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The development of automation technology to reduce human error by minimizing human intervention is
accelerating with artificial intelligence and big data processing technology, even in the nuclear field.
Among nuclear power plant operation modes, the startup and shutdown operations are still performed
manually and thus have the potential for human error. As part of the development of an autonomous
operation system for startup operation, this paper proposes an action coordinating strategy to obtain the
optimal actions. The lower level of the system consists of operating blocks that are created by analyzing
the operation tasks to achieve local goals through soft actor-critic algorithms. However, when multiple
agents try to perform conflicting actions, a method is needed to coordinate them, and for this, an action
coordination strategy was developed in this work as the upper level of the system. Three quantification
methods were compared and evaluated based on the future plant state predicted by plant parameter
prediction models using long short-term memory networks. Results confirmed that the optimal action to
satisfy the limiting conditions for operation can be selected by coordinating the action sets. It is expected
that this methodology can be generalized through future research.
© 2022 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

With the continuing advances in artificial intelligence (AI) and
big data processing, the development of automation technology to
reduce human error by minimizing human intervention has
accelerated. A representative automation system of a nuclear po-
wer plant (NPP) is one that automatically trips the reactor to pre-
vent damage to the core in an emergency situation due to an
accident. Other systems mainly employ algorithms to maintain
specific variables using proportional-integral-derivative controllers
[1]. In many advanced reactor proposals, automation technology is
considered from the design stage [2e4]. Further research related to
automation in NPPs can be summarized as follows: an expert sys-
tem for instrumentation and control [5], an automated operating
procedure system [6], an intelligent reactor core controller [7], and
automated diagnosis of NPP states [8,9]. These methodologies help
operators make quick decisions in urgent situations. Research cases
using AI have dealt with abnormal conditions [10] and autonomous
operation with hierarchical architecture for an NPP in an
by Elsevier Korea LLC. This is an
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emergency [11]. However, automation research focusing on the
operational modes in which electricity is not generated is lacking,
where operators manually perform the operation procedures ac-
cording to the dynamic situation. The operation status of typical
pressurized water reactors (PWRs) can be classified based on the
reactor power and the temperature of the reactor coolant system
(RCS); Fig. 1 shows the typical operation modes along with their
current level of automation.

The criteria for discussing the level of automation in startup and
shutdown operations are complex, considering the operation
strategies and the ability to respond to dynamic situations. Even if
some systems do not require operators to initiate them, such partial
automation functions are seen in terms of assisting the operators,
and thus it is reasonable to view the overall operational flow as
being manual. For example, the setpoint of the signals should be
adjusted by operators manually, because during startup and shut-
down operations, the variables are low compared to full-power
operation. Most of the automatic systems are prepared for power-
generating operation conditions, where an NPP is at the highest
risk. Therefore, system adjustments according to the situation are
performed by the operators even for automatic systems. Referring
to a report by the Operational Performance Information System for
Nuclear Power Plant, 18% of the cases of unintended shutdowns
open access article under the CC BY-NC-ND license (http://creativecommons.org/
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Fig. 1. Automation status according to the operation mode of a typical PWR [12].

J.M. Kim, J. Bae and S.J. Lee Nuclear Engineering and Technology xxx (xxxx) xxx
during heatup and cooldown operations of domestic Korean NPPs
were caused by human error [13]. In this light, autonomous oper-
ation performed by AI agents that have obtained operating policies
to achieve desired goals could help reduce human error. Studies
have shown that NPP operation policies can be learned through
reinforcement learning (RL) [14]. In our previous work, we intro-
duced a framework for the development of an autonomous oper-
ation system for startup and shutdown operation as shown in Fig. 2
[15].

Operating blocks of the system contain AI agents that execute
the startup operation tasks. These blocks are activated when their
ancillary condition is satisfied; however, as multiple agents can
control the same components, and as individual agents do not
consider the overall process or the operating policies of other
agents, there may be cases of conflict between the local goals of
such agents. This is because each action is selected through the
success path for the convergence of RL in the training stage; in
other words, the suboptimal actions are not considered by the
agents to the extent that the best actions are. But clearly, in a
complex multi-agent environment, the influence between agents
cannot be ignored, and thus an evaluation method is needed aside
from the RL training.

