http://www.aimspress.com/journal/Math

Research article

Jacobi forms over number fields from linear codes

Boran Kim ${ }^{1, *}$, Chang Heon Kim ${ }^{2}$, Soonhak Kwon ${ }^{2}$ and Yeong-Wook Kwon ${ }^{3}$
${ }^{1}$ Department of Mathematics Education, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Korea
${ }^{2}$ Department of Mathematics, Sungkyunkwan University, Seobu-ro, Suwon 16419, Korea
${ }^{3}$ Department of Mathematical Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Korea

* Correspondence: Email: bkim21@knu.ac.kr.

Abstract

We suggest a Jacobi form over a number field $\mathbb{Q}(\sqrt{5}, i)$; for obtaining this, we use a linear code C over $R:=\mathbb{F}_{4}+u \mathbb{F}_{4}$, where $u^{2}=0$. We introduce MacWilliams identities for both complete weight enumerator and symmetrized weight enumerator in higher genus $g \geq 1$ of a linear code over R. Finally, we give invariants via a self-dual code of even length over R.

Keywords: Jacobi form; Frobenius ring; linear code; self-dual code; invariant
Mathematics Subject Classification: 11F50, 94B05, 05E99

1. Introduction

There have been many developments in invariant theory and coding theory with various applications [5,13, 16-21,27]. There are connections between invariants and weight enumerators for self-dual codes over various rings and fields [1-4,7-12,14]. Gleason [17] says the weight enumerators for binary Type II codes are invariant by a certain finite group of order 192. In [6], the authors prove that elliptic modular forms can be obtained from homogeneous weight enumerators of binary Type II codes by using specific Jacobi theta series. For a finite ring $\mathbb{Z}_{2 m}$, a Jacobi form of the full Jacobi group is suggested by complete weight enumerator of Type II codes over the ring [10]. Recently, in [23], the authors determine some Jacobi forms from Type II codes over $\mathbb{Z}_{2^{m}}$, and they also use shadow codes. Bannai et al. [2], construct Hermitian modular form by using Type II codes over $\mathbb{F}_{2}+u \mathbb{F}_{2}$ with $u^{2}=0$. They suggest invariants concerning the symmetrized biweight enumerators, i.e., the genus is equal to 2 , of Type II codes over the ring. In many works, a Jacobi form is studied over totally real fields (see [3,11,25]). For this reason, in this work, we figure out a Jacobi form which is not over a totally real field. We establish a connection between Jacobi forms and codes over $R=\mathbb{F}_{4}+u \mathbb{F}_{4}\left(u^{2}=0\right)$. Since
the ring R is described using the ring of integers in the quartic field $K=\mathbb{Q}(\sqrt{5}, i)$, we should consider Jacobi forms over the field K, which is not totally real. The notion of Jacobi forms over arbitrary number fields was defined by Skogman in [24]. In this paper, we add examples of Jacobi forms over K by modifying theta series of the lattices associated to codes over R.

We focus on the ring $\mathbb{F}_{4}+u \mathbb{F}_{4}$ with $u^{2}=0$ in this paper. This ring is a finite commutative local Frobenius ring of order 16. A Frobenius ring is one of the most significant part in coding theory since we get the result that $\left|C \| C^{\perp}\right|=\left|R^{n}\right|$ for a code C of length n over a Frobenius ring; this fact is connected to MacWilliams identity directly. Furthermore, for rings of order 16, we already know about their generating characters from [13]. This means that we can adjust this information to our studies when finding MacWilliams identity. MacWilliams identity is one of significant results in coding theory that describes how the weight enumerator of a linear code and the weight enumerator of the dual code relate to each other. MacWilliams identity give various application in coding theory. For example, in [13], the author presents an upper bound for the minimum distances of divisible codes through their dual distances. In [21], the authors study Type II codes over $\mathbb{F}_{4}+u \mathbb{F}_{4}$ and in particular the Gray map, the Lee weight, the construction of lattices and invariants. Actually, in [21], there are no results for invariants in higher genus.

In this paper, we suggest a Jacobi form from a linear code C over $R:=\mathbb{F}_{4}+u \mathbb{F}_{4}$, where $u^{2}=0$ (Theorem 3.1). This Jacobi form is not over totally real field, and it is related to complete weight enumerator of the code C. We introduce MacWilliams identities for both, complete weight enumerator and symmetrized weight enumerator in higher genus $g \geq 1$ of a linear code over R. Finally, we give invariants via a self-dual code of even length over R (Theorem 4.4).

2. Preliminaries

Throughout this paper, we use the following notations.

Notation			
K	an algebraic number field		
r_{1}	the number of real embeddings of K		
r_{2}	the number of conjugate pairs of complex embeddings of K		
δ_{K}	the different of K		
O_{K}	the ring of integers of K		
Q	the full ring of quaternions $\left\{x+y \kappa: x, y \in \mathbb{C}, \kappa^{2}=-1, a \kappa=\kappa \bar{a}, \forall a \in \mathbb{C}\right\}$		
\mathfrak{h}_{Q}	$\left\{x+y \kappa \in Q: y \in \mathbb{R}_{>0}\right\}$		
$\\|u+v \kappa\\|_{\mathbb{C}}$	$u+i v$ for $u+v \kappa \in Q$		
$\\|u+v \kappa\\|_{\bar{C}}$	$\bar{u}+i \bar{\nu}$ for $u+v \kappa \in Q$		
R	a Frobenius ring $\mathbb{F}_{4}+u \mathbb{F}_{4}$, where $u^{2}=0$		
χ	the generating character of R		
$w t_{L}$	the Lee weight in \mathbb{F}_{4}		
$\hat{w} t_{L}$	the Lee weight in R		
N	the cardinality of R		
${ }^{t} M$	the transpose of a matrix M		
I_{m}	an $m \times m$ identity matrix		

$\operatorname{diag}\left(v_{1}, \ldots, v_{m}\right) \quad$ an $m \times m$ diagonal matrix, where an (i, i)-th component is v_{i}
$(1 \leq i \leq m)$
$G L(m, F) \quad$ the general linear group of degree m over F
$A \otimes B \quad$ the Kronecker product of two matrices A and B
$e[z] \quad e^{2 \pi i z}$
Let K be an algebraic number field, and Q be the full ring of quaternions $\left\{x+y \kappa: x, y \in \mathbb{C}, \kappa^{2}=\right.$ $-1, a \kappa=\kappa \bar{a}, \forall a \in \mathbb{C}\}$; the set of all the elements of Q is equal to $\left\{a+b i+c j+d \kappa: a, b, c, d \in \mathbb{R}, i^{2}=\right.$ $\left.j^{2}=\kappa^{2}=-1, i j=\kappa, j \kappa=i, j i=-\kappa\right\}$ (see [22, p. 220]). For an element $\alpha \in K$, we denote the real conjugates of α by $\alpha^{(1)}, \ldots, \alpha^{\left(r_{1}\right)}$, and the complex conjugates of α by $\alpha^{\left(r_{1}+1\right)}, \ldots, \alpha^{\left(r_{1}+2 r_{2}\right)}$, where $\alpha^{\left(j+r_{2}\right)}=\overline{\alpha^{(j)}}$ for $r_{1}+1 \leq j \leq r_{1}+r_{2}$.

We set $\Gamma^{J}(K)=\Gamma \ltimes O_{K}^{2}$, where $\Gamma=S L\left(2, O_{K}\right)$; the group $\Gamma^{J}(K)$ is called the Jacobi group of K. The group law of $\Gamma^{J}(K)$ is given by

$$
(A, X) \cdot(B, Y)=(A B, X B+Y) \quad\left(A, B \in \Gamma, X, Y \in O_{K}^{2}\right) .
$$

Let \mathfrak{h} be the upper half plane, and $\mathfrak{h}_{Q}=\left\{x+y \kappa \in Q \mid x \in \mathbb{C}, y \in \mathbb{R}^{+}\right\}$be the quaternionic upper half plane. Let \mathcal{H} be the space $\mathfrak{h}^{r_{1}} \times \mathfrak{h}_{Q}^{r_{2}} \times \mathbb{C}^{r_{1}} \times Q^{r_{2}}$; an element of \mathcal{H} is written as $(\vec{\tau}, \vec{z}):=$ $\left(\tau_{1}, \ldots, \tau_{r_{1}+r_{2}}, z_{1}, \ldots, z_{r_{1}+r_{2}}\right)$.

