σ , C , C , and Λ are
τ 0 u l τ ,τ τ ,−τ
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parameters to fit empirical nuclear matter properties. This mean-field potential can be obtained from an effective two-
body interaction with a density-dependent zero-range term and a density-independent finite-range Yukawa term [210],
similar to the Gogny interaction. The x parameter is used to vary the density dependence of the symmetry energy by
varying the relative contribution of different spin–isospin channels in the zero-range density-dependent interaction. The
values of the parameters can be found in Ref. [20], and Ref. [211] gives an extensive discussion on the studies based
the MDI interaction. This interaction was later improved by refitting the mean-field potential at high nucleon momenta
according to the nucleon–nucleus scattering data and introducing two additional parameters to vary the momentum
dependence of the symmetry potential as well as the symmetry energy at saturation density. The details of the improved
MDI interaction can be found in Ref. [212].

In the IBUU model, the phase-space distribution fτ (r⃗, p⃗) as well as the local density ρτ (r⃗) for nucleons with isospin τ
can be obtained by averaging NTP parallel events, i.e.,

fτ (r⃗, p⃗) =
1
NTP

ANTP∑
i∈τ

g(r⃗ − r⃗i)δ(p⃗ − p⃗i), (49)

ρτ (r⃗) =
1
NTP

ANTP∑
i∈τ

g(r⃗ − r⃗i), (50)

here g is a smooth function in coordinate space, and A is the number of real particles, with each represented by NTP
test particles. The coordinate space is divided into cells with each cell of volume 1 fm3. In the original IBUU (IBUU_O),
each nucleon contributes a factor of 1/3 to the density of the local cell and 1/9 to that of each nearest neighboring
cell. In the improved IBUU (IBUU_L), the form of the smooth function g is taken from that in the lattice Hamiltonian
framework [76], i.e., the phase-space distribution function fL and the density ρL at the sites of a three-dimensional cubic
lattice are expressed as

fL,τ (r⃗α, p⃗) =

ANTP∑
i∈τ

S(r⃗α − r⃗i)δ(p⃗ − p⃗i), (51)

ρL,τ (r⃗α) =

ANTP∑
i∈τ

S(r⃗α − r⃗i). (52)

n the above, α is the site index, r⃗α is the position of the site α, and S is the shape function describing the contribution
f a test particle at r⃗i to the value of the quantity at r⃗α , i.e.,

S(r⃗) =
1

NTP (nl)6
g(x)g(y)g(z) (53)

ith

g(q) = (nl − |q|)Θ(nl − |q|). (54)

is the lattice spacing, n determines the range of S, and Θ is the Heaviside function. We generally adopt the values of
= 1 fm and n = 2.
In IBUU_O, the equations of motion for the ith test particle are expressed as

dr⃗i
dt

=
p⃗i√

p⃗2i + m2
+
∂U[ρ(r⃗c), δ(r⃗c), p⃗i]

∂ p⃗i
, (55)

dp⃗i
dt

= −
∂U[ρ(r⃗c), δ(r⃗c), p⃗i]

∂ r⃗c
, (56)

here m is the bare nucleon mass, r⃗c represents the coordinate of the cell containing the ith test particle, and ∂U/∂ r⃗c is
alculated by taking numerical derivatives based on the single-particle potentials U in neighboring cells. In IBUU_L, the
amiltonian of the system can be expressed as

H =

ANTP∑
i

√
p⃗2i + m2 + NTP Ṽ , (57)

ith the total potential energy expressed as

Ṽ = l3
∑
α

Vα, (58)

here Vα is the potential energy at the site α, with the energy-density functional form consistent with the mean-field
otential, e.g., Eq. (48). The canonical equations of motion for the ith test particle from the above Hamiltonian can thus
36
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be written as

dr⃗i
dt

=
∂H
∂ p⃗i

=
p⃗i√

p⃗2i + m2
+ NTP

∂Ṽ
∂ p⃗i
, (59)

dp⃗i
dt

= −
∂H
∂ r⃗i

= −NTP
∂Ṽ
∂ r⃗i
. (60)

A time step ∆t = 0.5 fm/c is generally used to solve numerically the above differential equations. Details of IBUU_L can
be found in Refs. [213,214].

4.6.4. Nucleon–nucleon scattering and Pauli blocking
The nucleon–nucleon scattering cross sections in free space are taken from the parametrized form as [215]

σpp(nn) = 13.73 − 15.04/v + 8.76/v2 + 68.67v4, (61)

σnp = −70.67 − 18.18/v + 25.26/v2 + 113.85v, (62)

where the cross sections are in mb and v is the velocity of the projectile nucleon with respect to the fixed target
nucleon. The parametrization can be further improved by considering the different angular distributions for pp(nn) and
np collisions. The in-medium scattering cross sections are calculated from [202]

σmedium
NN = σNN

(
µ⋆NN

µNN

)2

, (63)

here µNN (µ⋆NN ) is the free-space (in-medium) reduced mass of colliding nucleons, with the nucleon effective mass
efined from the momentum dependence of the mean field potential as

m∗
τ

m
=

(
1 +

m
p
dUτ
dp

)−1

. (64)

In the original IBUU, a possible attempted collision between two nucleons is determined by Bertsch’s prescription [50],
i.e., √

(∆r⃗)2 + (∆r⃗ · p⃗/p)2 <
√
σ/π (65)

nd ⏐⏐⏐⏐∆r⃗ · p⃗
p

⏐⏐⏐⏐ <
⎛⎝ p√

p2 + m2
1

+
p√

p2 + m2
2

⎞⎠∆t/2, (66)

here p⃗ and ∆r⃗ are the momentum of one of the nucleons and the relative coordinate between two nucleons in their
enter-of-mass (C.M.) frame, respectively. The first condition indicates that the distance between the two nucleons
erpendicular to their C.M. velocity is within the range of the scattering cross section, while the second condition means
hat the collision can happen right in this time step. In the improved IBUU, the right-hand side of Eq. (66) is divided by
Lorentz factor from the calculational frame to the C.M. frame of the two colliding nucleons. For elastic scatterings, the
ucleon momentum in the C.M. frame is then sampled according to the angular distribution of the cross section σ in
his trial collision. If the trial collision is not Pauli-blocked, the final momenta of nucleons can then be obtained from the
nverse Lorentz transformation. For the more complicated inelastic scatterings in IBUU, we refer the reader to Appendix
of Ref. [50] and Ref. [216].
The trial collision can be Pauli-blocked if the local phase-space occupation is too ‘crowded’, and this will be checked

fter the attempted collision is assumed to happen. The isospin-dependent phase-space density fτ (x, y, z, px, py, pz) for
auli-blocking is updated at each time step and after each successful collision. When a collision is attempted, the
ccupation number of the phase space

noccup =
h3

d∆x∆y∆z∆px∆py∆pz
fτ (x, y, z, px, py, pz), (67)

alculated by interpolation, determines whether the collision is Pauli-blocked or not, with h being the Planck constant
nd d = 2 being the spin degeneracy. At the current stage, the cell size of the Pauli lattice is set to be ∆x = ∆y = ∆z = 2
m and ∆px = ∆py = ∆pz = 100 MeV/c.

.6.5. Current status of the IBUU model
In the past, the IBUU transport model did a good job in studying isospin dynamics in heavy-ion collisions at

ntermediate energies [205]. The electromagnetic field was later incorporated into IBUU [217,218]. The applications of
his IBUU model now follow three lines. In one line, the spin degree of freedom for nucleons, the nucleon spin–orbit
37
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coupling [219], and the spin-dependent nucleon–nucleon scattering cross sections [220] are incorporated to study the
spin-dependent collective flows [221] as well as the spin polarization [222] in intermediate-energy heavy-ion collisions.
In a second line, the stability of the initialization is further improved to construct the ground state of the nucleus [214],
in order to study nuclear giant resonances [223]. The third line is trying to incorporate approximately the main physics
of short-range correlations into the IBUU transport model, see, e.g., Refs. [116,118,224].

4.7. Solving Boltzmann–Uehling–Uhlenbeck equation with lattice-Hamiltonian method (LBUU)

R. Wang, Z. Zhang, L.-W. Chen

4.7.1. Introduction
The lattice Boltzmann–Uehling–Uhlenbeck (LBUU) transport model was first developed in Ref. [225] by Wang, Chen

nd Zhang, where only the Vlasov equation is solved with the lattice-Hamiltonian method (LHV). The collision integral was
hen included in Ref. [226] following a full-ensemble stochastic method. As a newly developed framework, one feature
f the LBUU model is that it is implemented with GPU parallel computing, which significantly increases the numerical
fficiency and thus allows the LBUU to reach a high accuracy by employing a huge number of test particles (e.g., up to
05 per nucleon for Sn+Sn collisions). The latter is crucial to ensure the convergence of the results for certain observables,
.g., the width of nuclear giant resonances. The LBUU model has well reproduced the strength function of the nuclear
so-vector dipole resonances [226]. Further applications on heavy-ion collisions are in progress. More details on the LBUU
odel can be found in Ref. [227].
The lattice-Hamiltonian (LH) method of solving the BUU equation, originally proposed in Ref. [76], improves the sample

moothing technique of the usual test particle approach [228]. In the LH method, the equations of motion of test nucleons
re governed by the total Hamiltonian of the system, which is approximated by the lattice-Hamiltonian, i.e.,

H =

∫
H(r⃗)dr⃗ ≈ lxlylz

∑
α

H(r⃗α) ≡ HL, (68)

here r⃗α represents the coordinate of a certain lattice site α and lx, ly, and lz are lattice spacing. The Hamiltonian density
at a given lattice site H(r⃗α) can be expressed in terms of the Wigner function fτ (r⃗α, p⃗, t). In the LBUU model, we represent
fτ (r⃗α, p⃗, t) by a large number of test nucleons with a form factor S, i.e.,

fτ (r⃗α, p⃗, t) =
1
g
(2π h̄)3

NE

α,τ∑
i

S
[
r⃗i(t) − r⃗α

]
δ
[
p⃗i(t) − p⃗

]
. (69)

where g is the spin degeneracy factor, and NE is the number of test particles per nucleon introduced in the calculation.
The form factor S is taken to be of a triangular form. The sum in the above expression runs over all test nucleons with
isospin τ that contribute to the lattice site α.

4.7.2. Mean-field evolution
In the LBUU model, we employ the Skyrme pseudopotential to calculate the Hamiltonian density H(r⃗) in Eq. (68). The

Skyrme pseudopotential [229] generalizes the standard Skyrme interaction [230,231] by including in the latter additional
derivative terms up to the next-to-next-to-next-to leading order. It enables us to reproduce the empirical nuclear optical
potential up to about 1 GeV in kinetic energy [232], which standard Skyrme interactions fail to achieve. The equations of
motion for the ith test nucleon in the LBUU model are expressed as

dr⃗i
dt

=
p⃗i(t)
m

+ NElxlylz
∑
α∈Vi

∂HMD
α

∂ p⃗i
, (70)

dp⃗i
dt

= − NElxlylz
∑
α∈Vi

{ n,p∑
τ

[
∂(Hloc

α + HCou
α + HDD

α )
∂ρτ ,α

+

∑
n=0

(−1)n∇n ∂H
grad
α

∂∇nρτ ,α

]
∂ρτ ,α

∂ r⃗i
+
∂HMD

α

∂ r⃗i

}
. (71)

n the above two equations, the subscripts α for various quantities denote their values at lattice site α. The sums run
ver all lattice sites inside a spatial volume Vi, which the form factor of the ith test nucleon covers. The Hloc

α , HCou
α (r⃗),

HDD
α (r⃗), Hgrad

α (r⃗) and HMD
α (r⃗) represent the local, Coulomb, density-dependent, gradient and momentum-dependent terms

within the Skyrme pseudopotential, respectively. Detailed expressions are given in Ref. [225]. The partial derivative of
local density ρτ ,α in Eq. (71) can be calculated in terms of the spatial derivative of S, i.e.,

∂ρτ ,α

∂ r⃗i
=

∂

∂ r⃗i

τj=τ∑
S(r⃗j − r⃗α) =

{
∂S(r⃗i−r⃗α )

∂ r⃗i
, τi = τ ,

0, τi ̸= τ .
(72)
r⃗j∈Vα
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The contribution of the momentum-dependent parts of the lattice Hamiltonian to the equations of motion of test nucleons
are expressed as the summations of test nucleons, i.e.,

∂HMD(r⃗α)
∂ r⃗i

= 2
∂S

[
r⃗i(t) − r⃗α

]
∂ r⃗i

{∑
j∈Vα

S
[
r⃗j(t) − r⃗α

]
Ks

[
p⃗i(t), p⃗j(t)

]
+

τj=τi∑
j∈Vα

S
[
r⃗j(t) − r⃗α

]
Kv

[
p⃗i(t), p⃗j(t)

]}
, (73)

∂HMD(r⃗α)
∂ p⃗i

= 2S
[
r⃗i(t) − r⃗α

]{∑
j∈Vα

S
[
r⃗j(t) − r⃗α

]∂Ks
[
p⃗i(t), p⃗j(t)

]
∂ p⃗i

+

τj=τi∑
j∈Vα

S
[
r⃗j(t) − r⃗α

]∂Kv
[
p⃗i(t), p⃗j(t)

]
∂ p⃗i

}
. (74)

he expression of the iso-scalar(vector) momentum-dependent kernel Ks(Kv) can be found in Ref. [225].

.7.3. Collision integral
In the LBUU model, we treat the collision integral through a full-ensemble stochastic method [81]. The collision

robability of two test nucleons is derived as follows. Considering test nucleons around lattice site r⃗α from two momentum
space volumes Vp⃗1 = p⃗1 ±

1
2∆

3p1 and Vp⃗2 = p⃗2 ±
1
2∆

3p2 we average over the momentum-space volume Vp⃗i to obtain their
(r⃗α, p⃗i) according to Eq. (69), i.e.,

f (r⃗α, p⃗i) ≈
1

∆3pi

(2π h̄)3

gNE

p⃗j∈Vp⃗i∑
j

S(r⃗j − r⃗α). (75)

The number of collisions between nucleons from those two momentum space volumes that happen in time interval ∆t
is

∆Ncoll(r⃗α, p⃗1, p⃗2) = g
∆3p1
(2π h̄)3

⏐⏐⏐df (r⃗α, p⃗1)
dt

⏐⏐⏐coll
p⃗2

lxlylz∆t = g
∆3p2
(2π h̄)3

⏐⏐⏐df (r⃗α, p⃗2)
dt

⏐⏐⏐coll
p⃗1

lxlylz∆t. (76)

he
⏐⏐ df (r⃗α ,p⃗1)

dt

⏐⏐coll
p⃗2

and
⏐⏐ df (r⃗α ,p⃗2)

dt

⏐⏐coll
p⃗1

are the changing rate of f (r⃗α, p⃗1) and f (r⃗α, p⃗2), respectively, caused by the two-body
collision between Vp⃗1 and Vp⃗2 . These terms can be obtained directly from the collision term of the BUU equation,⏐⏐⏐df (r⃗α, p⃗1)

dt

⏐⏐⏐coll
p⃗2

= g
∆3p2
(2π h̄)3

f (r⃗α, p⃗1)f (r⃗α, p⃗2)
∫

dp⃗3
(2π h̄)3

dp⃗4
(2π h̄)3

|M12→34|
2(2π )4δ4(p1 + p2 − p3 − p4). (77)

y definition, we can replace the integral in Eq. (77) with vrelσ ∗

NN, where vrel and σ ∗

NN are the relative velocity and in-
edium cross section in the two-nuclei center-of-mass frame, respectively. Substituting Eqs. (75) and (77) into Eq. (76),
e obtain

∆Ncoll(r⃗α, p⃗1, p⃗2) =

p⃗i∈Vp⃗1
p⃗j∈Vp⃗2∑

i,j

1
N2

E
vrelσ

∗

NNS(r⃗i − r⃗α)S(r⃗j − r⃗α)lxlylZ∆t ≡

p⃗i∈Vp⃗1
p⃗j∈Vp⃗2∑

i,j

∆Ncoll
ij . (78)

The summed over quantity, denoted by ∆Ncoll
ij , is the number of physical collisions from the scattering of the ith and jth

test nucleons. Given that every test nucleon represents 1/NE of a physical nucleon, one obtains the scattering probability
of the ith and jth test nucleons as

Pij =
∆Ncoll

ij

(1/NE)2
= vrelσ

∗

NNS(r⃗i − r⃗α)S(r⃗j − r⃗α)lxlylz∆t. (79)

One should note the difference from the scattering probability in a typical stochastic approach [46], due to the presence
of the form factor S in the LBUU model. In the full-ensemble scenario, the collision probability is reduced, i.e., Pij →

Pij/NE, by the scaling σ ∗

NN → σ ∗

NN/NE. The above stochastic method has been generalized to the production of light nuclei
through 3 ↔ 2 and 4 ↔ 2 scatterings, where the internal wave function and finite size of light nuclei have been taken
into account [233].

In the LBUU model, we obtain the in-medium nucleon–nucleon scattering cross section σ ∗

NN through multiplying the
free nucleon–nucleon scattering cross section σ free

NN by a medium-correction factor. The correction factor depends on both
the local density and the center-of-mass kinetic energy of the scattering test nucleons. For the nucleon–nucleon scattering
cross section in free space σ free

NN , we use the parametrization provided in Ref. [195].
Since the nucleon–nucleon scattering probabilities are very small within one time step, instead of evaluating proba-

bilities of all possible scatterings of test nucleons, we choose N ′ pairs randomly out of all possible test nucleon pairs N22
α

around lattice site α, and accordingly amplify the scattering probabilities, i.e., P ′

ij = N22
α /N

′Pij. Normally we choose N ′

= N22
α /2 in the LBUU model so that one test nucleon involves at most in one scattering event.
If the scattering between the ith and jth test nucleons happens in lattice site r⃗α according to Pij or P ′

ij, the direction
of their final states p⃗3 and p⃗4 are sampled according to the differential cross-section given in Ref. [195], and then the
Pauli blocking factor [1 − f (r⃗ , p⃗ )] × [1 − f (r⃗ , p⃗ )] is employed to determine whether the collision is blocked by the
α 3 α 4
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Pauli principle. The distribution function fτ (r⃗α, p⃗) is calculated by averaging its value in Eq. (69) over a momentum-space
sphere with radius Rp

τ (r⃗α, p⃗) centered at p⃗. Typically, Rp
τ (r⃗α, p⃗) is taken as a constant of about 0.1 GeV. For the calculation

of nuclear giant resonances, we use an improved form of Rp
τ (r⃗α, p⃗), which has been specifically proposed in the GiBUU

code [185] for small-amplitude nuclear collective dynamics near ground state, i.e.,

Rp
τ (r⃗α, p⃗) = max[∆p, pFτ (r⃗α) − |p⃗|], (80)

where pFτ (r⃗α) is the nucleon Fermi momentum at lattice site r⃗α , and ∆p is a constant that is normally taken to be less
han 0.05 GeV/c.

.7.4. Initialization
In the LBUU model, the initial coordinates of test nucleons are generated according to a nucleon radial density ρτ (r),

hile their initial momenta follow zero-temperature Fermi distribution,

fτ (r⃗, p⃗) =
2

(2π h̄)3
θ
[
|p⃗| − pFτ (r)

]
, (81)

here pFτ (r⃗) is the local Fermi momentum fulfills pFτ (r⃗) = h̄
[
3π2ρτ (r⃗)

]1/3.
The nucleon radial density ρτ (r) of a ground state nucleus at zero temperature is obtained by varying the total energy,

.e., through the Thomas–Fermi initialization. Within the local density approximation, the total energy of a ground state
pherical nucleus at zero temperature can be obtained by integrating the Hamiltonian density, which is a function of the
τ (r) and its spatial gradients ∇

nρτ (r), i.e.,

E =

∫
H

[
r, ρτ (r),∇ρτ (r),∇2ρτ (r) · · ·

]
dr. (82)

arying the total energy with respect to ρτ (r) we obtain (note that the contribution from the Coulomb interaction should
lso be included in the Hamiltonian density),

1
2m

{
pFτ

[
ρτ (r)

]}2
+ Uτ

{
pFτ

[
ρτ (r)

]
, r

}
= µτ , (83)

where µτ is the chemical potential of proton (neutron) inside the nucleus to obtain the given proton number Z (neutron
number N). The Uτ

{
pFτ

[
ρτ (r)

]
, r

}
is the single-particle potential of the nucleon at the Fermi surface. The single-particle

potential is defined as the variation of the potential density with respect to the phase-space distribution function and
density gradients, and therefore Eq. (83) contains density gradients implicitly. For the N3LO Skyrme pseudopotential used
in the LBUU model, the detailed expression is given in Ref. [232]. The nucleon radial density ρ(r) for ground state spherical
nuclei is obtained by solving Eq. (83) with the boundary condition

∂ρ(r)
∂r

⏐⏐⏐
r=0

=
∂ρ(r)
∂r

⏐⏐⏐
r=rB

= 0. (84)

he rB in the above equation is the boundary of the nucleus, which satisfies ρ(rB) = 0, and it needs to be determined
elf-consistently when solving Eq. (83).

.8. The Pawel’s Boltzmann–Uehling–Uhlenbeck (pBUU) code

. Danielewicz

In this short write-up, the relevant details of the pBUU code are presented. The main references are [81,234].

.8.1. Code history
Most of that code’s development was done by Pawel Danielewicz at the Michigan State University in East Lansing,

ith some of the advances made during his visits to GSI Darmstadt and to INT Seattle. The abbreviation pBUU stands for
awel’s BUU. Early on, the code was also known under the abbreviation BEM for the Boltzmann-Equation Model. Some
ther contributions are mentioned within the chronology of the code’s development below.

• 1990–91: Codes incorporating self-consistent mean-fields, prior to pBUU, were built around the concept of extending
the cascade model. However, pBUU (BEM) was designed around the idea of a Monte-Carlo solution to the Boltzmann
equation. The code included deuterons as a degree of freedom, with deuteron production described as a process
inverse to deuteron breakup in collisions with nucleons, i.e., the production taking place in 3-nucleon collisions,
based on the formal developments in [235].
From its nascency, the code included an option of enclosing the nuclear system in a spatial box, for the sake of
studying equilibration in that box and verifying whether the expected equilibrium limit could be reached. Cross-
sections for ∆ absorption in collisions with nucleons followed detailed balance relations that accounted for the
significant ∆ widths and that led to pion yields in equilibrium consistent with the fireball model. Details of the code

first appeared in a paper co-authored with George Bertsch [81].
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• 1992–93: Production of A = 3 clusters, tritons and helions, was added [94]. Momentum dependence was
incorporated into the mean fields [236]. In connection with a parallel development of the collision treatment in
Ref. [82], the calculation of collision effects was speeded up.

• 1994–95: The lattice-Hamiltonian method of Lenk and Pandharipande [76] was adopted for integration of the
mean-field effects [237].

• 1998–2000: In the context of application of the code to truly relativistic collisions [238], the code got more firmly
based within the realm of the relativistic Landau theory [234,239]. In the context of experimental investigations of
stopping, density-dependent elastic in-medium cross-sections were incorporated [240]. To tame spurious collective
oscillations of initial nuclear states, those states began to be sought as solutions to Thomas–Fermi equations
consistent with the energy functional employed in the transport equations [234].

• 2002–2003: Lijun Shi [241] introduced different forms of symmetry energy into the code, in the context of the studies
of isospin diffusion [19].

• 2012–2016: Jun Hong [242,243] introduced provisions for increasing computational statistics of pion production
within the subthreshold domain. She also expanded options for interplay of the density and momentum dependence
in the nucleonic potentials. Christian Simon [244] and Yuanyuan Zhang [245] made theoretical advances for the sake
of a greater flexibility in the energy functional, with only modest computational cost.

• 2012–2017: Brent Barker expanded the selection of in-medium cross-sections [246,247].

4.8.2. Energy functional
In the calculational frame, the energy functional is a sum of three terms:

E =

∫
drrr e + E∇ + Ecoul . (85)

ere the first r.h.s. term is the volume contribution, treated covariantly. The last two terms in Eq. (85) are the finite-range
orrection,

E∇ =
a1
2ρ0

∫
drrr

(
∇ρ

)2
, (86)

nd the Coulomb term, both treated noncovariantly. In the local rest frame, the volume energy density is

e =

∑
X

gX

∫
dppp

(2π )3
fX (ppp)

(
mX +

∫ p

0
dp′ v′

X

)
+

∫ ρ

0
dρ ′ U(ρ ′) + 4 S(ρ) ρ2

T /ρ . (87)

ere, X pertains to species X , gX is spin degeneracy, fX is the phase-space occupation of species X , ρT is isospin density
hence the factor of 4 in the term) and vX is local velocity of X , parametrized with

vX (p, ρ) =
p√

p2 + m2
X/

(
1 +

mN
mX

AX F(ρ/ρ0)
(1+λp2/m2

X )
2

)2 , (88)

here mX and AX are the mass and mass number, respectively.
The single-particle energies follow from the net energy with

ϵX (rrr,ppp, t) =
(2π )3

gX

δE
δf (rrr,ppp, t)

, (89)

nd the solved set of Boltzmann equations is of the form
∂ fX
∂t

+
∂ϵX

∂ppp
∂ fX
∂rrr

−
∂ϵX

∂rrr
∂ fX
∂ppp

= K<X (1 ∓ fX ) − K>X fX . (90)

he species X in pBUU include nucleons, deuterons, tritons, helions, ∆ and N∗ resonances and pions. The feeding K< and
bsorption K> rates include the effects of elastic collisions, the effects of absorption of pions on nucleons into resonances
nd of resonance decays and of inelastic A = 1 baryon collisions where the resonances are produced or absorbed.
oreover, the rates include collisions of A = 2 and 3 clusters with nucleons, where the clusters are broken up, and

nverse processes, where 3 or 4 nucleons collide and clusters are formed.
In solving the Boltzmann equation set, the phase-space density is represented in terms of a set of δ-functions, or test

articles:
g

(2π )3
f (rrr,ppp, t) =

1
N

∑
k

δ(rrr − rrrk(t)) δ(ppp − pppk(t)) , (91)

here N is the number of test particles per particle. The phase-space derivative terms on the l.h.s. of (90) are accounted
or by making the test-particles follow equations of the Hamiltonian form:

drrrk
=

dϵ
,

dpppk
= −

dϵ
. (92)
dt dpppk dt drrrk
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Numerical algorithms, for calculating the single-particle energies and their derivatives in integrating the Boltzmann
equation, are made consistent by tying them to a lattice Hamiltonian for the system [76]. Specifically, the space is divided
into cartesian cells of volume ∆V . The numerical system energy E is constructed as a sum of contributions from cell
orners, or nodes, following Eqs. (85)–(88). Associated with each node is a piecewise differentiable form factor S(rrr), where
r is the distance from the node, normalized according to

∫
drrr S(rrr) = ∆V . Then, the particle distribution functions for

a node α at rrrα , for calculating that node’s contribution to E, are

f (rrrα) =
1

N ∆V

∑
k

S(rrrα − rrrk) δ(ppp − pppk) . (93)

or the sake of the numerical calculation, the numerical energy E from f replaces E in Eq. (89) in determining the
ingle-particle energy and its derivatives.