This paper proposes an action coordinating strategy for the
autonomous operation system to handle multiple agents. The
strategy reflects domain knowledge to align the agents’ actions by
predicting the future plant state and quantifying it. As a result, it
Fig. 2. Framework for the autonomous operation system indicating supervisory and
system operation modules for startup operation [15].
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can guide operation that satisfies the limiting conditions for oper-
ation (LCOs). To assign values to the actions for comparison, plant
parameter prediction models were trained to predict the future
outcomes according to the selected actions.

The information obtained from the prediction models allows
one to know the consequences of actions at a particular moment.
Each action is assigned a score by quantifying this future infor-
mation, and by comparing the scores, we can choose the action that
will guide the future states in the desired direction. In this paper,
three quantification methods are compared: the first simply com-
pares the last future values, the second takes the average values of
variables at 1 min intervals, and the third calculates the area be-
tween the target value and the future states. The parameter pre-
diction process is performed in cases with a conflict between the
actions of different agents; in such cases, the future state related to
reflecting the LCOs quantifies how the main variables change
through a regression model to select the optimal action. The
highest performance among the quantificationmethods is assessed
by ranking them based on how long target parameter stays within
the recommended range that satisfy the LCOs.

As an application, soft actor-critic (SAC) algorithms are imple-
mented for the agents to obtain operating policies, and plant
parameter prediction models are developed based on long short-
term memory (LSTM) networks [16,17]. Through application to
startup operation, the quantification methods were compared to
best reflect the LCOs leading to the desired result. It is found that
optimal operation is possible when the conflicting actions of the
autonomous operation system are handled compared to when no
processing is performed.

The remainder of this paper is organized as follows. Section II
introduces the framework of the autonomous operation system.
Section III covers the related methodologies including AI tech-
niques and evaluation strategies. Section IV covers the application
and the results. Finally, Section V provides the conclusions.
2. Framework of autonomous operation system for startup
operation

Startup operation is carried out according to general operating
procedures (GOPs) covering the normal condition of NPPs. In this
study, the first step in the development of the autonomous oper-
ation system is to introduce the concept of an operating block that
groups operation tasks through GOP analysis. In the case of a PWR,
systems must be maintained in a high-temperature and high-
pressure state for power generation, and the number of



Fig. 4. An example of operation flow (a) without conflict and (b) with conflict.
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components and systems handled for this purpose is wide and
diverse. Such a large number of variables covered in the GOP leads
to a large number of features for AI training. As the number of data
features increases, the dimension of the data becomes too large to
train all tasks with a single agent.

In addition, to satisfy the high safety standards of NPPs, it is
necessary to reflect expert knowledge rather than completely
relying on AI. If many goals are added in the training phase, too
many constraints are defined, which may result in lowering the
training efficiency. If all states and components are configured as
the training environment, the optimal policy is difficult to
converge. Therefore, it is advantageous to configure the environ-
ment with simplified information to acquire the optimal policy,
which leads to a multi-agent environment where various agents
intervene. Based on the concept of grouping the GOP tasks into
operating blocks for efficient learning, an autonomous operation
framework was previously designed [15]. Fig. 3 is drawn with an
emphasis on coordinating actions in the previously proposed
framework.

The autonomous system consists of two levels, namely super-
visory and system operating modules. The supervisory operating
module manages the overall operational process by considering the
rise and fall of RCS temperature and pressure, which are the main
variables. The system operating module includes operating blocks
that perform small operation tasks. The operating blocks are acti-
vated to achieve their respective operation goals according to
each's entry condition. Simple operation tasks, such as changing
the state of a component when a certain condition is reached, can
be implemented with a rule-based algorithm in the operating
block. For example, when the pressure of the steam generator and
the temperature of the RCS reach a certain condition during startup
operation, the residual heat removal system is disconnected (or
isolated) from the RCS, after which the pressure increases along
with the temperature beyond previous limits. In this case, the
isolation operation is performed safely without complex control.
However, other than such rule-based operating blocks that perform
simple tasks, complex tasks are performed by operating blocks
with an AI agent trained through RL.

