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Summary
Background Previous work on predicting type 2 diabetes by integrating clinical and genetic factors has mostly focused
on the Western population. In this study, we use genome-wide polygenic risk score (gPRS) and serum metabolite data
for type 2 diabetes risk prediction in the Asian population.

Methods Data of 1425 participants from the Korean Genome and Epidemiology Study (KoGES) Ansan-Ansung cohort
were used in this study. For gPRS analysis, genotypic and clinical information from KoGES health examinee
(n = 58,701) and KoGES cardiovascular disease association (n = 8105) sub-cohorts were included. Linkage
disequilibrium analysis identified 239,062 genetic variants that were used to determine the gPRS, while the
metabolites were selected using the Boruta algorithm. We used bootstrapped cross-validation to evaluate logistic
regression and random forest (RF)-based machine learning models. Finally, associations of gPRS and selected
metabolites with the values of homeostatic model assessment of beta-cell function (HOMA-B) and insulin
resistance (HOMA-IR) were further estimated.

Findings During the follow-up period (8.3 ± 2.8 years), 331 participants (23.2%) were diagnosed with type 2 diabetes.
The areas under the curves of the RF-based models were 0.844, 0.876, and 0.883 for the model using only
demographic and clinical factors, model including the gPRS, and model with both gPRS and metabolites,
respectively. Incorporation of additional parameters in the latter two models improved the classification by 11.7%
and 4.2% respectively. While gPRS was significantly associated with HOMA-B value, most metabolites had a
significant association with HOMA-IR value.

Interpretation Incorporating both gPRS and metabolite data led to enhanced type 2 diabetes risk prediction by
capturing distinct etiologies of type 2 diabetes development. An RF-based model using clinical factors, gPRS, and
metabolites predicted type 2 diabetes risk more accurately than the logistic regression-based model.
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East Asian
Research in context

Evidence before this study
Polygenic risk score (PRS) can boost up the predictive
performance of type 2 diabetes risk in European ancestries
(Framingham Offspring, and Finnish studies). In addition,
incorporating metabolites can enhance the predictive ability
of incident type 2 diabetes. However, no studies are
conducted on combining both information for predicting
type 2 diabetes risk in non-white ethnicity.

Added value of this study
In the current study, we proposed genome-wide polygenic risk
score (gPRS), which has added value in discriminating the risk of
type 2 diabetes in the Asian population as a genetic factor
beyond clinical information. We also found that serum
metabolites can also modestly improve the risk prediction

accuracy for type 2 diabetes on top of clinical and genetic factors.
We compared a RF-based machine learning model to a widely-
used logistic regression model and the machine learning model
is more effective in terms of gain in predictive powers such as
discrimination performances and reclassification improvements
and also comparable in terms of the interpretability.

Implications of all the available evidence
Our findings support that exploiting machine learning
algorithms with gPRS derived from non-European ethnicity
can enhance the predictive performance of type 2 diabetes
risk. In addition, it can be implied that serum metabolites can
also add values to capture information helpful for predicting
incident type 2 diabetes risk combined with genetic factors in
complementary manners.
Introduction
Type 2 diabetes is a chronic disease characterized by
insulin resistance and beta-cell dysfunction1 that con-
tributes to the development of cardiovascular disease
and increased mortality.2 Globally, 416 million people
were estimated to be affected by type 2 diabetes in 2019,
and the number is expected to reach 630 million by
2040.3 Owing to the large-scale impact of type 2 diabetes
on public health, several reliable risk prediction models
have been developed for early screening and identifica-
tion of individuals at high risk for type 2 diabetes using
medical history, anthropometric measurements, and
laboratory data.4–6 Such predictive models facilitate
timely adoption of appropriate preventive measures
such as incorporating lifestyle modifications or strate-
gies to defer the onset of type 2 diabetes with medica-
tions such as metformin. However, the conventional
type 2 diabetes risk models do not account for genetic
predisposition or subclinical metabolic changes that
precede metabolic impairments; hence, integrative ap-
proaches using polygenic risk score (PRS) or serum
metabolites have been proposed to predict the risk for
type 2 diabetes. Therefore, a new risk-prediction model
using PRS and serum metabolites could improve the
identification of high-risk individuals and reduce the
burden of type 2 diabetes.7,8

PRS, generated from genetic variant data associated
with type 2 diabetes risk, not only predicts the future
risk for type 2 diabetes, but also improves the conven-
tional type 2 diabetes risk models. The Framingham
Offspring and Finnish studies reported that
incorporating PRS, calculated from dozens to hundreds
of genetic variants with genome-wide significance level,
to a clinical type 2 diabetes risk prediction model
modestly improved its performance9,10; however, this
combination of PRS with clinical data did not enhance
the performance of models built based on data from
Asian populations.11–14 Recently, genome-wide PRS
(gPRS), which includes genetic variants with a lower
threshold than the genome-wide association signal
proposed by Purcell,15 has gained popularity in predict-
ing type 2 diabetes risk due to its enhanced performance
compared to that of PRS.