.8.3. Initialization
Ahead of a transport calculation, a set of Thomas–Fermi (TF) equations is solved for the neutron ρn(r) and proton

p(r) density profiles, consistent with the energy functional Eqs. (85)–(88) employed for the transport calculations. For
spherically symmetric nucleus, that equation set is conveniently transformed into:

1
r2

d
dr

r2
d
dr
ρ =

ρ0

2a1

[
ϵFn + ϵFp − µn − µp

]
, (94)

µn − µp = ϵFn − ϵFp , (95)

here ϵF are Fermi energies that include here the Coulomb, symmetry-energy and momentum-dependent contributions.
he density difference ρn − ρp is implicitly contained in the Fermi energies. The set is solved by assuming µn and µp and
ρ(r = 0). The acceptable ρ(r = 0) is one for which ρ = 0 is reached together with dρ/dr = 0, ensuring a parabolic
termination for the density distribution. The chemical potentials µn and µp are adjusted until the required neutron and
proton numbers are achieved for the nucleus.

At the start of a transport calculation the test-particles are distributed in space according to the densities ρn(r) and
ρp(r) from the TF calculation, and in momentum according to the local momentum distribution, consistently with the
physical content of the TF equations. The distribution is then Lorentz boosted to give the nucleus desired velocity in the
chosen calculational frame.

4.8.4. Feeding and absorption rates
For the sake of numerical calculations, the rates on the r.h.s. of the Boltzmann Eqs. (90) are averaged out over the

volume elements ∆V . The integrals in the rates are evaluated within a Monte-Carlo procedure relying on the test particles
there. This in practice makes the test-particles interact across the content of the cell ∆V .

The averaging over the volume elements is particularly beneficial in calculating the effects of 3- and 4-nucleon
collisions where clusters are produced. Physically, the production and breakup of clusters should take away probability
flux from elastic scattering, but that is not done in the transport calculations. Given that clusters are unlikely to survive
when they are produced at excessive density and the repeated processes of cluster breakup and reformation would yield
excessively strong dissipation, cluster formation is suppressed, in a tempered fashion, above a subnormal density cut-off.
That cut-off is applied in addition to the Pauli suppression mentioned below.

4.8.5. Statistical factors
In calculating the final-state statistical factors, an averaging is employed for the distributions of nucleonic species over

that cell of volume ∆V , where the process occurs, and over the adjacent cells with a reduced, gradually changing, weight.
The aim of the tempering is a reduction of fluctuations for a given number N of test-particles per particle. Beyond that,
the value of the distribution for nucleonic species at a phase-space location is calculated with one of the following two
methods. In one method, the local momentum distribution is modeled in terms of a superposition of two deformed Fermi
distributions, one for the species originally from the projectile and the other from the target. Moments of the distributions,
following the above averaging, are used to determine the distribution parameters, with the number of parameters trimmed
if the number of test particles representing the species is low. In the other method, the phase-space distribution functions
are averaged over a volume in momentum space, in addition to the aforementioned spatial averaging.

Cluster states dissolve when the cluster wavefunction is significantly impacted by antisymmetrization at the nucleonic
level with the exterior [81,248]. Whenever phase space occupation averaged over cluster phase-space volume exceeds a
critical value, the cluster is prevented from forming. This eliminates clusters from the phase-space areas where nucleonic
occupations are high. Notably, if this were not employed, the nucleonic Fermi spheres would undergo conversion into
clusters.
42
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4.9. The Parton–Hadron–String-Dynamics (PHSD) approach

E. Bratkovskaya, W. Cassing

4.9.1. Introduction
The Parton–Hadron–String Dynamics (PHSD) [89,249–251] is a microscopic covariant transport approach for the

ynamical description of strongly interacting hadronic and partonic matter created in heavy-ion collisions. It is based on
solution of the Cassing–Juchem generalized off-shell transport equations for test particles [120,252], which are derived

rom the Kadanoff–Baym equations [253] in first-order gradient expansion [254,255]. This quantum field theoretical
asis distinguishes the PHSD from the semi-classical BUU based models, since the PHSD propagates Green’s functions
in phase-space representation) which contain information not only on the occupation probability (in terms of the phase-
pace distribution functions), but also on the properties of hadronic and partonic degrees-of-freedom via their spectral
unctions. The PHSD approach consistently describes the full evolution of a relativistic heavy-ion collision from the initial
ard scatterings and string formation through the dynamical deconfinement phase transition to the strongly-interacting
uark–gluon plasma (sQGP) as well as hadronization and the subsequent interactions in the expanding hadronic phase in
ine with the Hadron–String-Dynamics (HSD) transport approach [256,257]. The partonic dynamics is realized within the
ynamical Quasiparticle Model (DQPM) that is constructed to reproduce lattice QCD (lQCD) results for a non-perturbative
uark–gluon plasma in thermodynamic equilibrium at finite temperature T and baryon (or quark) chemical potential µB

on the basis of effective propagators for quarks and gluons. Since the QGP dynamics is not of relevance for the studies
addressed here, we abstain from a further explicit description and refer the interested reader to the review [89] and
Ref. [251].

The hadronic part is governed by the Hadron–String-Dynamics (HSD) part of the transport approach [256,257]
incorporating (optionally) self-energies for hadrons [258]. The hadronic degrees-of-freedom include the baryon octet
and decouplet, the 0− and 1− meson nonets as well as some higher resonances. The low energy hadronic reactions are
calculated based on the corresponding hadron–hadron cross sections — either parametrized to the available experimental
data or based on some microscopic chiral or one-boson exchange models (OBE). With increasing energy the description of
multi-particle production in elementary baryon–baryon (BB), meson–baryon (mB) and meson–meson (mm) reactions is
realized within the Lund model [259], in terms of the event generators FRITIOF 7.02 [259,260] and PYTHIA 6.4 [183],
which are ‘‘tuned’’, i.e., adjusted, to get a better agreement with experimental data on elementary p + p collisions,
especially at intermediate energies (cf. Ref. [261]). Furthermore, the PHSD incorporates the description of the chiral
symmetry restoration via the Schwinger mechanism for the string decay [262,263] in a dense medium, as well as in-
medium effects such as a collisional broadening of the vector-meson spectra functions [264] and the modifications of
strangeness degrees-of-freedom in line with many-body G-matrix calculations [258,265]. Moreover, the implementation
of detailed balance on the level of 2 ↔ 3 reactions is realized for the main channels of strangeness production/absorption
by baryons (B = N,∆, Y ) and pions [265], as well as for the multi-meson fusion reactions 2 ↔ n for the formation of
B+ B̄ pairs [266,267]. We note that although the excitation of strings and multi-particle production become of relevance
above about 1 AGeV, they are not important in the energy range of a few hundred AMeV, where the scattering of protons
and neutrons, the excitation of ∆-resonances and their decay as well as the dynamics of pions are of primary importance.

The history of the (P)HSD code, similar to that of the GiBUU code, started in 1986 since both models emerged from
the same origin, cf. Ref. [268], however, with a different focus on reactions and energy range. The implementation of
string formation and decay was carried out (in HSD) in 1996 [256] and the implementation of off-shell propagation
for selected hadrons in the year 2000 [252]. In 2009 the HSD approach was extended to the partonic sector (PHSD).
The propagation of hadrons and partons in self-generated electromagnetic fields was included in 2011 [269]. The non-
perturbative incorporation of charm and bottom degrees-of-freedom followed in 2016 [270], and in 2019 the description
of the QGP phase was upgraded by introducing the explicit µB dependence of partonic complex self-energies and cross
sections [251]. Moreover, in 2020 the PHSD gave birth to the PHQMD (Parton–Hadron–Quantum-Molecular-Dynamics)
approach [271], a novel branch of the PHSD, where the mean-field propagation of baryons is replaced by Quantum
Molecular Dynamics (QMD) to allow to follow the n-body dynamical evolution (similar to the IQMD approach), which
is of relevance for the study of cluster and hypernuclei formation.

The PHSD approach is applicable to p + p, p + A, A + A collisions as well as to π + p, π + A reactions from SIS to
HC energies. It has been extensively used to study the dynamics of hadronic and partonic degrees-of-freedom as well as
lectromagnetic probes — dileptons and photons [89]. PHSD also provides the possibility to study the thermal properties
f the system in equilibrium by initializing the system in a ‘box’ with periodic boundary conditions or in a static ‘brick’.
urthermore, a ‘coarse-grained’ calculation of the time evolution of the energy–momentum tensor Tµν is implemented,

which can be used as ’initial conditions’ for hydrodynamic models or for the time evolution of fireball-like models. The
PHSD source code is publicly available since 2004 via registration from the PHSD web-page [272].

4.9.2. Initialization
The phase-space densities of the two nuclei are described in the local Thomas–Fermi (LTF) approximation with density

profiles taken from experimental data, i.e. of harmonic oscillator type for masses up to A=16 and Woods–Saxon type for
larger masses in case of non-relativistic systems. In case of relativistic systems, the nuclei are initialized in the relativistic
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Thomas–Fermi approximation employing the same scalar and vector self-energies as used for the propagation of baryons.
In the present case, the LTF is used,

fn,p(r, p) = Θ(pn,pF (r) − |p|), (96)

or protons and neutrons with the local Fermi momentum

pn,pF (r) =
(
3π2ρn,p(r)

)1/3
. (97)

he two nuclei are shifted in space according to the actual impact parameter b (in x-direction) and boosted towards each
ther (in z-direction) according to the bombarding energy of interest.
The nucleons are then propagated in time according to the Hamilton equations of motion employing the parallel

nsemble method, i.e., solving for typically ∼ 103 ensembles simultaneously. Particles are only allowed to scatter within
he same ensemble but their mean fields are evaluated by ensemble averaging. This leads to rather smooth density
istributions and mean fields with ‘soft’ gradients in space, which is mandatory for the time integration of the equations
f motion.

.9.3. Potentials: non-relativistic
In the case of non-relativistic systems, a Skyrme-type mean field is employed for baryons. The Coulomb potential for

he charged particles is also incorporated. For the study here, the asymmetry energy is included by using the following
ean-field potentials for protons and neutrons,

Un,p(r) = A
ρ(r)
ρ0

+ B
(
ρ(r)
ρ0

)λ
±

(
ρn(r) − ρp(r)
ρn(r) + ρp(r)

)
Usym

(
ρn(r) + ρp(r)

ρ0

)
(98)

ith

Usym(
ρ

ρ0
) = 12.3

(
ρ

ρ0

)2/3

+ 20
(
ρ

ρ0

)γ
MeV. (99)

ere the exponent γ is taken as γ = 0.5 for the ‘isosoft’ case and γ = 2 for the ‘isohard’ version; the default version uses
= 1. In Eq. (98) the (+)-sign holds for neutrons and the (-)-sign for protons. The ρ(r) is the local baryon density calculated

n the corresponding grid cell by averaging over all parallel ensembles. Resonances are not incorporated in the calculation
f ρn and ρp but are propagated in the isospin symmetric mean field, which is reduced by a factor 2/3. The parameters
, B and λ are determined by the binding energy per nucleon of −16 MeV at saturation density ρ0 = 0.166fm−3 and the

nuclear incompressibility K , which can be chosen in the range 210 MeV ≤ K ≤ 380 MeV to explore the sensitivity of
observables on the nuclear equation of state (EoS). The default value for K is 300 MeV in the HSD code. The kinematics
is relativistic throughout.

4.9.4. Potentials: relativistic
In the case of relativistic systems, the covariant mean-field (RMF) model is employed with an attractive scalar self

energy Σs(r; t) and a repulsive 4-vector self energy Σµ(r; t)) which is taken proportional to the baryon 4-current ȷµ. The
calar self energy incorporates self interactions up to 4th order and is obtained by iteration of a gap-equation in each
pace–time cell. The parameters of the RMF model are fixed by the binding energy per nucleon at ρ0, the choice of the
incompressibility K , the effective nucleon mass m∗ at density ρ0 and proton–nucleus Schrödinger equivalent potential

USEP (E) = −Σs +
E
m
Σ0 +

1
2m

(Σ2
s −Σ2

0 ), (100)

here m denotes the nucleon mass and the energy E =

√
p2 + (m −Σs)2. Actual parameter-sets are listed in Ref. [263].

ue to the numerical complexity and large scalar and vector self energies of opposite sign, high statistics calculations
re mandatory to achieve stable nuclei and robust results in particular for the space–time gradients of the self energies.
he actual version of (P)HSD does not incorporate isospin-dependent self energies in the covariant mode and thus is not
mployed for the studies in this work.

.9.5. Collisions
Baryon–baryon collisions with invariant energies below

√
s = 2.6 GeV are treated by resonance excitation and

ecays; the same holds for meson–baryon collisions below
√
s = 2.35 GeV. Above these thresholds, the string excitation

odel [260] is incorporated producing ‘leading’ hadrons and ’pre-hadrons’. The ’pre-hadrons’ are only allowed to scatter
fter a formation time τF=0.8 fm/c (in their rest frame), while the ‘leading’ hadrons may scatter instantly with a reduced
ross section in line with their fractional number of constituent quarks/antiquarks. The multitude of hadronic cross
ections and (optional) mesonic self energies are described in the review [257] but are not of central interest here.
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4.9.6. Pauli blocking
The Pauli-blocking factors (1 − fn,p(r, p)) require a proper determination of the phase-space occupation fn,p, which is

described here in the non-relativistic version. Furthermore, neutrons and protons are not separated explicitly and treated
as nucleons. Since the computational phase-space is a sum over δ-distributions the average occupation factor f̃ (r, p) has
to be calculated in a suitable phase-space volume. The evaluation proceeds by counting all nucleons in a spherical volume
∆VR(r, rR) around r with radius rR and the spherical momentum-space volume ∆VP (p, rP ) around p with radius rP ,

f̃ (r, p) =
1
N

∑
jϵ∆VP ·∆VR

1 (101)

with the normalization

N =
g∆VR∆VPN

(2π )3
, (102)

here g = 4 denotes the degeneracy factor for spin and isospin. Typical parameters are rP =90 MeV/c and rR = 1.8 fm,
hich works reasonably for a large number of ensembles N ≥ 500 and heavy-ion collisions above about 50 AMeV.
owever, for lower bombarding energies this recipe does not work well due to the finite size of the phase-space cell
n Eq. (101) and the surface effects have to be appropriately accounted for.

.10. The relativistic Boltzmann–Uehling–Uhlenbeck (RBUU) code

. Gaitanos

In this short write-up, we provide information on the RBUU code. The main references are [273,274].

.10.1. Code history
• Munich, 1995:

The RBUU code was developed in Munich by C. Fuchs in the middle nineties [275], where the Landau–Vlasov method
was introduced.

• Munich, 1996–2000:
Implementation of Density-Dependent RMF models and of DBHF approaches within the Local Configuration Approx-
imation (LCA) by Gaitanos and Fuchs [125,273].

• Munich/Catania, 2002–2005:
Implementation of iso-vector mean-fields by Gaitanos [276]. Implementation of isospin effects in the production
thresholds in the collision integral by Ferini and Gaitanos [274,277].

• Munich/Catania/Thessaloniki, 2005–2010:
Further improvement of kaon potentials. Implementation of in-medium isospin effects in cross sections and kaon
potentials by Prassa and Gaitanos [278].

.10.2. Initialization
The initial distribution of neutrons and protons of a nucleus of interest is performed by using the Fermi function in

oordinate space and by a theta function in momentum space.
In coordinate space, the nucleus is initialized by fitting to the Fermi function,

F (r) =
1

1 + exp[(r − R)/a]
, (103)

here the parameters, R and a, are obtained from the relativistic Thomas–Fermi (RTF) calculations. In the (relativistic)
homas–Fermi calculations, we first express the total energy of the system in terms of densities. For a specific nucleus
ith Z protons and N neutrons, we obtain RTF equations for mean fields by minimizing the total energy with fixed number
f protons and neutrons,

δ

∫
d3r[ϵ(ρp(r), ρn(r)) − µpρp(r) − µnρn(r)] = 0 . (104)

The (test) particle momenta are randomly distributed in an isotropic Fermi sphere, fn,p(r, k) = Θ
(
kF,n,p(r) − |k|

)
,

whose radius is determined by the local Thomas–Fermi approximation, kF,n,p(r) =
(
3π2ρn,p(r)

)1/3. The test particle in the
RBUU code has 1.4 fm gaussian width in coordinate space and 0.346 fm−1 width in momentum space.

To ensure the stability of initialized nuclei, we used the same energy density functional both in the RTF calculations
and in the dynamical evolution.
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4.10.3. Forces
In the RBUU code, a relativistic mean field model is used to obtain a mean-field potential under which particles

ropagate as described by the RBUU equation. The relativistic Lagrangian density adopted in the RBUU code is given
y,

L = ψ̄[γµ∂
µ

− (MN − gσσ − gδ τ⃗ · δ⃗) − gωγµωµ − gργ µτ⃗ · ρ⃗µ]ψ +
1
2
(∂µσ∂µσ − m2

σσ
2) − U(σ )

+
1
2
m2
ωω

2
+

1
2
m2
ρ ρ⃗µ · ρ⃗µ +

1
2
(∂µδ⃗ · ∂µδ⃗ − m2

δ δ⃗
2) −

1
4
FµνFµν −

1
4
G⃗µν · G⃗µν . (105)

Here Fµν ≡ ∂µων − ∂νωµ, G⃗µν ≡ ∂µρ⃗ν − ∂ν ρ⃗µ, and U(σ ) =
1
3aσ

3
+

1
4bσ

4. The propagation of the phase-space density
(x, k) under the influence of the mean-field potential obtained from Eq. (105) and two-body collisions is described by
he relativistic Boltzmann–Uehling–Uhlenbeck (RBUU) equation,[

p⋆µ∂
µ
x +

(
p⋆νF

µν
+ m⋆(∂µx m

⋆)
)
∂p

⋆

µ

]
f (x, p⋆) (106)

=
1
2

∫
d3p2

E⋆p2 (2π )
3

d3p3
E⋆p3 (2π )

3

d3p4
E⋆p4 (2π )

3W (pp2|p3p4)

× [f (x, p3)f (x, p4)(1 − f (x, p))(1 − f (x, p2)) − f (x, p)f (x, p2)(1 − f (x, p3))(1 − f (x, p4))] .

is the transition probability for a scattering process p + p2 → p3 + p4, and it is defined by

W (pp2|p3p4) = (p + p2)2
dσ
dΘ

δ(4)(p + p2 − p3 − p4).

urthermore, m⋆
= MN − gσσ and p⋆µ = pµ − gωωµ, where σ and ωµ denote the mean fields.

.10.4. Collision
The collision term in the RBUU code originates from Tübingen (R)QMD, however, it has been further developed by

ncluding all possible isospin channels of strangeness production and isospin effects in the particle thresholds [274,277].
wo particles collide if the minimum relative distance is equal to or less than

√
σtot/π within the time interval

used in the propagation. σtot, which depends on the center of mass energy
√
s, is the total cross section for a two-

body process. In the RBUU approach, the Lorentz invariant distance is used to compare with
√
σtot/π . The elastic

nucleon–nucleon cross section is taken from a parametrization by Cugnon et al. [195]. For the inelastic channels
involving resonance (∆(1.232), N∗(1.445)) production, the analysis of Huber and Aichelin is used [196]. There is also
an option to use in-medium reduced elastic and inelastic cross sections by using the parametrizations taken from
Dirac–Brueckner–Hartree–Fock calculations [279,280].

The collision processes take place in the local c.m. system of the two colliding particles. Once the elastic or inelastic
scattering occurs, the modulus of the momentum of the final state is calculated according to energy–momentum
conservation. The direction of the final state momentum is distributed according to experimental differential cross
sections, when available. For those processes without any empirical information on differential cross sections, the
momenta of the final particles are distributed isotropically. After the calculation of the final state one returns to the
calculational frame, i.e., to the global c.m. system of the two colliding nuclei, where the Pauli-blocking is checked.

4.10.5. Pauli-blocking
The Pauli-blocking factor is defined by 1− f (x, p), where f (x, p) is calculated by counting the number of test particles

within a sphere centered at (x, p) in the phase space, which is fixed by the width of the Gaussian functions in coordinate
and momentum space. If the blocking factor is larger than a generated random number, the collision is allowed. If the
collision is blocked, the associated particles take back their original momenta.

4.11. The relativistic Vlasov–Uehling–Uhlenbeck (RVUU) code

Z. Zhang, C. M. Ko, T. Song

4.11.1. Code history
• 1987–1989: Ko, Li and Wang developed the RVUU model based on the Walecka model with scalar–isoscalar σ meson

and vector–isoscalar ω meson [281,282].
• 1993–1998: Ko and Li extended the RVUU model to study particle production in high-energy heavy ion colli-

sions [283].
• 2012: Li, Chen, Ko, and Lee included hyperon–hyperon scattering in RVUU to study the threshold cascade production

in heavy-ion collisions [284].
• 2015: Song and Ko extended the RVUU model to include the isospin degrees of freedom and the threshold effect

on pion production, which was then used to study the symmetry energy effect on the charged pion ratio in
medium-energy heavy ion collisions [36].
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• 2016–2018: Zhang and Ko introduced the pion s-wave and p-wave potentials in the RVUU model and studied their
effects on pion production in medium-energy heavy ion collisions [108]. Effects of mean-field potentials on the
detailed balance relations in N + N ↔ N +∆ and ∆ ↔ N + π reactions were validated in a box calculation [285].

.11.2. Initialization
In the RVUU model, the initial nucleon positions in a nucleus are distributed according to the density profile of the
ood–Saxon form,

ρ(r) ∼
1

1 + exp[(r − c)/a]
(107)

ith the parameters c = 1.1A1/3 fm and a = 0.535 fm. Whether a nucleon is a proton or a neutron is determined from
he probability given by the ratio of the atomic to the mass number of a nucleus. Ordering protons and neutrons randomly
elps to avoid possible artifacts due to labeling protons before neutrons or vice versa when checking their scatterings. The
ucleon momenta in a nucleus are determined by assuming that nucleons in a local cell forms a Fermi gas with the Fermi
omentum determined by the local density. Nucleons in the two colliding nuclei are then boosted to their center-of-mass

rame by using the velocity p/E for projectile nucleons and −p/E for target nucleons, where p and E are, respectively, the
otal momentum and energy of the colliding system in the laboratory frame.

.11.3. Mean-field potentials
The nucleon mean-field potentials in the RVUU model are taken from the non-linear relativistic mean-field (RMF)

odel with isoscalar scalar σ and vector ω mesons as well as isovector scalar δ and vector ρ mesons. With the plus and
inus signs for the proton and neutron, respectively, the single-nucleon energy or potential is given by

U ≡ p0i =

√
m∗2

N + p∗2 + gωω0
± gρρ0

3 . (108)

here m∗

N = mN − (gσσ ± gδδ3) and p∗
= p + gωω ± gρρ3 are the nucleon in-medium mass and kinetic momentum,

espectively, and the meson fields σ , δ3, ωµ and ρµ3 are related to the proton and neutron scalar densities and currents.
The default parameters of the non-linear RMF model in the RVUU is the parameter set I in Ref. [173], which gives the
nuclear matter saturation density ρ0 = 0.16 fm−3, binding energy per nucleon E0(ρ0) = −16 MeV, incompressibility
K0 = 240 MeV, and the symmetry energy Esym(ρ0) = 30.5 MeV and its slope parameter L = 84 MeV at the saturation
density. The potential of a ∆ resonances has a similar form in terms of its in-medium mass m∗

i = mi − gσσ − xigδδ and
kinetic momentum pµ∗

i = pµ − gωωµ − xigρρµ, where xi = 1, 1/3, −1/3 and −1 for ∆++, ∆+, ∆0 and ∆−, respectively,
from their isospin structures in terms of nucleon and pion.

By default, pions are treated as free particles. The option of including the pion s-wave and p-wave potentials from
calculations based on the chiral perturbation theory and the ∆-hole model, respectively, is also available in the RVUU
code [108].