According to this concept, the operating blocks are activated in
parallel. As shown in Fig. 4, if there is no conflict between actions,
the actions are carried out as is. Here, action candidates are a group
of actions held for some period of time to decide whether they
should be sent to the simulator. If there is no conflict between ac-
tions, the action candidates are undefined because the actions
desired by the agent are passed directly to the simulator. However,
Fig. 3. Overall process to develop the autonomous operation system for startup operation. T
references to color in this figure legend, the reader is referred to the Web version of this a
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there are cases where the components that the agents want to
control overlap and require opposite actions. In this case, each AI
agent only considers the variables related to its local goals when
creating its operating policy. For example, the pressurizer (PZR)
pressure control block considers the PZR pressure and the status of
the valves it controls, while not considering the PZR water level as
an input variable, which is controlled by a separate block. The
problem is that the valves for controlling the PZR pressure and
water level in certain contexts are shared, which could lead to
conflicts between the blocks in terms of opening or closing the
valves. Despite the operation blocks being based on procedures, the
control valves for the charging and letdown water flowrate affect
the PZR pressure since the inside of the PZR is in a saturated state
with vapor and liquid after bubble formation. Although they are not
the dominant components for PZR pressure control, these valves
can be seen as common actions to control the dependent variables
of pressure and water level by different operation blocks. Accord-
ingly, if the actions to be performed by the operating blocks are in
conflict, it is necessary to coordinate a set of actions to globally
optimize the entire operation.

3. Methodology

This work covers the development of a strategy to coordinate
the actions obtained through the operating blocks as a function of
he step for coordination actions is highlighted in yellow box. (For interpretation of the
rticle.)
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the autonomous operation system. Unlike the rule-based operating
blocks, it is important for the AI-based operating blocks to adopt an
algorithm to achieve the optimal policies of each block. To replace a
human operator, we created an agent using RL and configured the
learning environment to allow the agent to learn the optimal
operation policy by repeating trial and error on its own. In addition,
we developed a solution, or action coordination strategy, to cover
situations in which the actions by operating blocks conflict since
the operation blocks can be executed at the same time. Plant
parameter prediction models were then created. This section de-
scribes the SAC algorithm selected for RL, the LSTMnetwork used in
the prediction models, and the three quantification strategies.

3.1. Soft actor-critic for operation

Operating blocks with AI agents are implemented by RL. RL is a
field of machine learning inwhich an agent converges to an optimal
policy through interaction with the environment [18]. As a pre-
ceding study, by dividing the GOP into detailed task groups, a single
AI-based operating block succeeded in achieving the desired
operation goal [15]. In the current paper, SAC was used as the RL
algorithm. SAC combines off-policy updates with an actor-critic
method to maximize the expected reward augmented with an ac-
tion entropy [16]. SAC has an advantageous structure for the
convergence of optimal policies even for continuous spaces. In
addition, it is possible for agents to learn by grouping advantageous
paths for goal achievement due to the off-policy nature of SAC.

From now on, the specific SAC learning environment is
explained with specific examples used in this study. An NPP
simulator is used because it is not possible to undergo the trial and
error necessary to construct the learning environment in an actual
NPP. First, we developed a parallel running environment for mul-
tiple NPP simulators, similar to Ref. [19], a setting that enables
repeated and real-time communication between an agent and an
environment, which is necessary for RL. The information on the
states and actions of the operating blocks was selected through
GOP analysis, and the use of more information than necessary to
achieve the operation goals was restricted. Table 1 lists the input
states and output actions of two example operating blocks. The
listed actions show that the blocks may conflict since they have
shared components (i.e., charging flow control valve and letdown
control valve).

RL is a process by which an AI agent optimizes policies by
interacting with the environment: an AI agent performs an action
(at) based on a current state (St) that maximizes expected rewards
[rtðst ;atÞ], after which it receives a new state (Stþ1). In this process,
the direction of policy optimization is guided by how the reward
function is defined. In this research, we define this function as a
success/fail reward and an auxiliary reward. Equations (1) and (2)
detail the success/fail and auxiliary rewards, respectively, where xt
is target parameter (e.g., PZR pressure or level), gx is the target value
Table 1
Input and output variables for operating blocks using SAC.

