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a b s t r a c t

Sensor faults in nuclear power plant instrumentation have the potential to spread negative effects from
wrong signals that can cause an accident misdiagnosis by plant operators. To detect sensor faults and
make accurate accident diagnoses, prior studies have developed a supervised learning-based sensor fault
detection model and an accident diagnosis model with faulty sensor isolation. Even though the devel-
oped neural network models demonstrated satisfactory performance, their diagnosis performance
should be reevaluated considering real-time connection. When operating in real-time, the diagnosis
model is expected to indiscriminately accept fault data before receiving delayed fault information
transferred from the previous fault detection model. The uncertainty of neural networks can also have a
significant impact following the sensor fault features. In the present work, a pilot study was conducted to
connect two models and observe actual outcomes from a real-time application with an integrated sys-
tem. While the initial results showed an overall successful diagnosis, some issues were observed. To
recover the diagnosis performance degradations, additive logics were applied to minimize the diagnosis
failures that were not observed in the previous validations of the separate models. The results of a case
study were then analyzed in terms of the real-time diagnosis outputs that plant operators would actually
face in an emergency situation.
© 2022 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

With the fast progress of machine learning techniques, appli-
cations of high computing power and novel machine learning
models are being actively investigated inmany industrial fields. The
high performance of machine learning models has shown high
applicability in many industrial and academic fields [1]. In the
nuclear field, there have been numerous suggestions for auto-
mating the operators’ tasks for reducing task loads and human
errors. Related research includes autonomous control in the start-
up/shutdown phases, automated diagnosis of the plant state, and
automated plant parameter predictions. One characteristic of the
novel approaches with neural networks in the nuclear field is that
they mostly consider diverse transient states of nuclear power
plants such as start-up and shutdown, and abnormal and accident
situations. These transient states contain nonlinear features with
the actuation of automated components, human operation, and
peculiar conditions of the plant.
by Elsevier Korea LLC. This is an
In particular, accidents in nuclear power plants produce quite
irregular conditions due to dramatic changes in parameters and
unique features following the accident type and its scale. Accidents
with the loss of the plant's critical safety functions require an
automated reactor trip, which actuates several serial sequences of
automatic activations and inactivations of components for main-
taining plant integrity. Diverse accident symptoms and multiple
status changes of component sets lead to many different plant
states according to the accident progression with nonlinear and
complex trend changes. Thus, accurately identifying the occurred
accident plays an important role in situation awareness and
decision-making. In this light, faulty plant sensors can have a sig-
nificant negative influence on the accident identification process.
This was seen in the Three Mile Island accident, in which sensor
faults caused operators to wrongly diagnose the accident [2]. In
addition to impacting accident identification, sensor faults
continuously threaten plant safety by potentially causing human
errors during accident responses.

Existing techniques for monitoring sensor states mainly focus
on the parameter relations to reconstruct signals and use them to
distinguish faulty signals. However, the dynamic features of nuclear
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accidents make it challenging to construct relations between sen-
sors, where developing parameter relations has different schemes
following the accident type. A dilemma arises as to which task is
better to perform first, sensor fault monitoring or accident diag-
nosis. Preceding accident diagnosis results would ensure better
fault detection performance, while data validation from preceding
fault detection would guarantee accurate diagnosis.

To address the above issue, in a previous work the authors
suggested a supervised learning-based sensor fault detection al-
gorithm [3]. By training a neural network with proposed labels,
injected sensor faults could be accurately classified. Then in a
follow-up study, a sensor fault-tolerant accident diagnosis model
was developed [4] to realize fault-informed accident diagnosis,
whereby the diagnosis results reflect sensor fault information by
removing the influences of faulty sensors.

The goal of sensor fault-tolerant accident diagnosis is for actual
inclusion as an operator support system to assist operators in
emergency situations involving high stress and workload. There-
fore, an integrated system has to be executed in a real-time manner
to give updated accident information in a timely manner. In the
current study, the previously developed sensor fault monitoring
and fault-informed accident diagnosis models are connected into
one system for real-time execution in a nuclear power plant acci-
dent situation. To treat the issues from delayed fault information
transfer between models, improved fault information processing
and additional diagnosis decision logics are applied to the inte-
grated system.