Solving the RVUU equation for the baryon distribution function f (x, p), i.e.,
∂

∂t
f + v · ∇r f − ∇rU · ∇pf = C, (109)

with C denoting the collision integral, is carried out by the test particle method [50] with NTP test particles and including
also the effect of the Coulomb potential on protons via the electric and magnetic fields. The test particle i, with electric
charge qi, then obeys the classical equations of motion,

ṙ i =
p∗

i

p0∗i
,

ṗi = −∇p0i + qi(E i + ṙ i × Bi). (110)

In the above, the electric and magnetic fields acting on particle i are evaluated according to

E i =
1

4πNTP

∑
i̸=j

qj
r ij
r3jk
,

Bi =
1

4πNTP

∑
i̸=j

qj
ṙ j × r ij

r3ij
, (111)

with r ij = r i − r j, and the sum running over all test particles.

4.11.4. Two-body scatterings
The RVUU code implements the geometrical minimum distance criterion for a two-body scattering. The two particles

are first transformed to their center-of-mass frame where the relative distance is separated into components r parallel
∥
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and r⊥ perpendicular to their relative velocity vrel. A trial collision occurs if

r⊥ <
√
σtot

π
, r∥ < vrel

∆t
2
, (112)

here σtot is the total cross section of the two scattering particles, and ∆t is the time step. A random number is then
enerated to determine the reaction channel based on the ratio σi/σtot with σi being the cross section for channel i. Finally,

after determining the momenta of the outgoing two particles according to the total energy and momentum conservation,
the Pauli blocking is checked in the computational frame.

Unlike normal transport models that use vacuum kinematics in collisions (and decays), i.e., only the kinetic energy is
conserved, the RVUU takes into account the conservation of total energy by including also the nucleon and ∆ potentials,
and the effect of modified threshold energy due to the potentials [36]. Taking a reaction 1 + 2 → 3 + 4 for example, the
RVUU guarantees 4-momentum conservation, p1 + p2 = p3 + p4, and the possible minimum invariant mass

√
sth of the

inal two particles (i.e., the threshold energy in inelastic scatterings) is given by [36]
√
sth =

√
(m∗

3 + m∗

4 +Σ0
3 +Σ0

4 )2 − |Σ3 + Σ4|
2,

here m∗

3 and m∗

4 are the effective masses of the two final particles, and Σµ

3 and Σµ

4 are their mean-field potentials in
he frame where the total kinetic momentum vanishes, i.e., p∗

3 + p∗

4 = 0.
The inclusion of mean-field potentials in collision kinematics also affects the detailed balance relations in N + N ↔

+∆ and ∆ ↔ N + π reactions. Specifically, the mass of the produced ∆ resonance is determined according to

P
(
m∗

)
=

A(m∗)p∗∫ m∗
max

m∗
min

dm∗′A (m∗′) p∗ (m∗′)
, (113)

where m∗ is the effective mass of ∆, and m∗

min and m∗
max are, respectively, the minimum and maximum allowed effective

masses of ∆ in the NN → N∆ reaction. The A(m∗) is the in-medium ∆ spectral function, given by

A(m∗) =
1
N

4m∗2
0 Γ(

m∗2 − m∗2
0

)2
+ m∗2

0 Γ
2
, (114)

here N is the normalization factor, m∗

0 is the ∆ pole mass of 1.232 GeV shifted by the scalar potential, and Γ is the ∆
otal decay width. The ∆ absorption cross section σN∆→NN is related to the ∆ production cross section σNN→N∆ by

σN∆→NN =
σNN→N∆

2 (1 + δ12)

2πp∗′′

1∫
dmA(m)p∗′

4 (m)
E∗′

3 + E∗′

4

E∗′′

1 + E∗′′

2

⏐⏐⏐E∗
′

1 p∗
′

2 − E∗
′

2 p∗
′

1

⏐⏐⏐⏐⏐E∗′′

3 p∗′′

4 − E∗′′

4 p∗′′

3

⏐⏐ ,
where 1, 2, 3 and 4 indicate the final two nucleons and the initial nucleon and ∆, respectively. The factor 1/(1 + δ12)
takes into account the case that 1 and 2 are identical particles, and the single and double primes indicate quantities in
the frames of p∗

3 + p∗

4 = 0 and p∗

1 + p∗

2 = 0, respectively.
The pion absorption cross section σNπ→∆ is related to the partial decay width of ∆ by

σNπ→∆ =
2π
p∗2
N

A (m∆)Γ (m∆) ,

with p∗

N being the kinetic momentum of the scattering nucleon in the frame of p∗

N + pπ = 0. Note that both σNπ→∆

and Γ (m∆) refer to the same isospin channels of the process ∆ ↔ Nπ , while the ∆ width in A(m∆) refers to the total
width of the ∆ resonance. The detailed balance conditions introduced above have been validated in a box calculation in
Ref. [285].

4.11.5. Pauli blocking
Considering a trial collision of two particles with their final positions and momenta given by (r1, p1) and (r2, p2), the

blocking probability due to the Pauli principle is 1− [1− f1(r1, p1)][1− f2(r2, p2)]. To determine the phase-space density
fi(r i, pi), the RVUU code counts the number Ni of test particles of the same particle species i inside a spherical cell of the
phase-space centering at (r i, pi). The fi(r i, rp) is then calculated according to

fi =
Ni

gNTP

h3

(4πR3
r /3)(4πR3

p/3)
, (115)

where g is the spin degeneracy and Rr (Rp) is the radius of the sphere in coordinate (momentum) space. For NTP = 100, Rr
and Rp are taken to be 2 fm and 100 MeV/c, respectively. The accuracy of the Pauli blocking calculation can be improved
with a larger N and smaller R and R in the treatment of the collision integral in the RVUU model.
TP r p
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4.12. SMASH (Simulating Many Accelerated Strongly-interacting Hadrons)

D. Oliinychenko, H. Elfner, A. Sorensen

4.12.1. Code history
SMASH [286] is a new C++ relativistic transport code currently developed by the group of Prof. Elfner (née Petersen)

t the Frankfurt Institute for Advanced Studies, and it is partly inspired by features and implementation ideas from
rQMD [51,287] and GiBUU (see Section 4.4). The degrees of freedom evolved in SMASH are hadrons and strings. The list
f hadrons includes all hadrons with *** and **** status from the Particle Data Group [288], while string fragmentation
s performed within Pythia 8 [289]. Hadronic reactions include 2 → 1 resonance formations, 1 → 2 decays, as well as
→ 2 reactions: NN ↔ NN∗, NN ↔ N∆∗, and strangeness exchange reactions. All hadronic reactions fulfill the principle
f detailed balance, which in practice means that 1 → 3 decays are replaced by a chain of two 1 → 2 decays. Recently,
↔ 3 particle scatterings [290] and pp̄ ↔ 5π annihilations [291] were also introduced. In addition to hadrons, SMASH
an also simulate photon and dilepton emission [292,293] and deuteron production via explicit reactions [294].
SMASH has four simulation modi: ‘‘collider’’ for collisions of hadrons and nuclei, ‘‘box’’ for infinite matter simulations,

‘sphere’’ for simulations of spherically initialized expanding matter as well as comparisons with an analytical solution
f the Boltzmann equation [295], and ‘‘list’’ for operating as an afterburner for hydrodynamic simulations. Mean-field
otentials can be optionally included in all modi. A treatment of the test-particle ansatz known as the full ensemble
s adopted: the number of test particles sampled to describe a system of A particles is increased by a factor of Ntest,
esulting in N = ANtest test particles evolved in the simulation, while all cross sections are scaled by the factor N−1

test,
o that the average number of scattering events per test particle is the same as in a system of A particles with unscaled
ross sections. Each of the N test particles contributes to the calculation of mean fields with a scaling factor of N−1

test, which
n particular ensures that the total charge evolved in the simulation corresponds to the charge of A particles. Recently,
he development version of SMASH has been extended by the possibility to use the parallel-ensembles technique, within
hich Ntest separate systems of A particles are evolved simultaneously. In this method, scatterings are performed only
etween test particles that belong to the same system, so that cross sections need not be scaled, while at the same time,
he mean field is calculated based on all Ntest instances of the system, where the contribution of each test particle is
gain scaled by a factor of N−1

test. Using a large number of test particles per particle, Ntest, is necessary in the mean-field
alculation, both in the full ensemble and parallel ensemble approach, to suppress fluctuations due to the finite number
f sampled particles.
The current applicability range of the code is for collisions satisfying Elab ≳ 0.5 AGeV. The improvements to the

escription of mean fields necessary to operate at lower energies are currently in development.

.12.2. Initialization
The initialization of the nucleus is achieved as follows. First, the coordinates of a given nucleon r are sampled from

he Woods–Saxon distribution, ρ(r ′) =

(
1 + e

r′−R
d

)−1
. Then, the local Fermi momentum at a point r is computed based

on the value of the local density given by ρ(|r|) = ρ(r), pF (r) = h̄c
(
3π2ρ(r)

)1/3, and the nucleon momentum in the
est frame of the nucleus pif is sampled from the Fermi sphere of radius pF (r). This process is repeated for all initialized
ucleons. Finally, the boost of momenta pif to the computational frame is performed using picomp = pbeam + γ pif , where
beam is the beam momentum per nucleon and γ is the corresponding relativistic gamma factor. No additional effort is
aken to obtain the nucleus in the ground state. The effects of nucleon–nucleon correlations and neutron skin are also
eglected. Recently, a nucleus initialization from an external list of particles and their properties was implemented; in
articular, such a list can be generated by an approach that takes into the account the physical effects neglected in the
MASH nucleus initialization.
The box can be initialized in the canonical or the grand-canonical ensemble. The distribution of coordinates in the

ox is uniform and the momenta are sampled from the Boltzmann, Fermi, or Bose distributions. Multiplicities in the
rand-canonical ensemble are always sampled from the Poisson distribution, regardless of the chosen Boltzmann, Fermi,
r Bose statistics.

.12.3. Mean-field potentials
When mean-field potentials are used, SMASH samples and evolves the kinetic momenta of the test particles [296] (an

lternative approach, in which the canonical momenta are propagated, is possible [297]). By default, SMASH is using the
ame nuclear Skyrme potential that was suggested in comparison 2 (Section 3.2). The potential is calculated as a function
f the local density,

U = a
(
ρB

ρ0

)
+ b

(
ρB

ρ0

)τ
± 2Spot

(
ρI3

ρ0

)
. (116)

Here, ρB is the Eckart rest frame baryon density, ρ0 is the saturation density of nuclear matter, and ρI3 is the Eckart
rest frame baryon isospin density of the relative isospin projection I /I . The default values of the parameters are ρ =
3 0
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0.168 fm−3, a = −209.2 MeV, b = 156.4 MeV, τ = 1.35, and Spot = 18 MeV. The potential is only exerted on baryons.
No Coulomb or momentum-dependent potentials are implemented.

The Eckart rest frame density is obtained from the four-current jµ as ρ = ρ+
− ρ−

=
√
j+µj+µ −

√
j−µj−µ , where +

orresponds to a positive baryon number or isospin projection and — corresponds to negative ones; a naive calculation
rom ρ =

√
jµjµ would fail for jµjµ < 0. The four-current is calculated as follows:

jµB (r) =
1

Ntest

∑
i

Bi
Π
µ

i

Π0
i
K (r − r i,Πi) , (117)

here Bi is the baryon number of the ith particle,Πµ

i is its kinetic four-momentum, and K is a relativistic smearing kernel,
hown in [298] to be a kernel with correct properties under the Lorentz-transformation,

K (r − r i, u, σ ) =
u0

(2πσ 2)3/2
exp

[
−

(r − r i)2 +
(
u · (r − r i)

)2
2σ 2

]
, (118)

here uµ = (u0, u) = Πµ/m should not be confused with a local collective velocity of a fluid.
In the development version of the code, different types of smearing kernels as well as the Coulomb potential were

dded. The equations of motion with relativistic particles but a non-relativistic potential as introduced in SMASH 1.0,
dr
dt

=
Π

Π0
, (119)

dΠ
dt

= −∇U , (120)

ere updated to relativistic ones [299] including magnetic-type forces,

dΠ
dt

=
∂U
∂ρB

[
−

(
∇j0 +

∂j
∂t

)
+

dx
dt

×
(
∇ × j

)]
, (121)

nd recently corrected to be fully Lorentz-covariant [300],

dΠ
dt

=

K∑
k=1

{
−

(
∇A0

k + ∂0Ak

)
+

Π

Π0
×

(
∇ × Ak

)}
, (122)

here the sum is performed over a chosen number K of vector fields Aµk , given by

Aµk (x; C̃k, bk) = C̃k
ρ
bk−2
B

ρ
bk−1
0

jµ(x) , (123)

nd the parameters of the interaction, C̃k and bk, can be fitted to reproduce the chosen properties of dense nuclear matter
e.g., the saturation properties and the critical point of nuclear matter for K = 2, or these properties and in addition the
haracteristics of a postulated QCD critical point at high baryon number density for K = 4, etc.). In particular, taking

K = 2 , C̃1 = a , b1 = 2 , C̃2 = b , b2 = τ + 1 , ρ0 = 0.168 fm−3 (124)

reproduces the isospin symmetric part of the original SMASH potential, Eq. (116).

4.12.4. Collision term
The same geometrical collision criterion as in UrQMD [51,287] is employed,

dtrans < dint =

√
σtot

π
, (125)

d2trans = (ra − rb)2 −

(
(ra − rb) · (pa − pb)

)2
(pa − pb)2

, (126)

here ra,b and pa,b are the coordinates and momenta of the colliding particles a and b in their center-of-mass frame. The
ime of the collision is set to the time of the closest approach in the computational frame,

tcoll = −
(ra − rb) · (pa/Ea − pb/Eb)

(pa/Ea − pb/Eb)2
, (127)

here Ea,b are energies of particles a and b, and all coordinate and momentum vectors are taken in the computational
frame. Within a single time step ∆t , collisions and decays (‘‘actions’’) are ordered according to the time at which they
occur in the computational frame, and particles are propagated along straight lines from action to action. After an action
is performed, some new collisions or decays might become possible while others might become obsolete, so that the
list of the time-ordered actions is updated at each action. If potentials are not employed, then the time step ∆t can be
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arbitrarily large and it was proven that the collision rate does not depend on it. On the other hand, if potentials are used,
then the time step must be small, as changes in momentum due to potentials are performed after each ∆t; unless it is
pecified by the user, ∆t = 0.1 fm by default.
There are two recent developments concerning the collision criterion: (i) the UrQMD collision criterion was replaced

y its covariant generalization [301], and (ii) a stochastic collision criterion similar to pBUU (see Section 4.8) was
mplemented [290,291], which can optionally replace the geometric criterion.

The cross sections and resonance treatment in SMASH are described in detail in [286], while [302] focuses on reactions
elated to strange hadrons. For the Transport Model Evaluation Project, the default SMASH reaction treatment is modified,
s some cross sections are set to particular values or switched off entirely according to the comparison assignment.

.12.5. Pauli blocking
To account for effects due to Pauli blocking, reactions with baryons in the final state are rejected with probability

−
∏

i(1− fi), where the product is running over the outgoing baryons and fi is the phase-space density at their positions.
he calculation of the phase-space density at a point (r i, pi) follows the method used in the GiBUU model (see Section

D.4.3 in [88]), according to which fi and is given by

fi(r i, pi) =

∑
j

wr (r i − r j)wp(pi − pj) , (128)

here the sum formally goes over all particles and wr and wp are weights in coordinate and momentum space defined
s

wr (r) = N Θ(rr − |r |)
∫

d3r ′ Θ
(
rc − |r − r ′

|
)
exp

(
−

(r − r ′)2

2σ 2

)
, (129)

wp(p) = Θ(p0 − |p |)/
(
4
3
πp30

)
. (130)

ere, the parameters are chosen to be rr = 1.86 fm, rc = 2.2 fm, p0 = 80 MeV/c, and the normalization N is chosen to
satisfy the condition Ntest

∫
d3r wr (r) = 1 (see Appendix A of [286] for an analytical expression for N ).

4.13. The stochastic mean field (SMF) code

M. Colonna, P. Napolitani

4.13.1. Introduction
The SMF model [105] can be considered as an approximate tool to solve the so-called Boltzmann–Langevin (BL)

equation [65]:
df
dt

=
∂ f
∂t

+ {f ,H} = Icoll[f ] + δI[f ], (131)

here δI[f ] is the fluctuating part of the collision integral Icoll. The coordinates of isospin are not shown for brevity.
It should be noticed that in the BUU or Boltzmann–Nordheim–Vlasov (BNV) models, the fluctuating term δI[f ] is

neglected [54,303]. In the present SMF treatment we project the fluctuations of the distribution function, generated by
the stochastic collision integral in Eq. (131), on the coordinate space and consider local density fluctuations, which can
be implemented as such in a numerical calculation. We make the further assumption of local thermal equilibrium, thus
being able to derive analytical expressions for the density fluctuations.

Within our framework, the system is described in terms of the one-body distribution function f , but this function may
experience a stochastic evolution in response to the action of the fluctuating term. Then, the model is suitable to treat the
occurrence of instabilities and bifurcations of trajectories in nuclear dynamics [68]. When instabilities are encountered
along the reaction path, the evolution of the fluctuation ‘‘seeds" introduced by the SMF method is then determined by
the dissipative dynamics of the BNV evolution, allowing the system to choose its trajectory through the fragmentation
configuration. In this way, we create a series of ‘‘events" in a heavy-ion collision, which can then be analyzed and sampled
in various ways. In the following, we will give the details of the implementation of the different terms of Eq. (131).

4.13.2. Mean-field propagation
Eq. (131) is solved by adopting the test-particle method. Then, the one-body distribution function is parametrized as

follows:

f (r, p, t) =
Ch3

4

∑
i

gr (r − ri)gp(p − pi), (132)

here the sum runs over Ntot = Ntest · A test particles, with Ntest being the number of test particles per nucleon and A the
nucleon number of the system considered. C is a normalization factor. In the SMF model, we adopt triangular functions
in r space (for g ) and δ functions in momentum space (for g ) [304].
r p

51



H. Wolter, M. Colonna, D. Cozma et al. Progress in Particle and Nuclear Physics 125 (2022) 103962

e
g

W

t

w
e
e
w
C
w

d
3
ϵ

f
e
d

o

R
d

d

4

c
p
f

Table 2
The symmetry energy at saturation (MeV) and the slope parameter (MeV)
for the three asy-EOS considered (see text).
asy-EoS Esym/A (MeV) L (MeV)

asysoft 30 14
asystiff 28 73
asysuperstiff 28 97

The coordinate space is discretized by introducing a lattice of mesh size l. Then, the function gr (r − ri) is defined, at
ach lattice site, as the product of three triangular functions (to account for the three spatial dimensions) of the type
(xj −xji) = 2l−|xj − xji|, where xj (j = 1,2,3) denotes the spatial coordinate [76]. We note that the nucleon density simply

reads:

ρ(r, t) = C
∑

i

gr (r − ri). (133)

ithin this framework, the total energy of the system, for the Ntot test particles, can be written as:

Etot =

∑
i

p2i /(2 m) + Ntest
[∫

dr ρ(r)Epot (ρn, ρp) +

∫
dr ρp(r)ECoul

pot (ρp)/2
]
, (134)

where ρn and ρp denote neutron and proton densities, respectively, Epot is the potential energy per nucleon, connected
o the (momentum independent) mean-field interaction, and ECoul

pot denotes the Coulomb potential.
Effective interactions, associated with a given Equation of State (EOS), can be considered as an input of all transport

codes. We adopt a soft isoscalar EOS (compressibility K = 200 MeV). We notice that the considered compressibility
value is favored, e.g., from flow, monopole oscillation and multifragmentation studies [68,305]. The choice considered
corresponds to a Skyrme-like effective interaction, namely SKM∗, for which we take the effective mass as being equal to
the nucleon bare mass. Then Epot can be written as:

Epot (ρ) =
A
2
ρ̃ +

B
σ + 1

ρ̃σ +
Csurf

2ρ
(∇ρ)2 +

1
2
Csym(ρ)ρ̃β2, (135)

here ρ̃ = ρ/ρ0 (ρ0 denotes the saturation density), A = −356 MeV , B = 303 MeV , σ = 7/6. We notice that surface
ffects are automatically introduced in the dynamics when considering finite width wave packets for the test particles
mployed in the numerical resolution. An explicit surface term is also added (third term of Eq. (135)) and tuned in such a
ay that the total surface energy reproduces the surface energy of nuclei in the ground state [304]. This procedure yields
surf = −6/ρ5/3

0 MeV fm5. The fourth term of Eq. (135) represents the potential part of the symmetry energy per nucleon,
ith β = (ρn − ρp)/ρ.
For some of the reaction mechanisms analyzed with SMF, the sensitivity of the simulation results is tested against

ifferent choices of the density dependence of Csym: the asysoft, Csym(ρ) = (77.1 − 41.9 ρ̃) MeV, the asystiff, Csym(ρ) =

6 MeV, and the asysuperstiff, Csym(ρ) = 72 ρ̃/(ρ̃ + 1) MeV [306]. The value of the symmetry energy, Esym/A =

F/3 + (1/2)Csym(ρ)ρ̃, at saturation, as well as the slope parameter, L = 3ρ0 (dEsym/A)/dρ|ρ=ρ0 , are given in Table 2
or each of these asy-EOSs (ϵF denotes the Fermi energy). Just below the saturation density, the asysoft parametrization
xhibits a weak variation with density, while the asysuperstiff shows a rapid decrease. Finally, the Coulomb potential is
etermined from solving the Laplace equation:

∇
2ECoul

pot = −4πe2ρp = −18.1ρp (136)

n the lattice sites. Momentum-dependent effective interactions may also be implemented into Eq. (131) [307–309].
The ground state configuration of nuclei is obtained by distributing the test particle positions inside a sphere of radius

gs and their momenta inside the corresponding local Fermi sphere, with a density-dependent Fermi momentum. Rgs is
etermined by searching for the minimum of the total energy i.e., Eq. (134).
The dynamics is followed by solving the Hamilton equations for the test particle positions and momenta, which are

erived from the expression of the total energy, Eq. (134).

.13.3. Collision integral
Two-body correlations are taken into account through the collision integral in Eq. (131), which is evaluated from

onsidering collisions between pairs of test particles. We adopt the mean free path method to determine the collision
robability, as in the standard BNV approach [54]. Each test particle k looks for the closest test particle l and the mean
ree path λ = 1/(ρ(r)σNN ) is evaluated. The associated collision time for the two particles considered is:

τcol =
λ

=
1

, (137)

vkl ρσNNvkl
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where vkl is the relative velocity between particles k and l. The main ingredient entering this process is the nucleon–
ucleon cross section σNN , for which we use the free isospin, angle and energy dependent values.
The probability for the collision to happen in the time step ∆t can then be expressed as: Pcol(∆t) ≈ ∆t/τcol =

σNNvkl∆t . It should be noticed that, since the collision process involves pairs of particles, in order to avoid double
ounting, the probability Pcol has to be divided by 2. If Pcol is larger than a random number (selected in the interval
etween 0 and 1) new momenta are chosen for the two test particles, with the requirement of energy and momentum
onservation.
In order to finally accept the collision between the two considered particles, the Pauli blocking has to be checked

t the final positions in phase space. To do so, the occupation number f (r, p) has to be evaluated at the two considered
hase-space points, associated with the new momenta of particles k and l. To optimize the calculation of the Pauli blocking
actor, instead of considering the gr and gp functions introduced above (see Eq. (132)), we now take aΘ function in r space
nd a gaussian function, with σ = 29 MeV/c, in momentum space. TheΘ function is defined as:Θ(r−ri) = Θ(R−|r − ri|),
ith R = 2.53 fm. The new definition makes the occupation number smoother (though less local), reducing fluctuations
hich may induce spurious collisions. The Pauli blocking factors, defined as PPauli = (1 − fl)(1 − fk), is confronted to a
andom number and, if it is larger than it, the collision is finally accepted.

It should be noticed that the procedure described above, which employs random numbers, is stochastic. However,
wing to the fact that collisions are treated for pairs of test particles, fluctuations are reduced by 1/Ntest . Thus an explicit
luctuation term is needed, as indicated in Eq. (131), to account for the stochastic nature of the nucleon–nucleon collision
rocess.