Data of several metabolites, including branched-chain
amino acids (BCAA),16–18 aromatic amino acids,18,19

glutamine-to-glutamate ratio,20 and lipid species such as
acylcarnitines21 and phosphatidylcholines,22–24 are also
associated with type 2 diabetes risk-prediction along with
gPRS and clinical factors. The incorporation of metabo-
lite data as attributes improved type 2 diabetes risk pre-
diction models in previous studies.16–19,21 The utility of
incorporating genomic or metabolomic data for type 2
diabetes risk prediction has been demonstrated.25

Further, the Framingham Offspring Study (FOS) re-
ported slightly enhanced predictive performance when
both types of information were used concurrently, thus
capturing the information on insulin secretion and
resistance in a complementary manner.25 The theoretical
basis of this pioneering study stemmed from the hy-
pothesis that genetic information is primarily associated
with beta-cell function,25,26 whereas metabolite measure-
ments were more closely related to insulin resistance.18,20
www.thelancet.com Vol 86 December, 2022
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However, due to the limited availability of cohort studies
including genetic and metabolite data, the cumulative
effect of genomic and metabolomic information with
clinical variables in type 2 diabetes risk prediction has not
been validated. Therefore, our study tries to validate the
theoretical hypothesis presented by the Caucasian
ancestry in the Asian population by using enriched data
containing both genetic and metabolite components
collected from a considerable Korean population over a
long time period. Furthermore, to confirm the predictive
ability of gPRS rigorously, we designed gPRS from
another representative cohort. Finally, we estimated the
predictive ability of gPRS and metabolites on top of
clinical factors for discriminating incident type 2 dia-
betes. A machine learning technique is adopted to
enhance the predictive performance of risk prediction
models and we compared their performances with that of
the existing statistical model.
Methods
Study design and participants
The Ansan and Ansung study of the Korean Genome
and Epidemiology Study (KoGES) is a population-based
prospective cohort study that included urban (Ansan)
and rural (Ansung) Korean participants aged between 40
and 69 years.23 The study recorded demographic vari-
ables, health status, medical history, and information on
biochemical variables, genotype, and metabolites of
the participants. The baseline survey was conducted in
2001–2002, and follow-up surveys were conducted
biennially for 14 years. However, as metabolites were
measured only from 2005 to 2006, we filtered the data to
include only 7515 individuals who participated in the
KoGES from 2005 to 2006 as the baseline data; the
follow-up was conducted until 2015–2016. Participants
with self-reported type 2 diabetes, on type 2 diabetes
medications, or meeting the American Diabetes Asso-
ciation diagnostic criteria (fasting glucose (GLU0)
≥7.0 mmol/L, 2-h glucose ≥11.1 mmol/L, or glycated
hemoglobin (HbA1c) ≥48 mmol/mol (6.5%))27 were
defined as patients with type 2 diabetes. Among these
participants, we selected 1905 participants with infor-
mation on type 2 diabetes diagnosis, serum glucose,
HbA1c, genotype, and metabolites for baseline exami-
nations. We excluded 480 participants for the following
reasons: diagnosed with type 2 diabetes at baseline
(n = 415) and missing information on serum glucose,
HbA1c, or other covariates (n = 65). Eventually, 1425
participants were included in the analysis. The flowchart
for type 2 diabetes cohort selection is illustrated in
Supplementary Fig. S1.
Data statement
Due to the regulations on exploiting private information
of participants of KoGES study, the data used in this
www.thelancet.com Vol 86 December, 2022
study is only accessible with consent from Korea
Biobank.
Measurements
We selected 12 significant risk factors (P < 0.10) that had
been included in type 2 diabetes risk prediction models
in previous studies for the present correlation or predic-
tion analysis of type 2 diabetes risk: age,6,9–13,25 body mass
index (BMI),6,9–13,25 sex,6,9–13,25 hypertension (HTN),6,9–12,25

family history of type 2 diabetes,6,9–12,25 smoking
status,6,9–15,25 total alcohol consumption (TAC),13,25 and
biochemical variables such as HbA1c, GLU0, high-
density lipoprotein (HDL) cholesterol, triacylglycerol
(TG), and total cholesterol (TC).6,9–15,25 Individuals with
systolic blood pressure ≥140 mmHg, diastolic blood
pressure ≥90 mmHg, or currently on HTN medication
were defined as having HTN. A family history of type 2
diabetes was defined as having a first-degree relative who
had been previously diagnosed with type 2 diabetes. In-
dividuals based on smoking status were classified into
three groups: never-, former-, and current-smoker. TAC
was calculated by multiplying alcohol consumption fre-
quency with amounts consumed per occasion.
Construction of ethnic-specific gPRS
We combined two population-based prospective cohorts,
the KoGES health examinee (HEXA) study and the
KoGES cardiovascular disease association study
(CAVAS), consisting of South Korean adults aged ≥40
years at baseline to construct the ethnic-specific gPRS.23

KoGES HEXA study and KoGES CAVAS started in 2001
and 2004, comprising 58,701 and 8105 individuals with
genotypic and clinical information, respectively. Among
the 66,806 participants, we excluded 13 participants due
to missing information on type 2 diabetes diagnosis,
GLU0, HbA1c, or other covariates. Therefore, 66,793
participants were included in the analysis.

Genotyping was performed using the Korea Biobank
Array (KoreanChip). The array comprised ≥833,300
markers, including ≥247,000 rare-frequency or func-
tional variant markers.28 We phased the genotype data
using ShapeITv2 and imputed phased genotype data
using IMPUTEv2 with the 1000 Genomes Project Phase
3 East Asians (1KG EAS) data as a reference panel.29

SNPs were excluded based on the following criteria:
call rates <95%, minor allele frequency <1%, and
imputation quality score <0.8. In addition, we excluded
SNPs that were below the P-value threshold
(P < 1 × 10−6) from the Hardy–Weinberg equilibrium in
the data. In total, 7,104,359 variants passed the quality
criteria and were used in the analysis. Genome-wide
type 2 diabetes-susceptible loci were identified using
logistic regression (LR) analysis assuming the additive
mode of inheritance in both KoGES HEXA and KoGES
CAVAS studies. Age, sex, area of residence, and BMI
3
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were adjusted as covariates for the analysis. Based on
the Bonferroni correction, the significance threshold of
genome-wide association with type 2 diabetes was
defined as P < 5 × 10−8, and the threshold of false-
positive error was set at 0.05. The effect sizes and
standard errors calculated by LR of both genome-wide
association studies (GWASs) were combined using the
fixed-effect inverse-variance weighted average method in
a meta-analysis using PLINK (https://www.cog-
genomics.org/plink/) (Supplementary Fig. S2). The re-
sults of genome-wide meta-analysis of type 2 diabetes is
presented in Supplementary Fig. S3.