PZR pressure control block

State, St PZR pressure
Position of charging flow control valv
Position of letdown control valve
Position of spray flow control valve
Target PZR pressure
Deviation from the target pressure

Action, at Position of charging flow control valv
Position of letdown control valvea

Position of spray flow control valve

a Shared components.
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for x, lx is the boundary constant for x, and k1 and k2 are positive
constants. In the case of the PZR pressure control, gx was randomly
sampled from 23e27 kg=cm2 and lx was 0.3 kg=cm2. In the case of
the PZR level control, gx was randomly sampled from 30e70 % and
lx was 1%.

r1 ¼
8<
:

k1; if jxt � gxj< lx

0; otherwise
(1)

r2 ¼ � k2 ðxt � gxÞ2 (2)

The success/fail reward informs the agent whether the current
state is the target one or not. In other words, if the current state is
outside the target range, the agent will not receive any feedback on
its current action. This sparse feedback can discourage policy
optimization. To solve this problem, we adopted the auxiliary
reward, which is the negative squared distance from the target
value. The scaling factors for the rewards (i.e., k1 and k2) were 10
and 0:0004, respectively. The blocks experienced 5000 episodes,
and each episode was reset when the block violated the limiting
condition of operation or reached the maximum episode length
(i.e., 4200 s). The transition ½st ; at ; rt ; stþ1� buffer size was 1,000,000,
and 128 transitions were randomly sampled for each training trial
of policy optimization.

The AI agent created in this way outputs the optimal action that
can maximize the future reward according to the current state as
learned. However, the future state considered at this time does not
fully consider other factors. When several agents are involved in the
operation at the same time, uncertainty about the future state in-
creases. Therefore, amethod is required to observe the effects of the
currently performed actions on the future state.

3.2. Long short-term memory for prediction

The object of quantification is based on the future state, not the
present state. To predict the future situation, we used LSTM net-
works to create parameter prediction models for all possible ac-
tions. LSTM networks use the concept of a cell state combining the
information at each point in time with several linear combinations
and then delivering it to the next time step [17]. This allows certain
information to be intentionally removed, maintained, or added via
forget, input, and output gates.

Regression models can predict how a plant parameter will
change in the future based on current actions taken [20]. Among
previously tested artificial neural networks, the LSTM network
showed the best performance to address the multivariate problem
of future parameter trend estimation. Therefore, in the present
work, the plant parameter predictionmodels are regressionmodels
that predict future states with the information currently passing
through the LSTM networks. The variables to be predicted through
PZR water level control block

PZR level
e Position of charging flow control valve

Position of letdown control valve
Target PZR level
Deviation from the target level

ea Position of charging flow control valvea

Position of letdown control valvea
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the regression models are selected by referring to the LCOs. Here,
the number of required prediction models corresponds to the
number of possible action outcomes at the moment of an action
conflict.

The data structure for the prediction model input has a 10 min
length per dataset. Random actions are performed for the first 10 s,
with the information up to 60 s used as an input value. After that,
the future state is predicted up to 9 min at 1-min intervals.

The structure of the prediction model consists of three LSTM
layers. Input data for the first layer should be transformed from
two-dimensional data with as much information as the number of
features for 60 s to one-dimensional data to fit the model structure.
The first layer receives an input variable and transmits an output
value of the same size to the next layer, which repeats the same
process. After going through the last layer, the data shape is
restored to equal the number of features.

Fig. 5 shows an example of the model learning process using the
specific values covered in the application (Section IV). In this
example, n datasets with 17 variables are recorded for 6000 s,
which are selected considering the LCO. In the original operation
records, the last column shows the label information indicating the
actions randomly performed for 10 s. The data for each label has a
length of 600 s, and in order to prevent the process from starting
under the same condition each time, a random action is performed
once every 600 s during an episode running for 6000 s. Through
this process, 10 operation data for various situations can be
collected from one episode. After the data passes through the LSTM
layers composed of prediction models, learning is performed in the
direction of reducing the loss by comparing the predicted values for
9 time points at 1-min intervals with the true value.

In this work, a total of 9 prediction models were created because
there are 9 possible combinations of actions in the application. At
any moment, these models provide an advance notice of variable
changes resulting from the chosen action. However, there is a need
for a quantificationmethod to checkwhether the operation is being
guided in the desired direction through these parameter changes.