The group $\Gamma^{J}(K)$ acts on \mathcal{H}, and the action is given as follows: For elements $\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in$ $S L\left(2, O_{K}\right)$ and $[\lambda, \mu] \in O_{K}^{2}$,

$$
\begin{aligned}
& \binom{\alpha \beta}{\gamma \delta} \circ(\vec{\tau}, \vec{z}) \\
& =\left(\frac{\alpha^{(1)} \tau_{1}+\beta^{(1)}}{\gamma^{(1)} \tau_{1}+\delta^{(1)}}, \ldots, \frac{\alpha^{\left(r_{1}\right)} \tau_{r_{1}}+\beta^{\left(r_{1}\right)}}{\gamma^{\left(r_{1}\right)} \tau_{r_{1}}+\delta^{\left(r_{1}\right)}},\left(\alpha^{\left(r_{1}+1\right)} \tau_{r_{1}+1}+\beta^{\left(r_{1}+1\right)}\right)\left(\gamma^{\left(r_{1}+1\right)} \tau_{r_{1}+1}+\delta^{\left(r_{1}+1\right)}\right)^{-1},\right. \\
& \quad \ldots,\left(\alpha^{\left(r_{1}+r_{2}\right)} \tau_{r_{1}+r_{2}}+\beta^{\left(r_{1}+r_{2}\right)}\right)\left(\gamma^{\left(r_{1}+r_{2}\right)} \tau_{r_{1}+r_{2}}+\delta^{\left(r_{1}+r_{2}\right)}\right)^{-1}, \frac{z_{1}}{\gamma^{(1)} \tau_{1}+\delta^{(1)}}, \ldots, \\
& \left.\quad \frac{z_{r_{1}}}{\gamma^{\left(r_{1}\right)} \boldsymbol{\tau}_{r_{1}}+\delta^{\left(r_{1}\right)}},\left(\gamma^{\left(r_{1}+1\right)} \tau_{r_{1}+1}+\delta^{\left(r_{1}+1\right)}\right)^{-1} z_{r_{1}+1}, \ldots,\left(\gamma^{\left(r_{1}+r_{2}\right)} \tau_{r_{1}+r_{2}}+\delta^{\left(r_{1}+r_{2}\right)}\right)^{-1} z_{r_{1}+r_{2}}\right),
\end{aligned}
$$

and
$[\lambda, \mu] \circ(\vec{\tau}, \vec{z})=\left(\vec{\tau}, z_{1}+\tau_{1} \lambda^{(1)}+\mu^{(1)}, \ldots, z_{r_{1}+r_{2}}+\tau_{r_{1}+r_{2}} \lambda^{\left(r_{1}+r_{2}\right)}+\mu^{\left(r_{1}+r_{2}\right)}\right)$.
For $\gamma, \delta, \lambda \in K$ and $(\vec{\tau}, \vec{z}) \in \mathcal{H}$, set

$$
\begin{aligned}
\mathcal{T}_{\mathcal{R}}\left({ }^{t} M \vec{z}(\gamma \vec{\tau}+\delta)^{-1} \gamma \vec{z} M\right)= & \sum_{j=1}^{r_{1}} \widetilde{m}^{(j)} \frac{\gamma^{(j)} z_{j}^{2}}{\gamma^{(j)} \tau_{j}+\delta^{(j)}} \\
& +\sum_{j=r_{1}+1}^{r_{1}+r_{2}}\left\|^{t} \vec{m}^{(j)}\left(u_{j}+\bar{v}_{j} \kappa\right)\left(\gamma^{(j)} \tau_{j}+\delta^{(j)}\right)^{-1} \gamma^{(j)}\left(u_{j}+v_{j} \kappa\right) \vec{m}^{(j)}\right\|_{\mathbb{C}} \\
& +\sum_{j=r_{1}+1}^{r_{1}+r_{2}}\| \|^{t} \vec{m}^{(j)}\left(u_{j}+\bar{v}_{j} \kappa\right)\left(\gamma^{(j)} \tau_{j}+\delta^{(j)}\right)^{-1} \gamma^{(j)}\left(u_{j}+v_{j} \kappa\right) \vec{m}^{(j)} \|_{\overline{\mathbb{C}}}, \\
\left.\mathcal{T}_{\mathcal{R}}{ }^{t} M(\lambda \vec{\tau} \lambda+2 \lambda \vec{z}) M\right)= & \sum_{j=1}^{r_{1}} \widetilde{m}^{(j)}\left(\lambda^{(j)^{2}} \tau_{j}+2 \lambda^{(j)} z_{j}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{j=r_{1}+1}^{r_{1}+r_{2}}\left\|\vec{m}^{(j)}\left(\lambda^{(j)} \tau_{j} \lambda^{(j)}+2 \lambda^{(j)} z_{j}\right) \vec{m}^{(j)}\right\|_{\mathbb{C}} \\
& +\sum_{j=r_{1}+1}^{r_{1}+r_{2}}\left\|\vec{m}^{(j)}\left(\lambda^{(j)} \tau_{j} \lambda^{(j)}+2 \lambda^{(j)} z_{j}\right) \vec{m}^{(j)}\right\|_{\mathbb{C}}
\end{aligned}
$$

where

- $z_{j}=u_{j}+v_{j} k$ for $j=r_{1}+1, \ldots, r_{1}+r_{2}$.
- $\vec{m}^{(i)}$: vectors in $\mathbb{C}^{r_{1}+2 r_{2}}\left(1 \leq i \leq r_{1}+2 r_{2}\right)$ such that $\vec{m}^{\left(j+r_{2}\right)}=\overline{\vec{m}^{(j)}}$ for $j=r_{1}+1, \ldots, r_{1}+r_{2}$.
- $M=\left(\begin{array}{lll}\vec{m}^{(1)} & \cdots & \left.\vec{m}^{\left(r_{1}+2 r_{2}\right)}\right): \text { an }\left(r_{1}+2 r_{2}\right) \times\left(r_{1}+2 r_{2}\right) \text {-matrix over } \mathbb{C} \text {. } \text {. } \text {. }{ }^{2} \text {. }\end{array}\right.$
- $\widetilde{m}^{(j)}={ }^{t} \vec{m}^{(j)} \vec{m}^{(j)}$.

Next, we need to present a multiplier system for $S L\left(2, O_{K}\right)$. For doing this, we set the following: For $A=\binom{\alpha \beta}{\gamma \delta} \in S L\left(2, O_{K}\right)$ and $\vec{\tau}=\left(\tau_{1}, \ldots, \tau_{r_{1}+r_{2}}\right) \in \mathfrak{h}^{r_{1}} \times \mathfrak{h}_{Q}^{r_{2}}$,

$$
\begin{aligned}
& A \circ \vec{\tau}=\left(\frac{\alpha^{(1)} \tau_{1}+\beta^{(1)}}{\gamma^{(1)} \tau_{1}+\delta^{(1)}}, \ldots, \frac{\alpha^{\left(r_{1}\right)} \tau_{r_{1}}+\beta^{\left(r_{1}\right)}}{\gamma^{\left(r_{1}\right)} \tau_{r_{1}}+\delta^{\left(r_{1}\right)}},\left(\alpha^{\left(r_{1}+1\right)} \tau_{r_{1}+1}+\beta^{\left(r_{1}+1\right)}\right)\left(\gamma^{\left(r_{1}+1\right)} \tau_{r_{1}+1}+\delta^{\left(r_{1}+1\right)}\right)^{-1},\right. \\
& \left.\ldots,\left(\alpha^{\left(r_{1}+r_{2}\right)} \tau_{r_{1}+r_{2}}+\beta^{r_{1}+r_{2}}\right)\left(\gamma^{\left(r_{1}+r_{2}\right)} \tau_{r_{1}+r_{2}}+\delta^{r_{1}+r_{2}}\right)^{-1}\right),
\end{aligned}
$$

and

$$
\mathcal{J}(A, \vec{\tau})=\mathcal{N}(\gamma \vec{\tau}+\delta),
$$

where

$$
\mathcal{N}(\gamma \vec{\tau}+\delta):=\prod_{j=1}^{r_{1}}\left(\gamma^{(j)} \tau_{j}+\delta^{(j)}\right) \prod_{j=r_{1}+1}^{r_{1}+r_{2}}\left(\left|\gamma^{(j)} x_{j}+\delta^{(j)}\right|^{2}+y_{j}^{2}\left|\gamma^{(j)}\right|^{2}\right),
$$

and $\tau_{j}=x_{j}+y_{j} \kappa$ for $j=r_{1}+1, \ldots, r_{1}+r_{2}$. A multiplier system for $S L\left(2, O_{K}\right)$ is a function χ : $S L\left(2, O_{K}\right) \rightarrow \mathbb{C}$ such that

$$
\chi(A B) \mathcal{J}(A B, \vec{\tau})^{\frac{1}{2}}=\chi(A) \mathcal{J}(A, B \circ \vec{\tau})^{\frac{1}{2}} \chi(B) \mathcal{J}(B, \vec{\tau})^{\frac{1}{2}}
$$

for all $A, B \in S L\left(2, O_{K}\right)$ and $\vec{\tau} \in \mathfrak{h}^{r_{1}} \times \mathfrak{h}_{Q}^{r_{2}}$.
The next definition is about a Jacobi form of weight k and index m with an index vector for a number field.

Definition 2.1. [22,24] Let K be an algebraic number field, $k \in \frac{1}{2} \mathbb{Z}$, and $m \in O_{K}$. Let χ be a multiplier system for $S L\left(2, O_{K}\right)$, and \vec{m} be a vector in \mathbb{C}^{n} such that ${ }^{t} \vec{m}^{(j)} \vec{m}^{(j)}=m^{(j)}$ for $j=1, \ldots, n$. A Jacobi form of weight k, index m, index vector \vec{m} and the multiplier system χ for the number field K is a function $\Phi: \mathcal{H} \rightarrow \mathbb{C}$ satisfying

$$
\Phi\left(\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \circ(\vec{\tau}, \vec{z})\right)=\chi\left(\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)\right) \mathcal{N}(\gamma \vec{\tau}+\delta)^{k} e\left[\mathcal{T}_{\mathcal{R}}\left({ }^{t} M \vec{z}(\gamma \vec{\tau}+\delta)^{-1} \gamma \vec{z} M\right)\right] \Phi(\vec{\tau}, \vec{z})
$$

and

$$
\left.\Phi([\lambda, \mu] \circ(\vec{\tau}, \vec{z}))=e\left[-\mathcal{T}_{\mathcal{R}}{ }^{t} M(\lambda \vec{\tau} \lambda+2 \lambda \vec{z}) M\right)\right] \Phi(\vec{\tau}, \vec{z})
$$

for all $\left(\begin{array}{c}\alpha \\ \gamma \\ \gamma\end{array}\right) \in S L\left(2, O_{K}\right),[\lambda, \mu] \in O_{K}^{2}, \vec{\tau} \in \mathfrak{h}^{r_{1}} \times \mathfrak{h}_{Q}^{r_{2}}$ and $\vec{z} \in \mathbb{C}^{r_{1}} \times Q^{r_{2}}$.