The risk alleles weighted by taking logarithm of the
odds ratio (OR) from the LR analysis were added to
calculate gPRS. Linkage disequilibrium (LD)-based
clumping was used to obtain the strongest signals and to
prune out the weaker ones in the LD block based on
the following criteria: GWAS meta-analysis P-value
threshold for single nucleotide polymorphism (SNP) is
0.2, LD threshold for clumping (r2) is 0.1, and the
genomic distance for clumping is 250 kilobase (kb).
Finally, a total of 239,062 SNPs were scored to construct
gPRS. The circus plot to estimate the density of tagged
SNPs around the known T2D-related genes was gener-
ated using R package (version 4.1.0.). We investigated
the effects of gPRS on type 2 diabetes prediction by
analyzing the gPRS distribution of the study participants
and the change in the incidence ratio of type 2 diabetes.
Serum metabolite measurements and selection of
variables
We measured 186 serum metabolites (40 acylcarnitines,
21 amino acids, 19 biogenic amines, 1 hexose, 90 glyc-
erophospholipids, and 15 sphingolipids) using the
AbsoluteIDQ® p180 kit. To ensure accurate measure-
ment of the metabolites, the following quality control
criteria were adopted: (a) variation coefficient for each
metabolite in the reference range <25%, (b) half of the
analyzed metabolite levels in the reference range >limit
of detection (LoD), and (c) half of the analyzed metab-
olite levels in the experimental samples >LoD.22 Finally,
135 metabolites (13 acylcarnitines, 21 amino acids, 10
biogenic amines, 1 hexose, 78 glycerophospholipids,
and 12 sphingolipids) were used to predict type 2 dia-
betes risk.

Considering high dimensionality of metabolites,
Boruta algorithm,30 where the mean decrease impurity
(MDI) of each variable is iteratively estimated and a
subset of variables is selected based on the statistically
significant MDI values, was used to select essential
variables, and elicit improved prediction in the models.
The Boruta selection method was incorporated in the
100-times repeated 10-fold cross-validation (CV) to reduce
possible bias when estimating variable importance.31

Thus, 15 serum metabolites (spermine, hexose, isoleu-
cine, valine, phosphatidylcholine acyl-alkyl (PC ae) C34:3,
PC ae C36:3, PC ae C42:0, PC ae C42:1, PC ae C42:4, PC
ae C44:6, PC aa C40:5, lysoPC a C18:2, glycine, alanine,
and leucine) were consistently selected as accepted or
tentative variables by the Boruta algorithm.32 The impor-
tance of the corresponding metabolite variable extracted
from the variable selection procedure is depicted in
Supplementary Fig. S4. Meanwhile, we conducted addi-
tional sensitivity analysis by adding tyrosine, phenylala-
nine, and glutamine to the metabolite list. These
metabolites were selected based on a previous meta-
analysis of prospective studies33 and used to evaluate if
their inclusion enhanced prediction of type 2 diabetes.
Statistical and machine learning analyses
Baseline characteristics of patients with type 2 diabetes
were compared with those of patients with non-type 2
diabetes using the Mann–Whitney U-test for quanti-
tative variables and the χ2-test for qualitative variables.
We also looked for any differences in the characteris-
tics of the uncensored and censored participants.
During pre-processing before model building, all
qualitative variables (gender, HTN, family history,
smoking status) were one-hot encoded, and remaining
numerical variables were standardized using mean and
standard deviation values calculated from training
samples to be zero-centered with standard deviation 1
(i.e., z-scoring).

We applied LR with four different sets of indepen-
dent variables for predicting incident type 2 diabetes, the
dependent variable. Based on the risk factors involved,
the four primary type 2 diabetes risk prediction models
were denoted as model 1, 2, 3, and 4. Model 1 contained
demographic variables and medical history such as sex,
age, HTN, BMI, family history of type 2 diabetes,
smoking, and TAC. Model 2 additionally included clin-
ical variables: HbA1c, GLU0, TC, HDL, and TG. Model
3 consisted of demographic, clinical, and genetic vari-
ables, plus gPRS. Lastly, model 4 incorporated the data
of selected metabolites in addition to the variables in
model 3. To learn more complex, non-linear patterns
inherent in the data, we conducted an additional anal-
ysis using a machine learning algorithm, RF. RF is a
prediction algorithm based on aggregation of a set of
multiple decision trees generated by bootstrap sam-
pling.34 Note that all the listed variables were input
equally to both LR and RF for a fair comparison. To
accurately measure the bias and variance of each model,
we conducted an internal validation via 10-fold CV with
100 bootstrap replicates.35 The tree-structured Parzen
estimator-based Bayesian optimization technique was
adopted for finding optimal hyperparameters for each
type of LR and RF model using nested 10-fold stratified
cross-validation scheme.36,37 Resulting hyperparameters
were found to maximize the area under receiver oper-
ating characteristic curve (AUC). We used three metrics
to estimate risk prediction performance of the models
www.thelancet.com Vol 86 December, 2022
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after the inclusion of gPRS and metabolites: AUC,38

Brier score, and log-loss. Model reclassification perfor-
mance for estimating the improvement between the
prediction models was also evaluated using net reclas-
sification improvement (NRI), category-free NRI (cNRI),
and integrated discrimination improvement (IDI).39,40

Unlike other model metrics that are interpreted in
terms of probability, cNRI is used to define a model as
weak (0.2), intermediate (0.4), or strong (0.8 or more).41