3.3. Quantification strategies

To evaluate the actions performed during NPP operations,
standards for quantification are needed. For example, one criterion
may be the time required to raise the RCS temperature to a desired
level. However, if this criterion does not account for potential
hazards, such as rapid changes in temperature and pressure
destabilizing the RCS fluid and damaging the surrounding
Fig. 5. Learning flow diagram of a plant parameter prediction mo
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structures, it is not proper. Under normal NPP operation without
any abnormality, it should be possible to evaluate whether an
operation is being performed in the right direction from a long-
term perspective, as short-term errors can have ambiguous causal
relationships [3]. For example, if we want to increase the water
level in a tank by increasing the inlet flow, then the inlet flow
control valve should be opened. At this time, the change in the
water level in the tank does not appear immediately within 1e2 s
(i.e., in the short-term), but rather requires some longer period of
time depending on the flow rate. In addition, if the difference be-
tween the inlet and outlet flow rates is large, thewater level change
by manipulation of the valve will require a longer time.

In this aspect, it is insufficient to simply use only RCS temper-
ature and pressure as evaluation criteria. We therefore apply three
quantification methods to determine whether the future NPP state
according to specific actions complies with the LCOs. In plant GOPs,
the LCOs to be satisfied to safely operate the NPPs are described
according to the operating situation.

The LCOs described in the GOP can be classified into two types.
One includes the conditions in which certain values must not be
exceeded, such as heating rate or flow rate limits. As long as the
conditions are not violated, all operating strategies are allowed, and
thus the score quantified for this LCO type can be binary. The sec-
ond type includes the conditions inwhich certain variables must be
kept within a certain range during the operation. When training AI
agents, the variables that need to be maintained have higher re-
wards the further they are from the boundary values. But
conversely, in the quantification stage, the closer the variables are
to the boundary values, the higher the score should be assigned
because high scores represent actions that require a quick response
with the highest priority.

In order to compare the quantification scores between variables
of different scales, each variable is divided discretely and assigned
scores corresponding to specific values. In this paper, we compare
three quantification methods to determine how and which of the
scores assigned to future states will be retrieved. The first method
compares only the variables at the last moment (comparison), the
second method compares the mean of predicted values at regular
time intervals (average), and the third method compares the area
between the predicted values and the median at regular time in-
tervals (area).

Fig. 6 depicts a visualized example of the three quantification
methods. P and L represent different variables, the x-axis is the
timeline, and the y-axis is the numerical value of each variable. The
green region represents the recommended range for the particular
del that learns by picking one case from the entire dataset.



Fig. 6. Visualized example of LCO-based quantification methods. Left: comparison and average methods. Right: area method.
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LCO, the yellow region is the acceptable range, and the red region
near the boundary conditions stands for LCO violation. Following
an operation, the variable trends in terms of these regions at every
timestep are monitored.

The comparison method only compares P9 and L9, while the
averagemethod takes the average of the predictedmoments from 1
to 9 as a score. The areamethod treats the area of the variable trend
as a score based on the yellow region. Based on these methods,
when actions for P and L conflict, the actions are compared via
scores and the optimal action is selected.

The equations used for this calculation are listed as follows:

scoreavg ¼
Pn

1Xi

9
(3)

scorearea ¼
Xn�1

1

ðXi � targetÞ þ ðXiþ1 � targetÞ
2

(4)

scorecomp ¼Xn (5)

Equations (3)e(5) correspond to the three quantification
methods based on the information provided by the plant parameter
prediction model. X can be any variable considered for the LCO. As
shown in Eq. (6), the total score is calculated by adding the scores
for pressure andwater level, for example, to an index that gives�10
points if the heating rate limit is exceeded when considering future
variables, and 0 points otherwise.

scoretotal ¼ scoreheatrate þ scorepressure;k þ scorelevel;k (6)

A performance metric of operation with or without quantifica-
tion methods is expressed as a ratio of the time the relevant vari-
ables are maintained in the different regions divided based on the
LCO. A successful control can be evaluated as that from which the
target variable stayed in the green region for the total operation
time. Equation (7) gives the indicators for the performance evalu-
ation used in the results of comparative experiments.