A Frobenius ring is a finite commutative ring R satisfying that the R-module R is injective. We consider the number field $\mathbb{Q}(\sqrt{5}, i)$ which has the ring of integers $\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}, i\right]$. Let u be the residue class of $x+1$ in the quotient ring

$$
R:=\mathbb{F}_{4}+u \mathbb{F}_{4}=\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}, x\right] /\left\langle 2,(x+1)^{2}\right\rangle
$$

i.e., $u^{2}=0$ in R. On the other side, the ring R is isomorphic to $\mathbb{F}_{2}[u, v] /\left\langle v^{2}+v+1, u^{2}\right\rangle$. This ring R is a finite commutative local Frobenius ring of order 16 (cf. [13]).

A code C of length n over R is an R-submodule of R^{n}, and an element $c=\left(c_{1}, \ldots, c_{n}\right)$ in C is called a codeword in C. The dual code C^{\perp} of C is $\left\{c \in R^{n}: c \cdot \hat{c}=0\right.$ for all $\left.\hat{c} \in C\right\}$ with respect to the Euclidean inner product. If $C \subseteq C^{\perp}$ (resp. $C=C^{\perp}$), then C is a self-orthogonal (resp. self-dual) code.

The Lee weight $w t_{L}(a)$ of an element a in $\mathbb{F}_{4}=\{0,1, \omega, \bar{\omega}\}$ is given as follows:

$$
w t_{L}(a)= \begin{cases}0 & \text { if } a=0 \\ 1 & \text { if } a=\omega \text { or } \bar{\omega} \\ 2 & \text { if } a=1\end{cases}
$$

For a vector $w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{F}_{4}^{n}$, the Lee weight $w t_{L}(w)$ of w is $\sum_{i=1}^{n} w t_{L}\left(w_{i}\right)$.
Definition 2.2 gives the Lee weight of an element in $R=\mathbb{F}_{4}+u \mathbb{F}_{4}$.
Definition 2.2. For an element $\alpha=a+b u$ in $R\left(a, b \in \mathbb{F}_{4}\right)$, the Lee weight $\hat{w} t_{L}(\alpha)$ of α in R is

$$
\hat{w} t_{L}(\alpha)=w t_{L}(b)+w t_{L}(a+b),
$$

where $w t_{L}$ is the Lee weight in \mathbb{F}_{4}. For a vector $v=\left(v_{1}, \ldots, v_{n}\right)$ in R^{n}, the Lee weight $\hat{w} t_{L}(v)$ of v is $\sum_{i=1}^{n} \hat{w} t_{L}\left(v_{i}\right)$.

In the following Table 1, we suggest the Lee weights of all the elements in R.
Table 1. Lee weights of all the elements α of R.

α	$\hat{w} t_{L}(\alpha)$						
0	0	1	2	ω	1	$\bar{\omega}$	1
u	4	$1+u$	2	$\omega+u$	3	$\bar{\omega}+u$	3
ωu	2	$1+\omega u$	2	$\omega+\omega u$	1	$\bar{\omega}+\omega u$	3
$\bar{\omega} u$	2	$1+\bar{\omega} u$	2	$\omega+\bar{\omega} u$	3	$\bar{\omega}+\bar{\omega} u$	1

Proposition 2.3. [21] Let us define a map ϕ from R^{n} to $\mathbb{F}_{4}^{2 n}$ as follows:

$$
\phi: \begin{array}{ccc}
R^{n} & \longrightarrow & \mathbb{F}_{4}^{2 n} \\
\left(a_{i}+b_{i} u, \ldots, a_{n}+b_{n} u\right) & \longmapsto & \left(b_{1}, a_{1}+b_{1}, \ldots, b_{n}, a_{n}+b_{n}\right),
\end{array}
$$

where $a_{i}, b_{i} \in \mathbb{F}_{4}(1 \leq i \leq n)$. The map ϕ preserves the Lee weight from R^{n} to $\mathbb{F}_{4}^{2 n}$, it means that, the map ϕ is a Gray map.

For a self-dual code C over R, C is a Type II code if the Lee weight of every codeword is divisible by 4 . If not, the code C is called a Type I code.

Lemma 2.4. [13, 21] Let C be a linear code of length n over R.
(i) We have that $\left|C \| C^{\perp}\right|=\left|R^{n}\right|$.
(ii) There is a Type II code of length n over R if and only if n is even.

From now on, we suggest some weight enumerators for a code C over R : A complete weight enumerator and a symmetrized weight enumerator of C. Let C be a linear code of length n over R, and $v=\left(v_{1}, \ldots, v_{n}\right)$ be a codeword in C. Let $n_{a}(v)$ be the number of coordinates v_{i} such that $v_{i}=a$, where $a \in R$ and $1 \leq i \leq n$. We define the complete weight enumerator cwe ${ }_{C}$ of C as

$$
c w e_{C}\left(x_{1}, \ldots, x_{N}\right):=\sum_{v \in C} \prod_{j=1}^{N} x_{j}^{a_{a_{j}}(v)}
$$

where x_{j} is an indeterminate and $a_{j} \in R$ for $1 \leq j \leq N$.
Let U be a fixed subgroup of the unit group of R. We note that the group U acts on R by the multiplication. We denote $a \approx b$ if $a=u b$ for some $u \in U$; it is an equivalence relation in R. Moreover, $S=\left\{s_{1}, \ldots, s_{|S|}\right\}$ is a set of representatives of the distinct orbits of U. The symmetrized weight enumerator $s w e_{C}$ of C in R^{n} is

$$
\operatorname{swe}_{C}\left(x_{1}, \ldots, x_{|S|}\right)=\sum_{c \in C} \prod_{j=1}^{|S|} x_{j}^{\sum_{r \approx s_{j}} n_{r}(c)}
$$

3. A Jacobi form from a linear code over R

We figure out a Jacobi form for a number field via a linear code over R. Before we do this, we first give a theta function as follows.

Let K be a number field, and Λ be a lattice in K^{n}, i.e., Λ is a free O_{K}-module of rank n. Now, for each Y in Λ, we define a theta function $\Theta_{\Lambda, Y}: \mathcal{H} \rightarrow \mathbb{C}$ as

$$
\begin{aligned}
\Theta_{\Lambda, Y}(\vec{\tau}, \vec{z}):= & \sum_{x \in \Lambda} e\left[\sum_{j=1}^{r_{1}}\left(\frac{1}{2}{ }^{t} x^{(j)} x^{(j)} \tau_{j}+{ }^{t} x^{(j)} Y^{(j)} z_{j}\right)+\sum_{j=r_{1}+1}^{r_{1}+r_{2}}\left\|\frac{1}{2} x^{t} x^{(j)} \tau_{j} x^{(j)}+{ }^{t} x^{(j)} z_{j} Y^{(j)}\right\|_{\mathbb{C}}\right. \\
& \left.+\sum_{j=r_{1}+1}^{r_{1}+r_{2}}\left\|\frac{1}{2}{ }^{t} x^{(j)} \tau_{j} x^{(j)}+{ }^{t} x^{(j)} z_{j} Y^{(j)}\right\|_{\bar{C}}\right] .
\end{aligned}
$$

In this section, let $K=\mathbb{Q}(\sqrt{5}, i)$, and then $O_{K}=\mathbb{Z}[(1+\sqrt{5}) / 2, i]$; so $r_{1}=0$ and $r_{2}=2$. Here, we can check that $R \cong \mathbb{F}_{2}[u, v] /\left\langle u^{2}+u+1, v^{2}\right\rangle \cong O_{K} / 2 O_{K}$; the first equivalence is introduced in Section 2, and the second equivalence is from the ring isomorphism $\mathbb{F}_{2}[u, v] /\left\langle u^{2}+u+1, v^{2}\right\rangle \rightarrow O_{K} / 2 O_{K}$, where $u+\left\langle u^{2}+u+1, v^{2}\right\rangle \mapsto(1+\sqrt{5}) / 2+2 O_{K}$, and $v+\left\langle u^{2}+u+1, v^{2}\right\rangle \mapsto 1+i+2 O_{K}$.

Let $h: O_{K} \rightarrow R$ be the reduction map by modulo 2 , and $\tilde{h}: O_{K}^{n} \rightarrow R^{n}$ be defined as $\left(x_{1}, \ldots, x_{n}\right) \rightarrow$ $\left(h\left(x_{1}\right), \ldots, h\left(x_{n}\right)\right)$. For a linear code C over R, the lattice $\Lambda(C)$ is $\frac{1}{\sqrt{2}} \tilde{h}^{-1}(C)$.

In the following theorem, we obtain the relation between the theta function and complete weight enumerator for a linear code under the previous settings.