For additional estimation of the model consistency in
measuring type 2 diabetes risk, calibration curve, net
benefit-based decision curve, receiver operating charac-
teristic curve, and precision–recall curve analyses were
performed for all models.42

To evaluate the hypothesis that genetic information
is closely associated with beta-cell function and that
metabolic profiles are associated with insulin resistance,
LR was used to test the association of gPRS and me-
tabolites with homeostatic model assessment of beta-cell
function (HOMA-B) and homeostatic model assessment
of insulin resistance (HOMA-IR) values. HOMA-B and
HOMA-IR values were calculated as follows: HOMA-
B = 20 × fasting plasma insulin (FPI) (pmol/l)/[GLU0
(mmol/l)-3.5] and HOMA-IR = [FPI(pmol/l) × GLU0
(mmol/l)]/22.5. All analyses were performed using
Python 3.6. Supplementary Figs. S5 and S6 demonstrate
the overall workflow of type 2 diabetes risk prediction
model building and its nested cross-validation
scheme with feature importance calculation. Code is
publicly available at https://github.com/vaseline555/
T2D-Predictive-Modeling-for-Korean-with-gPRS-and-
Metabolites.
Ethics
The present study was approved by the Institutional
Review Board of Kosin University Gospel Hospital (IRB
File No. KUGH 2019-08-042), and written informed
consent was provided by all participants.
Role of funders
The funders of this study had no role in study design,
data collection, data analyses, interpretation, and writing
of the report and the submission of this study for
publication.
Results
Baseline characteristics
Out of the 1425 participants followed up for 8.3 ± 2.8
years, 331 participants (23.2%) were eventually diag-
nosed with type 2 diabetes. Participants diagnosed with
type 2 diabetes were likely to be older (P = 0.01, χ2-test),
obese (P < 0.001, Mann–Whitney U-test), smokers
(P = 0.002, χ2-test), having HTN (P < 0.001, χ2-test), and
with a family history of type 2 diabetes (P = 0.02, χ2-test),
www.thelancet.com Vol 86 December, 2022
compared to non-type 2 diabetes participants. Moreover,
the type 2 diabetes participants consumed more alcohol
(P = 0.002, Mann–Whitney U-test), had higher TG levels
(P < 0.001, Mann–Whitney U-test), and lower HDL
levels (P < 0.001, Mann–Whitney U-test) compared to
non-type 2 diabetes individuals (Table 1). Additionally,
there was no significant difference in the basic charac-
teristics between the censored and uncensored partici-
pants (Supplementary Tables S1 and S2).
Density of tagged SNPs around type 2 diabetes-
associated genes and distribution of gPRS in
relation to type 2 diabetes incidence
The density of tagged SNPs around type 2 diabetes-
associated genes is presented using a circus plot (see
Fig. 1a). As shown in Fig. 1a, a total of 34 tagged SNPs
in 28 genes had genome-wide association with type 2
diabetes. Among these genes, 24 have been previously
reported to be associated with type 2 diabetes (CDKAL1,
AL359922.1, KCNQ1, PAX4, SND1, HHEX, ZNF800,
KIF11, IDE, SLC30A8, CPEB3, EXOC6, TNKS2,
HNF1B, UBE2E2, LEP, HNF4A, ABCC8, CDC123,
ATG16L1,HECTD4, SPPL3, IGF2BP2, and DGKB), and
the remaining genes were reported to be associated with
waist-hip ratio (PTPN11 and ALDH2), BMI (E2F3), or
neutrophil count (THOC7) (Supplementary Data 1).

In addition, the gPRS distribution of participants and
the associated gPRS of the quintile groups with the ra-
tios of incident type 2 diabetes are shown in Fig. 1b and
c. The distribution of gPRS in patients with type 2 dia-
betes was skewed to the left more than that of the non-
type 2 diabetes participants, indicating that the gPRS of
patients with type 2 diabetes was larger than that of the
non-type 2 diabetes participants. Furthermore, the type
2 diabetes incidence ratio in the fifth quintile (high
gPRS group) was significantly higher than that in the
first quintile (low gPRS group) (55.8% vs 8.8%).
Performance of type 2 diabetes prediction model
The predictive performance of model 1 in terms of AUC
was 0.608 (95% confidence interval [CI]: 0.601, 0.615)
for LR and 0.613 (95% CI: 0.606, 0.620) for RF. The
AUC values for both LR (0.835 [95% CI: 0.830, 0.840],
P < 0.001, bootstrapped t-test) and RF (0.844 [95% CI:
0.838, 0.850], P < 0.001, bootstrapped t-test) increased as
clinical information was added to model 2. When gPRS
was added to the demographic and clinical variables in
model 3, the performance of the model increased by up
to 3.6% (AUC = LR: 0.871 [95% CI: 0.866, 0.879],
P < 0.001, bootstrapped t-test; RF: 0.876 [95% CI: 0.871,
0.881], P < 0.001, bootstrapped t-test) compared to that
of model 2. Furthermore, the AUC of model 4, which
contained both gPRS and selected metabolite data, was
higher than that of model 3 without metabolite data
(AUC = LR: 0.875 [95% CI: 0.871, 0.879], P = 0.015,
5
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Variable Non-type 2 diabetes Type 2 diabetes P

Incident type 2 diabetes, n (%) 1094 (76.8%) 331 (23.2%)

Gender (Female, n (%)) 613 (56.0%) 168 (50.8%) 0.040

Age (years) 55.6 ± 8.9 57.0 ± 8.5 0.010

HTN, n (%) 273 (25.0%) 112 (33.8%) <0.001

BMI (kg/m2) 24.0 ± 3.1 25.2 ± 3.2 <0.001

Family history, n (%) 22 (2%) 8 (2.4%) 0.020

Smoking, n (%) 0.002

Never 714 (65.3%) 197 (59.5%)