.13.4. Fluctuations
It would seem to be attractive to introduce the fluctuations directly in the phase space, i.e., to use σ 2

f = f (1− f ) locally
n the phase space. However, this is difficult numerically because of the high dimension of the phase space. In the present
pplication of the method, we therefore project on density fluctuations, in a volume V , by

σ 2
ρ (r, t) =

1
V

∫
dp
h3/4

σ 2
f (r, p, t). (138)

This variance can be directly calculated from the BNV simulation, and fluctuations be introduced accordingly. However,
t is more practical to have explicit analytical expressions for the density fluctuations. Within our assumption of local
hermal equilibrium, the mean distribution function can be parametrized by the expression f (r, p, t) = 1/(1 + exp(ϵ −

(r, t))/T (r, t)) with a local chemical potential and temperature µ(r, t) and T (r, t), respectively, and with ϵ = p2/2m. The
determination of the temperature will be discussed below. Introducing the expression for the fluctuation variance into
Eq. (138) and converting the p-integration into an ϵ-integration, we obtain, after integrating by parts:

σ 2
ρ =

1
V

2πm
√
(2 m) T

h3/4

∫
1

√
ϵ

1
1 + exp(ϵ − µ)/T

dϵ. (139)

We note that Eq. (139) is consistent with the thermodynamical relation for the variance of the particle number in a
given volume. To obtain a more explicit expression and to eliminate the chemical potential, we can use the Sommerfeld
expansion for the function f around ϵ = µ for small T/ϵF . We then obtain

σ 2
ρ =

16πm
√
(2 m)

h3V
√
ϵFT

[
1 −

π2

12

(
T
ϵF

)2

+ · · ·

]
. (140)

The procedure can be considered and implemented separately for neutrons and protons.
As already mentioned above, in order to use the explicit analytical expression for the density fluctuations (Eq. (140)),

we make the assumption of local thermal equilibrium. As a consequence, the implementation of fluctuations can only be
considered starting from the moment when the nuclear system is locally equilibrated in the dynamical evolution of the
collision. This corresponds roughly to the time when the maximum of the entropy is reached and, in central collisions for
instance, a composite nuclear source is formed. In more peripheral collisions, this is associated with the formation of a
locally equilibrated di-nuclear system. To introduce the local fluctuations (Eq. (140)), local density and temperature are
evaluated at each site of the lattice introduced in coordinate space. The collective momentum p̄ of the cell is calculated
y averaging over the momenta of the test particles that belong to the considered cell. In the same manner, the excitation
nergy per nucleon E∗ is obtained by averaging over the kinetic energies (calculated in the frame of the cell) of the test
articles and subtracting the mean energy per nucleon associated with a Fermi gas at zero temperature and at the density
onsidered. It is then possible to extract the temperature. Once the temperature and the density are calculated, we derive
he value of the density fluctuation correlation using Eq. (140). In the cell being considered, the density fluctuation δρ
s selected randomly according to the gaussian distribution. This determines the variation of the number of particles
ontained in the cell. A few left-over particles are finally randomly distributed again in order to ensure the conservation
f mass. Once the new density value in the cell has been defined, the excitation energy and temperature (and chemical
otential) are redefined to enforce energy conservation. Then, the momenta of the test particles are redistributed according
o the Fermi–Dirac function associated with the new values of chemical potential and temperature.
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Finally, we note that, as shown in Ref. [310], for reactions at Fermi energies, the SMF method essentially gives the
ame results as a simpler and computationally much easier approach, based on the introduction of density fluctuations
y a random sampling of the phase space [68,155,311], where the amplitude of the noise is gauged to reproduce the
ynamics of the most unstable modes. The equivalence of the two methods in the description of the collision dynamics
as checked along the complete evolution, from fast particle emissions to the fragment production [310].

.14. Boltzmann–Uehling–Uhlenbeck transport code based on the energy density functional from chiral effective theory (χBUU)

. Zhang, C. M. Ko

.14.1. Introduction
The χBUU transport model is developed based on a Skyrme energy density functional, Skχm∗, that is constructed by

itting the equation of state of asymmetric nuclear matter and nucleon effective mass frommany-body perturbation theory
ith chiral two- and three-body forces as well as the binding energy of finite nuclei [312]. It builds a bridge between
he energy density functional from ab initio calculations based on chiral effective theory to the observables measured in
eavy-ion collisions [73]. Given the complexity of the transport model description of heavy-ion collisions, the philosophy
f the χBUU model is to fix its ingredients as many as possible by ab-initio calculations and then use it to study various
henomena in heavy-ion collisions and their physics implications.
The χBUU was developed by modifying the RVUU code. Its treatment of the collision criteria, Pauli blockings and

oulomb interactions on charged particles is thus similar to those in the RVUU code. It is, however, a non-relativistic
ode because of the non-relativistic mean-field potentials of nucleons and ∆ resonances. The initialization, mean-field
otentials, particle propagations, and also detailed balance relations therefore differ from those in the RVUU.

.14.2. Initialization
In the χBUU code, the initial positions of nucleons in a nucleus are distributed according to the density distribution

btained from Hartree–Fock calculation with the Skχm* interaction. As in the RVUU code, their momenta are obtained
y assuming that nucleons in a local cell forms a Fermi gas with the Fermi momentum determined by the local density.
ucleons in the two colliding nuclei are then boosted to the two-nuclei center-of-mass frame using the velocity p/E for
rojectile nucleons and −p/E for target nucleons, where p and E are, respectively, the total momentum and energy of the
wo colliding nuclei in the laboratory frame.

.14.3. Mean-field potentials
The potential of a nucleon is obtained from the Skχm* energy density functional, which predicts the nuclear matter

aturation density ρ0 = 0.1651 fm−3, binding energy per nucleon E0(ρ0) = −16.07 MeV, incompressibility K0 =

30.4 MeV, and the symmetry energy Esym(ρ0) = 30.9 MeV and its slope parameter L = 45.6 MeV at the saturation
ensity. Because of its quadratic momentum dependence, the single-nucleon potential in the χBUU model can be
xpressed as

Uq(r, p) = aqp2
− bq · p + cq, (141)

here q = p, n, and the coefficients aq, pq and cq are given by

aq =2Cρ + 2Dρq,

bq =4C
∫

d3p′p′f
(
r, p′

)
+ 4D

∫
d3p′

qp
′

qfq
(
r, p′

q

)
,

cq =2A0ρ − 2A1ρq + B0(α + 2)ρα+1

− B1αρ
α−1 (

ρ2
n + ρ2

p

)
− 2B1ρ

αρq

+ 2C
∫

d3p′p′2f
(
r, p′

)
+ 2D

∫
d3p′

qp
′2
q fq

(
r, p′

q

)
.

(142)

he above coefficients A0, A1, B0, B1, C and D are defined as

A0 =
1
4
t0 (2 + x0) , A1 =

1
4
t0 (1 + 2x0) ,

B0 =
1
24

t3 (2 + x3) , B1 =
1
24

t3 (1 + 2x3) ,

C =
1
16

[t1 (2 + x1)+ t2 (2 + x2)] ,

D =
1
16

[t2 (2x2 + 1)− t1 (2x1 + 1)] ,

(143)

ith ti, xi, (i = 0, 1, 2, 3) and α being conventional Skyrme parameters. Values of the corresponding Skyrme parameters
n the Skχm* interaction can be found in Ref. [312].
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For the potentials of ∆ resonances, they are determined according to the extensively used relations in literature [10],

U∆++ = Up, U∆+ =
2
3
Up +

1
3
Un, U∆0 =

1
3
Up +

2
3
Un, U∆− = Un. (144)

Based on Eq. (141), the effective mass m∗
q , kinetic energy E∗

q and kinetic momentum p∗
q of baryons can be defined as

1
m∗

q
=

1
mq

+ aq,

E∗

q = Eq −Σ0
q ,

p∗

q = pq − Σq, (145)

ith Σ0
q = cq −

m∗
qb

2
q

2 + mq − m∗
q , Σq = m∗

qbq and E = p2q/(2 m) + Uq.
The equations of motion of nucleons and ∆ resonances are then given by

ṙ =
p∗

m∗
, ṗ = −∇rEq. (146)

Pions are treated as if they are in free space. Because of their small mass (138 MeV), they are treated as relativistic particles
moving with a constant velocity of p/

√
m2
π + p2.

4.14.4. Two-body scatterings
Although χBUU uses the same geometrical minimum distance criterion for binary collisions as in the RVUU code, it

implements the criterion in the computational frame, i.e., the center of mass frame of the two colliding nuclei, instead
of the center of mass frame of two scattering particles. The cross sections for baryon–baryon elastic scattering and ∆
production, the ∆ decay width and the ∆ spectral function in χBUU are the same as those in the RVUU. Because of the
non-relativistic baryon potentials, the detailed balance relations in N + N ↔ N +∆ and ∆ ↔ N + π reactions in χBUU
iffer from those in RVUU. Specifically, in a N +N → N +∆ reaction with the initial two nucleons, the final nucleon and

the final ∆ labeled by 1, 2, 3 and 4, respectively, the mass of produced ∆ is sampled according to

P(m∆) =
A(m∆)k∗

f µf∫
dm∆A(m∆)k∗

f µf
, (147)

here A(m∆) is the ∆ spectral function normalized by
∫ dm∆

2π A(m∆) = 1, µf = m∗

3m
∗

4/(m
∗

3 + m∗

4) is the reduced effective
ass of the final nucleon and ∆, and k∗

f is the relative kinetic momentum in the final state defined as

k∗

f =
p∗

3

m∗

3
− m∗

3
p∗

3 + p∗

4

m∗

3 + m∗

4
= −

(
p∗

4

m∗

4
− m∗

4
p∗

3 + p∗

4

m∗

3 + m∗

4

)
. (148)

he cross section of its inverse reaction N +∆ → N + N is then determined by the detailed balance relation as

σN∆→NN =
σNN→N∆

2 (1 + δ12)

k∗2
i

k∗

f

µf∫ dm′

2π k∗′

f µ
′

fA (m′)
, (149)

here ki is the relative kinetic momentum of the scattering two nucleons and the factor 1/(1 + δ12) takes into account
the case that nucleons 1 and 2 are identical.

For the pion absorption reaction N + π → ∆, the cross section σNπ is related to the ∆ decay width by

σNπ→∆ =
4πP∗

m∗

N |vN − vπ |

⏐⏐⏐1 −
p2∆
2m2

∆

⏐⏐⏐
A (m∆)Γ (m∆)

ω (pπ ) [ω (pmax)− ω (pmin)]
. (150)

n the above, P∗
= p∗

N + pπ , ω(pπ ) =
√
m2
π + p2π is the pion energy, vN = p∗

N/m
∗

N and vπ = pπ/ω(pπ ) are, respectively,
the velocities of the colliding nucleon and pion, Γ (m∆) is the ∆ partial decay width, p∆ = pN + pπ is the momentum of
the final ∆, and pmax and pmin are, respectively, the allowed maximum and minimum pion momenta from the decay of
the ∆ in the computational frame. The ∆ mass is determined by

m∆ =
p2∆

2(E − a∆p2∆ + b∆ · p∆ − c∆)
, (151)

ith E being the total energy of the colliding nucleon and pion.

. Quantum molecular dynamics (QMD)-like codes

As in the previous section, we collect the descriptions of the codes of QMD type here. The format of the code description
s the same as descriptions of the BUU-type of codes (see the paragraph at the beginning of Section 4).
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5.1. Antisymmetrized molecular dynamics (AMD) code

A. Ono

5.1.1. About the code
The comparison calculations with the antisymmetrized molecular dynamics approach (AMD) have been performed by

mploying a recently developed AMD code written in Fortran90 [313,314]. This code includes the feature to efficiently
alculate the force with the Skyrme parametrization and an option to take into account cluster correlations in the final
tates of two-nucleon collisions. However, in the comparison calculations of Ref. [40], the option of cluster correlations
as turned off, so that the code works equivalently to the old version of the AMD code [77], except for the detailed points
escribed in the following sections. In the comparison of Ref. [31] for the prediction of pion production, the AMD with
luster correlations was used in combination with the JAM code.

.1.2. AMD wave function
AMD employs a Slater determinant of Gaussian wave packets ϕi = exp[−ν(r −

1
√
ν
Zi)2]χi (i = 1, 2, . . . , A), where

the centroid variable Zi contains the information of the position and the momentum in its real and imaginary parts,
respectively. The width parameter ν is chosen so that the position and momentum uncertainties are ∆x =

1
2
√
ν

= 1.25 fm
and ∆p = h̄

√
ν = 78.9 MeV/c . The spin–isospin states χi are fixed to be p↑, p↓, n↑ or n↓.

Due to the antisymmetrization, the variables {Zi} do not have a simple meaning. In fact, the equations of motion derived
from the time-dependent variational principle show that these are not canonical variables. The Wigner transform of the
one-body density matrix is written in a complicated way as

f (r, p) = 8
A∑

i=1

A∑
j=1

exp
[
−(r − Rij)2/2∆x2

]
exp

[
−(p − Pij)2/2∆p2

]
BijB−1

ji , (152)

where Rij =
1

2
√
ν
(Z∗

i + Zj), Pij = ih̄
√
ν(Z∗

i − Zj), and Bij = ⟨ϕi|ϕj⟩. Any one-body quantity can be calculated precisely from
this Wigner function. However, it is possible to introduce an approximated distribution function

f (r, p) ≈ 8
A∑

k=1

exp
[
−(r − Rk)2/2∆x2

]
exp

[
−(p − Pk)2/2∆p2

]
(153)

by using the so-called physical coordinates [77], which is often employed in the two-nucleon collision process (see
below). More recently, a numerical method has been developed to randomly generate test particles according to the
precise Wigner distribution function of Eq. (152), as described in Appendix C of Ref. [314]. This method is used for many
purposes, such as to generate output data in a format similar to other transport codes, to calculate the two-nucleon
collision probability, and to combine AMD with the JAM code to predict pion production [31,314].

The momentum width of each wave packet has a large contribution 3∆p2/2M = 10.0 MeV (per nucleon) to the kinetic
energy. This zero-point energy is regarded as a part of the physical energy, when a many-body wave function of a ground
state nucleus is prepared for the initial condition of heavy-ion collisions [77] as well as for any other nuclear structure
studies [315]. However, the zero-point energy for the center of mass of a nucleus or each of isolated fragments is regarded
as spurious and is subtracted from the Hamiltonian by using the method of Ref. [77].

5.1.3. Effective interaction
This AMD code uses the Skyrme force parametrized as

vij = t0(1 + x0Pσ )δ(r) +
1
2
t1(1 + x1Pσ )[δ(r)k2

+ k2δ(r)] + t2(1 + x2Pσ )k · δ(r)k + t3(1 + x3Pσ )[ρ(ri)]αδ(r), (154)

here r = ri − rj and k =
1
2h̄ (pi −pj). In the calculations of Ref. [40], the terms of t1 and t2 were ignored in order to have

no surface and momentum-dependent terms as specified by the set-up of the comparison. The other parameters were
uniquely fixed by the set-up condition: t0 = −1743.33 MeV · fm3, x0 = −0.2419, t3 = 12639.4 MeV · fm3(1+α), x3 = −0.5
and α = 0.35.

More realistic parametrizations were used in the calculations of Ref. [31] for the prediction of pion production. We use
the Skyrme SLy4 effective interaction [316] but the spin–orbit interaction is ignored. The corresponding nuclear-matter
incompressibility is K = 230 MeV at the saturation density ρ0 = 0.160 fm−3. The nuclear-matter symmetry energy at
ρ0 is S0 = 32.0 MeV with the slope parameter L = 46 MeV. In order to study the effect of the density dependence of
the symmetry energy, we perform calculations with interactions obtained by changing the density-dependent term in the
SLy4 interaction

vSLy4 =
1 t (1 + x P )ρ(r )αδ(r − r ) (155)
ρ 6 3 3 σ 1 1 2
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v′

ρ =
1
6 t3(1 + x′

3Pσ )ρ(r1)
αδ(r1 − r2) +

1
6 t3(x3 − x′

3)ρ
α
0 Pσ δ(r1 − r2). (156)

e choose x′

3 = 1.1, 0.3 and −1.8, which correspond to L = 55, 82 and 152 MeV, respectively.
In collision calculations at 270 MeV/nucleon, the momentum dependence is modified by the method described in

ppendix B of Ref. [314]. The Coulomb interaction between protons is included.

.1.4. Preparation of initial nuclei
To prepare an initial state of a collision, AMD uses ground state nuclei which are usually obtained by the frictional

ooling method to search a wave packet configuration that minimizes the energy. However, the Skyrme force specified for
he calculations of Ref. [40] is not a good interaction to describe nuclear structure, and the configuration that minimizes
he energy does not reproduce the properties of the ground state nucleus. Therefore, the state is chosen when the
xperimental binding energy is reached in the course of the frictional cooling calculation. Fortunately, this state of the
97Au nucleus happened to have a density distribution that is very close to the specification of the comparison, so it was
dopted as the projectile and target nuclei in the initial states of collisions.

.1.5. Two-nucleon collisions and Pauli blocking
First, the two-nucleon collision process used in the calculations of Ref. [40] is described here. This method has not

een changed much since Refs. [77,78]. It uses physical coordinates in Eq. (153). The possibility of collisions is tested for
ll pairs of wave packets at every time step. Let us consider the collision of the wave packets 1 and 2, without losing
enerality, in the time step between t − ∆t and t , where ∆t is the time step to solve the equation of motion, which is
sually chosen to be ∆t = 1.67 fm/c , in heavy-ion collisions below 100 MeV/nucleon.
The probability of the collision (without considering the Pauli blocking) is assumed to be proportional to the density

verlap of the two wave packets and to the relative velocity, so that P(r)|∆r| = α exp(−νr2)|∆r|, where r = R1 − R2
nd ∆r = r(t) − r(t −∆t). The proportionality constant α is determined by the condition that the collision cross section
hould be the given value of σNN when the two nucleons are assumed to move on straight lines until they collide∫

∞

0
2πbdb

[
1 − exp

(
−

∫
∞

−∞

P(b + z)dz
)]

= σNN. (157)

his allows us to express α = f (νσNN) with a universal function f (x) [78].
Based on the calculated probability P(r)|∆r|, whether the wave packets 1 and 2 collide or not in this time step, can

hen be decided. If they are to collide, their relative momenta are changed according to the angular distribution of the
wo nucleon collision (which is chosen to be isotropic in this comparison). This means that only the two momentum
oordinates are changed P1 → P′

1 and P2 → P′

2 while the other position and momentum coordinates do not change. The
agnitude of the relative momentum should be adjusted for the energy conservation.
The collision is assumed to be Pauli blocked if there is another wave packet (with the same spin and isospin as the

olliding wave packets) near the phase-space point (R1, P′

1) or (R2, P′

2). The distance condition for blocking is determined
y requiring the blocking region around each point to have a phase-space volume (2π h̄)3, i.e.,√

(Rk − R1)2

4∆x2
+

(Pk − P′

1)2

4∆p2
< 61/6 or

√
(Rk − R2)2

4∆x2
+

(Pk − P′

2)2

4∆p2
< 61/6, (158)

or any k ̸= 1, 2. Furthermore, the physical coordinates of the final state {R1, P′

1,R2, P′

2,R3, P3, . . . } are transformed
ack to the original coordinates {Z′

1, Z
′

2, Z
′

3, . . .}. Such a back transformation does not exist for some region of physical
oordinates, and then the two-nucleon collision is regarded as Pauli blocked.
The two-nucleon collision process in AMD is a collision of two wave packets rather than of two test particles with

efinite momenta. In the output data for the comparison, it is reported as if two nucleons with momenta p1 and p2 have
ollided, where p1 and p2 are the sample values taken from the Gaussian distributions e−(p1−P1)2/2∆p2 and e−(p2−P2)2/2∆p2 ,
espectively.

.1.6. Two-nucleon collisions with cluster correlations
Next, the collision process including cluster correlation is described. This method is used in the calculations of Ref. [31].

luster correlations are taken into account in the AMD code as in Refs. [314,317]. When two nucleons N1 and N2
ollide, each of them may form a cluster with other particles around it, so that a general process can be expressed as
1 +N2 +B1 +B2 → C1 +C2. For B1 or B2 being empty this corresponds to a collision where only one cluster is produced,
nd for both being empty to a usual two-nucleon collision. The collision probability to a specific cluster configuration
C1, C2) and a scattering angle Ω is

vdσ =
2π

P(C1, C2, prel,Ω)|M(p(0)rel , prel,Ω)|
2 p2reldΩ , (159)
h̄ ∂E/∂prel
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where the relative momentum prel between the scattered N1 and N2 is determined by the energy conservation. The
total energy E is calculated for the antisymmetrized wave function with the effective interaction. The probability factor
P(C1, C2, prel,Ω) is essentially the overlap probability between the initial and final internal states of the cluster, but the
non-orthogonality of the final states is taken into account to ensure that the sum of P(C1, C2, prel,Ω) over the cluster
configurations (C1, C2) adds up to 1 for given prel and Ω .

The matrix element |M(p(0)rel , prel,Ω)|
2
for the two-nucleon scattering is directly related to the assumed in-medium

two-nucleon cross sections σNN , averaged in some way for the initial and final relative momenta. In the calculation of
Ref. [31] we use the parametrization

σNN = σ0 tanh(σ
(free)
NN /σ0), σ0 = 0.5 × (ρ ′)−2/3. (160)

Here we assume that it depends on a kind of phase-space density ρ ′
= (ρ ′(ini)

1 ρ
′(ini)
2 ρ

′(fin)
1 ρ

′(fin)
2 )1/4, where

ρ
′(ini/fin)
i =

(2ν
π

)3/2 ∑
k(̸=i)

θ
(
pcut > |P (ini/fin)

i − Pk|
)
× exp

[
−2ν(R i − Rk)2

]
, (161)

re introduced for the initial and final momenta, P (ini)
i and P (fin)

i , of the scattered two nucleons i = 1 and 2, with a
momentum cut of pcut = (375 MeV/c) × e−ϵ/(225 MeV), which has a weak dependence on the collision energy ϵ in the
wo-nucleon center-of-mass system.

In the calculation of Ref. [31], cluster correlations are suppressed in medium, by allowing clusters to form only in
ow phase-space density regions of ρ ′ < 0.125 fm−3. A two-nucleon collision is allowed only when the backward
ransformation from the physical coordinates to the original wave-packet coordinates exists. In addition, a condition
R i − Rk|

2/(4∆x2) + |P ′

i − Pk|
2
/(4∆p2) < 1.502 is imposed for the physical coordinates of the scattered nucleons i = 1

nd 2, and for all the other nucleons k with the same spin–isospin state as i.

.2. AMD+JAM code

. Ikeno, A. Ono

.2.1. Code history
The AMD+JAM model [314] is a transport model which uses the antisymmetrized molecular dynamics (AMD) and a

adronic cascade model (JAM) in combination. As described in Section 5.1, the AMD model solves the many-body system
f nucleons with effective mean-field interactions and two-nucleon collisions. Antisymmetrization is exactly treated and
luster correlations can also be included. However,∆ resonances and pions have not been incorporated. On the other hand,
s described in Section 5.8, JAM is a cascade model that treats production of various hadrons, but it does not include the
ean-field interaction. To make use of the advantages of both models, we developed a wrapper code, which accepts input

rom the AMD code and controls the JAM code, to study pion production and the symmetry energy effect in heavy-ion
ollisions.
The dynamics of neutrons and protons is solved by AMD, and then pions and ∆ resonances are handled by JAM. In

MD+JAM, a basic assumption is that ∆ and pion production can be treated perturbatively in heavy-ion collisions at
round 300 MeV/nucleon, because the number of ∆ resonances and pions existing at any intermediate time is small
ompared to the total number of nucleons in the system.
In Ref. [318], we improved the Pauli blocking treatment in AMD+JAM to use the precisely calculated Wigner function

n AMD as the blocking probability. In our computation, the NN ↔ N∆ and ∆ → Nπ processes take place always in the
AM code. However, it communicates bidirectionally with an AMD code that calculates the value of occupation probability
pon every request from the JAM code, using the information on the AMD.

.2.2. Sending test particles from AMD to JAM
Nucleons in the JAM calculation are always replaced by nucleon test particles calculated by AMD. Namely, particle

roduction is calculated by JAM based on the nucleon dynamics calculated by AMD. The information of nucleons is sent
rom AMD to JAM at every 1 fm/c . This treatment violates some conservation laws in the higher orders. Corrections are
ntroduced for the conservation laws of baryon number, charge and energy, by modifying the nucleon information.

.2.3. Pauli blocking
Pauli blocking in hadron–hadron reactions in JAM is considered only for the nucleon(s) in the final state. As we saw in

he calculations of Ref. [42], the standard method for Pauli blocking in the JAM code has the problem of incomplete
locking due to fluctuation and smearing of the blocking factor, which is commonly observed in QMD codes. In the
alculations of Ref. [31], we employ a better method by using the Wigner function f calculated in the AMD code from the

ntisymmetrized wave function [318].
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5.3. The quantum molecular dynamics (BQMD) and the isospin-dependent quantum molecular dynamics (IQMD) code

A. Le Fèvre, J. Aichelin, C. Hartnack, R. Kumar

In this short write-up, we provide information on the BQMD/IQMD codes. The main references are [56,57,319,320].

.3.1. Code history
• Frankfurt & Heidelberg, 1987–1990:

The original QMD has been further developed by the Frankfurt/Heidelberg collaboration [321,322]. This version has
later been dubbed BQMD and was used also to include Brueckner G-matrix results [323]. In parallel, IQMD has been
developed by C. Hartnack as the first Quantum Molecular Dynamics code including isospin. It is based on the collision
dynamics of the VUU model [319,324]. Both QMD versions have been used extensively for explaining Plastic Ball
data on fragment flow [321] and fragment production. It successfully described pion flow data of Diogene [325]
and squeeze out at Plasticball [326]. One of the major results was that, if the momentum dependence of the
optical potential is properly taken into account, soft momentum dependent interactions give similar values for the
flow observables as a static hard equation of state [327]. This reconciled the results obtained for giant monopole
resonances and for heavy ion collisions. Steffen Bass and Christoph Hartnack refined the IQMD model with respect
to the N − ∆ − π cycle [328,329]. They performed first perturbative kaon calculations [330] and calculations for
equations of state with secondary minima [331].
Zhuxia Li, who joined the Frankfurt HIC group headed by H. Stöcker worked on Pauli potentials and damping
procedures in the initialization of the nucleus with the aim for the application in QMD [56]. She exported the IQMD
model to China where it was the seed of several QMD models developed by different Chinese groups.