Theorem 3.1. Let C be a linear code of length n over R. Then we get

$$
\Theta_{\Lambda(C), \sqrt{2}(1, \ldots, 1)}(\vec{\tau}, \vec{z})=c w e_{C}\left(\omega_{1, \mu}(\vec{\tau}, \vec{z}) \mid \mu \in O_{K} / 2 O_{K}\right),
$$

where

$$
\begin{aligned}
& \omega_{1, \mu}(\vec{\tau}, \vec{z})=\sum_{\substack{r \in \delta_{k}^{-1}, r \equiv \mu(\bmod 2)}} e\left[\sum_{j=1}^{r_{1}}\left(\frac{r^{(j)} \tau_{j}^{2}}{4}+r^{(j)} z_{j}\right)+\sum_{j=r_{1}+1}^{r_{1}+r_{2}}\left\|\frac{1}{4} r^{(j)} \tau_{j} r^{(j)}+r^{(j)} z_{j}\right\|_{\mathbb{C}}\right. \\
& \left.+\sum_{j=r_{1}+1}^{r_{1}+r_{2}}\left\|\frac{1}{4} r^{(j)} \tau_{j} r^{(j)}+r^{(j)} z_{j}\right\|_{\overline{\mathbb{C}}}\right], \\
& =\sum_{\substack{r \in \delta_{\bar{\delta}}^{-1}, r \equiv \mu(\bmod 2)}} e\left[\left\|\frac{1}{4} r^{(1)} \tau_{1} r^{(1)}+r^{(1)} z_{1}\right\|_{\mathbb{C}}+\left\|\frac{1}{4} r^{(2)} \tau_{2} r^{(2)}+r^{(2)} z_{2}\right\|_{\mathbb{C}}\right. \\
& \left.+\left\|\frac{1}{4} r^{(1)} \tau_{1} r^{(1)}+r^{(1)} z_{1}\right\|_{\overline{\mathrm{C}}}+\left\|\frac{1}{4} r^{(2)} \tau_{2} r^{(2)}+r^{(2)} z_{2}\right\|_{\overline{\mathrm{C}}}\right] .
\end{aligned}
$$

Proof. Let v be a codeword $\left(v_{1}, \ldots, v_{n}\right)$ in C, and \widetilde{v} be a vector $\left(\widetilde{v}_{1}, \ldots, \widetilde{v}_{n}\right) \in \widetilde{h}^{-1}(v)$. We easily check \widetilde{h} is a ring homomorphism, thus $\widetilde{h}^{-1}(v)=\widetilde{h}^{-1}(\mathbf{0})+\widetilde{v}$. Then we obtain that

$$
\begin{array}{rl}
\sum_{x \in \bar{h}^{-1}(())} & e\left[\left\|\frac{1}{4}\left(x_{1}^{(1)} \tau_{1} x_{1}^{(1)}+\cdots+x_{n}^{(1)} \tau_{1} x_{n}^{(1)}\right)+\left(x_{1}^{(1)}+\cdots+x_{n}^{(1)}\right) z_{1}\right\|_{\mathbb{C}}\right. \\
& +\left\|\frac{1}{4}\left(x_{1}^{(2)} \tau_{2} x_{1}^{(2)}+\cdots+x_{n}^{(2)} \tau_{2} x_{n}^{(2)}\right)+\left(x_{1}^{(2)}+\cdots+x_{n}^{(2)}\right) z_{2}\right\|_{\mathbb{C}} \\
& +\left\|\frac{1}{4}\left(x_{1}^{(1)} \tau_{1} x_{1}^{(1)}+\cdots+x_{n}^{(1)} \tau_{1} x_{n}^{(1)}\right)+\left(x_{1}^{(1)}+\cdots+x_{n}^{(1)}\right) z_{1}\right\|_{\overline{\mathbb{C}}} \\
& \left.+\left\|\frac{1}{4}\left(x_{1}^{(2)} \tau_{2} x_{1}^{(2)}+\cdots+x_{n}^{(2)} \tau_{2} x_{n}^{(2)}\right)+\left(x_{1}^{(2)}+\cdots+x_{n}^{(2)}\right) z_{2}\right\|_{\bar{C}}\right], \\
=\sum_{x_{1} \in 2 O_{K}+\bar{v}_{1}} & e\left[\left\|\frac{1}{4} x_{1}^{(1)} \tau_{1} x_{1}^{(1)}+x_{1}^{(1)} z_{1}\right\|_{\mathbb{C}}+\left\|\frac{1}{4} x_{1}^{(2)} \tau_{2} x_{1}^{(2)}+x_{1}^{(2)} z_{2}\right\|_{\mathbb{C}}\right. \\
\quad & \left.+\left\|\frac{1}{4} x_{1}^{(1)} \tau_{1} x_{1}^{(1)}+x_{1}^{(1)} z_{1}\right\|_{\overline{\mathbb{C}}}+\left\|\frac{1}{4} x_{1}^{(2)} \tau_{2} x_{1}^{(2)}+x_{1}^{(2)} z_{2}\right\|_{\overline{\mathbb{C}}}\right] \tag{3.1}\\
\ldots \sum_{x_{n} \in 2 O_{K}+\widetilde{v}_{n}} & e\left[\left\|\frac{1}{4} x_{n}^{(1)} \tau_{1} x_{n}^{(1)}+x_{n}^{(1)} z_{1}\right\|_{\mathbb{C}}+\left\|\frac{1}{4} x_{n}^{(2)} \tau_{2} x_{n}^{(2)}+x_{n}^{(2)} z_{2}\right\|_{\mathbb{C}}\right. \\
& \left.+\left\|\frac{1}{4} x_{n}^{(1)} \tau_{1} x_{n}^{(1)}+x_{n}^{(1)} z_{1}\right\|_{\overline{\mathbb{C}}}+\left\|\frac{1}{4} x_{n}^{(2)} \tau_{2} x_{n}^{(2)}+x_{n}^{(2)} z_{2}\right\|_{\overline{\mathbb{C}}}\right],
\end{array}
$$

we only consider τ_{1} and τ_{2} because $r_{1}=0$ and $r_{2}=2$ as we mentioned before. And the second equation is from that

$$
\begin{aligned}
& \left\|\left(u_{1}+v_{1} \kappa\right)+\left(u_{2}+v_{2} \kappa\right)\right\|_{\mathbb{C}}=\left(u_{1}+v_{1} i\right)+\left(u_{2}+v_{2} i\right)=\left\|u_{1}+v_{1} \kappa\right\|_{\mathrm{C}}+\left\|u_{2}+v_{2} \kappa\right\|_{\mathbb{C}}, \\
& \left\|\left(u_{1}+v_{1} \kappa\right)+\left(u_{2}+v_{2} \kappa\right)\right\|_{\overline{\mathrm{C}}}=\left(\overline{u_{1}}+\overline{v_{1}} i\right)+\left(\overline{u_{2}}+\overline{v_{2}} i\right)=\left\|u_{1}+v_{1} \kappa\right\|_{\overline{\mathrm{C}}}+\left\|u_{2}+v_{2} \kappa\right\|_{\overline{\mathrm{C}}}
\end{aligned}
$$

for all $u_{1}+v_{1} \kappa, u_{2}+v_{2} \kappa \in Q$. Therefore, we have that

$$
\begin{aligned}
& \Theta_{\Lambda(C), \sqrt{2}(1, \ldots, 1)}(\vec{\tau}, \vec{z}) \\
& =\sum_{x \in \Lambda(C)} e\left[\left\|\frac{1}{2}{ }^{t} x^{(1)} \tau_{1} x^{(1)}+{ }^{t} x^{(1)} z_{1} Y^{(1)}\right\|_{\mathbb{C}}+\left\|\frac{1}{2}{ }^{t} x^{(2)} \tau_{2} x^{(2)}+{ }^{t} x^{(2)} z_{2} Y^{(2)}\right\|_{\mathbb{C}}\right. \\
& \left.+\left\|\frac{1}{2} t^{(1)} \tau_{1} x^{(1)}+{ }^{t} x^{(1)} z_{1} Y^{(1)}\right\|_{\overline{\mathbb{C}}}+\left\|\frac{1}{2} t^{t(2)} \tau_{2} x^{(2)}+{ }^{t} x^{(2)} z_{2} Y^{(2)}\right\|_{\overline{\mathbb{C}}}\right], \\
& =\sum_{x \in \frac{1}{\sqrt{\sqrt{2}} \tilde{h}^{-1}(C)}} e\left[\left\|\frac{1}{2}{ }^{t} x^{(1)} \tau_{1} x^{(1)}+{ }^{t} x^{(1)} z_{1} Y^{(1)}\right\|_{\mathbb{C}}+\left\|\frac{1}{2}{ }^{t} x^{(2)} \tau_{2} x^{(2)}+{ }^{t} x^{(2)} z_{2} Y^{(2)}\right\|_{\mathbb{C}}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\left\|\frac{1}{2}{ }^{t} x^{(1)} \tau_{1} x^{(1)}+{ }^{t} x^{(1)} z_{1} Y^{(1)}\right\|_{\overline{\mathbb{C}}}+\left\|\frac{1}{2}{ }^{t} x^{(2)} \tau_{2} x^{(2)}+{ }^{t} x^{(2)} z_{2} Y^{(2)}\right\|_{\overline{\mathbb{C}}}\right], \\
& =\sum_{v \in C} \sum_{x \in \frac{1}{\sqrt{2}} \tilde{h}^{-1}(v)} e\left[\left\|\frac{1}{2} x^{t} x^{(1)} \tau_{1} x^{(1)}+{ }^{t} x^{(1)} z_{1} Y^{(1)}\right\|_{\mathbb{C}}+\left\|\frac{1}{2} x^{t} x^{(2)} \tau_{2} x^{(2)}+{ }^{t} x^{(2)} z_{2} Y^{(2)}\right\|_{\mathbb{C}}\right. \\
& \left.+\left\|\frac{1}{2}{ }^{t} x^{(1)} \tau_{1} x^{(1)}+{ }^{t} x^{(1)} z_{1} Y^{(1)}\right\|_{\overline{\mathbb{C}}}+\left\|\frac{1}{2}{ }^{t} x^{(2)} \tau_{2} x^{(2)}+{ }^{t} x^{(2)} z_{2} Y^{(2)}\right\|_{\overline{\mathbb{C}}}\right], \\
& =\sum_{v \in C} \prod_{\mu \in R} \omega_{1, \mu}(\vec{\tau}, \vec{z})^{n_{\mu}(v)}, \\
& =c w e_{C}\left(\omega_{1, \mu}(\vec{\tau}, \vec{z}) \mid \mu \in O_{K} / 2 O_{K}\right) ;
\end{aligned}
$$