Ever 185 (16.9%) 64 (19.3%)

Current 195 (17.8%) 70 (21.1%)

TAC (g/week) 8.0 ± 18.0 11.8 ± 25.4 0.002

HbA1c (mmol/mol) 36.0 ± 4.0 40.0 ± 4.0 <0.001

HbA1c (%) 5.4 ± 0.3 5.8 ± 0.3 <0.001

GLU0 (mmol/L) 4.9 ± 0.5 5.4 ± 0.6 <0001

TC (mmol/L) 5.0 ± 0.9 5.1 ± 1.0 0.031

HDL-cholesterol (mmol/L) 1.2 ± 0.3 1.1 ± 0.2 <0.001

TG (mmol/L) 1.4 ± 1.1 2.0 ± 1.8 <0.001

gPRS 0.002845 ± 0.00003 0.002877 ± 0.00003 <0.001

BMI, body mass index; GLU0, fasting glucose; HTN, hypertension; TAC, total alcohol consumption; TC, total cholesterol; TG, triglyceride. Data are represented as mean ± SD
for quantitative traits and n (%) (the number of participants) for qualitative traits. P represents the P-value at a significance level within the 5% (Mann–Whitney U test for
each quantitative variable and the χ2-test for each qualitative variable between samples with and without type 2 diabetes).

Table 1: Baseline characteristics of participants for type 2 diabetes prediction analyses.
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bootstrapped t-test; RF: 0.883 [95% CI: 0.879, 0.887],
P = 0.005, bootstrapped t-test) (Table 2 and
Supplementary Fig. S7). Other performance metrics
(e.g., accuracy, precision, recall, and F1-score) and the
adjusted classification threshold value are shown in
Table 3. The figures of four curves (i.e., calibration, net
benefit-based decision, receiver operating characteristic,
and precision–recall curves) are presented to show the
additional estimation of the model consistency in
measuring type 2 diabetes risk for both LR and RF
models (Supplementary Figs. S8–S16). Though the
sample ratio of non-type 2 diabetes and type 2 diabetes
is imbalanced as 3.3:1, the risk prediction ability of both
LR and RF were not much affected by the imbalanced
setting. It is based on the results in Table 2 and
Supplementary Figs. S8–S16, which supports the fact
that no additional add-ons need to be considered for the
imbalance issue. Further analyses such as the sensitivity
analysis which additionally included tyrosine, phenylal-
anine, and glutamine on top of selected metabolites
variables (Supplementary Table S6), or the comparison
experiments adopting other machine learning tech-
niques such as extreme gradient boosting and multi-
layer perceptron (Supplementary Table S7), did not
substantially improve the predictive performance in this
cohort data.
Reclassification performance of type 2 diabetes
prediction models
Inclusion of gPRS in the prediction model in addition to
demographic and clinical variables led to NRI and IDI
improvement by 3.5% and 13.5% for LR and 11.7% and
3.9% for RF, respectively. For cNRI, the gPRS-adjusted
model (model 3) showed improvement in both LR
(0.361) and RF (0.511) compared to those of model 2.
Inclusion of metabolic information in model 4 further
enhanced the reclassification results for RF compared
to those in model 3 (NRI = 0.042, cNRI = 0.336,
IDI = 0.022). However, only limited improvement was
reported for LR (NRI = 0.002, cNRI = 0.325, IDI = 0.005)
(Table 2).
Association of gPRS and serum metabolites with
beta-cell function and insulin resistance
Although gPRS was negatively associated with HOMA-B
values (P < 0.001, correlation test), no significant asso-
ciation was observed between gPRS and HOMA-IR
values (Table 4). A total of 11 metabolites among the
15 top-ranked metabolites were significantly associated
with HOMA-IR values, although in varied directions.
Moreover, hexose (P < 0.001, correlation test), glycine
(P = 0.012, correlation test), PC ae C36:3 (P < 0.001,
correlation test), and lysoPC a C18:2 (P < 0.001, corre-
lation test) were associated with HOMA-B values.
Odds ratio and feature importance
The OR during LR and averaged MDI calculated inter-
nally using the Boruta algorithm for each model are
shown in Supplementary Tables S3 and S4, respectively.
The tendency of importance values in terms of the OR
magnitude and averaged MDI of each variable was
www.thelancet.com Vol 86 December, 2022
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Fig. 1: (a) Circus plot represents the density of tagged SNPs around type 2 diabetes-associated genes. The outer track shows density of tagged
SNPs for gPRS, and the inner track shows P-values of corresponding SNPs. The red line indicates genome-wide significance (P = 5.0 × 10–8,
P-value was calculated using logistic regression to fit an additive model, and fixed-effect inverse-variance weighted average method) Red dots
represent type 2 diabetes associated SNPs with genome-wide significance and green dots represent suggestive SNPs. Genes associated with type
2 diabetes were presented as black letters, and the others were presented as grey letters. (b) Depicts a histogram with the data density for type
2 diabetes status based on the standardized gPRS value. (c) Describes individual data points of both type 2 diabetes and non-type 2 diabetes
by gPRS quintile groups (Q1: gPRS quintile < 20%, Q2: 20% ≤ gPRS quintile < 40%, Q3: 40% ≤ gPRS quintile < 60%, Q4: 60% ≤ gPRS quintile
< 80%, and Q5: 80% ≤ gPRS quintile) along with individual average (longest horizontal line) and one standard deviation above and below each
average (shorter horizontal lines).