• Nantes & GSI 1991–today:
After J. Aichelin and C. Hartnack had been appointed by SUBATECH in Nantes, the QMD activities moved to there.
They extended IQMD by including virtual propagation, which allows to describe the dynamical observables of kaons,
antikaons and hyperons [332]. They proposed, together with H. Oeschler, to use scaling laws for determining the
nuclear equation of state for symmetric matter [333]. The result of these studies is summarized in [30,332].
In collaboration with Y. Leifels and A. Le Fèvre from GSI, IQMD was implemented into the FOPI data analysis
environment, i.e., IQMD events (or events from any other event generator) undergo completely the same treatment
as experimental events. This triggered many comprehensive direct comparisons between results from IQMD and
FOPI data with identical conditions on the experimental acceptance (see e.g., [29,334,335]).
BQMD has been extensively used to describe the fragment data of the INDRA collaboration at GSI and also the ALADIN
results at GSI [336–338]. Later, A. Le Fèvre coupled IQMD to the new fragmentation algorithm FRIGA [339], which
allows to describe the relation between fragment production and the equation of state [26] as well as the production
of hypernuclei [340].
Rajeev Puri joined the group in late 2000 to develop the SACA algorithm for fragment identification [341–343].
Returning to the Panjab University, Chandigarh he continued to work on the onset of flow [344], on multifragmen-
tation [345–348], and the influence of isospin asymmetry [349–352] using IQMD, together with Sakshi Gautam and
Rohit Kumar.

5.3.2. Initialization
The nucleons are represented by Gaussian type distribution functions (see Eq. (163)). The centroids of these Gaussians

re initially distributed in a nucleus by using a theta function in coordinate space and in momentum space,

ri < R; R = R0A1/3
; pi < PF , (162)

here R0 = 1.12 fm and PF = 268 MeV/c are standard initialization values.

.3.3. Forces
In IQMD, a particle is represented by the single-particle Wigner density given by

fi(r, p, t) =
1

π3h̄3 exp
[
−

2
L
(r − ri(t))2

]
exp

[
−

L
2h̄2 (p − pi(t))2

]
(163)

The total one-body Wigner density is the sum of the Wigner densities of all nucleons. The time evolution of the wave
function is given by the Dirac–Frenkel–McLachlan equations [353,354] which yield, for Gaussian wave functions with a
fixed width,

ṙi =
∂⟨H⟩

∂pi
; ṗi = −

∂⟨H⟩

∂ri
, (164)

here the expectation value of the total Hamiltonian is

⟨H⟩ = ⟨T ⟩ + ⟨V ⟩ =

∑ p2i
2mi

+

∑∑∫
fi(r, p, t) dp dp′ V (r, r′, p, p′)fj(r′, p′, t) dr dr′. (165)
i i j>i
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Table 3
Parameters of the different parametrizations of the EoS used in the IQMD model.

α (MeV) β (MeV) γ δ (MeV) ε

(
c2

GeV2

)
K (MeV)

S −356 303 1.17 – – 200
SM −390 320 1.14 1.57 500 200
H −124 71 2.00 – – 376
HM −130 59 2.09 1.57 500 376

For Gaussian wave functions, the QMD equations are thus similar to the classical Hamilton equations, with the classical
Hamiltonian replaced by the quantal expectation value.

In the QMD model, particles can interact by two-particle potentials and by collisions. The two-particle potentials can
e described by the convolution of the distribution functions fi and fj with the interactions of Skyrme-, Yukawa- and
oulomb types, including isospin and momentum-dependent interactions:

V (ri, rj, pi, pj) = G + VCoul = VSky + VYuk + Vmdi + Vsym + VCoul

= t1δ(ri − rj) + t2δ(ri − rj)ργ−1(ri) + t3
exp{−|ri − rj|/µ}

|ri − rj|/µ
(166)

+ t4 ln2(1 + t5(pi − pj)2)δ(ri − rj) + t6
1
ρ0

T i
3T

j
3δ(ri − rj) +

ZiZje2

|ri − rj|
,

where the different contributions can be related to different terms in the Bethe–Weizsaecker mass formula:

• Skyrme type forces and momentum-dependent interactions corresponding to the volume energy. Its density
dependence leads directly to the nuclear equation of state of symmetric matter.

• Yukawa forces corresponding to the surface energy
• Coulomb forces corresponding to the Coulomb energy
• Isospin-dependent forces corresponding to the asymmetry energy and thus leading to the nuclear equation of state

of asymmetric matter. We use for most calculations a linear dependence in baryonic density, but other density
dependencies can be chosen optionally.

The single-particle potential corresponding to the volume energy and resulting from the convolution of the distribution
functions fi and fj with the interactions VSkyrme + Vmdi (local interactions including their momentum dependence) is for
symmetric nuclear matter:

Ui(ri, t) = α

(
ρint

ρ0

)
+ β

(
ρint

ρ0

)γ
+ δ ln2 (

ε (∆p)2 + 1
) (
ρint

ρ0

)
, (167)

here ρint is the interaction density obtained by convoluting the distribution function of a particle with the distribution
unctions of all other particles of the surrounding medium. Here, ∆p is the relative momentum of a particle with respect
o the surrounding medium. The momentum-dependent part of the nucleon–nucleon (NN) interaction has been fitted to
roton induced experimental data on the real part of the nucleon optical potential [50,355]. For our approach, we used a
arametrization of the optical potential data collected by Passatore [356,357].
Several Skyrme type parametrizations are available in the code with the most frequently used being: H (‘stiff’), S (‘soft’),

M (‘stiff momentum-dependent’), SM (‘soft momentum-dependent’). The corresponding coefficients α, β , γ , δ, and ϵ in
Eq. (167) are tabulated in Table 3. It should be noted that the parameters of α, β, γ for the equations of state including
momentum-dependent interactions (HM, SM) are adjusted in such a way that they yield the same volume energy E/A(ρ)
in the infinite nuclear matter as the corresponding equations of state without MDI (H, S). Furthermore, it should be
underlined that the use of momentum-dependent interactions causes - following the Hamiltonian equations of motion
∂H/∂p = q̇ - the particles to propagate with an effective mass given by

meff

m
=

p
m

1
∂E
∂p

(168)

5.3.4. Collisions
In addition to the propagation of particles in the simulation, collisions can take place. We use the common description

that two particles collide if their minimum distance d in their c.m.-frame, i.e., the distance of the centroids of the Gaussians,
fulfills the requirement: d ≤

√
σtot
π

with σtot = σ (
√
s, type), where ‘‘type" denotes the collision type considered (e.g., NN,

N∆, . . . ). The total cross section is the sum of the elastic and all inelastic cross sections

σtot = σel + σinel = σel +
∑

σi . (169)

channels
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For instance, for a pp collision the important contributions are

σtot = σel + σ (pp → p∆+) + σ (pp → n∆++) . (170)

e systematically use free cross sections as given by experiments (however, IQMD also has the option of using density-
ependent cross sections), with the exception of the NN → K+ΛN channel, where experiments have revealed a strong
inal-state interaction which is not present in matter. Different isospin channels are weighted by isospin coefficients,
.g., for a pp collision we have

σ (pp → n∆++) = 3σ (pp → p∆+) =
3
4
σinelastic. (171)

xperimentally inaccessible cross sections like ∆N → NN are calculated from their reverse reactions (here NN → ∆N)
using detailed balance. For reactions involving unstable particles with a finite width, the form derived in Ref. [81] is used.
The probability that a collision leads to a particular channel is given by the contribution of this channel to the total cross
section: Pchannel = σchannel/σtot. In the numerical simulation, the channel is chosen randomly according to the probability
of the channel, e.g., in the pp → p∆+ case, there will be a 25% chance to obtain a ∆+ in an inelastic pp-collision.

.3.5. Pauli-blocking
The Pauli-blocking is done by checking the phase-space distributions fi(xi, pi), where xi is the position of the scattering

articles i (typically i = 1, 2) and pi is the final state momentum of the corresponding particles. This can be done in an
sospin-explicit or in an isospin-averaged mode. For each particle i, we choose a random number ri with 0 < ri < 1 and
efine the collision to be allowed if

ri < (1 − fi), for all scattering partners i. (172)

his corresponds to a Monte Carlo integration of the Uehling–Uhlenbeck factor (1 − f final1 )(1 − f final2 ). For details see [57].

.4. The constrained molecular dynamics (CoMD) code

. Papa

.4.1. Code history
• 2000:2004

The starting hypothesis of the model [63] was the decomposition of the many-body wave function of nuclei as
a direct product of Gaussian wave packets in phase-space [57] with centroids −→r i,

−→p i and fixed widths (see also
Eqs. (10) and (11)). The new idea underlying the model was the imposition of constraints to the solution of the
system of coupled semi-classical single-particle equations of motion. In this first stage, this constraint was related
to the quantal nature of the problem, i.e., to the Pauli principle for Fermionic systems.

• 2005:2011
An implementation of the code was obtained by introducing a further constraint related to the non-conservation of
the total angular momentum in nucleon–nucleon collision processes [358]. In these first two stages of development,
the model has been used to investigate processes induced by heavy-ion collisions at Fermi energies with particular
reference to the excitation of the fluctuating and coherent dipolar modes, cluster production, dynamical fission
processes and incomplete fusion processes. Examples of these studies are [359–365]).

• 2012:2019
During this period of time, a particular study was performed with the aim to highlight typical many-body correlations
characterizing the model relative to a mean-field approach [366]. CoMD calculations have been performed to
describe the dynamics of the isospin equilibration phenomenon and the connection to the density dependence of
the symmetry energy [367–370].

• 2020:2021
In this last period of time, further modifications have been introduced into the code to study effects related to the
use of finite-range effective interactions. This investigation is still in progress.

.4.2. Initialization
‘‘Ground state’’ (GS) configurations for different nuclei are obtained by coupling a cooling–warming procedure with

onstraints [63,358]. In particular:
- at the very beginning of the procedure, the spatial coordinates of the A nucleons (centers of the wave packets) are

istributed uniformly inside a sphere of radius R = r0A
1
3 + ∆r with r0 =1.12 fm and ∆r set to obtain a value of R near

he experimental value. The corresponding momenta are distributed inside a sphere with a radius of about 300 MeV/c.
- in many cases follows a short phase of pre-cooling in which the system is left to evolve in a spherical box.
- the cooling–warming procedure coupled with the constraints is performed until minimum and stationary energy

onditions are reached on average.
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- checks on the stability are performed in the final stage for time intervals typically ranging from 200 to several
undreds of fm/c.
According to the particular requirements, the following procedure can be adjusted case-by-case together with the

alues of some parameters such as the strength factor Cs of the surface term. In general, the final phase-space distribution
f these stable configurations are different from the initial one. We note also that by using this dynamical method, the
ossibility to get ‘‘good’’ GS configurations (charge radius, binding energies, average kinetic contribution, stability time)
trongly depends on the used effective microscopic interaction and on the widths of the wave-packets.

.4.3. Interaction
The microscopic nuclear effective interaction of the first versions is of the Skyrme type. In particular, in the mean-field

imit, it has the following density (ρ) dependent expression:

V (−→r ,−→r ′) =

[
T0
ρ0

+
2T3ρσ−1

(σ + 1)ρσ0
+

T4
ρ0

F ′

γ (ρ)(2δτ ,τ ′ − 1) +
Cs

2ρ0
∇

2
]
δ(r⃗ − r⃗ ′) (173)

with F ′
γ = ( ρ

ρ0
)γ−1 [366]. The effective interaction energy U is obtained by convoluting the above expression with

he nucleon wave packets and by substituting the explicit density dependence with the Gaussian’s nucleon–nucleon
verlap distribution [366]. The terms in the above expression represent: the two-body, three-body, isovector, and surface
nteraction, respectively. The Coulomb interaction is added according to Ref. [57]. Therefore, the total Hamiltonian is:

H = Utwb + Utrb + Uisv + Usur + UCou +

∑
i=1,N

p⃗2i
2m
, (174)

here the last term is the total kinetic energy. For γ = 1, we get:

ρij =
1

(4πσ 2
r )3/2

exp
[
(r⃗i − r⃗j)2

4σ 2
r

]
; Utwb =

T0
2ρ0

∑
i,j̸=i

ρij; Utrb =
T3

(σ + 1)ρσ0

∑
i

(
∑
j̸=i

ρij)σ (175)

Usur =
Cs

2ρ0
∇

2
i

∑
j̸=i

ρij; Uisv =
T2
2ρ0

∑
i

∑
j̸=i

(2δτi,τ ′
j
− 1)ρij, (176)

where ρij represents the generic Gaussian overlap between the Wigner distributions of the nucleon wave-packets. σr is

the related standard deviation. We note that in Eq. (174) H does not include the constant kinetic contribution
3σ2

p N
2m related

o the width of wave packets in momentum space. Therefore, the kinetic contribution is associated to the real motion
f the wave packets and then it is available to be transformed and exchanged according to the dynamical evolution. As
n example, in Ref. [63] it was shown that with T0 = −356 MeV, T3 = 303 MeV σ = 1.166 and Cs ≃ 1.5 MeVfm2, it is

possible to reproduce, at an acceptable level, the binding energy and charge radius of ‘‘ground state’’ (GS) configurations
for nuclei with mass number A=30–200. This is obtained by setting the width of the wave packets to σr = 1.15− 1.3 fm.
The equations of motion, which determine the time evolution of the Gaussian centroids, are obtained according to the
Hamilton equations, which are solved numerically by means of the fourth-order Runge-Kutta method.

In Ref. [366] (CoMD-III), a study has been performed in the symmetric and asymmetric Nuclear Matter (NM) limit. In
this work, the limit has been simulated by large spherical systems whose minimum energy configurations were obtained
by means of the cooling–warming procedure. In particular, after correction for surface effects, we have obtained strength
parameter values for the effective interaction that are able to produce the commonly accepted values for the nuclear
matter saturation properties. The finite spatial correlation length introduced by the wave-packets and by the constraint,
which is associated to the Pauli principle, produces a global repulsive effect that is not balanced by the standard Skyrme
effective interactions. As shown in some detail, the set of the obtained parameter values differ from the usual ones (the
ones obtained from the semi-classical mean-field theory). In particular, in the case of symmetric NM simulations, the
new sets of obtained parameter values for the isoscalar effective interactions depend on the parameter values describing
the isovector interaction (strength and ‘‘stiffness’’). This reveals the existence of a coupling between the two kind of
interactions arising from the self-consistent dynamics. In [40], these assigned values of the parameters have been used.

5.4.4. Collision term
The hard-core repulsive interaction between nucleons is simulated through nucleon–nucleon elastic scattering pro-

cesses with a method similar to the one described in Ref. [54]. In particular:
- at each time step, a check is performed on all the nucleon pairs within a distance of d= 2 fm. These nucleons

are candidates for a collision only if they have not attempted a collision process in the considered time step (no triple
collisions),

- the collision is attempted with a probability Pc = 1 − e−
dt
τ where dt is the integration time step and where

τ =
λ
|v|

=
1

ρσnn|v|
, with |v|, ρ, and σnn being the relative velocity, average density around the chosen particle, and the

ssumed nucleon–nucleon cross-section, respectively. The above relations are inspired from the classical kinetic theory
f gases. Velocity and isospin dependencies of the cross-section are described according to [54] with a cut at 50 mb
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(in Ref. [40] the suggested value has been used). The described method, based on the evaluated mean-free path λ, can
roduce in QMD-like models slight enhancements (10%–15%) of the attempted collision rates compared to the case in
hich the same method is applied to mean-field BUU-like models in which the density is smooth. This enhancement is
enerated by the correlation existing between mean-free path fluctuations (local density fluctuations) and the proximity
f the interacting nucleons checked in the first step of the method (see also Fig. 20 in [42]).
- the attempted collision is accepted if the occupation probabilities f ′

i , f
′

j after the two-body scattering are both less or at
ost equal to a reference value fmax. fmax is set equal to the average occupation probability f =

∑
i fi/N as obtained during

he initialization stage (simulating NM or large systems in GS configurations) through the numerical constraint procedure
ntil minimum stationary values are obtained (see also the following paragraph). The sharp condition on the occupation
robabilities is consistent with the interpretation of the generic evolving wave-packet as a single coherent-state, and it
etermines, together with the effectiveness of the constraint (see Fig. 2 in Ref. [63]), the behavior of the CoMD blocking
robability shown in Fig. 8 and the lower value of the slope parameter shown in Fig. 4 of Ref. [63]). The slow decrease of
he CoMD blocking probability at higher momentum in Fig. 8 reveals the co-volume in momentum space associated to
he coherent state.

.4.5. Pauli blocking
Occupation in phase-space (method-1): At each time step, for each particle i, we evaluate the occupation probability in

hase space as:

fi =

∑
j

δ(τi, τj)δ(mi,mj)
∫
Vi

Fj(r⃗, p⃗)d3rd3p, (177)

here τi and mi are the third components of the isospin and spin quantum numbers of the nucleon, and Fj is the Wigner
ransform of the generic wave-packet with centers at r⃗j and p⃗j in phase-space. The integral is performed over a hyper-cube
i equal to h3. The sides are proportional to the wave-packet widths σr and σp. In this case, the generic wave packet is
nterpreted as a coherent sum of plane-waves. Each plane wave contributes to the occupation probability with a weight
iven by the Gaussian.
Occupation in phase-space (method-2): In this case, in principle more restrictive than the previous, each wave packet is

nterpreted as a ‘‘state’’ occupying uniformly a hyper-sphere (or hyper-cube) with volume (1÷ 0.75)h3. The radii/or sides
re always proportional to the widths of the wave packets. In this case, the occupation in phase-space around each wave
acket is 1 plus a normalized quantity, which is proportional to the total overlap volume between identical particles. It
etter reproduces the change, as a function of the density, of the average kinetic energy related to the Fermi motion in
S configurations of large slabs of nuclear matter. In both the cases, the Pauli principle can be fulfilled at the level of the
rder of 10% with dedicated algorithms for treating elastic multi-scattering processes between identical nucleons that are
lose in phase-space [63,358]. In practical cases, the average typical value of the occupation numbers in GS nuclear matter
alculations is approximately in the range fmax=1.04–1.15, depending on the effective interaction used and on details of
he numerical procedure related to the constraint. We observe that in both cases the average stationary value f obtained
ith the numerical procedure related to the Pauli principle constraint is reached after several time steps (see also the

nitialization paragraph). The phase-space fluctuations of overlap volumes in CoMD represented in Fig. 8 of Ref. [63] with
gray line were instead evaluated in the first step of the calculation.

.4.6. Constraint on rotational degrees of freedom
In calculations with a high collision rate as the one experienced in the dynamics of hot and dense astrophysical objects,

on-negligible violation of the total angular momentum conservation law is seen. In fact, the procedure to simulate
he hard core repulsive interaction at high momenta (nucleon–nucleon residual interaction) including the one related
o the constraint on the Pauli prescription is in general performed with Monte Carlo techniques, which avoid the full
ynamical treatment of hard-core potential interaction. This conservation rule, fundamental also in heavy-ion multi-
reak-up processes [361], is restored by imposing further constraints on the dynamical evolution of the wave-packets. For
given sub-system C of nucleons in compact configuration (belonging for example to a cluster) which have undergone a
ollision in the time interval dt , we can evaluate the dissipated angular momentum ∆L⃗:

∆L⃗ = I∆ω⃗ (178)

here I and ω⃗ are the inertia tensor and the collective angular velocity of the sub-system C . Subsequently, we perform
series of transformations on the momenta centroids of the NC wave-packets according to the following relations:

p⃗′
k = p⃗k + r⃗k × ∆⃗ω; p⃗′′

k = p⃗′
k + α

(r⃗kp⃗′
k)rk

r2k
(179)

p⃗′′′
k = p⃗′′

k −

∑
k⊂C

p⃗′′
k

NC
;

∑
k⊂C

p⃗′′′
2
k

2m
− TC = ϵmin (180)

here TC is the initial kinetic energy contents. The system of the above equations is therefore solved within the numerical
recision ϵ . More details are given in Ref. [358] (CoMD-II).
min
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5.5. The improved quantum molecular dynamics (ImQMD) code

Y. X. Zhang, N. Wang, Z. X. Li

The comparison calculations with the ImQMD code have been performed employing a recently-developed code [64,
3,371–375]. However, the initialization, the nucleonic mean field, the nucleon–nucleon cross sections, and the width of
ave packet are set as in the comparison requirements.

.5.1. Parentage of ImQMD
The ImQMD was developed in the group of Prof. Zhuxia Li at China Institute of Atomic Energy (CIAE) based on the QMD

ode. The original version of QMD code was imported from Frankfurt in 1989 by Zhuxia Li, because she was involved in
he work with QMD in the group of Prof. H. Stöcker. When she came back, she implemented the symmetry energy term
nto the mean-field part and made improvements on the sampling algorithm of initial nuclei.

In 1997, Qingfeng Li joined our group in CIAE and started to work using the QMD code. He introduced the (1) Uehling–
hlenbeck factor into the Pauli-blocking part of collision term, and (2) isospin-dependent nucleon–nucleon cross sections
o replace the original ones.

In 1998, Ning Wang joined our group and made a lot of improvements on the QMD code aiming to its application
o reactions at lower energies such as fusion reactions near the Coulomb barrier. He included the following features: (1)
eplaced the Yukawa term by density-gradient terms (surface term and surface asymmetry term) and introduced a ρ5/3

erm based on the Skyrme energy density functional, (2) readjusted the force parameters by fitting the nuclear ground
tate properties of β-stable nuclei and excitation functions of fusion cross sections, (3) implemented the phase-space
onstraint, and (4) introduced a phenomenological formula for the width of the wave packet, which depends on the size
f the reaction system. This version of QMD was named ‘‘improved QMD’’ model, i.e., ImQMD (ImQMD, version: IQ1,
Q2, IQ3 [376–381]). It has been mainly applied to heavy-ion reactions at lower energies, i.e., from energies around the
oulomb barrier to about 50 AMeV.
In 2003, Yingxun Zhang made major improvements on the ImQMD model [64,93,371–375]. These included: 1) the

tructure of the code was completely upgraded, 2) the parameters of the Skyrme potential energy functional were
ntroduced and the explicit momentum-dependent interaction term as in original QMD code was adopted, 3) for the study
f the density dependence of symmetry energy, different forms of the density dependence can be chosen in this version of
he code, and 4) a new Cugnon parametrization of differential nucleon–nucleon cross sections were implemented [195].
his corresponds to version 05 of the model, i.e., ImQMD05. In 2012, the full Skyrme potential energy-functional with
xplicit Skyrme-type momentum-dependent interactions (MDI) was introduced in ImQMD. This version is known as
mQMD-Sky [93]. It can be used for the study of the Skyrme interaction, symmetry energy, nucleon effective mass splitting
nd other properties in the QMD model. The ImQMD model, versions 05 and Sky, is appropriate for the study of heavy-ion
eactions in the incident energy range of 20 AMeV ≤ Ebeam ≤ 400 AMeV. In 2018, the accurate calculation of the three-body
orce term in the ImQMD was introduced, and some bugs were corrected. This version is known as ImQMD-L (L means
he lattice method) [382].

.5.2. Initialization
In versions 05 and Sky, the width of the nucleon Gaussian wave packet in a reaction system is determined from a

henomenological formula, σ 2
r = (σ 2

r,prj + σ 2
r,tar )/2, σ

2
r,A = (0.16A1/3

+ 0.49)2 fm2. The nucleon positions are sampled
ithin a hard sphere with radius Rn and Rp. A quadrupole deformation of nuclei is taken into account, for example,
n/p(θ ) = R0n/p(1+ 0.631β 3cos2θ−1

2 ), where R0p = 1.18A1/3
− 0.6 fm and R0n = R0p +∆Rnp, with ∆Rnp being the thickness

of neutron skin. The neutron and proton have different masses of mn = 0.93957 GeV and mp = 0.93827 GeV . With the
sampled nucleon positions, one can get the nuclear potential energy by using the interaction that is used in the code.

In version ImQMD-L [382], the nucleon positions are sampled within a hard sphere with radius Rn and Rp which
are calculated based on the restricted density variation method (RDV). In the calculation of Rn and Rp with RDV, the
amiltonian is same as that in the mean field propagation in the ImQMD-Sky.
The momentum of ith nucleon is sampled within the local Fermi sphere with radius P i

f − pfc , where P i
f = (3π2ρi)1/3

and the local density ρi =
∑

j ρj(ri), from which the kinetic energy of system can be calculated, and pfc is related to the
width of the wave-packet, and is adjusted to fit the experimental binding energy of the sampled nucleus. If the energy per
nucleon of the sampled nucleus falls into the range of BE/A ± 0.5 MeV, the sampled nuclei will be used for simulations.