the fourth equation is from (3.1), where $n_{\mu}(v):=\left|\left\{j: v_{j}=\mu\right\}\right|$ for each $\mu \in O_{K} / 2 O_{K}$. The result is proved.

We fix an O_{K}-basis $\left\{v_{1}, \ldots, v_{n}\right\}$ for a lattice Λ, and set L to be an $n \times n$-matrix $\left(v_{1}, \ldots, v_{n}\right)$. The matrix $Q:={ }^{t} L L$ is a symmetric matrix, and $Q^{(j)}:={ }^{t} L_{j} L_{j}$, where $L_{j}=\left(v_{1}^{(j)}, \ldots, v_{n}^{(j)}\right)$ for $1 \leq j \leq n$. Morevoer, $Q^{(j)}$ is positive definite for $1 \leq j \leq r_{1}$.

In [24], for $b \in O_{K}^{n}$, the function $\theta_{Q, b}(\vec{\tau}, \vec{z})$ is defined as

$$
\begin{aligned}
\theta_{Q, b}(\vec{\tau}, \vec{z})= & \sum_{x \in O_{K}^{n}} e\left[\left(\sum_{j=1}^{r_{1}}\left(Q^{(j)}\left[x^{(j)}\right] \tau_{j}+2^{t} x^{(j)} Q^{(j)} b^{(j)} z_{j}\right)+\sum_{j=r_{1}+1}^{r_{1}+r_{2}}\left\|x^{t(j) t} L_{j} \tau_{j} L_{j} x^{(j)}+2^{t} x^{(j) t} L_{j} z_{j} L_{j} b^{(j)}\right\|_{\mathbb{C}}\right.\right. \\
& \left.\left.+\sum_{j=r_{1}+1}^{r_{1}+r_{2}}\left\|t x^{(j) t} L_{j} \tau_{j} L_{j} x^{(j)}+2^{t} x^{(j) t} L_{j} z_{j} L_{j} b^{(j)}\right\|_{\overline{\mathbb{C}}}\right)\right] .
\end{aligned}
$$

The next theorem says that we can obtain a Jacobi form by using a linear code of length n over R.
Theorem 3.2. We use the same notations as above. Let C be a linear code of length n over R, and b an element of $\mathbb{Z}[\alpha, i]^{n}$ with $\alpha=(1+\sqrt{5}) / 2$. Then we get a Jacobi form of weight $\frac{n}{2}$, index $4 n$ and index vector $(2, \ldots, 2)$ as follows:

$$
\sum_{\substack{p_{1}^{2}+q_{1}^{2}+\cdots+p_{n}^{2}+q_{n}^{2}=4 n \\ p_{\ell} \neq 2, q_{\ell}=0 \text { for all } 1 \leq \ell \leq n}} \theta_{Q, b}(\vec{\tau}, \vec{z})+c w e_{C}\left(\omega_{1, \mu}(4 \vec{\tau}, 4 \vec{z}) \mid \mu \in O_{K} / 2 O_{K}\right),
$$

where $L b=\left(p_{1}+q_{1} \alpha, \ldots, p_{n}+q_{n} \alpha\right) \in \mathbb{Z}[\alpha]^{n}$ (in particular, $\omega_{1, \mu}(\vec{\tau}, \vec{z})$ is introduced in Theorem 3.1).
Proof. First, we claim that $L b$ is in $\mathbb{Z}[\alpha]^{n}$. We set an n-tuple $L b=\left(t_{1}, \ldots, t_{n}\right)$ satisfying ${ }^{t}(L b) L b=$ $t_{1}^{2}+\cdots+t_{n}^{2}=4 n$, and ${ }^{\bar{t}(L b)} L b=\left|t_{1}\right|^{2}+\cdots+\left|t_{n}\right|^{2}=4 n$; the ℓ-th component t_{ℓ} can be written as $p_{\ell}+q_{\ell} \alpha+r_{\ell} i+s_{\ell} \alpha i$, where $p_{\ell}, q_{\ell}, r_{\ell}, s_{\ell} \in \mathbb{Z}(1 \leq \ell \leq n)$. It means that

$$
\begin{align*}
\left(p_{1}+q_{1} \alpha+r_{1} i+s_{1} \alpha i\right)^{2}+\cdots+\left(p_{n}+q_{n} \alpha+r_{n} i+s_{n} \alpha i\right)^{2} & =4 n, \tag{3.2}\\
\left(p_{1}+q_{1} \alpha\right)^{2}+\left(r_{1}+s_{1} \alpha\right)^{2}+\cdots+\left(p_{n}+q_{n} \alpha\right)^{2}+\left(r_{n}+s_{n} \alpha\right)^{2} & =4 n . \tag{3.3}
\end{align*}
$$

Let σ be the complex embedding of K such that $\sigma: \sqrt{5} \mapsto-\sqrt{5}$ and $i \mapsto i$. Applying σ to (3.3), we have $\left(p_{1}+q_{1} \sigma(\alpha)\right)^{2}+\left(r_{1}+s_{1} \sigma(\alpha)\right)^{2}+\cdots+\left(p_{n}+q_{n} \sigma(\alpha)\right)^{2}+\left(r_{n}+s_{n} \sigma(\alpha)\right)^{2}=4 n$. It follows that

$$
\begin{equation*}
\left(\alpha p_{1}-q_{1}\right)^{2}+\left(\alpha r_{1}-s_{1}\right)^{2}+\cdots+\left(\alpha p_{n}-q_{n}\right)^{2}+\left(\alpha r_{n}-s_{n}\right)^{2}=4 n \alpha^{2}=4 n+4 n \alpha . \tag{3.4}
\end{equation*}
$$

We get that combining (3.3) and (3.4), we see that

$$
p_{1}^{2}+q_{1}^{2}-r_{1}^{2}-s_{1}^{2}+\cdots+p_{n}^{2}+q_{n}^{2}-r_{n}^{2}-s_{n}^{2}=4 n=p_{1}^{2}+q_{1}^{2}+r_{1}^{2}+s_{1}^{2}+\cdots+p_{n}^{2}+q_{n}^{2}+r_{n}^{2}+s_{n}^{2} ;
$$

the first equality is obtained by expanding (3.2), and the second equality is from combining (3.3) and (3.4). Thus $r_{\ell}=s_{\ell}=0$ since $r_{\ell}, s_{\ell} \in \mathbb{Z}$ for $\ell=1, \ldots, n$. Hence we proved the first claim.

By using [24, p. 41], we can say that

$$
\sum_{\begin{array}{c}
b \in \mathbb{Z}[\alpha, i]^{n} \\
\left.+q_{1} \alpha \ldots, p_{n}+q_{n}\right) \in \mathbb{Z}[\alpha]^{n}, \\
+q_{1}^{2}+\cdots+p_{n}^{2}+q_{n}^{2}=4 n
\end{array}} \theta_{Q, b}(\vec{\tau}, \vec{z})
$$

is a Jacobi form of weight $\frac{n}{2}$, index $4 n$ and index vector $(2, \ldots, 2)$.
Next, when $L b=(2, \ldots, 2), \theta_{Q, L^{-1}(2, \ldots, 2)}(\vec{\tau}, \vec{z})$ is obtained from the complete weight enumerator of the code C; in this case, the condition $p_{1}^{2}+q_{1}^{2}+\cdots+p_{n}^{2}+q_{n}^{2}=4 n$ is satisfied. In detail, we have that

$$
\Theta_{\Lambda(C), \sqrt{2}(1, \ldots, 1)}(4 \vec{\tau}, 4 \vec{z})=\Theta_{\tilde{h}^{-1}(C),(2, \ldots, 2)}(2 \vec{\tau}, 2 \vec{z})=\theta_{Q, L^{-1}(2, \ldots, 2)}(\vec{\tau}, \vec{z}),
$$

where $b=L^{-1}(2, \ldots, 2)$; the first equation can be checked easily, and the second equation follows by the below reasoning