Articles
consistent between both models. The importance values
of gPRS, HbA1c, GLU0, and spermine were higher than
that of the other variables.
Discussion
Our population-based prospective cohort study assessed
the value of novel approaches integrating gPRS and
metabolite profiles with clinical information for type 2
diabetes risk prediction among the Korean population.
The addition of gPRS and metabolite profiles to clinical
risk factors resulted in better model performance for
www.thelancet.com Vol 86 December, 2022
prediction of type 2 diabetes risk compared to that of
conventional risk factor-based models. Furthermore,
compared to conventional LR-based models, RF-based
machine learning analysis was modestly better in pre-
dicting type 2 diabetes incidence. Previous research on
predicting type 2 diabetes or related clinical parameters
incorporated either genetic information43–45 or metab-
olomic information45–47 to enhance model prediction.
Various types of models have been developed for type 2
diabetes risk prediction, from statistical models such as
logistic regression-based ones48,49 to machine learning
models such as those using random forests,48–51 gradient
7
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Method Performance Model 1 Model 2 Model 3 Model 4

LR 1) Discrimination

Brier score 0.175 (0.006) 0.131 (0.013) 0.112 (0.018) 0.110 (0.013)

Log-loss 0.531 (0.016) 0.407 (0.043) 0.360 (0.055) 0.348 (0.036)

AUC 0.608 (0.043) 0.835 (0.032) 0.871 (0.028) 0.875 (0.023)

P for AUC <0.001 (vs Model 1) <0.001 (vs Model 2) 0.015 (vs Model 3)

2) Reclassification vs Model 1 vs Model 2 vs Model 3

NRI 0.321 (0.092) 0.035 (0.026) 0.002 (0.004)

cNRI 1.041 (0.161) 0.361 (0.174) 0.325 (0.205)

IDI 0.263 (0.039) 0.135 (0.059) 0.005 (0.002)

RF 1) Discrimination

Brier score 0.172 (0.007) 0.130 (0.008) 0.109 (0.011) 0.106 (0.015)

Log-loss 0.555 (0.016) 0.390 (0.032) 0.353 (0.034) 0.332 (0.027)

AUC 0.613 (0.041) 0.844 (0.037) 0.876 (0.029) 0.883 (0.023)

P for AUC <0.001 (vs Model 1) <0.001 (vs Model 2) 0.005 (vs Model 3)

2) Reclassification vs Model 1 vs Model 2 vs Model 3

NRI 0.393 (0.011) 0.117 (0.024) 0.042 (0.008)

cNRI 1.003 (0.144) 0.511 (0.109) 0.336 (0.188)

IDI 0.266 (0.033) 0.039 (0.032) 0.022 (0.015)

LR vs RF P for AUC 0.038 0.003 0.012 0.006

AUC, area under curve; cNRI, category-free NRI; IDI, integrated discrimination improvement; LR, logistic regression; NRI, net reclassification index; RF, random forest. Model
1 contained sex, age, hypertension, body mass index, family history, smoking, and total alcohol consumption; Model 2 additionally included HbA1c, GLU0, total cholesterol,
HDL-cholesterol, and triglyceride; Model 3 additionally included gPRS; Model 4 additionally included 15 selected serum metabolites (P represents the P-value at a
significance level within the bootstrapped t-test for AUC between prediction models).

Table 2: Risk prediction performance and reclassification results of logistic regression and random forest for type 2 diabetes prediction analysis.

Method Model

LR Model 1 (Demo

Model 2 (Demo

Model 3 (Demo

Model 4 (Demo

RF Model 1 (Demo

Model 2 (Demo

Model 3 (Demo

Model 4 (Demo

Model 1 contained sex, age,
triglyceride; Model 3 additio

Table 3: Results on discri
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boosting,52–54 and (deep) neural networks.51,55,56 However,
few models exist that incorporate both factors, and no
model exists specifically for the non-white ethnic pop-
ulation. To the best of our knowledge, this is the first
study to evaluate the effects of genetic information
combined with metabolic measurements on type 2
diabetes risk prediction using RF-based machine
learning analysis.

This study showed that gPRS modestly enhanced the
accuracy of type 2 diabetes risk prediction, and our
findings substantiate the value of PRS in the prediction
Accuracy Equilibrium
Accuracy

Sensitivity Spec

.) 0.565 (0.004) 0.583 (0.004) 0.615 (0.006) 0.5

. + Clin.) 0.779 (0.003) 0.756 (0.003) 0.713 (0.005) 0.79

. + Clin. + gPRS) 0.806 (0.002) 0.789 (0.003) 0.758 (0.006) 0.82

. + Clin. + gPRS + Metabo.) 0.812 (0.003) 0.797 (0.003) 0.793 (0.006) 0.81

.) 0.570 (0.004) 0.583 (0.003) 0.646 (0.005) 0.56

. + Clin.) 0.784 (0.002) 0.754 (0.004) 0.743 (0.009) 0.80

. + Clin. + gPRS) 0.851 (0.002) 0.849 (0.004) 0.810 (0.008) 0.86

. + Clin. + gPRS + Metabo.) 0.854 (0.003) 0.851 (0.003) 0.832 (0.009) 0.85

hypertension, body mass index, family history, smoking, and total alcohol consumption; M
nally included genome-wide polygenic risk score, Model 4 additionally included selected m

mination performance metrics and adjusted classification thresholds.
of type 2 diabetes risk.9,10 Although the performance of
the previous type 2 diabetes risk prediction models that
added PRS to clinical risk factors varied from null to
only modest improvements, better prediction ability was
achieved when PRS was combined with conventional
type 2 diabetes risk factors in our study. Notably, the
majority of the previous PRS-based type 2 diabetes risk
prediction models from Asian countries did not
outperform the conventional risk models, especially
when GLU0 or HbA1c were included as predictors.11–14

However, gPRS, which is developed by aggregating
ificity PPV NPV F1 Youden’s J
statistic