X% ¼
Xgreen

Xred þ Xyellow þ Xgreen
(7)

Another thing to consider when evaluating actions with future
information is the extent to which action candidates are to be
determined. Fig. 7 shows an example when only actions deter-
mined by the agents are counted as candidates, and Fig. 8 shows the
decision process when all actions are considered as candidates. In
Fig. 8, all prediction models are activated, and by ranking their
scores, it is found that neither conflicting action is the optimal ac-
tion. This implies that there might be new actions that can
compensate for the conflicting desired actions from the agents,
6

which should be confirmed through experiments.
4. Application

4.1. Experimental settings

A compact nuclear simulator (CNS) provided the training data
and simulation environment. Developed by the Korea Atomic En-
ergy Research Institute (KAERI), the CNS models a 993 MWe three-
loop Westinghouse PWR [21]. In the simulation, an action set was
activated every 20 s because it is not realistic to control compo-
nents every second. The application concerns an operation inwhich
the PZR pressure and water level are simultaneously adjusted after
a PZR bubble is formed, that is, after the water level has dropped
from the full water level.

The agents of the two AI-based operating blocks controlling the
PZR pressure and water level in this applicationwere created based
on two SAC algorithms. One agent handles the charging water flow
control valve and letdown flow control valve for adjusting thewater
level of the PZR, and the other agent handles the PZR spray control
valve in addition to the same valves as the first agent for adjusting
the pressure of the PZR. We set up the environment such that an
agent gives a valve open or close signal similar to an operator
operation. When the signal is activated, it is reset after a certain
time step after which the corresponding signal is removed. The
change in opening degree during one step is approximately 1.5% for
each valve.

Plant parameter prediction models were created using LSTM
networks to predict 17 variables, as listed in Table 2. The variables
used in the prediction models were based on the LCOs described in
the GOPs of the CNS we used, and all variables mentioned in the
LCOs were added.

The number of models derives from a combination of two valves
to simplify the problem. The charging water flow control valve and
letdown flow control valve, respectively tagged FV122 and HV142
in the simulator, have 9 possible combinations: none 00, open 01,
and close 10. To distinguish them simply, the combinations are
displayed with these digits. Therefore, a total of 9 prediction
models were created. For the data generation, random actions were
performed every 10 min during 6000 s of operation to allow for
different operating situations. This allowed us to obtain data with
varying patterns in different situations for each action label. As a
result, there are 10,000 datasets with an interval of 600 s. Other
hyperparameters were empirically set as follows: the number of
cells in each layer is 200, the dropout fraction of the units to drop
for the linear transformation of the inputs is 0.1, the number of
epochs, or iterations over all datasets, is 100, the Adam optimizer is
used with a learning rate of 0.001 to minimize the loss function,
and loss is calculated through mean square error [22].



Fig. 7. Example of operation flow considering agents' actions as candidates.

Fig. 8. Example of operation flow considering all actions as candidates.

Table 2
Input and output variables for the prediction models.

No. Description

1 PZR TEMPERATURE.
2 LETDOWN BACK PRESSURE
3 LETDOWN FLOW
4 CHARGING FLOW
5 PZR PRESSURE(NARROW RANGE)
6 LOOP 3 AVERAGE TEMP
7 LOOP 2 AVERAGE TEMP
8 LOOP 1 AVERAGE TEMP
9 PZR LEVEL
10 VOLUME CONTROL TANK LEVEL.
11 VCT PRESSURE
12 RCP SEAL INJECTION FLOW
13 RCP SEAL NO.1 DELTA PRESSURE
14 RCP SEAL NO.1 RETURN FLOW
15 S/G 3 PRESSURE
16 S/G 2 PRESSURE
17 S/G 1 PRESSURE

*VCT: Volume control tank, RCP: Reactor coolant pump, S/G: Steam
generator.
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The plant parameter prediction models predict the future states
of the variables up to 9 min according to the 9 action combinations.
For example, if the PZR pressure control model selects the action of
opening FV122 while the PZR water level control model selects the
action of closing FV122, then the actions are ranked by scores based
on the model prediction and the optimal action is chosen. Fig. 9
shows an example of the model notation and process to select
the final action assuming simple numbers. The first two digits
represent signals for controlling FV122, and the remaining numbers
represent signals for controlling HV142. In this example, FV122
receives signals in opposite directions by the two agents. The pre-
diction models then calculate the future states to get scores
through the coordinating strategy, and ultimately the closing FV122
signal is selected as the optimal action with the higher score. After
performing autonomous operation without human intervention
through the experiment, the PZR pressure and water level records
were classified according to the criteria presented in the LCOs.