5.5.3. Force
The mean field acting on nucleons is derived from the Skyrme potential energy density functional. The equations of

motion of the centroids of the nucleon wave packet are given by:

˙⃗ri =
∂H
∂pi
, ˙⃗pi = −

∂H
∂ri
, (181)

here the Hamiltonian is written as

H = T + U =

∑ p2i
+

∫
ud3r + UCoul, u = uρ + umd (182)
2m
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(1) In version ImQMD-Sky, the real Skyrme potential energy density functional is used:

uρ =
α

2
ρ2

ρ0
+

β

η + 1
ρη+1

ρ
η

0
+

gsur
2ρ0

(∇ρ)2 +
gsur,iso
ρ0

(∇(ρn − ρp))2 + Asym

(
ρ

ρ0

)
δ2ρ + Bsym

(
ρ

ρ0

)γi
δ2ρ (183)

umd = C0

∫
d3pd3p′f (r⃗, p⃗)f (r⃗, p⃗′)(p⃗ − p⃗′)2 + D0

∫
d3pd3p′

∑
q=n,p

[fq(r⃗, p⃗)fq(r⃗, p⃗′)(p⃗ − p⃗′)2] (184)

where f (r⃗, p⃗) is the nucleon phase-space density, and is given by f (r⃗, p⃗) =
∑

i
1

(π h̄)3
exp[−(r⃗ − r⃗i)2/2σ 2

r − (p⃗ − p⃗i)2/2σ 2
p ]

in the QMD approach. The coefficients α, β , η, gsur , gsur,iso, Asym, and Bsym are related to the standard Skyrme parameters
as in Ref. [64,372]. The coefficients C0 and D0 can be determined from the following expressions,

C0 =
1

16h̄2 [t1(2 + x1) + t2(2 + x2)] (185)

D0 =
1

16h̄2 [t2(2x2 + 1) − t1(2x1 + 1)] (186)

n the ImQMD-Sky, the three-body term is calculated approximately and more details can be found in Ref. [382].
(2) In version ImQMD-L, the potential energy density functional is the same as in ImQMD-Sky. However, we exactly

valuate the three-body term by a numerical quadrature method. Specifically, the force acting on particle i due to the
hree-body term is calculated as

˙⃗pi = −
∂U3

∂ r⃗i
= −βρ0

∫
ρη

ρ
η

0

ρi

ρ0

r⃗ − r⃗i
σ 2
r

d3r. (187)

The integral in Eq. (187) is solved by using a 11-point Gauss–Legendre quadrature method. This results in a stronger
three-body force in ImQMD-L than in ImQMD. To distinguish this from the previous version of ImQMD model, we named
it as the ImQMD-L (L means the lattice method) in the following discussions.

(3) In the versions ImQMD-IQ2 and ImQMD-IQ3, the energy density is taken to be

uρ =
α

2
ρ2

ρ0
+

β

η + 1
ρη+1

ρ
η

0
+

gsur
2ρ0

(∇ρ)2 +
Cs

2ρ0
[ρ2

− κs(∇ρ)2]δ2 (188)

The model parameters together with the width of the wave packet in coordinate space are determined by the properties
including the stability) of ground state nuclei, the fusion excitation functions of a number of heavy-ion fusion reactions
t energies around the Coulomb barrier, and the charge distributions in multi-fragmentation process at Fermi energies.
hey can be found in Ref. [376–381]

.5.4. Collision term
In the ImQMD code, nucleon–nucleon collisions are determined as follows: firstly, only nucleon pairs with relative

istance rij < 3.5 fm and energy s = (pi + pj)2 >3.556 GeV2, where pi = (Ei, p⃗i), are considered in order to speed
p simulations; then, the attempted collisions are determined by using the transverse and longitudinal distances of the
olliding pairs. In the center of mass of the colliding pair, if their transverse distance bij is less than

√
σ ∗

total/π , where
∗

total is the total nucleon–nucleon cross section with medium correction, σ ∗

total = (1−η(Ebeam))σ
free
total, and their longitudinal

istance r⃗ ′

ij · p⃗
′

ij/|p⃗
′

ij| is less than v′

ijγ δt/2 with δt being the time step, they undergo attempted collisions. The quantities
used above are given by the following expressions

bij =

√
r ′2
ij − (v⃗′

ij · p⃗
′

ij/|p⃗
′

ij|)2, v⃗′

ij = v⃗′

i − v⃗′

j =
p⃗′

i

E ′

i
−

p⃗′

j

E ′

j
(189)

p⃗′

i = ((γ − 1)p⃗i ·
β⃗

β2 − γ Ei)β⃗ + p⃗i, r⃗ ′

ij = (γ − 1)r⃗ij ·
β⃗

β2 β⃗ + r⃗ij, (190)

β⃗ =
p⃗i + p⃗j
Ei + Ej

, γ =
1√

1 − β2
, (191)

After generating a random number ξ , the collision for elastic channel is determined by ξ < σ ∗

el/σ
∗

total. The momentum
irection of outgoing nucleons is determined by their differential cross section. The nucleon cross section and their
ifferential cross section in free space are taken from Ref. [195].

.5.5. Pauli blocking
The outgoing nucleons of an attempted collision are checked for Pauli blocking, which consists of the evaluation of

wo criteria. The prejudgment is 4π
3 r3i′k

4π
3 p3i′k ≥ h3/8, where i′ is the outgoing nucleon, k represents other surrounding

ucleons. It means that the outgoing nucleon should not be too close to others in phase-space. If this relation is
atisfied, the Pauli blocking with the probability, 1 − (1 − P ′

i )(1 − P ′

j ) is then checked, where P ′

i is calculated as P ′

i =

4
∑

exp[−(r⃗ ′ − r⃗ )2/(2σ 2)]exp[−(p⃗ ′ − p⃗ )2/(2σ 2)], and P ′
= 1 if P ′

≥ 1.
k,k̸=i′ i k r i k p i i
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5.5.6. Phase-space constraints
Versions IQ2 and IQ3: To describe the Fermionic nature of the N-body system and to improve the stability of an

ndividual nucleus, the phase-space occupation constraint method [63] is adopted. The phase-space occupation constraint
s an effective approach to improve the momentum distribution in the nuclear system. In this approach, the phase-space
ccupation number of each particle is checked at each time step. If the phase-space occupation number is larger than
for particle i, that is, f̄i > 1, the momentum of particle i is randomly changed between i and its partner j under the
ondition of total momentum and total kinetic energy conservation in the process. In the ImQMD model, the new sample
or the momenta of the particles is constrained by the Pauli blocking condition (either f̄i > 1 or f̄j > 1) coming from
he Fermionic nature of nucleon. Actually, the momenta of two particles obtained in this way will not only influence the
otion of particles at this time step but also influence the motions in subsequent steps. It is not known whether the system
ill follow in the most suitable motion path. In this method [376,377], we perform one further step; that is, we calculate
he total energy of the system at step t and the total energy E(t +∆t) at the next time step t +∆t simultaneously [383].
f the value of E(t +∆t) is larger than that of E(t), the momentum of nucleon i and j are rearranged. The number of times
o re-execute the procedure is small (zero to four) at each time step for fusion reactions. This additional constraint can
urther improve the stability of an individual nucleus (reducing the spurious emission of nucleons) and is helpful for the
tudy of the formation process of compound nuclei, which lasts several thousand fm/c or longer. We have checked that
he total energy of the system is well conserved for thousands of fm/c with this new procedure.

Versions 05 and Sky: Since these are mainly used for the beam energy ranging from 20–400 A MeV, the method of
hase-space constraint is similar to that of Ref. [376,377].

.6. The isospin-dependent quantum molecular dynamics at BNU (IQMD-BNU) code

. Su, F. S. Zhang

In the following, the main features of the IQMD-BNU model are presented. The main references are [384–386].

.6.1. Code history
• 1989:

The Isospin-QMD (IQMD) code [56] was developed from the VUU code.
• 1997–2000:

The IQMD code, which includes isospin-dependent Coulomb potential, symmetry potential, NN cross-sections and
Pauli blocking, was used by L.W. Chen and F.S. Zhang to investigate the isospin effects on nuclear collective flow as
well as the multifragmentation phenomenon in heavy-ion collisions at intermediate energies [387–389].

• 2009–2014:
The original version of IQMD code was written in FORTRAN 77. The version of IQMD code in FORTRAN 95 was
written by J. Su and F.S. Zhang at Beijing Normal University, and was called IQMD-BNU hereafter. In this version
of code, the statistical-decay model GEMINI [390] and the interface program were included. It is used to study the
multifragmentation and nuclear temperature [385,391].

• 2014–2020:
IQMD-BNU is further improved to study the symmetry energy, effective mass splitting [392], and yields in spallation
and fragmentation reactions at Sun Yat-sen University [393,394].

.6.2. Initialization
In coordinate space, the initial nuclei are initialized by randomly distributing the nucleons in a sphere of radius

= 1.12A1/3 fm, while a minimum distance between two nucleons, rmin
ij ≥ 1.5 fm, is required. For the initialization

f the momentum, the local potential U(ri) of the ith nucleon generated by all the other nucleons is evaluated, and the
ocal Fermi momentum is then determined by the relation p2F (ri) = 2mU(ri). The momentum of the ith nucleon is chosen
andomly between zero and the local Fermi momentum pF (ri). The initialization also requires two nucleons to satisfy the
hase-space relation (r⃗i − r⃗j)2(p⃗i − p⃗j)2 ≥ dmin, where dmin = 0.0382(fm2 MeV2/c2). Finally, the momenta of all nucleons
re scaled in the same proportion by fitting the experimental binding energy.
The stability of the initialized nuclei is checked by performing the dynamical evolution. Generally, the initialized nuclei

re stable for 1000 fm/c .

.6.3. Forces
The forces are calculated from the Hamiltonian H , which is expressed as

H = T + UCoul +

∫
Vnucl(ρ(r))dr. (192)

ere, the first term T is the kinetic energy, the second term UCoul is the Coulomb potential energy, and the third term is
he nuclear potential energy. Each term of the nuclear potential energy-density functional Vnucl reads as

Vnucl =VSky + Vsur + Vsym + Vmdi.,

VSky =
α ρ2

+
β ργ+1

γ , Vsur =
gsur (∇ρ)2

, Vsym =
C (ρn − ρp)2

, Vmdi = gτ
ρ8/3

5/3 .
(193)
2 ρ0 γ + 1 ρ0 2 ρ0 2 ρ0 ρ0
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Here, ρ is the density and ρ0 is the saturation density. VSky contains the two- and three-body Skyrme interaction terms.
sur is the surface term to describe the surface property of finite nuclei. Vsym is the symmetry term, which is crucial for
eproducing isospin-dependent effects in the dynamics. Vmdi is the momentum-dependent interaction term.

Besides the default nuclear potential energy-density functional, another option is provided to study the symmetry
nergy and the effective k-mass splitting. In Refs. [392,395], the nuclear potential energy density of the asymmetric nuclear
atter with density ρ and asymmetry δ reads,

V (ρ, δ) =
α

2
ρ2

ρ0
+

β

γ + 1
ργ+1

ρ
γ

0
+

Csp

2
(
ρ

ρ0
)γiρδ2

+

∑
τ

(1 + x)
∫∫

v(p, p′)fτ (r, p)fτ (r, p′)dpdp′

+

∑
τ

(1 − x)
∫∫

v(p, p′)fτ (r, p)f−τ (r, p′)dpdp′,

v(p, p′) =
Cm/ρ0

1 + (p − p′)2/Λ2 ,

(194)

here p and p′ are the momenta of the nucleon, fτ (r, p) is the phase-space density, with τ = 1/2 for neutrons and τ
-1/2 for protons. For infinite nuclear matter at zero temperature, the phase-space density can be approximated as a

tep function, fτ (r, p) =
3ρ0

4πp3Fτ
Θ(pFτ − p). The parameters α, β , γ , Csp, γi, x, Cm and Λ are temperature-independent. In

Eq. (194), the first and second terms refer to the local two-body and three-body interactions, which are the same as in the
default case. The form of the local symmetric potential (the third term) is the extension of the default form, for which γi
= 1. The fourth and fifth terms refer to the momentum-dependent interactions. Values of the parameters for this nuclear
potential energy density functional can be found in Refs. [392,395] .

5.6.4. Collision term
The binary collisions in the IQMD-BNU code are performed according to the following differential cross sections,(

dσ
dΩ

)
el(inel)

= σ
free
el(inel) f

angl
el(inel) f

med
el(inel), (195)

here σ free is the cross section of NN collisions in free space, f angl gives the angular distribution. The isospin-dependent
parametrizations of σ free and f angl adopted in this work are taken from Ref. [195]. f med gives the in-medium corrections to
the NN cross section. Five types of in-medium factor f med [396] can be chosen in the IQMD-BNU code. The first in-medium
factor (1F for short) is written as [397]

f med
el = 1 − 0.2

ρ

ρ0
. (196)

his in-medium factor is density-dependent and energy-independent.
The second one (2F for short) has been used by Wang et al. [398]

f med
el =

⎧⎨⎩
1 pNN > 1GeV/c,

1 +
1/6 + 5/6 exp(−3ρ/ρ0) − 1

1 + (pNN/0.3)8
pNN ⩽ 1GeV/c,

(197)

where pNN in GeV/c denotes the relative momentum of two colliding nucleons. This in-medium factor is density-
dependent and energy-dependent.

The third one (3F for short) is proposed by Cai et al. [399]

f med
pp = f med

nn =
1.0 + 7.772E0.06

lab ρ
1.48

1.0 + 18.01ρ1.46 , f med
np =

1.0 + 20.88E0.04
lab ρ

2.02

1.0 + 35.86ρ1.90 , (198)

here Elab in MeV is the incident energy in the laboratory frame of the two colliding nucleons. These in-medium factors
epend on density, energy and isospin.
The fourth in-medium factor (4F for short) is [400]

f med
el = σ0/σ

free tanh(σ free/σ0), σ0 = 0.85ρ−2/3. (199)

ince the cross section in free space σ free depends on the energy and isospin, the fourth in-medium factor is also
nergy-dependent and isospin-dependent.
For the fifth one, the effective k-masses of the nucleons are extracted from the momentum-dependent interaction, and

hen the in-medium factor of scattering between ith and jth nucleons is calculated by [202,401–403]

f med
ij =

[m∗

i m
∗

j /(m
∗

i + m∗

j )
]2

, m∗

i =

[
1

+
∂U

]−1

. (200)

mimj/(mi + mj) mi pi∂pi
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Here, U is the single-particle potential, m∗ is the effective k-mass. Considering Eq. (194), the in-medium factor is density-,
energy- and isospin-dependent. Moreover, the isospin-dependence can be adjusted by changing the value of the parameter
x.

5.6.5. Pauli-blocking
In the IQMD-BNU code, two Pauli-blocking methods have been implemented. In the first Pauli-blocking method (named

PAULI1 in the code), the phase-space density f ′

i in the final state is calculated and interpreted as a blocking probability.

fi =

∑
n̸=i

exp
[
−

(rn − ri)2

2L
−

(pn − pi)2L
h̄2

]
(201)

hus, the collision is only allowed with a probability of (1 − f ′

1)(1 − f ′

2).
The second Pauli blocking method (named PAULI2 in the code) is related to the phase-space density constraint [63].

In fact the phase-space occupation f i is calculated by performing the integration on an hypercube of volume h3 in the
hase space centered around the final state, i.e.,

f i =

∑
n

δτn,τiδsn,si

∫
h3

d3rd3p
1

π3h̄3 exp
[
−

(rn − ri)2

2L
−

(pn − pi)2L
h̄2

]
. (202)

he scattering is accepted only if the fraction of the final phase-space of both particles is less than 1.

.7. The isospin-dependent quantum molecular dynamics at SINAP (IQMD-SINAP) code

. Q. Zhang

In this section, the relevant features of the IQMD-SINAP code are described. Some applications to the analysis of
xperimental data are given in Refs. [404,405].

.7.1. Code history and parentage
The Object Oriented C++ version of IQMD-SINAP code derives from several QMD codes.

• SINAP, F77 IDQMD:
The IDQMD (Isospin dependent QMD) code was written in F77 language. The basic IQMD framework was introduced,
including initialization, mean field, collision and Pauli-blocking. This code is used at SINAP and mainly originates from
Ref. [57,320]

• Wei Guo, C++ IDQMD:
The IDQMD (Isospin dependent QMD) code has been developed in C++ language by Wei Guo [406], at SINAP, since
2007. The basic C++ framework was introduced, including particle class, nucleus class, nuclear matter class, meanfield
class and collision class.

• Koji Niita, C++ G4QMD:
The G4QMD code in C++ language, deriving from its corresponding Fortran version JQMD [407], was developed by
Koji Niita as a part of the model library in Geant4. Its aim was to provide neutron spectra relevant for application
purposes.

• Christoph Hartnack, IQMD :
The IQMD code was written in F77 language [56,57,320], where the interaction density, the force and the collision
were introduced.

• Toshiki Maruyama, EQMD [408]:
Implementation of the frictional cooling method for the ground-state nuclei for the initialization at event-by-event
level.

• ROOT library:
The ROOT library [409] was also introduced to IQMD-SINAP to enhance the efficiency of the code, especially the
TLorentzVector class and the TRandom3 class. The output of the code and the analysis are also performed by making
use of the ROOT framework.

.7.2. Initialization
In IQMD-SINAP, the tentative distribution of nucleons in a nucleus can be obtained by using the Fermi function or

ther distribution functions in coordinate space and a local density-dependent sampling distribution in momentum space.
owever, the following frictional cooling procedure smears the tentative distribution in coordinate space and momentum
pace and leads the nucleus to a minimum-energy state, which is adopted for the ground-state. The initial distributions of

ucleons in coordinate space and momentum space depend on the Hamiltonian of the nuclear system. Different tentative
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distributions affect only the time evolution of the system of nucleons to reach the initial distribution. The nucleons in a
nucleus obey the following equations of motion during the cooling process,

dr⃗i
dt

=
∂⟨H⟩

∂ p⃗i
+ µr⃗

∂⟨H⟩

∂ r⃗i
, (203)

dp⃗i
dt

= −
∂⟨H⟩

∂ r⃗i
+ µp⃗

∂⟨H⟩

∂ p⃗i
.

Here r⃗i and p⃗i are the centers of position and momentum of the ith wave packet; ⟨H⟩ are the Hamiltonian of the nuclear
system; and µr⃗ and µp⃗ are damping coefficients. With negative values for these coefficients, the system goes to its local
minimum energy state,

d⟨H⟩

dt
=

∑
i

[
∂⟨H⟩

∂ r⃗i
˙⃗ri +

∂⟨H⟩

∂ p⃗i
˙⃗pi

]
(204)

=

∑
i

[
µr⃗

(
∂⟨H⟩

∂ r⃗i

)2

+ µp⃗

(
∂⟨H⟩

∂ p⃗i

)2
]

≤ 0.

ther factors, such as the minimum distance between nucleons, the single-nucleon energy, phase-space constraint and
ocal density-dependent momentum sampling, do not affect the initial distribution of nucleons in the nucleus, but help
he tentative distribution get closer to the initial distribution and save CPU time to prepare the initial distribution.

An initialization option using the tentative distribution as the initial distribution, but without the friction process, has
een implemented in order to perform the calculations proposed as part of the Code Comparison Project. Various transport
odes share the same tentative distribution for the following collision process to understand the difference among the
odes. However, without the friction process, the stability of the nucleus is reduced, leading to virtual emission of nucleons
uring the collision processes. It should also be noted that the Hamiltonian of the nuclear system determines the initial
istribution. A simple Hamiltonian may result in an unreasonable initial distribution. The Skyrme-type interaction with
oft compressibility and an initialization without an initial stability test, as proposed for the comparison after the Shanghai
ransport2014 meeting, result in an artificial state with an arbitrary binding energy rather than the minimum energy.

.7.3. Forces
The interaction potential adopted in the IQMD-SINAP is given by a local Skyrme-type interaction, the surface

nteraction, a Coulomb interaction, an optional momentum-dependent interaction, an optional Pauli potential, and an
sospin asymmetry potential. The two-body potential interaction can be written as,

V ij
= V ij

Skyrme + V ij
Sur + V ij

mdi + V ij
Coul + V ij

sym. (205)

In QMD codes each nucleon wave function is represented as a Gaussian form, which is defined as:

φi(r⃗, t) =
1

(2πL)3/4
exp

[
−

(r⃗ − r⃗i(t))
2

4L

]
exp

[
−

ir⃗ · p⃗i(t)
h̄

]
, (206)

where L is the width parameter for the Gaussian wave packet. By applying the convolution of the interaction, the potential
energy part then reads as:

⟨V ⟩ =
1
2

∑
i

∑
j̸=i

∫
dr⃗ dr⃗ ′φi(r⃗, t)φ∗

i (r⃗, t) V
ijφj(r⃗ ′ t)φ∗

j (r⃗
′, t) . (207)

The equations of motion for the center of wave packets of nucleons then read as:

˙⃗pi = −
∂⟨H⟩

∂ r⃗i
= −

∂⟨V ⟩

∂ r⃗i
and

˙⃗ri =
∂⟨H⟩

∂ p⃗i
=

p⃗i√
m2

i + p2i
+
∂⟨V ⟩

∂ p⃗i
, (208)

Due to the undetermined nuclear force, the interactions adopted in IQMD-SINAP are also kept in a flexible and
xtensible way. Benefited from the Object Oriented C++ framework, it is reasonably straightforward to add or modify
he interaction, for example, to add the tensor force or the spin–orbit interaction term.

.7.4. Collision term
The collision term in the IQMD-SINAP code originates from IQMD [320], where the experimental cross-sections for

lastic and inelastic collision of a pair of nucleons are parametrized. At present, only the pion and ∆ production inelastic
hannels are considered, while it is also possible to extend to the strangeness degree of freedom. Two particles can collide
f the minimum relative distance is less than

√
σtot/π , within the time step during the evolution of the system.

Besides the cross-section, there are some other conditions for the colliding pair of nucleons.
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• Conservation laws:
Before and after the collision, each colliding pair of nucleons respect the law of the energy and momentum
conservation in their c.m. reference. After the collision, the direction of momentum is generated at random with the
constraint of describing, on average, the experimental differential cross-sections. However, this results in breaking
the angular momentum conservation law at the same time, due to the classical description of the collision.

• First collisions:
During the reaction, the first colliding partner of each nucleon in the projectile (target) is constrained to originate
from the target (projectile), which reduces the chance of the virtual emission of nucleons.

• Too soft collisions:
Collisions between nucleons that are too soft are blocked to save the CPU time and remove fake collisions between
nucleons inside a forming fragment. Usually, the threshold kinetic energy between the colliding pair of nucleons is
about 20 MeV, well below the Fermi energy.

• Pauli blocking:
A Pauli blocking procedure is applied to decide whether a collision could happen.

5.7.5. Pauli-blocking
The overlap between two nucleons is

⟨φi, φj⟩ = exp[−
(r⃗i − r⃗j)2

2L
−

2L(p⃗i − p⃗j)2

h̄2 ]. (209)

The Pauli-blocking factor for i nucleons at the phase point (r⃗i, p⃗i) is defined as

f (r⃗i, p⃗i) ≡

∑
j(i̸=j)

δ(Si, Sj) δ(Ti, Tj) ⟨φiφj⟩, (210)

where S and T are the spin and isospin. If the blocking factor is larger than a generated random number, the collision is
blocked.

5.8. Jet AA Microscopic transport (JAM) code

A. Ono, N. Ikeno, Y. Nara, A. Ohnishi

5.8.1. Code history
Jet AA Microscopic transport model (JAM) is a transport model which is developed by Nara et al. [136]. This model

has been successfully applied to high-energy collisions up to more than one hundred GeV/nucleon. In JAM, hadrons and
their excited states are explicitly propagated in space–time by the cascade method. In order to describe nuclear collisions
consistently from low to high energy, elementary hadron–hadron collisions are modeled by resonance production at low
energies, string excitations in the soft region and hard parton–parton scattering at collider energies according to the
important physics in each energy range.

The main features included in JAM are as follows. (1) At low energy, inelastic hadron–hadron collisions are modeled by
the resonance productions based on the idea from RQMD [410–413] and UrQMD [51,414]. (2) There are options to include
the nuclear mean field. The nuclear mean field is simulated based on the BUU theory or Quantum Molecular Dynamics
(RQMD/S) [415–417]. (3) Above the resonance region, soft-string excitation is implemented along the lines of the HIJING
model [418–420]. (4) Multiple mini-jet production is also included in the same way as in the HIJING model in which jet
cross sections and the number of jets are calculated using an eikonal formalism for perturbative QCD (pQCD), and hard
parton–parton scatterings with initial- and final-state radiation are simulated using the PYTHIA [421] program.

5.8.2. Initialization
In usual calculations for heavy-ion collisions, the nucleons in the nucleus are randomly distributed according to the

appropriate Woods–Saxon density distribution ρ(r). The nucleons are distributed in the order from protons to neutrons,
and a nucleon is not allowed to be too close (dmin = 0.8 fm) to any of the already distributed nucleons. However, recent
calculations choose dmin = 0 to sample nucleon coordinates independently. The Fermi motion of each nucleon is assigned
according to the local Fermi momentum pf = h̄( 32π

2ρ(r))1/3. The initialized phase space is then Lorentz-boosted.