5 (0.005) 0.295 (0.003) 0.824 (0.003) 0.398 (0.004) 0.226 (0.001)

9 (0.004) 0.523 (0.005) 0.902 (0.001) 0.601 (0.004) 0.289 (0.001)

0 (0.003) 0.564 (0.004) 0.909 (0.002) 0.645 (0.004) 0.261 (0.003)

6 (0.004) 0.545 (0.005) 0.930 (0.002) 0.646 (0.004) 0.218 (0.003)

1 (0.006) 0.292 (0.003) 0.829 (0.002) 0.445 (0.003) 0.483 (0.001)

9 (0.003) 0.549 (0.003) 0.909 (0.003) 0.637 (0.005) 0.487 (0.002)

4 (0.002) 0.582 (0.008) 0.910 (0.002) 0.723 (0.007) 0.545 (0.003)

7 (0.004) 0.608 (0.006) 0.911 (0.002) 0.729 (0.004) 0.490 (0.002)

odel 2 additionally included HbA1c, GLU0, total cholesterol, HDL-cholesterol, and
etabolites. PPV and NPV are positive and negative predictive values.
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Variable Correlation with HOMA-B (95% CI) P Correlation with HOMA-IR (95% CI) P

gPRS −0.09 (−0.14, −0.03) <0.0010 0.01 (−0.04, 0.05) 0.73

Spermine 0.02 (−0.04, 0.07) 0.56 0.03 (−0.02, 0.08) 0.18

Hexose −0.23 (−0.29, −0.17) <0.0010 0.28 (0.22, 0.33) <0.001

Isoleucine 0.07 (−0.06, 0.20) 0.31 0.25 (0.13, 0.37) <0.001

Valine 0.01 (−0.10, 0.12) 0.85 0.20 (0.11, 0.30) <0.001

Glycine 0.07 (0.02, 0.13) 0.012 −0.12 (−0.17, −0.07) <0.001

PC ae C42:4 −0.04 (−0.15, 0.07) 0.51 −0.14 (−0.20, −0.12) <0.001

PC ae C42:0 −0.04 (−0.11, 0.02) 0.20 −0.01 (−0.06, 0.05) 0.85

PC ae C36:3 0.20 (0.09, 0.30) <0.0010 0.20 (0.11, 0.30) <0.001

PC ae C34:3 −0.06 (−0.16, 0.04) 0.26 −0.10 (−0.20, −0.01) 0.027

PC ae C42:1 0.02 (−0.06, 0.11) 0.56 −0.14 (−0.22, −0.07) <0.001

PC aa C40:5 0.04 (−0.02, 0.10) 0.20 −0.02 (−0.07, 0.04) 0.49

lysoPC a C18:2 −0.11 (−0.18, −0.05) <0.0010 −0.20 (−0.26, −0.14) <0.001

Alanine 0.02 (−0.05, 0.08) 0.62 0.23 (0.17, 0.28) <0.001

PC ae C44:6 0.03 (−0.07, 0.13) 0.53 −0.02 (−0.11, 0.07) 0.62

Leucine −0.03 (−0.17, 0.10) 0.62 −0.37 (−0.49, −0.24) <0.001

HOMA-B, homeostasis model assessment of beta-cell function; HOMA-IR, homeostatic model assessment for insulin resistance, PC, phosphatidylcholine. P represents the P-
value at a significance level within the Pearson correlation test.

Table 4: Correlation coefficients of gPRS and 15 serum metabolites (top-ranked ≤ 2) for HOMA-B and HOMA-IR.
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clumped SNPs at the sub-threshold genome-wide asso-
ciation with incident type 2 diabetes, captures an in-
dividual’s comprehensive genetic predisposition for type
2 diabetes. Thus, its inclusion enhanced the model
performance even in the presence of glucose and
HbA1c as clinical factors. This finding was consistent
with that of a previous study,57 which showed that
including gPRS consisting of 6.9 million type 2 diabetes-
associated variants significantly improved the type 2
diabetes risk prediction ability in terms of AUC.

The predictive power of PRS derived from European
ancestry was compromised in the Asian population, due
to differences in allele frequency, LD, and effect-size of
the risk allele.58,59 Thus, we calculated the effect-size of
type 2 diabetes variants based on GWAS meta-analysis
of KoreanChip to develop gPRS optimized exclusively
for the South Korean population.28 Although direct
comparison may be limited due to the heterogeneity in
study design, population, and analytical methods, the
current gPRS-based model performed better compared
to the models from previous PRS-based studies in Eu-
ropean ancestry,9,10 South Korea,11,12 and Japan,13,14 which
either combined PRS with clinical risk factors or were
based solely on the PRS. In addition, greater reclassifi-
cation and prediction ability was observed when gPRS
was added along with the clinical risk factors for type 2
diabetes.

There was a modest improvement in the predictive
performance when metabolites were sequentially
incorporated into the model with gPRS and clinical
predictors. Although Walford et al.25 suggested that the
use of metabolic information improved type 2 diabetes
risk prediction in the FOS study, it was uncertain
whether the improvement in performance of the type 2
www.thelancet.com Vol 86 December, 2022
diabetes risk prediction model that uses concurrent
genetic and metabolite information would be applicable
to an independent cohort of non-European ethnicity.
Despite the modest improvement in the predictive
ability of metabolite data in predicting type 2 diabetes,
the concurrent use of gPRS and metabolite data
enhanced prediction of type 2 diabetes risk in the Asian
population. The reason for the limited contribution of
metabolite data to model performance is unclear; how-
ever, overlap of information between metabolites, ge-
netic factors, and clinical predictors may explain this
limited improvement. Most metabolites were closely
linked to HOMA-IR values, while several metabolites,
such as glycine, PC ae C36:3, and lysoPC a C18:2, were
significantly associated with both HOMA-IR and
HOMA-B values, suggesting that metabolic information
may, at least in part, contribute to the performance of
the prediction model, with gPRS. Furthermore, the
attenuated strength of association between TG and type
2 diabetes in the analysis accounting for metabolites
suggested that TG might account for some aspect of
metabolic information in the prediction model as a
surrogate marker for insulin resistance (Supplementary
Table S5). However, since metabolites capture early
detrimental changes in type 2 diabetes21 and could serve
as an independent predictor in previous prediction
models accounting for clinical variables,16–18 larger pro-
spective studies are necessary to evaluate the precise
predictive value of metabolite data for type 2 diabetes
risk, along with gPRS and clinical predictors.