The pressure and water level of the PZR, which are the objects of
the LCOs, were divided into three regions at regular intervals:
recommended, acceptable, and violation. The pressure of the PZR



Table 3
Discrete scoring for PZR pressure and water level.

Level (%) 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40
Pressure (kg/cm2) 30 29.5 29 28.5 28 27.5 27 26.5 26 25.5 25 24.5 24 23.5 23 22.5 22 21.5 21 20.5 20
Score 10 9 8 7 6 5 4 3 2 1 1 1 2 3 4 5 6 7 8 9 10

Table 4
RMSE for the plant parameter prediction models.

Model (action) Train_score RMSE Val_score RMSE

00 00 0.16440 0.16498
00 01 0.17851 0.18993
00 10 0.16424 0.16695
01 00 0.28892 0.28315
01 01 0.12891 0.12905
01 10 0.12082 0.12033
10 00 0.14195 0.14212
10 01 0.17615 0.17994
10 10 0.11743 0.11613

Fig. 9. Example of the model notation and simple process to select the final action
when an action conflict exists. The arrows in the tables are simple representations of
variable increases or decreases relative to its current value.
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ranges from 20 kg/cm2 to 30 kg/cm2, and the water level of the PZR
ranges from 40% to 60%, with proportionally distributed regions.
Fig. 10. Examples of future states by the 9 prediction models for PZR pressure. In all graphs,
time from the moment of measurement to 600 s. The model number of each graph follow
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The scores assigned to specific values of PZR pressure and water
level are shown in Table 3.

4.2. Results

When bubbles are formed in the PZR, the water level drops from
100%. In this test, the two agents operate in parallel after a 70%
water level is reached without intervening immediately after the
water level drops from 100%. The goals of this operation are to keep
the PZR pressure between 25 kg/cm2 and 28 kg/cm2 and the PZR
water level around 50% to comply with the conditions suggested in
the LCOs.

Table 4 shows the root mean square error (RMSE) used as an
index indicating the learning degree of the predictionmodels. Since
an RMSE score is calculated by expressing the difference between
true values and predicted values as a distance, low RMSE values
indicate high accuracy of the regression models. According the ta-
ble, the 9 prediction models have been trained properly. As
mentioned in Sect. 4.1, there are 9 predictionmodels corresponding
to the 9 action combinations, actions for FV122 and HV142 in order,
and the remaining numbers represent signals for controlling PZR
spray valve. Fig. 10 shows that the pressure change is predicted
differently depending on the action selected at a specific time. An
example of the predictions by the 4th model (01 00), related to the
action for opening FV122 only, showing the highest error among
the models, can be seen in Fig. 11.

Tables 5 and 6 list the results of comparing the three quantifi-
cation methods according to evaluation indicators when
the y-axis represents the PZR pressure with a small scale, and the x-axis represents the
s the model order in Table 4.



Fig. 11. Prediction results of model #4, where only the charging flow control valve open signal is received (True: actual value, Predicted: predicted value). (a,b) PZR level. (c,d) RCS
loop#2 average temperature. (e,f) PZR pressure.

Table 5
Comparative results of each quantification method with all actions as action candidates.

Method Temp Pgreen Pyellow Pred P% Lgreen Lyellow Lred L%

Without coordination 170.84 14210 5788 2 71.1% 14344 887 0 94.2%
Comparison 172.17 15254 4744 2 76.3% 6076 8012 0 43.1%
Average 172.25 16853 2741 406 84.3% 14306 837 0 94.5%
Area 172.32 15326 4673 1 76.6% 14004 1254 0 91.8%
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considering all actions and agents' actions as candidates, respec-
tively. When all actions were considered, the quantificationmethod
using the average of the 9 future states showed the most improved
results for PZR pressure and water level compared to the uncoor-
dinated case. The case where only the agents’ action sets were
considered as candidates showed lower performance than the
uncoordinated case for all methods. In all methods, the heating rate
did not exceed the limit (28 �C/h), and the final RCS cold leg #2
Table 6
Comparative results of each quantification method with agents’ action sets as action can