$$
\begin{aligned}
& \Theta_{\tilde{h}}{ }^{-1}(C),(2, \ldots, 2) \\
&= \sum_{\left.x \in \vec{\tau}^{-1}, 2 \vec{z}\right)} e\left[\left(\sum_{j=1}^{r_{1}} x^{t} x^{(j)} x^{(j)} \tau_{j}+2^{t} x^{(j)} Y^{(j)} z_{j}+\sum_{j=r_{1}+1}^{r_{1}+r_{2}}\left\|x^{t} x^{(j)} \tau_{j} x^{(j)}+2^{t} x^{(j)} z_{j} Y^{(j)}\right\|_{\mathbb{C}}\right.\right. \\
&\left.\left.+\sum_{j=r_{1}+1}^{r_{1}+r_{2}}\| \|^{t} x^{(j)} \tau_{j} x^{(j)}+2^{t} x^{(j)} z_{j} Y^{(j)} \|_{\bar{C}}\right)\right], \\
&= \sum_{x \in O_{K}^{n}} e\left[\left(\sum_{j=1}^{r_{1}}{ }^{t} x^{(j) t} L_{j} L_{j} x^{(j)} \tau_{j}+2^{t} x^{(j) t} L_{j} L_{j} b^{(j)} z_{j}+\sum_{j=r_{1}+1}^{r_{1}+r_{2}}\left\|x^{t} x^{(j) t} L_{j} \tau_{j} L_{j} x^{(j)}+2^{t} x^{(j) t} L_{j} z_{j} L_{j} b^{(j)}\right\|_{\mathbb{C}}\right.\right. \\
&\left.\left.+\sum_{j=r_{1}+1}^{r_{1}+r_{2}}\left\|x^{t} x^{(j) t} L_{j} \tau_{j} L_{j} x^{(j)}+2^{t} x^{(j) t} L_{j} z_{j} L_{j} b^{(j)}\right\|_{\bar{C}}\right)\right], \\
&= \sum_{x \in O_{K}^{n}} e\left[\left(\sum_{j=1}^{r_{1}} Q^{(j)}\left[x^{(j)}\right] \tau_{j}+2^{t} x^{(j)} Q^{(j)} b^{(j)} z_{j}+\sum_{j=r_{1}+1}^{r_{1}+r_{2}}\left\|t x^{(j) t} L_{j} \tau_{j} L_{j} x^{(j)}+2^{t} x^{(j) t} L_{j} z_{j} L_{j} b^{(j)}\right\|_{\mathbb{C}}\right.\right. \\
&\left.\left.+\sum_{j=r_{1}+1}^{r_{1}+r_{2}}\| \|^{t} x^{(j) t} L_{j} \tau_{j} L_{j} x^{(j)}+2^{t} x^{(j) t} L_{j} z_{j} L_{j} b^{(j)} \|_{\bar{C}}\right)\right], \\
&= \theta_{Q, L^{-1}(2, \ldots, 2)}(\vec{\tau}, \vec{z})
\end{aligned}
$$

(here $Y=(2, \ldots, 2)$). This implies the second claim, thus this is the result here.
We close this section with an examlple.

Example 3.3. Let C be the linear code over R of length 2 generated by the following 1×2 matrix

$$
\left(\begin{array}{ll}
\alpha & 1+\alpha+i
\end{array}\right)
$$

(here $\alpha=(1+\sqrt{5}) / 2$). By using Table 1, we can check that the code C is a Type II code over R. Meanwhile, $\tilde{h}^{-1}(C)$ is generated by $(\alpha, 1+\alpha+i),(2,0)$ and $(0,2)$ over O_{K}. And then $\{(\alpha, 1+\alpha+i),(0,2)\}$ is a basis for $\tilde{h}^{-1}(C)$; since $(\alpha, 1+\alpha+i)$ and $(0,2)$ are linearly independent over O_{K}, and $(2,0)=$ $(-2+2 \alpha)(\alpha, 1+\alpha+i)+(-\alpha+i-\alpha i)(0,2)$. Thus the matrix L is obtained as

$$
L=\left(\begin{array}{cc}
\alpha & 0 \\
1+\alpha+i & 2
\end{array}\right),
$$

and the matrix $Q={ }^{t} L L$. We note that

$$
L^{-1}=\frac{1}{2 \alpha}\left(\begin{array}{cc}
2 & 0 \\
-1-\alpha-i & \alpha
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}
2 \alpha-2 & 0 \\
-\alpha+i-\alpha i & 1
\end{array}\right) .
$$

As a result, by Theorem 3.2, we have a Jacobi form of weight 1, index 8 and index vector $(2,2)$ as follows:

$$
\begin{aligned}
& \sum_{\substack{b \in \mathbb{Z}[\alpha, i]^{2},+q_{1} \alpha, p_{2}+q_{2} \alpha \\
\hline}} \theta_{Q, b}(\vec{\tau}, \vec{z})=\sum_{\substack{\left.p_{1}, q_{1},\right]_{2}, q_{2} \in \mathbb{Z} \\
p_{1}^{2}+q_{1}^{2}+p_{2}^{2}+q_{2}^{2}=8}} \theta_{Q, L^{-1}\binom{p_{1}+q_{1} \alpha}{p_{2}+q_{2} \alpha}}(\vec{\tau}, \vec{z}) \\
& p_{1}^{2}+q_{1}^{2}+p_{2}^{2}+q_{2}^{2}=8 \\
& \left.=\theta_{Q, \frac{1}{2}\left(\begin{array}{cc}
2 \alpha-2-2 & 0 \\
-\alpha+i-\alpha i & 1
\end{array}\right)(\pm 2 \pm 2 \alpha}(\vec{\tau}, \vec{z})+\theta_{Q, \frac{1}{2}\left(\begin{array}{c}
2 \alpha-2 \\
-\alpha+i-\alpha i
\end{array}\right.} \begin{array}{l}
1 \\
0
\end{array}\right)(\pm 2)(\vec{\tau}, \vec{z}) \\
& \left.+\theta_{Q, \frac{1}{2}\left(\begin{array}{cc}
2 \alpha-2 \\
-\alpha+i-\alpha i & 0
\end{array}\right)\left(\begin{array}{c}
\pm 2 \alpha \\
\pm 2 \alpha
\end{array}\right.}(\vec{\tau}, \vec{z})+\theta_{Q, \frac{1}{2}\left(\begin{array}{c}
2 \alpha-2 \\
-\alpha+i-\alpha i
\end{array}\right.} \begin{array}{l}
0 \\
1
\end{array}\right)(\pm 2 \alpha)(\vec{\tau}, \vec{z}) \\
& \left.\left.+\theta_{Q, \frac{1}{2}\left(\begin{array}{c}
2 \alpha-2 \\
-\alpha+i-\alpha i
\end{array}{ }^{0}\right)(\pm 2 \alpha)}(\vec{\tau}, \vec{z})+\theta_{Q, \frac{1}{2}\left(\begin{array}{c}
2 \alpha-2 \\
-\alpha+i-\alpha i
\end{array}\right.}{ }^{0}\right)_{(\pm 2 \pm 2 \alpha}\right)(\vec{\tau}, \vec{z}), \\
& =c w e_{C}\left(\omega_{1, \mu}(4 \vec{\tau}, 4 \vec{z}) \mid \mu \in O_{K} / 2 O_{K}\right)+\theta_{Q, b_{1}}(\vec{\tau}, \vec{z})+\theta_{Q, b_{2}}(\vec{\tau}, \vec{z}) \\
& +\theta_{Q, b_{3}}(\vec{\tau}, \vec{z})+\theta_{Q, b_{4}}(\vec{\tau}, \vec{z})+\theta_{Q, b_{5}}(\vec{\tau}, \vec{z})+\theta_{Q, b_{6}}(\vec{\tau}, \vec{z})+\theta_{Q, b_{7}}(\vec{\tau}, \vec{z}),
\end{aligned}
$$

where $b_{1}=\left(\begin{array}{cc}2 \alpha-2 & 0 \\ -\alpha+i-\alpha i & 1\end{array}\right)\binom{ \pm 1 \pm \alpha}{0}, b_{2}=\left(\begin{array}{cc}2 \alpha-2 & 0 \\ -\alpha+i-\alpha i & 1\end{array}\right)\binom{-1}{-1}, b_{3}= \pm\left(\begin{array}{cc}2 \alpha-2 & 0 \\ -\alpha+i-\alpha i & 1\end{array}\right)\binom{1}{-1}$,

$$
\left(\text { in detail }, \theta_{Q, \frac{1}{2}\binom{2 \alpha-2-\alpha i}{2}\left(\frac{2}{2}\right)}(\vec{\tau}, \vec{z}) \text { term is equal to cwe } C_{C}\left(\omega_{1, \mu}(4 \vec{\tau}, 4 \vec{z}) \mid \mu \in O_{K} / 2 O_{K}\right)\right) \text {. }
$$

4. Invariants via a self-dual code over R

In this section, we study invariants by using self-dual codes over R. First, we give definition for some weight enumerators in higher genus $g \geq 1$.
Definition 4.1. Let C be a code of length n over R.
(i) The complete weight enumerator in genus g is

$$
\text { cwe }_{C, g}\left(x_{a} \text { with } a \in R^{g}\right):=\sum_{c_{1}, \ldots, c_{g} \in C} \prod_{a \in R^{s}} x_{a}^{n_{a}\left(c_{1}, \ldots, c_{g}\right)},
$$

where $n_{a}\left(c_{1}, \ldots, c_{g}\right)$ is the number of i such that $a={ }^{t}\left(c_{1 i}, \ldots, c_{g i}\right)$.
(ii) The symmetrized weight enumerator in genus g is

$$
\text { swe }_{C, 8}\left(x_{[a]} \text { with }[a] \in S^{g}\right):=\sum_{c_{1}, \ldots c_{g} \in C} \prod_{[a] \in S^{g}} x_{[a]}^{n_{[a]}\left(c_{1}, \ldots c_{g}\right)},
$$

where S is the set introduced in Section 2, and $n_{[a]}\left(c_{1}, \ldots, c_{g}\right)$ is the number of i satisfying $[a]=$ $\left[{ }^{t}\left(c_{1 i}, \ldots, c_{g i}\right)\right]$.