.8.3. Potentials/forces
In JAM, there is an option for incorporating the nuclear mean field. However, in our comparison calculations, no mean

ield is included. Therefore, the trajectories of hadrons are straight lines in between two-body collisions or decays.
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5.8.4. Collision prescription
In the energy domain relevant for our work, only hadron–hadron collisions play a role. Detailed explanations of

ollisions are given in Ref. [136]. In JAM without mean field, the time step ∆t can be as large as the whole calculation time
f each event, though we may take ∆t = 10 or 20 fm/c for output purposes. The particles are propagated along classical

trajectories until they interact (two-body scattering, absorption, or decay). The interaction possibilities are determined
by the method of the so-called ‘‘closest distance approach’’. If the minimum relative distance brel for any pair of particles
ecomes less than the interaction range specified by

√
σtot(s)/π , then the particles are assumed to collide. However,

here are some ambiguities in a relativistic treatment because a collision occurs when the two particles are located at
ifferent space–time points. Here we adopt a similar procedure to that in Refs. [84,422–424] to mimic the reference-frame
ependence.
The minimum relative distance brel is defined as follows. Let us denote the coordinates and momenta of two particles

in the computational frame by (t1, x1), (t2, x2) and (E1, p1), (E2, p2), respectively, where ti (i = 1, 2) denote the production
time (namely the time of the last collision) whose initial values are set to 0. In the c.m. frame of two particles, we have
the trajectories of particles i = 1 and 2,

x∗

i (t
∗) = x∗

i + v∗

i (t
∗
− t∗i ) (211)

where asterisks represent quantities in the two-body c.m. frame, and v∗

i = p∗

i /E
∗

i are velocities there. One can minimize
|x∗

1(t
∗) − x∗

2(t
∗)|2 with respect to t∗ as in Ref. [424] to obtain the collision time and the minimum distance

t∗min = −
x∗

12 · v∗

12

v∗

12
, b2rel = x∗2

12 −
(x∗

12 · v∗

12)
2

v∗2
12

(212)

ith x∗

12 = x∗

1(0) − x∗

2(0) and v∗

12 = v∗

1 − v∗

2. We note that the definition of brel is the same as in Refs. [51,177,414,425].
y transforming to the computational frame, the collision times for these particles are given by

tcolli = γ t∗min + γβ · x∗

i (t
∗

min), (213)

here β = (p1 + p2)/(E1 + E2) and γ is the corresponding Lorentz γ factor. We assume that the sequence of collisions
are ordered by the average time [84,422,423,426]

tc =
1
2 (t

coll
1 + tcoll2 ). (214)

he particles cannot collide if πb2rel > σtot(s). Furthermore, the collision can occur in the current time step only if all
he following time conditions are met; (a) tcoll1 > t1 and tcoll2 > t2, i.e., the collision cannot occur before the previous
nteraction (collision or production) for each particle, (b) tc ≥ max(t1, tstart) and tc ≥ max(t2, tstart), where tstart is the
beginning of the current time step, (c) tc ≤ tend where tend is the end of the current time step, and (d) tc ≤ tdecay1 and
tc ≤ tdecay2 where tdecayi is the time of decay, which was randomly decided when the particle i was produced, in case it is
unstable. [There is an option to replace the condition (b) with (b′) tc > tstart. The condition (d) may also be replaced by
(d′) tcoll1 ≤ tdecay1 and tcoll2 ≤ tdecay2 .]

The predicted collisions are processed according to the order of tc. For a collision, the space–time coordinates of the
two particles (t1, x1) and (t2, x2) are first propagated to t = tc, namely ti := tc and xi := xi + (pi/Ei)(tc − ti). [There is
another option to propagate them to t = tcoll1 and tcoll2 as ti := tcolli and xi := xi + (pi/Ei)(tcolli − ti).] We then generate
elastic scattering according to the probability Pel = σel/σtot. Otherwise, we select an inelastic channel. After updating the
momenta of the particles in the final state, the possibilities of future collisions associated with these particles have to be
recalculated.

Each particle carries a variable to store the ID of the last collision or decay that the particle has experienced most
recently. Particles having the same collision/decay ID are not allowed to collide.

5.8.5. Cross sections
In low energy region, hadron–hadron reactions are treated by the cross sections based on experimental data and

the detailed balance. Here we describe the treatments of the ∆ resonances and pions that we adopted in our recent
publication [314]. The cross section for the N + N → N +∆ reaction is written as,

dσ [NN → N∆(m)]
dm

=
CI

pN (s)s
|M|

2

16π
F (m)p∆(m, s) (215)

where m is mass of ∆ resonances sampled in the region mN +mπ < m <
√
s−mN , and pN (s) and p∆(m, s) are the initial

and final momenta, respectively, in the c.m. frame. The matrix element |M| is assumed to be

|M|
2

= A
sΓ 2

∆

(s − m2
∆)2 + sΓ 2

∆

, (216)

ith A/16π = 64400 mb GeV2. The mass distribution function F (m) is written as

F (m) =
2 mm∆Γ (m)

2 2 2 2 2
, (217)
π (m − m∆) + m∆Γ (m)
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where Γ (m) is

Γ (m) = Γ∆
m∆

m

(
pπ (m)
pπ (m∆)

)3 1.2
1 + 0.2(pπ (m)/pπ (m∆))2

(218)

with Γ∆ = 0.118 GeV, m∆ = 1.232 GeV and pπ (m) being the pion momentum when the ∆ resonance with mass m decays
in its rest frame. This is a similar parametrization to UrQMD in Ref. [51,414]. The Clebsch–Gordan factor is CI =

1
4 for the

hannels nn → n∆0, np → p∆0, np → n∆+, and pp → p∆+, and CI =
3
4 for the channels nn → p∆− and pp → n∆++.

The cross section for the N + ∆ → N + N reaction can be obtained by the spin averaged matrix elements |M|
2

=

MNN→N∆|
2 as

g1|MNN→N∆|
2

= g2|MN∆→NN |
2 (219)

here g1 and g2 are the spin degeneracy factors g1 = (2sN + 1)(2sN + 1) = 4 and g2 = (2sN + 1)(2s∆ + 1) = 8. Thus the
ross section is

σ [N∆(m) → NN ′
] =

g1
g2

CI

1 + δNN ′

1
p∆(m, s)s

|M|
2

16π
pN (s). (220)

here the factor (1 + δNN ′ ) takes into account the limitation in angle integral for a final state with identical particles.
The decay width for ∆(m) → N +π is given by Γ (m) with Eq. (218). The partial decay widths for isospin channels are

[∆−
→ nπ−

] = Γ [∆++
→ pπ+

] = Γ (m), Γ [∆0
→ pπ−

] = Γ [∆+
→ nπ+

] =
1
3Γ (m), and Γ [∆0

→ nπ0
] = Γ [∆+

→

π0
] =

2
3Γ (m).

The cross section for the N + π → ∆(m) reaction with m =
√
s is written as

σ [Nπ → ∆(m)] =
4

2 · 1
π

pπ (m)2
Γ (m)Γ [∆(m) → Nπ ]

(m − m∆)2 +
1
4Γ (m)2

. (221)

he first factor is the ratio of spin degeneracies in this reacton.

.8.6. Pauli blocking
Pauli blocking is considered for the nucleon(s) in the final state. The blocking factor is calculated by the following

xpression using Gaussian wave packets as

fi =
1
2

∑
k∈τi(k̸=i)

23 exp
[
−r2ik/2L − 2Lp2

ik/h̄
2], (222)

here τi is the species (proton or neutron) of the particle i, and the factor 1
2 is for the spin averaging. For each term in

he right hand side, the distances r ik and pik in the phase space are evaluated in the c.m. frame of the particles i and k.
he parameter is fixed to be L = 2.0 fm2.

.9. JQMD 2.0 code

. Ogawa, K. Niita, S. Hashimoto, T. Sato

.9.1. Code history
JQMD is one of the QMDmodels developed by Niita et al. in 1995 [407]. It served for a lot of studies such as fundamental

esearch [427–429], accelerator shielding design [430,431] and cosmic-ray dosimetry [145] for approximately 20 years
ithout any modifications until JQMD Ver. 2.0 was developed [137]. JQMD was intended to describe various aspects of
ucleus–nucleus collisions by a simple approach (i.e., JQMD was designed to reproduce as many observables as possible
sing minimum number of parameters). Owing to its simple coding, one can easily run JQMD by conventional computers.
QMD also featured accurate reproductions of secondary particle production cross sections [432], see Figs. 7–15 of [407],
hich was attributed to a reasonable configuration of initial states and the parametrization of elastic and inelastic cross
ections.
JQMD was incorporated into general-purpose radiation transport codes such as PHITS [134] and Geant4 [433,434].

QMD Ver.2 is an improved version of JQMD Ver.1. The description of the mechanisms of peripheral collisions was refined,
nd the reproduction of fragment yields was improved by this update. JQMD Ver.2 was incorporated into PHITS Ver.2.76
nd the later versions as the event generator for nucleus–nucleus collisions.
The initialization, potential, collision and Pauli blocking algorithms of JQMD Ver.2 combined with the reactions above

GeV/n, such as production of resonances heavier than 1500 MeV, string formation and string decay, was published as
AMQMD Ver.2 [435]. By switching from JQMD Ver.2 and JAMQMD Ver.2 at 3 GeV/n, nucleus–nucleus collisions from 10
eV/n to 1 TeV/n can be simulated.
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5.9.2. Initialization
The initial state of the nucleus is configured by a random packing method associated with frictional cooling/heating,

hich adjusts the excitation energy of the nucleus. The excitation energy is adjusted until the binding energy agrees with
hat of the nuclear ground state taken from the statistical decay model GEM [138]. Random packing is carried out by the
cheme described below.
The (x,y,z) coordinates of the nucleons are randomly sampled based on a Wood–Saxon distribution defined by the

iffuseness equal to 0.2 fm and radius r = 1.124 × A1/3, where A is the mass number of the nucleus. The minimum
istances of nucleon pairs which the same and different isospin are 1.5 fm and 1.0 fm, respectively. If the sampled
oordinate does not satisfy this condition, the coordinate is rotated (i.e., angular coordinates were randomly changed
ithout changing the distance from the center) at random until the nucleon reaches unoccupied space. The momentum
f nucleons is randomly sampled below the local Fermi momentum. The configured ground state nuclei is transferred
o the center-of-mass frame of target and projectile by a Lorentz-transform. The nucleus–nucleus impact parameter is
ampled below the maximum obtained by bAAmax = 1.2 × (A1/3

t + A1/3
p ). At the beginning of QMD calculation, the impact

parameter b is corrected considering a Coulomb trajectory, which depends on the charge and mass of projectile and target,
and incident energy.

5.9.3. Potentials/forces
The strong repulsive forces between baryons close to each other are treated as stochastic two-body collisions, whereas

the long-range interaction between particles is treated as the potential term of the Hamiltonian. The single particle
potential on particle i is written as follows,

Vi =
1
2

A
ρs

⟨ρi⟩ +
1

1 + τ

B
ρτs

⟨ρi⟩
τ
+

1
2

∑
j

cicj e2

|Ri − Rj|
erf(

|Ri − Rj|
√
4L

) +
Cs

2ρs

∑
j

(1 − 2|ci − cj|)ρij, (223)

where A, B, and C are a force parameters with values of 219.4, 165.3, and 25 MeV, respectively, ρs is the saturation density
(=0.168 fm−3), ⟨ρi⟩ is the overlap integral of wave packets between the ith particle and all the other particles, τ is 4/3,
ci is particle charge number, Ri denotes the position of ith particle, L is the width of wave packet representing nucleons
(= 2 fm2), and ρij is the overlap integral of wave functions of the ith and jth nucleons. The first, second, third, and fourth
terms are two Skyrme-type terms, the Coulomb term, and the symmetry term, respectively. All the forces act on baryons,
whereas pions are affected only by the electric force. Forces explicitly dependent on momentum were not included.

The equation of motion for particles is written as follows:

ṙi =
pi

2p0i
+

N∑
j

mj

p0j

∂⟨V̂j⟩

∂pi
; ṗi = −

N∑
j

mj

p0j

∂⟨V̂j⟩

∂ri
; p0i =

√
p2
i + m2

j + 2mj⟨V̂i⟩, (224)

where ⟨V̂j⟩ is the potential of jth particle, and N is the number of particles in the system.

5.9.4. Collision term
Two-body collisions are treated as the stochastic two-body collision process with the inclusion of the Pauli blocking.

The prescription of two-body collision term adopted in JQMD is similar to that used in the BUU calculation done by Wolf
et al. [425,436], and it was modified to extend the energy range up to 3 GeV/n. The extension above 3 GeV/n is discussed
elsewhere [435]. In the calculation routine of JQMD, collision pairs are searched in sequence. The baryon with id number
1 and that with id number 2 are selected and their impact parameter is calculated by,

bcol =

√r⃗2 + (
p⃗1 · r⃗
m1

)2 −

( p⃗1·r⃗
m1

−
p⃗2·r⃗m1
p1·p2

)2

1 − (m1m2
p1·p2

)2
, (225)

where r⃗ is the spatial distance between the baryons, p⃗i is the momentum of ith baryon, mi is the rest mass of ith baryons,
and pi is the four-dimensional momentum of ith baryon. All these quantities are those defined in the nucleus–nucleus
c.m. frame. A collision is attempted if the impact parameter is smaller than bmax calculated by,

bmax =

√
σ

π
(
√
s′ ≤ 428.6MeV ∧ bAA ≤ 0.6bAAmax)

bmax =

√
7.5σ
π

(
√
s′ ≤ 428.6MeV ∧ bAA ≥ 0.6bAAmax)

= 1.32fm (
√
s′ ≥ 428.6MeV),

here
√
s′ =

√
s−m1−m2, σ is the total reaction cross section, bAA is the impact parameter between the colliding nuclei.

he collision is skipped if it did not occur in the time step of 1 fm/c. The timing condition is defined by,

|t12 + t21| ≤ 1fm/c, tij =

⎛⎝ p⃗i · r⃗
mi

−

p⃗i·r⃗
mi

−
p⃗j·r⃗mi
pi·pj

1 − (mimj )2

⎞⎠ γi, (226)

pi·pj
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Table 4
Pion absorption cross section maximum (mb). σ∆: ∆ production cross section, σN∗: N∗ production cross
section.

n+π− n+π+ n+π0 ∆−
+ π+ , ∆0

+ π0 , ∆0
+ π+

p+π+ p+π− p+π0 ∆+
+ π− , ∆+

+ π0 , ∆+
+ +π−

σ∆ 200 70 135 0
σN∗ 0 30 30 30

where γi is the Lorentz gamma factor of the ith baryon in the nucleus–nucleus c.m. frame. In the collision calculation
routine, a reaction channel is assigned to each particle pair with the respective channel cross section. If bmax ≥

√
σ/π ,

o reaction channel is assigned and the collision is skipped.
In order to treat reactions at high bombarding energies, nucleons N, deltas ∆(1232), N*(1440)s, and pions with their

sospin degree of freedom are considered. Therefore the applicable energy range of JQMD is 3 AGeV. The creation and
bsorption of these particles are treated as collisions. The reaction channels considered in JQMD are baryon elastic
cattering B + B → B + B, and the reactions N + N ↔ N + ∆, N + N ↔ N + N∗, N + π → ∆, N + π → N∗,
∆+ π → N∗. Elastic reaction cross sections have been parametrized by,

σ =
C1

1 + 100
√
s′

+ C2 (
√
s′′ ≤ 0.4286),

σ = C3

[
1 −

2
π

arctan(1.5
√
s′ − 0.8)

]
+ C4 (

√
s′′ ≥ 0.4286), (227)

where
√
s′′ = max[0,

√
s − m1 − m2 − C0], C0 is a reaction cut-off energy (0.02 GeV for nucleon–nucleon and 0 for the

others), C1,2,3,4 are fitting parameters listed elsewhere [407], and m1,2 are the masses of the colliding particles. Below
.4286 GeV, the elastic reaction cross section is described by the Cugnon’s parametrization [169,437] in central collisions,
hereas in peripheral collisions (bAA ≥ 0.6bAAmax) the cross section in free space is adopted.
The total baryonic resonance production cross sections (N + N → N + ∆ and N + N → N + N∗) are parametrized

based on the method proposed by VerWest and Arndt [438]. Because their parametrization was optimized to reproduce
pion yields up to 1.5 AGeV of laboratory incident energy whereas JQMD is applied up to 3 AGeV, the fitting parameters
have been slightly modified.

The cross sections can reproduce the experimental data on total, elastic, and inelastic nucleon–nucleon cross sections
(see Fig. 1 of [407]). In addition, calculated single pion production cross sections and two-pion production cross sections
are in good agreement with the experimental data [439] up to 3 AGeV of laboratory incident energy (see Figs. 2 and 3
of [407]). Pionic fusion and s-wave pion production is not explicitly included, but fitting parameters have been determined
to include these channels effectively.

The masses of the resonances are determined by considering them to have a statistical distribution. Specifically, the
mass is randomly sampled according to the Breit–Wigner distribution with width defined by,

Γ (M) = (
q
qr

)3(
Mr

M
)(v(q)/v(qr ))2Γr , v(q) =

β2
r

β2
r + q2

, (228)

here q denotes the c.m. momentum in the πN channel. The parameters in Eq. (228) are given elsewhere [407].
Cross sections of inverse reactions (Resonance + Baryon → Baryon + Baryon) are determined by the extended detailed

balance formula [436] and the corresponding resonance production cross sections.

dσN∆→NN

dΩ
=

1
Nf

p2f
p2i

dσNN→N∆

dΩ
1∫ (

√
s−mN)2

(mN+mπ )2
F (M2)dM2

, (229)

F (M2) =
1
π

m′

2Γ (M)
(M2 − m′2

2 )2 + m′2
2 Γ (M)

,

where σN∆→NN is inverse reaction cross section, Nf is isospin factor (2 for reactions whose final state is n-p, 4 for reactions
whose final state is n-n or p-p), pf is the momentum at the final state, pi is the momentum at the initial state, σNN→∆N is
resonance production cross section, mN is nucleon mass, mπ is pion mass, m′ is the mass at the final state, and Γ is the
resonance mass width given elsewhere [407].

Pions produced by the decay of resonances can be absorbed. The reactions described so far are simulated by checking
baryon–baryon pairs sequentially. After that, pion–baryon pairs are sequentially examined to simulate pion absorption.
Pion–baryon pairs closer than

√
(σ∆ + σN∗)/π are sent to the absorption check routine. σ∆ and σN∗ are listed in Table 4.

or a pair sent to the absorption check routine, if 1/(1+ [4(
√
s−mprod)/Γ ]

2), where mprod is the product mass, and Γ is
the width given elsewhere [407], is greater than a random number [0:1], the pion is absorbed by the baryon.

When resonances (∆ or N∗) are present, their decay is calculated before collisions and pion absorption. The decay
probability is determined by the exponential decay law with the decay width calculated by Eq. (228).
74
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5.9.5. Pauli blocking
Every time when a collision or decay is attempted and the final state contains one or more nucleons, the Pauli-blocking

robability is calculated. After determining the momentum and the isospin at the final state of the collision, the occupation
robability is calculated. The one-body distribution function is obtained by the Wigner transform of the wave function.
he Pauli-blocking probability of a reaction is obtained from

Ppauli = (1 −
h3

2
f (R⃗j, P⃗j))(1 −

h3

2
f (R⃗k, P⃗k)), (230)

here j and k denote the id of reacting nucleons. When a collision is Pauli-blocked, this reaction attempt is canceled and
he next collision with a different partner is attempted.

.10. The Lanzhou isospin-dependent quantum molecular dynamics code (LQMD)

. Q. Feng, H. G. Cheng

In this short write-up, we provide information on the LQMD code. The main references are [387,440–445].

.10.1. Code history
• Lanzhou, 1995–2000:

Implementation of the isospin degree of freedom in the quantum molecular dynamics model including initialization,
mean-field potential, nucleon–nucleon collisions, and Pauli-blocking by Lie-Wen Chen and Feng-Shou Zhang [387–
389], named the isospin-dependent quantum molecular dynamics model (IQMD).

• Lanzhou, 2002–2007:
Implementation of Skyrme-energy density functional and inclusion of shell effect in the IQMD model for describing
low-energy heavy-ion collisions and the fusion dynamics in the formation of superheavy nuclei by Zhao-Qing Feng
et al. [440,441].

• Lanzhou, 2008–2012:
Inclusion of all possible inelastic and elastic hadron–hadron collisions and improvements of the density-dependent
symmetry energy and an isospin- and momentum-dependent single-particle potential [442–444]. Improvements of
in-medium and isospin effects on strange particle production [446,447].

• Lanzhou, 2011–2017:
Further improvements to treat antiproton induced reactions at FAIR energies [445].

• Guangzhou, 2018–2020:
Treatment of hypernucleus formation in heavy-ion collisions and in hadron (proton, antiproton, pion, kaon, etc.)
induced reactions [448].

.10.2. Initialization
The initial distribution of neutrons and protons in coordinate space is sampled by using a Fermi function

F (ri) =
1

1 + exp[(ri − R)/a]
. (231)

he radius R = 1.28A1/3
− 0.76 + 0.8A−1/3 fm and diffuseness parameter a = 0.5 − 0.65 fm are used for the nuclei

f interest. The sampled radial distributions of the nuclei are constrained by the root-mean-square radii of protons and
eutrons from Skyrme-Hartree–Fock or relativistic mean-field models.
Similar to the RBUU code, the particle momenta are randomly distributed in an isotropic Fermi sphere, fn,p(r, k) =

Θ
(
kF,n,p(r) − |k|

)
, whose radius is determined by the local Thomas–Fermi approximation, kF,n,p(r) =

(
3π2ρn,p(r)

)1/3.
Finally, the binding energy of selected nucleus is checked against experimental data.

5.10.3. Forces
In the LQMD code, an isospin- and momentum-dependent Skyrme-type force is used. The single-particle potential in

nuclear matter is expressed as follows:

Uτ (ρ, δ, p) = α
ρ

ρ0
+ β

ργ

ρ
γ

0
+
∂E loc

sym(ρ)

∂ρ
ρδ2 + E loc

sym(ρ)ρ
∂δ2

∂ρτ
(232)

+
1
ρ0

Cτ ,τ

∫
dp′fτ (r, p)[ln(ϵ(p − p′)2 + 1)]2 +

1
ρ0

Cτ ,τ ′

∫
dp′fτ ′ (r, p)[ln(ϵ(p − p′)2 + 1)]2.

Here τ ̸= τ ′, ∂δ2/∂ρn = 4δρp/ρ2 and ∂δ2/∂ρp = −4δρn/ρ2. The local potential energy is given by Uloc =
∫
Vloc(ρ(r))dr.

The energy-density functional reads as

Vloc(ρ) =
α ρ2

+
β ρ1+γ

γ + E loc
sym(ρ) ρ δ

2
+

gsur (∇ρ)2 +
g iso
sur

[∇(ρn − ρp)]2, (233)

2 ρ0 1 + γ ρ0 2ρ0 2ρ0
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where the ρn, ρp and ρ = ρn +ρp are the neutron, proton and total densities, respectively, and the δ = (ρn −ρp)/(ρn +ρp)
eing the isospin asymmetry. The coefficients α, β , γ , gsur , g iso

sur and ρ0 are set to have the values of −215.7 MeV,
42.4 MeV, 1.322, 23 MeV fm2, −2.7 MeV fm2 and 0.16 fm−3, respectively. A compression modulus of K=230 MeV for
sospin symmetric nuclear matter is produced with these parameters. A Skyrme-type momentum-dependent potential is
sed in the LQMD model via

Umom =
1

2ρ0

∑
i,j,j̸=i

∑
τ ,τ ′

Cτ ,τ ′δτ ,τiδτ ′,τj

∫ ∫∫
dpdp′dr fi(r, p, t) [ln(ϵ(p − p′)2 + 1)]2 fj(r, p′, t). (234)

ere Cτ ,τ = Cmom(1 + x), Cτ ,τ ′ = Cmom(1 − x) (τ ̸= τ ′) and the isospin symbols τ (τ ′) represent proton or neutron. The
arameters Cmom and ϵ were determined by fitting the real part of optical potential as a function of incident energy from
he proton–nucleus elastic scattering data. In the calculation, we take the values of 1.76 MeV, 500 c2/GeV2 for the Cmom
nd ϵ, respectively, which result in the effective mass m∗/m=0.75 in nuclear medium at saturation density for symmetric
uclear matter. The parameter x as the strength of the isospin splitting is set to be −0.65 and 0.65 for the cases of m∗

n > m∗
p

nd m∗
n < m∗

p , respectively. In low-energy heavy-ion collisions near the Coulomb barrier, the shell effect is also considered
ithin a phenomenological approach [440,441].

.10.4. Collision term
In the LQMD code, a hard core scattering in two-particle collisions is assumed by using Monte Carlo procedures, in

hich the scattering of two particles is determined by a geometrical minimum distance criterion weighted by the Pauli
locking of the final states. The total elastic and inelastic nucleon–nucleon cross-sections are parametrized in accordance
ith the available experimental data [449]. One can also make a choice of the in-medium elastic cross sections evaluated
hrough the reduced masses of the colliding nucleon pairs [402]. The resonances (∆(1232), N∗(1440), N∗(1535), etc.) are
roduced by inelastic NN collisions. We have included the reaction channels as follows:

NN ↔ N△, NN ↔ NN∗, NN ↔ △△,

∆ ↔ Nπ,N∗
↔ Nπ,NN ↔ NNπ (s − state),

N∗(1535) → Nη. (235)

nergy and momentum-dependent decay widths are used in the model for the ∆(1232) and N∗(1440) resonances [449].
e have taken a constant width of Γ =150 MeV for the N∗(1535) decay. The reaction channels of strange particles are

ncluded as

BB → BYK , BB → BBKK ,
Bπ → YK , Bπ → NKK , (236)
Yπ → BK , BK → Yπ, YN → KNN.

Here B stands for (N, △, N∗) and similarly Y for (Λ, Σ), K for (K0, K+), and K for (K 0, K−). The elastic scattering between
strange hadrons and baryons includes the channels of KB → KB, YB → YB and KB → KB. The charge-exchange reactions
etween the KN → KN and YN → YN channels are included by using the same cross sections as for the elastic scattering,
.g., K 0p → K+n, K+n → K 0p etc. Effects of the effective masses of kaons in the nuclear medium on the elementary
ross section are considered through changes of the threshold energy, which result in the reduction of kaon and the
nhancement of anti-kaon yields in heavy-ion collisions. The annihilation channels, charge-exchange reaction, elastic and
nelastic scattering in antinucleon–nucleon collisions have also been included in the LQMD model : NN → NN , NN → BB,
NN → YY and NN → annihilation(π, η, ρ, ω, K , K , K ∗, K

∗

, φ). The overline on B (Y) denotes its antiparticle.