Method Temp Pgreen Pyellow Pre

Without coordination 170.84 14210 5788 2
Comparison 171.92 13444 6555 1
Average 170.98 15360 4639 1
Area 170.53 15859 4140 1
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temperatures for all methods were similar.
4.3. Discussion

From the experimental results, it can be seen that quantifying
the whole trend with the average and area methods rather than
comparing the final values only was advantageous to achieve the
desired operation goal. Among the quantification methods, it was
didates.

d P% Lgreen Lyellow Lred L%

71.1% 14344 887 0 94.2%
67.2% 8620 6819 0 55.8%
76.8% 1640 13616 8 10.7%
79.3% 2068 12694 12 14.0%



Fig. 12. Representative variable trends with LCO-based regions following coordinated operation by the two agents controlling PZR pressure and water level (average case).

Fig. 13. Accumulated reward for each episode for the PZR water level control agent (left) and PZR pressure control agent (right).
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confirmed that the use of the average showed the greatest perfor-
mance improvement, with the method considering the area also
showing improvement compared to the uncoordinated case.

As shown in Fig. 10, the variable shows different trends
depending on the selected actions. In a future study, we plan to
extend the scope to maintain the accuracy of the plant parameter
prediction models while increasing the prediction time range so
that more dynamic changes can be seen.

In terms of the performance evaluation, the classified regions do
not mean that operation has failed or is wrong even when the
yellow (acceptable) or red (violation) regions have high values. In
all operating simulations, the LCO was sufficiently satisfied, and by
adding a quantification method, both variables were mostly
maintained in the green (recommended) region. Considering the
scale, discretely dividing the regions where the variables need to be
maintained and assigning scores is considered appropriate as a
general approach for application to other operations. Fig. 12 shows
the result to obtain the indicators for performance evaluation used
in Eq. (7) with colored regions. The PZR pressure and water level
graphs were maintained within the regions suggested by the LCOs.
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At a high temperature, the PZR pressure rises together within the
range that does not deviate from the PT curve, but in this experi-
ment, the pressure was controlled to the end.

Fig. 13 displays graphs of the accumulated rewards by the PZR
pressure and water level control agents at each episode. As the
episodes progress, it can be seen that each agent was generally able
to find the optimal policy to increase the cumulative reward.
However, each agent does not consider the goals of the other, only
focusing on the action candidates that achieve their local goal.
Table 5 indicates that when actions conflict, it is better to consider
all actions as candidates to achieve the overall operation goal rather
than considering only the action sets suggested by the agents.
Because a new operation strategy that reflects the LCOs in a multi-
agent environment is required, a new optimal policy is needed
[23,24].

In order to apply RL to the operation of an NPP, an agent can be
assigned to a single component (e.g., one valve) as the smallest unit,
or an agent that controls multiple components can be created as
discussed in this paper. As the number of input variables and ac-
tions corresponding to outputs increases, the size of the dimension
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on which the agent should converge increases. In this study, we
limited the size of the dimension by efficiently training two agents
and separating the learning environment from the complex con-
ditions required for achieving multiple goals. However, by
researching cases of finding the optimal policy in a more complex
environment with the latest deep learning techniques, it is ex-
pected that single agents can be created that cover all operations in
the future.
5. Conclusion

This paper introduced an action coordinating strategy for
developed AI agents considering domain knowledge as part of the
development of an NPP autonomous operation system for startup
operation. AI agents were implemented using SAC algorithms to
achieve the optimal operation policy. However, since each agent
was trained in a local environment, a strategy is required to lead the
desired operation goal in amulti-agent environment. For this, LSTM
networks were employed to make plant parameter prediction
models that provide future information according to potential ac-
tions so that the autonomous operation system can quantify the
LCOs. Three quantification strategies were compared to assess the
candidate actions, where themethod comparing the average values
of the variable trends showed the best results. Ultimately, it was
possible to coordinate the actions between multiple agents by
dividing the variables related to the LCOs into discrete domains,
giving them scores, and selecting the optimal action with the
highest score.

The goal of this study was to explore how to successfully
perform startup operation by coordinating various operating blocks
with AI agents that perform subdivided operation tasks. While
completely autonomous systems in the nuclear energy field are
both technically and legally challenging, it is expected that
continued research into this area can provide support to operators
with high workloads over long periods.
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