We selected metabolites associated with type 2 dia-
betes using the Boruta algorithm. Frequently selected
metabolites comprised three BCAAs (isoleucine, valine,
and leucine), alanine, spermine, 6 PC ae (34:3, 36:3,
9
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42:0, 42:1, 42:4, 44:6), 1 PC aa (40:5), lysoPC a C18:2,
glycine, and hexose. Among the metabolites that passed
through the variable selection algorithm, BCAA and
alanine have been consistently associated with type 2
diabetes in previous studies.16–18,22 In addition, an in-
verse association of PC ae (34:3, 42:1, 42:4) with insulin
resistance has been previously reported.24

In the current study, gPRS was closely associated
with estimation of HOMA-B values, whereas most me-
tabolites were significantly linked to HOMA-IR values,
suggesting that genetic variants associated with type 2
diabetes primarily influenced beta-cell function, and
the type 2 diabetes-linked metabolites were principally
associated with insulin resistance. This result is
consistent with that of the previous FOS.25 However,
another case–control study suggested that five amino
acids (isoleucine, phenylalanine, tyrosine, leucine, and
valine) were modestly associated with both beta-cell
function and insulin resistance.18 Although the reason
for this discrepancy is not clear, distinctive features of
patients with type 2 diabetes among the Asian popula-
tion, such as greater proportion of body fat, visceral
adiposity, and leaner BMI, compared to that of people
from European ethnicity could explain the association
of metabolites with beta-cell function.60 Heterogeneity
in study design could also be a reason for this
inconsistency.

Accurate prediction of type 2 diabetes risk allows
physicians to identify individuals at high risk of type 2
diabetes, thereby providing a window to apply preven-
tive measures such as advising nutritional modification
and regular exercise, or implementing strategies to
defer the onset of type 2 diabetes with medications such
as metformin. Although there was only a modest per-
formance improvement after incorporating genetic
information (3.2%), a significant proportion of partici-
pants (11.7%) were correctly reclassified after the gPRS
was included in the prediction model (e.g., from type 2
diabetes to non-type 2 diabetes or vice versa).

The major strengths of our study are as follows: 1)
integrating genetic information and metabolite profiles
to predict type 2 diabetes risk, 2) use of a machine-
learning approach to predict the type 2 diabetes risk
beyond the scope of a conventional risk model, 3)
extending the utility of gPRS using genetic information
on non-European ancestry, 4) use of a long-term pro-
spective cohort data in which phenotypic information
was gathered on a biannual basis, and 5) use of ethnic-
specific gPRS to estimate the performance of the type 2
diabetes risk prediction model.

The present study also has several limitations. First,
the study participants were from the South Korean
population, thus extrapolation of the utility of gPRS and
metabolite data to predict type 2 diabetes risk in non-
Korean populations could be limited. However, this
approach was adopted from a previous study among
European ancestral populations that was subsequently
validated among our non-European population with an
improved predictive performance. Secondly, although
we conducted CV of the type 2 diabetes risk prediction
model, the predictive performance might be ranged
for the non-Asian population. However, an improved
method to generate gPRS might mitigate transferability
issues between the ancestries for PRSs to some degree.
Nonetheless, it would be necessary to test and replicate
the predictive ability of the current model in indepen-
dent prospective cohorts. Third, SNPs used for gPRS
generation were mainly derived from common genetic
variants associated with type 2 diabetes, and genetic
information on rare variants was not captured in the
analyses. In addition, as we used targeted metabolite
analysis, other unknown metabolites that might addi-
tionally explain the etiology of type 2 diabetes risk were
not included. Fourth, gPRS was calculated based on
the genetic information of the South Korean popula-
tion, which substantially differs in effect-size, LD, and
allele frequency from other ethnicities. Thus, some
degree of attenuation in the predictive performance
may occur when this model is applied to other datasets
without ethnicity-specific modifications. Fifth, the
incidence of type 2 diabetes in the present study was
slightly higher than that in other cohort studies at the
given BMI levels61,62 indicating that a higher propor-
tion of individuals at high risk for type 2 diabetes
might have been included in the analysis. Neverthe-
less, the incidence of type 2 diabetes in our study is
comparable to that of the Korean National Health
Insurance claim and census data (Supplementary
Tables S8 and S9).63 Considering the higher visceral
adiposity shown by the Asian population compared to
that in people of European descent at any BMI level,
the issue of under-representation of current data is
minimal.

In conclusion, this work shows the possibility to
improve the discriminability of type 2 diabetes inci-
dence by harmonizing genetic and metabolomic factors
in the east Asian population, where national-scale clin-
ical studies are actively nourished. gPRS and metabo-
lites reflected distinctive etiologies of type 2 diabetes,
and genetic and metabolomic information enhanced the
predictability of type 2 diabetes, in addition to the clin-
ical risk factors in non-European ethnicity with the aid
of a machine learning algorithm. Ethnic-specific gPRS
could be a viable option for the earlier identification of
individuals at high risk for type 2 diabetes. This novel
approach should be validated in different prospective
cohorts of diverse ethnicities.
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