.10.5. Pauli-blocking
Two options for checking the Pauli-blocking of the final state of a two-body collision have been implemented in the

QMD model. One approach is to evaluate the phase-space volume V of the scattered nucleons occupied by the other
ucleons of the same isospin after the NN scattering [387]. If the factor 2V/h3 is larger than a generated random number,
he collision is blocked. Otherwise the collision is allowed. The other one is to compute the blocking factor (1− f i)(1− f j)
with the f i and f j being the phase-space occupation number of the two colliding nucleons after the collision [450]. If the
factor is larger than a generated random number, the collision is blocked. Once the collision is blocked, the momenta of
the associated nucleons are set to their original values.

5.11. The TuQMD/dcQMD code

D. Cozma

5.11.1. Code history
The Tübingen QMD (TuQMD) was developed in the 90’s and first half of the following decade in Tübingen, Ger-

many [451–454] to address heavy-ion related physics problems in the 0.5–2.0 AGeV energy regime. It has common
76
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features with several contemporary transport models: initialization of nuclei resembles that of BQMD [320], Pauli
blocking algorithm is similar to the one implemented in one of the earliest versions of QMD [57] while propagation and
computation of forces mirror IQMD [320]. In addition to the nucleonic degrees of freedom, all well established baryonic
resonances with isospin 1/2 and 3/2 and a pole mass below 2 GeV have also been included; a comprehensive list can be
found in Ref. [454]. In this context, the detailed balance algorithm described in Ref. [328] has been implemented. Several
mesonic degrees of freedom have also been included: π (138), η(547), ρ(770), ω(782), Φ(1020) and K (494). The large
ariety of particle species and elementary reactions has allowed the study of several heavy-ion related topics: the equation
f state of symmetric nuclear matter [98], the impact of in-medium effects on heavy-ion collision dynamics [451,452],
mission of dilepton pairs and in-medium change of vector meson properties as precursors of chiral symmetry restoration
nd/or deconfinement [454–456].
The final version of TuQMD has been adopted by the code correspondent as the transport model of choice for the study

f the isospin asymmetric part of nuclear matter at supra-normal densities in heavy-ion reactions in the few hundred
eV/nucleon regime and has been upgraded for that purpose [28,457]. This upgraded version will be referred as dcQMD.

n the following, the latest available version of dcQMD will be described and the upgrades with respect to the last version
f TuQMD, where they exist, will be pointed out.

.11.2. Initialization
The coordinate space initialization of a nucleus proceeds as follows: nucleons are generated randomly with their

istance from the center of the nucleus satisfying the following distribution

P(r) =

{
cr2, r < r0
a − (r − b)2, r ≥ r0,

hich is modified close to the surface in order to better reproduce the experimental measured diffuseness of nuclei. In
ddition, the distance between neighboring nucleons is required to be larger than 1.55 fm. In dcQMD the r-space initial-
zation enforces that the center-of-mass of neutron and proton distributions lie closer to each other than a predefined
istance of 0.05 fm. A neutron skin with thickness Rskin=0.9β-0.03 fm and thickness uncertainty δRskin=0.15β+0.02 fm
epending on isospin asymmetry β , consistent with theoretical predictions, can also be required.
Momentum initialization in TuQMD takes into account the potential energy of the nucleon in question and generates a

andommomentum with the constraint that the nucleon is bound (4 MeV ≤ Ebind ≤12 MeV) and there is a certain minimal
istance in phase-space relative to other nucleons (∆rij∆pij > 0.28 fmGeV). The potential used in this context is an isospin
ndependent one. The Coulomb interaction is scaled down by a factor of (Z/A)2 to counterbalance its implemented charge
ndependence such that the binding energy is in agreement with the empirical mass formula. The process of momentum
nitialization is iterative and it is terminated after a predefined (large) number of iterations and can lead to as many as
5% unbound nucleons for momentum-dependent interactions. This procedure leads to nuclei with values of the average
inding energy per nucleon in the range 7.5 MeV ≤ Ebind/N ≤ 8.5 MeV.
The dcQMD upgrade implements isospin-dependent potentials already at the momentum initialization stage. The

omenta of nuclei are initialized according to the local density (ignoring isospin dependence of the local Fermi
omentum) but the requirement that initialized nucleons are bound is still enforced by lowering the value of the Fermi
omentum if needed. With this procedure the number of final unbound nucleons can be lowered to less than 3%. The

nteraction considered in this version of the momentum initialization routines is identical with the one used in the mean-
ield propagation routines. This variant allows the option to select initialized nuclei that exhibit predefined good stability
f the rms and neutron skin thickness in nucleus’s rest frame over a time period comparable to the duration of a heavy-ion
ollision. For momentum-independent interactions, rms variations of less than 5% can be achieved over a time frame of
50 fm/c. Momentum-dependent interactions raise that fraction to 25%–30%.

.11.3. Forces
The QMD equations of motion are given by the well known Hamilton equations. The original TuQMD model considered

nly an isospin-independent interaction which was later supplemented by a power-law parametrization of the symmetry
nergy. The parametrization used for the Hamiltonian reads

⟨H⟩ =

∑
i

√
p⃗ 2
i + m2

i +

∑
i

α

2
ui +

∑
i

β

γ + 1
ui
γ

+

∑
i,j,i<j

δ ln2
[ ε (p⃗i − p⃗j)2 + 1 ] uij (237)

+ S0
∑

i

τ̃i u
γ−1
i

∑
j

τ̃j uij +
∑
i,j,i<j

UCoul
ij

with the reduced interacting density ui and Coulomb term given respectively by

ui =

∑
i,j

uij uij =
1

(2π L)3/2ρ0
exp

{
−

(r⃗i − r⃗j)2

L2

}
, (238)

UCoul
ij =

(
Z

)2 e2
Erf

(
|r⃗i − r⃗j|
√

)
. (239)
A |r⃗i − r⃗j| L2
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The values of the parameters of the potential can be found in [57], while for the newer version of the optical potential
f Ref. [357], the corresponding values used are mentioned in Ref. [28]. When a symmetry energy term is included, the
Z/A)2 factor in the expression of the Coulomb interaction is set equal to 1. The wave function width L takes values in
he range of 1–1.4 fm.

The dcQMD version uses a different parametrization for the momentum-dependent part of the potential (Gogny-like)
nd a charge-dependent Coulomb, with the above suppression factor (Z/A)2 removed. The effective Hamiltonian reads:

⟨H⟩ =

∑
i

√
p⃗ 2
i + m2

i +

∑
i,j,j>i

[
Au + Al

2
+ τ̃i τ̃j

Al − Au

2

]
uij (240)

+

∑
i,j,j>i

[
(Cl + Cu) + τ̃i τ̃j (Cl − Cu)

]
uij

1 + (p⃗i − p⃗j)2/Λ2

+

∑
i

B
σ + 1

[1 − xτ̃i βi ] uσi +
D
3

[1 − yτ̃i βi] u2
i +

∑
i,j,j>i

UCoul
ij .

The notation for the Gogny parametrization of the potential adheres to that of Ref. [201]. An additional term,
proportional to a parameter denoted D has been introduced in order to allow independent variations of the compressibil-
ity/skewness or slope/curvature parameters of the equations of state of symmetric and asymmetric nuclear matter. The
parameters denoted by x and y allow the adjustment of the stiffness of the symmetry energy. The variable τ̃i is defined
as τ̃i = −τi/Ti, with Ti and τi the isospin and its projection for particle i. This ansatz thus introduces a isospin dependent
potential for baryonic resonances, most notably ∆(1232), the particular values for the τ̃ variable being motivated by the
branching ratios of each charge state into the possible nucleon–pion pairs. An isospin-dependent ∆(1232) potential has
a large impact on observables such as the π−/π+multiplicity ratio close to threshold and consequently on constraints
extracted for the density dependence of symmetry energy from heavy-ion reactions [85,107]. The newest version of
the dcQMD model [102] allows the parameters of the above interaction to depend on particle’s specie, removing the
requirement of the nucleon and ∆(1232) being identical.

In the original TuQMD model, meson degrees of freedom are propagated both taking into account only a point-
like Coulomb interaction. In dcQMD model, mesons are treated on the same footing as baryons, by assigning them
Gaussian wave functions. For pions, the wave-function width is set to L2π = 0.5 L2 such as to approximately describe
the experimental pion-to-proton charge rms ratio. The strong pion–nucleon interaction is accounted for by propagating
pions under the influence of S and P wave optical potentials. The Ericson–Ericson parametrization is used,

Vopt (r) =
2π
µ

[
−q(r) + ∇⃗

α(r)
1 +

4
3πλα(r)

∇⃗

]
, (241)

here

q(r) = ϵ1(b̄0ρ + b̄1βρ) + ϵ2B0ρ
2,

α(r) = ϵ−1
1 (c0ρ + c1βρ) + ϵ−1

2 (C0ρ
2
+ C1βρ

2).

Here, ρ and β stand for the pion–nucleon interaction density and isospin asymmetry. The wave-function width required
to evaluate these quantities (ρ and β) is approximately equal to L2πN = 0.5(L2π+L2). Details regarding the set of parameters
used can be found in Ref. [107].

The integration algorithm of choice for mean-field propagation is Runge–Kutta of order 4, but higher order routines
(6th order Fehlberg and 8th order Dormand–Prince) have also been implemented.

5.11.4. Implementation of collisions
Collision acceptance or rejection is based on a minimum distance criterion, π d2min ≤ σ , with σ being the total scattering

cross-section. During each time step, a given particle is allowed to undergo at most one collision. To avoid a preferential
reaction outcome, which depends on how the initialization of baryon arrays was performed, the labels of all baryons are
randomly reassigned each time the collision routines are called. Such a procedure is important for example in the case of
scattering of identical nuclei for which the directed flow should vanish: v1=0.

Originally, TuQMD included only the (vacuum) Cugnon parametrizations [169] for elastic nucleon–nucleon cross-
sections (σnn = σpp and σnp). The upgraded version includes the Li–Machleidt parametrizations as well [458,459] and their
density-dependent version below the pion production threshold. The isospin asymmetry dependence is implemented by
a scaling factor equal to the product of in-medium masses of the final and initial states relative to the density dependent
ones. Above the pion production threshold, the in-medium modification scaling factor retains both the density and
asymmetry dependence of in-medium nucleon masses. The latest version of dcQMD includes also an empirical isospin-
independent modification factor of elastic nucleon–nucleon cross-sections [460] whose parameters have been determined
by requiring a good description of stopping, directed and elliptic flows of protons and light fragments in intermediate
energy HICs [102].
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Excitation and absorption of single and double resonances are also included in the 2-baryon scattering routines. All
ell established resonances with isospin 1/2 and 3/2 and pole masses below 2.0 GeV have been included. Inelastic cross-
ections for ∆(1232) and N(1440) resonances are determined using a parametrization of the one-boson-exchange model
f Huber et al. [196]. The transition matrix elements needed for production cross-sections of other resonances are assumed
o depend only on masses of final state particles [454]. A medium modification of inelastic cross-sections has been
mplemented only in dcQMD [102]. It consists of an approximation of the general expression for two-body in-medium
ross-section formula [461]. Cross-sections of inelastic processes in which resonances are absorbed are determined via the
ethod of detailed balance [328]. Several processes of resonance decay, meson absorption, elastic and inelastic scattering
f mesons off baryons are also included.
An upgrade particular only to dcQMD is the consideration of total energy (kinetic+potential) balance during collision,

ecay or absorption processes due to in-medium potentials. This has the effect of shifting the production thresholds
pwards or downwards, enhancing or suppressing a reaction based on the difference of the initial and final potential
nergies. Two scenarios have been implemented: (a) only the potential energies of the scattering particles are considered
b) the potential energy of the whole system is taken into account. Scenario (b) enforces conservation of the total energy
f the system for the whole duration of the reaction [85].

.11.5. Pauli blocking
Whenever a collision occurs, the occupancy in phase-space in the vicinity of the scattering nucleons is checked. The

ollision is blocked with a probability

Pblocked = 1 − (1 − P1)(1 − P2), (242)

here P1 and P2 are the occupation fractions of phase-space around nucleons 1 and 2, respectively. In the vicinity of
nucleus’s surface a correction is performed, such that only the classically allowed portion of the phase-space is taken into
account. Baryonic resonances are considered to be unaffected by Pauli blocking. In TuQMD, the phase-space occupancy is
determined by considering nucleons as hard spheres in both position and momentum space, the algorithm being the same
as in the first version of QMD [57]. The newest versions of dcQMD includes several additional approaches of computing
the occupancy by making use of the Gaussian wave-function associated to nucleons. One of them is a straightforward
extension of the hard spheres method to a different nucleon shape [462], while a second makes use of the requirement
that the integrated occupancy over a sphere of volume h3 in phase-space has to be smaller than the degeneracy factor
for fermionic systems.

5.12. The ultra-relativistic quantum molecular dynamics (UrQMD) code

Y. J. Wang, Q. F. Li, Y. X. Zhang

5.12.1. History
• The development of UrQMD started in the middle of 1990s at Frankfurt. The detailed model description can be found

in Refs. [51,287]. The first version already contains 50 different baryon species and 25 different meson species, as
well as their corresponding antiparticles and all isospin-projected states. It can be used to study collisions of pp, pA,
and AA over the vast energy range from GSI-SIS to CERN-SPS, i.e., the entire available range of energies at 1990s.
Since then, the UrQMD model has been widely applied for simulating heavy-ion collisions at relativistic energies.

• Since 2005, with the implementation of several ingredients into UrQMD, it has been used to study symmetry
energy effects in heavy-ion collisions at intermediate energies [463–465]. Since 2014, a mean-field potential
derived from the Skyrme potential energy density functional (DF) has been implemented into the code at Huzhou
University [398,466,467]. This version is different from the codes maintained at Frankfurt by the same name used
at ultra-relativistic energies. To avoid misunderstandings, this version will be named ‘UrQMD-DF’ in the future.

• In 2008, to employ the UrQMD transport approach at higher energies, a second version (UrQMD-2.3) was published,
in which Pythia was implemented to perform the initial hard collisions [468].

• In 2009, UrQMD-3.3 version was published. In this version, running UrQMD with a hydrodynamic evolution for the
hot and dense stage of heavy-ion collision is possible.

In this section, several important ingredients of UrQMD model to study heavy-ion collisions at intermediate energies
will be addressed.

5.12.2. Initialization
In the UrQMD model, two different choices for the initialization have been implemented, called Woods–Saxon and

hard-sphere ones. The hard-sphere mode is usually employed for describing heavy-ion collisions (HICs) at intermediate
energies when the potentials are considered. First the radius of projectile and target nuclei are determined using the
following expression [51],

R =

(
3

)1/3 {
1
[A + (A1/3

− 1)3]
}1/3

, (243)

4πρ0 2
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where A denotes the mass number of projectile and target nuclei, while ρ0 is the normal nuclear density. Eq. (243)
onsiders the fact that the finite width of Gaussians (nucleons) results in a large surface, therefore the radius calculated
ith this formula is smaller than the one usually used R = 1.12A1/3 fm. The centroids of the Gaussians are randomly
istributed within a sphere of the radius R, but those for which the minimum distance between two nucleons inside
nucleus is smaller than 1.6 fm are rejected. The initial momenta of the protons and neutrons are randomly chosen
etween 0 and the respective local Fermi momenta h̄(3π2ρp,n)1/3. The next step is to calculate the binding energy per

nucleon B/A of the initialized nucleus. If the difference between the calculated and experimental B/A is larger than 1 MeV,
the momenta will be re-sampled.

5.12.3. Mean-field potential
• Baryons

In Ref. [463], the total Hamiltonian includes the two-body and three-body Skyrme-, Yukawa-, Coulomb-, Pauli-,
and symmetry terms, as well as the momentum-dependent one. Polynomial interpolation is used to determine
derivatives of potentials so as to allow a much faster numerical simulation of the reaction. The accuracy of this
method has been checked, and it is found that the error introduced by the interpolation is small enough to be
neglected. In Ref. [469], potentials for ‘‘pre-formed’’ particles (string fragments) from color fluxtube fragmentation
as well as for confined particles were considered for studying HICs at energies from AGS, SPS, to RHIC. It was found
that the inclusion of potential interactions provides stronger pressure at the early stage and describes observables
better than the default cascade mode. In Refs. [398,466], the main potential is updated by considering the Skyrme
potential energy density functional, while the momentum-dependent term used in Ref. [463] is still taken into
account. In Ref. [470], the neutron–proton effective mass splitting effect was studied by incorporating an isospin-
dependent form of the momentum-dependent potential. In Ref. [467], mean-field potentials with different parameter
sets (e.g., different stiffness of the nuclear equation of state and different nucleon effective mass) were introduced,
and potentials for Delta resonances were described in detail. More details about mean-field potentials for nucleons
can be found in review papers [471,472].

• Mesons
In Ref. [473], the pion potentials obtained from the in-medium dispersion relation of the ∆-hole model were
implemented. It was found that the relatively weak pion potential from the ∆-hole model can provide a good
description for the FOPI data of both collective flows as functions of both centrality and rapidity. In Ref. [474], the
kaon–nucleon (KN) potential was introduced, where both the scalar and the vector (also dubbed Lorentz-like) parts
were considered. The influence of the KN potential on the collective flow of K+ meson produced in Au+Au collisions
at Elab=1.5 GeV/nucleon was revisited, and it was found that the corresponding KaoS data of both directed and
elliptic flows of K+ meson can be simultaneously reproduced well. The Coulomb potential for all charged particles
is considered in the same way as for protons.

5.12.4. Collision term
The UrQMD collision term is based on analogous principles of the RQMD model [410–412]. More details are presented

n Refs. [51,287]. Two particles may collide if their distance d fulfills the relation:

d ≤ d0 =

√
σtot

π
, σtot = σ (

√
s, type). (244)

he total cross section σtot depends on the cm energy
√
s and the type of the incoming particles. For the theoretical

tudies of the symmetry energy with beam energies, such as relevant to the ALADIN and FOPI collaborations at SIS, the
otal nucleon–nucleon cross section is modified by the nuclear medium according to

σ ∗

tot = σinelastic + σ ∗

elastic = σ
free
inelastic + F · σ

free
elastic . (245)

he inelastic and elastic nucleon–nucleon cross sections in free space are taken from experimental data. The in-medium
ucleon–nucleon elastic cross section is treated as the product of a medium correction factor F and the free cross
ections. The factor F depends on the relative momentum of the two colliding nucleons, the density and isospin
symmetry at the location of the collision. The relevant details were presented in Ref. [475]. The UrQMD approach uses an
nalytical expression for the differential cross-section of in-medium nucleon–nucleon elastic scattering derived from the
ollision term of the self-consistent relativistic Boltzmann–Uehling–Uhlenbeck (RBUU) equation [476,477] to determine
he scattering angles between the outgoing partners of all elementary hadron–hadron collisions. However, this analytical
xpression is not used for the corresponding total cross sections.
For studying pion production at intermediate energies, the cross sections of the process NN → N∆ and its reversed

channel are very important. In Ref. [467], the cross section of N∆ → NN is modified based on the one-boson exchange
model (OBEM) [478], which is:

σN∆(m)→NN =
1

2

pNN I2i M 1
(246)
64π s pN∆(m) (2SN + 1)(2S∆ + 1) 1 + δN1N2
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with

M =
1
I2i

∫ ∑
s1s2s3s4

|MN∆→NN |
2dΩ, (247)

here the |MN∆(m)→NN |
2 is determined from |MNN→N∆(m)|

2 based on the time reversal invariance. The form of |MNN→N∆(m)|
2

is obtained by fitting the experimental data of σNN→N∆ in OBEM model. In this case, the dependence on the Delta mass
m of the momentum pNN and the matrix element are taken into account. Ii is the isospin factor.

The decay rate of ∆ → Nπ is:

ΓNπ (m) = Γ Nπ
∆

m∆

m

( pNπ (m)
pNπ (m∆)

)2l+1 1.2

1.0 + 0.2( pNπ (m)
pNπ (m∆) )

2l.
(248)

m∆ is the pole mass of ∆ resonance, m∆=1.232 GeV and m is the mass of ∆. Γ Nπ
∆ is the partial decay width into the

channel N and π , Γ Nπ
∆ =0.115 GeV, and l is the decay angular momentum of the exit channel (l=1).

The pion–nucleon cross section σNπ→∆ is calculated through the following equation:

σNπ→∆ = ⟨jNmN jπmπ ||J∆M∆⟩
(2S∆ + 1)

(2SN + 1)(2Sπ + 1)
π

p2cm

Γ∆→NπΓtot

(m∆ −
√
s)2 + Γ 2

tot/4
. (249)

.12.5. The procedure for binary collision
At the beginning of each time step (for the potential update), besides the distance d, the collision time tcoll (for the

time of closest approach) between particles i and k is calculated with the following formula [51]

tcoll = −
(ri − rk) · (pi/Ei − pk/Ek)

(pi/Ei − pk/Ek)2
. (250)

Here ri, pi, and Ei =

√
m2

i + p2
i are the coordinate, momentum, and total energy of the particle i in the reference frame

f the nucleus–nucleus collision. After scanning all possible collisions, the first collision (tcoll) that can happen in the time
tep is determined. The next step is to check whether this collision is allowed or not according to the cross section and
auli blocking. If it is allowed, the collision happens. The same processes will be re-done until the tcoll is larger than the
ime step. Thus, collisions happen one by one, each with its own time. This is called the time-step-free method.

.12.6. Pauli blocking treatment
For each collision, the phase space densities fi and fj of the two outgoing particles are first determined, in order to

ssure that they are in agreement with the Pauli principle (f < 1), by using the expression

fi =
1

(2s + 1)

∑
k

1
(π h̄)3

exp
[
−(ri − rk)2/(2σ 2

r )
]
exp

[
−(pi − pk)2 · 2σ 2

r /h̄
2]. (251)

ere, k represents particles with the same type around the outgoing particle i (or j). The degeneracy factor (2s+1) is the
umber of the spin states of each particle, for nucleons s = 1/2. The following two criteria are then considered at the
ame time [460],

4π
3

r3ik
4π
3

p3ik ≥ (2s + 1)
(
h
2

)3

; (252)

Pblock = 1 − (1 − fi)(1 − fj) < ξ. (253)

Here, rik and pik denote the relative distance and momentum between particles i and k (particles of the same species as
i). The above conditions are also considered for particle j. The symbol ξ denotes a random number uniformly sampled
between 0 and 1. If one of the two criteria is not fulfilled the collision is not allowed and the two particles remain with
their original momenta.

6. Conclusion

The Transport Model Evaluation Project (TMEP) was launched to improve the consistency and predictive power
of transport descriptions of intermediate-energy heavy-ion collisions, i.e., of beam energies from Fermi to relativistic
energies of a few GeV. For the viability of the field, it is important that different simulations of transport models reach
similar conclusions from the same data when using similar physical models. However, this was not always the case in
recent studies. In this project, we choose not to attempt to develop a universal code, but rather to compare different
implementations under controlled conditions. This was done on one hand by calculations in a box with periodic boundary
conditions, which are able to test the various ingredients of a simulation separately. These calculations thus can be
considered as benchmark calculations, since in most cases exact analytical or numerical results are available. On the
81
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other hand, we performed calculations of full heavy-ion reactions to see how the experience reached in nuclear matter
box calculations is reflected in real collisions.

In the present paper, we have first given a brief review of the different types and aspects of the transport approach.
e then have reviewed in a compact form the results of the different studies within the TMEP project. Through these

tudies, we have gained much insight into the workings and problems of transport simulations. Yet, the project is not at
ts end. The box calculations have been systematically analyzed, ineffective or incorrect treatments have been improved
nd corrected, and the remaining differences among the codes are well understood. However, when the codes were then
pplied to a prediction of pion production allowing different physical models, the results still differed too much to allow
robust conclusion of the density dependence of the symmetry energy. We think that these differences are due to effects
hat have not yet been tested in detail, such as the momentum dependence of the mean fields, which lead to threshold
hifts in particle production and to questions of strict energy conservation. In an ongoing study we will test the codes
gain in a heavy-ion collision with controlled physical models to demonstrate the progress reached in this project. Also
uture developments of transport models are suggested, such as the dynamical treatment of spectral functions (off-shell
ffects), short-range correlations, clustering with controlled fluctuations, and the use of microscopic interactions and cross
ections. A more detailed summary of the findings of our study and a discussion and outlook on further development has
een given in Sections 3.7 and 3.8.
The number of transport codes in use by the community has risen substantially in the past decades. We have made an

ffort to enlist the participation from all major transport codes in this project. Altogether 14 codes of BUU type and 12
odes of QMD type participated in some part of our project. A compact description of these codes presented here provides
or an easy and compact reference for scientists who use these codes or want to assess their results. We recommend for
he future to give version numbers to the codes to indicate, which features of a code are used in a particular calculation.
t would also be desirable in the long run that more codes are openly available, e.g., in a repository. We have also
riefly highlighted the importance of reliable transport models for heavy-on collisions in fundamental research and in
pplications.
Through the published and future comparison studies, we have established benchmark calculations that could assist the

evelopment of transport codes and ensure a more uniform quality. Our evaluation studies often suggest more effective
trategies in implementing different algorithms for solving the transport simulations and thus provide guidance to new
ode developers (see, e.g., [479]). We encourage existing codes that have not participated in our studies to independently
erify our benchmark calculations before being used to compare with data. Differences in the results of transport models
sing the same physical model can be regarded as a systematical theoretical error. In this project we aim to quantify
nd reduce this error. We believe that this interim report shows, that we have already made essential progress in this
irection. The ongoing further comparisons will move closer to realistic heavy-ion collisions and will thus show the extent
o which we can achieve this goal.
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