The following lemma says the MacWilliams identity for linear codes over R. For this, we give that an $n \times n$ matrix $M=\left(m_{i j}\right)$ over \mathbb{C} acts on $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ as follows:

$$
M \cdot h\left(x_{1}, \ldots, x_{n}\right)=h\left(\sum_{1 \leq i \leq n} m_{1 i} x_{i}, \ldots, \sum_{1 \leq i \leq n} m_{n i} x_{i}\right),
$$

where $h\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$.
As we mentioned before, the ring R is a finite commutative local Frobenius ring of order 16. We note that the generating character χ of $R \cong \mathbb{F}_{2}[u, v] /\left\langle v^{2}+v+1, u^{2}\right\rangle$ is

$$
\chi(a+b u+c v+d u v):=(-1)^{a+b+c+d}
$$

where $a, b, c, d \in \mathbb{F}_{2}$.
Lemma 4.2 is about the MacWilliams identity for a linear code over R with weight enumerators in genus g. We recall that S is a set of representatives of the distinct orbits of a fixed unit subgroup U in R.

Lemma 4.2. Let C be a linear code of length n over R, and χ be the generating character of R. Let a_{i} (resp. b_{j}) be an element of $R($ resp. S) with any ordering for $1 \leq i \leq N(r e s p .1 \leq j \leq|S|)$.
(i) Let T_{1} be a $N \times N$-matrix such that ($\left.i, j\right)$-th component of T_{1} is $\chi\left(a_{i} a_{j}\right)$ with $1 \leq i, j \leq N$. For complete weight enumerator, we have

$$
\operatorname{cwe}_{C^{\perp}, g}\left(x_{a}\right)=\frac{1}{|C|^{g}}\left(\stackrel{g}{\bigotimes} T_{1}\right) \cdot c w e_{C, g}\left(x_{a}\right) .
$$

(ii) Let T_{2} be a $|S| \times|S|$-matrix such that (i, j)-th component of T_{2} is $\sum_{a^{\prime} \in \tau} T_{a, a^{\prime}}$, where $[a]=b_{i}$ and $\tau=\left\{a^{\prime} \in R: a^{\prime} \approx b_{j}\right\}$. For symmetrized weight enumerator, we get

$$
\operatorname{swe}_{C^{\perp}, g}\left(x_{[a]}\right)=\frac{1}{|C|^{g}}\left(\stackrel{g}{\bigotimes}_{\bigotimes} T_{2}\right) \cdot s w e_{C, g}\left(x_{[a]}\right) .
$$

Proof. We give an equivalence relation as $a \approx b$ if $a=b u$, where $u \in U$, and U is a unit subgroup in R. By the equivalence relation, the generating character for the ring R, and [28, Theorem 8.4], we obtain the result.

For an arbitrary unit subgroup for the ring R, we can suggest a symmetrized weight enumerator for a code over R. In the following remark, we show a symmterized weight enumerator and MacWilliams identity for a certain unit group of R.

Remark 4.3. Let U be a subgroup of the unit group of R. There are eight subgroups of the unit group of R. For example, let $U=\langle\omega\rangle$. Then we get the set $S=\{0,1, u, 1+u, 1+\omega u, u+\omega\}$ which is the set of representatives of the distinct orbits of U. We note that the equivalence classes are $[0]=\{0\},[1]=\{1, \omega, 1+\omega\},[u]=\{u, \omega u, u+\omega u\},[1+u]=\{1+u, \omega+\omega u, 1+\omega+u+\omega u\}$, $[1+\omega u]=\{1+\omega u, \omega+u+\omega u, 1+\omega+u\}$ and $[u+\omega]=\{u+\omega, 1+\omega+\omega u, 1+u+\omega u\}$. The ordering in S is given as $0,1, u, 1+u, 1+\omega u, u+\omega$. In this case, we obtain the following matrix T_{2} as follows:

$$
T_{2}=\left(\begin{array}{cccccc}
1 & 3 & 3 & 3 & 3 & 3 \\
1 & -1 & -1 & 3 & -1 & -1 \\
1 & -1 & 3 & -1 & -1 & -1 \\
1 & 3 & -1 & -1 & -1 & -1 \\
1 & -1 & -1 & -1 & -1 & 3 \\
1 & -1 & -1 & -1 & 3 & -1
\end{array}\right)
$$

For the genus $g=1$, the MacWilliams identity for a linear code C of length n over R is

$$
\operatorname{swe}_{C^{\perp}}\left(x_{[0]}, x_{[1]}, x_{[u]}, x_{[1+u]}, x_{[1+\omega u]}, x_{[u+\omega]}\right)=\frac{1}{|C|} \operatorname{swe}_{C}\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}, y_{6}\right),
$$

where

$$
\begin{aligned}
& y_{1}=x_{[0]}+3 x_{[1]}+3 x_{[u]}+3 x_{[1+u]}+3 x_{[1+\omega u]}+3 x_{[u+\omega]}, \\
& y_{2}=x_{[0]}-x_{[1]}-x_{[u]}+3 x_{[1+u]}-x_{[1+\omega u]}-x_{[u+\omega]}, \\
& y_{3}=x_{[0]}-x_{[1]}+3 x_{[u]}-x_{[1+u]}-x_{[1+\omega u]}-x_{[u+\omega]}, \\
& y_{4}=x_{[0]}+3 x_{[1]}-x_{[u]}-x_{[1+u]}-x_{[1+\omega u]}-x_{[u+\omega]}, \\
& y_{5}=x_{[0]}-x_{[1]}-x_{[u]}-x_{[1+u]}-x_{[1+\omega u]}+3 x_{[u+\omega]}, \\
& y_{6}=x_{[0]}-x_{[1]}-x_{[u]}-x_{[1+u]}+3 x_{[1+\omega u]}-x_{[u+\omega]},
\end{aligned}
$$

$x_{[i]}$ and y_{j} are indeterminates.
Finally, we will show invariants by the complete weight enumerator and symmetrized weight enumerator for a self-dual code over R. First, we define a subgroup G_{g} of $G L\left(N^{g}, \mathbb{C}\right)$ as

$$
G_{g}:=\left\langle M_{g}, M_{J},-I_{N^{g}}: J \text { is any integer symmetric matrix }\right\rangle,
$$

where $M_{g}=\left(\frac{-1}{\sqrt{N}}\right)^{g} \otimes^{g} T_{1}$ and $M_{J}=\operatorname{diag}\left((-1)^{t a J a}\right.$ with $\left.a \in R^{g}\right)$. Similarly, let us a subgroup \hat{G}_{g} of $G L\left(|S|^{g}, \mathbb{C}\right)$ as

$$
\hat{G}_{g}:=\left\langle\hat{M}_{g}, \hat{M}_{J},-I_{|S|}: J \text { is any integer symmetric matrix }\right\rangle,
$$

where $\hat{M}_{g}=\left(\frac{-1}{\sqrt{N}}\right)^{g} \otimes^{g} T_{2}$ and $\hat{M}_{J}=\operatorname{diag}\left((-1)^{t a J a}\right.$ with $\left.a \in S^{g}\right)$.
Especially, for a self-dual code of even length over R, we obtain the result of invariant.
Theorem 4.4. Let C be a self-dual code of even length n over R. The complete weight enumerator cwe $_{C, g}$ of C in genus g is invariant under the action of the group G_{g}. Similarly, the symmetrized weight enumerator swe $C_{, g}$ of C in genus g is invariant under the action of the group \hat{G}_{g}.

Proof. We prove the statement for the complete weight enumerator for the code C. We can easily check that $-I_{n^{8}}$ and M_{g} invariant for $c w e_{C}\left(x_{i}\right)$; first, $-I_{N^{8}} \cdot c w e_{C}\left(x_{i}\right)=c w e_{C}\left(x_{i}\right)$ since $c w e_{C}\left(x_{i}\right)=$
$\sum_{c \in C} x_{i}^{n_{x_{i}}(c)}=\sum_{c \in C}\left((-1) x_{i}\right)^{n_{x_{i}}(c)}$ by $2 \mid n$. Second, $M_{g} \cdot c w e_{C}\left(x_{i}\right)=c w e_{C}\left(x_{i}\right)$ is from the MacWilliams identity Lemma 4.2. Now, we claim that M_{J} is in G_{g}. We note that

$$
\begin{aligned}
M_{J} \cdot c w e_{C}\left(x_{a}\right) & =\sum_{c_{1}, \ldots, c_{g} \in C} \prod_{a \in R^{8}}\left((-1)^{t^{t} a J a} x_{a}\right)^{n_{a}\left(c_{1}, \ldots, c_{g}\right)}, \\
& =\sum_{c_{1}, \ldots, c_{s} \in C} \prod_{a \in R^{s}}(-1)^{{ }^{t} a J a \cdot n_{a}\left(c_{1}, \ldots, c_{g}\right)} x_{a}^{n_{a}\left(c_{1}, \ldots, c_{g}\right)} .
\end{aligned}
$$

In detail,

$$
\begin{aligned}
\sum_{a \in R^{s}}{ }^{t} a J a \cdot n_{a}\left(c_{1}, \ldots, c_{g}\right) & \left.=\sum_{1 \leq i \leq n} J{ }^{t}\left(c_{1 i}, \ldots, c_{g i}\right)\right), \\
& =\sum_{1 \leq i \leq n}\left(\sum_{1 \leq k \leq g} J_{k k}\left(c_{k i}\right)^{2}+2 \sum_{1 \leq l<m \leq g} J_{l m} c_{l i} c_{m i}\right), \\
& =\sum_{1 \leq k \leq g} J_{k k} \sum_{1 \leq i \leq n}\left(c_{k i}\right)^{2}+2 \sum_{1 \leq l<m \leq g} J_{l m} \sum_{1 \leq i \leq n} c_{l i} c_{m i} ;
\end{aligned}
$$

the right hand side value is divisible by 2 since the code C is self-dual over R.
Thus, we have

$$
M_{J} \cdot c w e_{C}\left(x_{a}\right)=\sum_{c_{1}, \ldots, c_{g} \in C} \prod_{a \in R^{8}} x_{a}^{n_{a}\left(c_{1}, \ldots, c_{g}\right)}=c w e_{C}\left(x_{a}\right),
$$

by the above equations. We proved the statement. For symmetrized weight enumerator for C, the proof is similar with the previous case.

If a linear code C is Type II of length n over R, then the length n is automatically even. Thus, we obtain the following corollary.
Corollary 4.5. For a Type II code C of length n over $R, c w e e_{C, g}$ and swe $e_{C, g}$ are invariant under the action of the group G_{g} and \hat{G}_{g}, respectively.
Proof. By Lemma 2.4 (ii), for a Type II code of length n over R, n is even. So by using Theorem 4.4, the result follows.

5. Conclusions

We suggested a Jacobi form from a linear code C over $R:=\mathbb{F}_{4}+u \mathbb{F}_{4}$, where $u^{2}=0$. This Jacobi form is not over totally real field, and it is related to complete weight enumerator of the code C. We introduced MacWilliams identities for both, complete weight enumerator and symmetrized weight enumerator in an arbitrary genus $g \geq 1$ of a linear code over R. Moreover, we presented invariants via a self-dual code of even length over R. In the future work, we can consider another finite ring for linear codes and their various weight enumerators. From these results, we can also establish a new Jacobi form.

Acknowledgments

Boran Kim is a corresponding author and supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2021R1C1C2012517 and NRF2019R1I1A1A01060467). Chang Heon Kim is supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2018R1D1A1B07045618 and 2016R1A5A1008055). Soonhak Kwon is supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2016R1A5A1008055). Yeong-Wook Kwon is supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2018R1D1A1B07045618 and 2020R1A4A1016649).

Conflict of interest

The authors declare no conflict of interest.

References

1. E. Bannai, S. T. Dougherty, M. Harada, M. Oura, Type II codes, even unimodular lattices, and invariant rings, IEEE T. Inform. Theory, 45 (1999), 1194-1205. https://doi.org/10.1109/18.761269
2. E. Bannai, M. Harada, T. Ibukiyama, A. Munemasa, M. Oura, Type II codes over $\mathbb{F}_{2}+u \mathbb{F}_{2}$ and applications to Hermitian modular forms, Abh. Math. Sem. Univ. Hamburg, 73 (2003), 13-42. https://doi.org/10.1007/BF02941267
3. K. Betsumiya, Y. Choie, Jacobi forms over totally real fields and type II codes over Galois rings $G R\left(2^{m}, f\right)$, European J. Combin., 25 (2004), 475-486. https://doi.org/10.1016/j.ejc.2003.01.001
4. K. Betsumiya, Y. Choie, Codes over \mathbb{F}_{4}, Jacobi forms and Hilbert-Siegel modular forms over $\mathbb{Q}(\sqrt{5})$, European J. Combin., 26 (2005), 629-650. https://doi.org/10.1016/j.ejc.2004.04.010
5. K. Betsumiya, S. Ling, F. R. Nemenzo, Type II codes over $\mathbb{F}_{2^{m}}+u \mathbb{F}_{2^{m}}$, Discrete Math., 275 (2004), 43-65. https://doi.org/10.1016/S0012-365X(03)00097-9
6. M. Broué, M. Enguehard, Polynômes des poids de certains codes et fonctions thêta de certains réseaux, Ann. Sci. École Norm. Sup., 5 (1972), 157-181. https://doi.org/10.24033/asens. 1223
7. Y. Choie, S. T. Dougherty, Codes over $\Sigma_{2 m}$ and Jacobi forms over the quaternions, Appl. Algebra Engrg. Comm. Comput., 15 (2004), 129-147. https://doi.org/10.1007/s00200-004-0153-9
8. Y. Choie, S. T. Dougherty, Codes over rings, complex lattices and Hermitian modular forms, European J. Combin., 26 (2005), 145-165. https://doi.org/10.1016/j.ejc.2004.04.002
9. Y. Choie, H. Kim, Codes over $\mathbb{Z}_{2 m}$ and Jacobi forms of genus n, J. Combin. Theory Ser. A, 95 (2001), 335-348. https://doi.org/10.1006/jcta.2000.3168
10. Y. Choie, N. Kim, The complete weight enumerator of Type II codes over $\mathbb{Z}_{2 m}$ and Jacobi forms, IEEE T. Inform. Theory, 47 (2001), 396-399. https://doi.org/10.1109/18.904543
11. Y. Choie, E. Jeong, Jacobi forms over totally real fields and codes over \mathbb{F}_{p}, Illinois J. Math., 46 (2002), 627-643. https://doi.org/10.1215/ijm/1258136214
12. Y. Choie, P. Solé, Ternary codes and Jacobi forms, Discrete Math., 282 (2004), 81-87. https://doi.org/10.1016/j.disc.2003.12.002
13. S. T. Dougherty, Algebraic coding theory over finite commutative rings, Springer, Cham, 2017. https://doi.org/10.1007/978-3-319-59806-2
14. S. T. Dougherty, T. A. Gulliver, M. Harada, Type II self-dual codes over finite rings and even unimodular lattices, J. Algebraic Combin., 9 (1999), 233-250. https://doi.org/10.1023/A:1018696102510
15. I. Duursma, Extremal weight enumerators and ultraspherical polynomials, Discrete Math., 268 (2003), 103-127. https://doi.org/10.1016/S0012-365X(02)00683-0
16. M. Eighler, D. Zagier, The theory of Jacobi forms, Birkhäuser, Boston, MA, 1985. https://doi.org/10.1007/978-1-4684-9162-3
17. A. M. Gleason, Weight polynomials of self-dual codes and the MacWilliams identities, In: Actes du Congrès International des Mathématiciens, Gauthier-Villars, 1971.
18. N. Han, B. Kim, B. Kim, Y. Lee, Infinite families of MDR cyclic codes over \mathbb{Z}_{4} via constacyclic codes over $\mathbb{Z}_{4}[u] /\left\langle u^{2}-1\right\rangle$, Discrete Math., 343 (2020), 111771. https://doi.org/10.1016/j.disc.2019.111771
19. B. Kim, Y. Lee, The minimum weights of two-point AG codes on norm-trace curves, Finite Fields Th. App., 53 (2018), 113-139. https://doi.org/10.1016/j.ffa.2018.06.005
20. B. Kim, Y. Lee, J. Doo, Classification of cyclic codes over a non-Galois chain ring $\mathbb{Z}_{p}[u] /\left\langle u^{3}\right\rangle$, Finite Fields Th. App., 59 (2019), 208-237. https://doi.org/10.1016/j.ffa.2019.06.003
21. S. Ling, P. Solé, Type II codes over $\mathbb{F}_{4}+u \mathbb{F}_{4}$, European J. Combin., 22 (2001), 983-997. https://doi.org/10.1006/eujc.2001.0509
22. O. K. Richter, H. Skogman, Jacobi theta functions over number field, Monatsh. Math., 141 (2004), 219-235. https://doi.org/10.1007/s00605-003-0037-2
23. A. Sharma, A. K. Sharma, Construction of self-dual codes over $\mathbb{Z}_{2^{m}}$, Cryptogr. Commun., 8 (2016), 83-101. https://doi.org/10.1007/s12095-015-0139-4
24. H. Skogman, Jacobi forms over number fields, University of California, San Diego, 1999.
25. H. Skogman, Jacobi forms over totally real number fields, Results Math., 39 (2001), 169-182. https://doi.org/10.1007/BF03322682
26. K. Suzuki, Complete m-spotty weight enumerators of binary codes, Jacobi forms, and partial Epstein zeta functions, Discrete Math., 312 (2012), 265-278. https://doi.org/10.1016/j.disc.2011.09.002
27. K. Suzuki, Complete m-spotty weight enumerators of binary codes, Jacobi forms, and partial Epstein zeta functions, Discrete Math., 312 (2012), 265-278. https://doi.org/10.1016/j.disc.2011.09.002
28. J. A. Wood, Duality for modules over finite rings and applications to coding theory, Am. J. Math., 121 (1999), 555-575. https://doi.org/10.1353/ajm.1999.0024
© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