2. Sensor fault-tolerant accident diagnosis

2.1. Motivations

Nuclear accidents include diverse malfunctions of critical com-
ponents that lead to an autonomous reactor trip by exceeding the
trip threshold. Examples of typical nuclear power plant accidents
include a loss of coolant accident (LOCA), steam generator tube
rupture (SGTR), and others. In an accident situation, plant operators
judge the occurred accident by the symptoms in terms of the sensor
values and trends. Since correctly diagnosing the accident is crucial
for executing the appropriate accident responses, accurate and
quick accident diagnosis has to be achieved from correct sensor
values. However, large uncertainty exists in accident conditions
because of the diverse accident types and the distinct symptoms of
each case following the location and size of the break or malfunc-
tion and the failure sequences. As shown in Fig. 1, plant parameters
have dissimilar patterns even in the same accident type (LOCA in
the figure), varying by break location. Considering such dynamic
characteristics of accidents, several sensor fault detection methods
for monitoring the correct sensor scales [5e8] and accident diag-
nosis methods [9e11] based on data-driven approaches have been
suggested to support operators in an accident situation.

In this circumstance, the pending issue is which task should
precede the other between sensor fault monitoring and accident
diagnosis. It is evident that the performance of sensor fault detec-
tion may differ depending on the scope of the data. A smaller scope
of data training and usage, like for one specific accident type, will
output more accurate results due to small deviations in the data. On
the other hand, accident diagnosis with fault-monitored data will
prevent wrong diagnosis cases from trained faults. Between the
two options, diagnosis cannot be firstly performed considering the
currently low robustness of classification models. While some
recurrent neural network (RNN) models have made successful
diagnosis results with nuclear power plant accident data [12,13]
[Baraldi et al., 2015], showed that machine learning algorithms
including RNNs do not assure robustness against artificial faulty
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data [14]. For this reason, sensor fault detection covering diverse
accident conditions has to be the first step toward fault-informed
accident diagnosis.

In our prior research, a sensor fault detection model and a
sensor fault-tolerant accident diagnosis model were developed
[3,4]. Our first study constructed consistency index-based sensor
fault monitoring neural networks utilizing the high performance of
supervised learning. With the successful fault detection rate of the
first study, the results of the fault-informed accident diagnosis
model developed in the follow-up study showed effective exclusion
of fault influence. Despite the fine performance of each model, the
two models were treated separately without direct connections. It
is expected that a real-time connection of the two models will
result in unexpected failures from the real-time feature. Thus, the
purpose of the current study is to integrate the two previous
models to confirm the actual consequences of their simultaneous
operation.

The overall framework of the current study is shown in Fig. 2.
The integrated system is actuated upon automatic reactor trip in
the case of an accident involving deviation of sensor parameters.
After the reactor trip, a predefined plant parameter set (see Section
4.1.1) is extracted and transferred to the sensor fault monitoring
model and accident diagnosis model in a real-time manner. Sensor
fault monitoring is firstly executed, after which the fault informa-
tion is delivered to the accident diagnosis model. The diagnosis
model reflects the fault information by lowering the influence of
any faulty sensors to achieve accurate diagnosis of the accident.

2.2. Consistency index-based sensor fault detection

Data driven methods are fatally bound with uncertainty ac-
cording to unpredicted or untrained inputs, which is reflected in
the characteristic of robustness. If a model can generate consistent
performance evenwith untrained data, it is considered to have high
robustness. Model robustness is the main driver of the existing
sensor fault detection methods. As shown in Fig. 3, existing studies
on sensor fault detection in the nuclear field, called online moni-
toring (OLM), are generally based on residual analysis connected
with an unsupervised learning-based reconstruction model. The
reconstruction model has an auto-associative structure with the
same input and output variables. By the training sequence of the
auto-associative model, the relations between variables are re-
flected in the model weights. These extracted features reconstruct
the robust output; therefore, a faulty signal is detected through a
difference between the original and reconstructed signals. From the
early stages of the development of OLM techniques, many data-
driven methods such as principal component analysis, neural net-
works, auto-associative kernel regression, etc., have been applied
for the reconstruction model.

Unsupervised learning-based sensor fault detection methods
have been adopted for sensor fault detection; however, nuclear
power plant accident data contain diverse symptoms that can be
diversely clustered following the type of accident, and thus the
development of a neural network model and parameter setting are
challenging. Using a supervised learning strategy, [Choi and Lee,
2020] showed accomplished performance of sensor fault classifi-
cation [3]. The consistency index labeling rule used for supervised
learning strategy is illustrated in Fig. 4. The neural network-based
fault detection model generates a consistency index of each
sensor by processing the multivariate sensor inputs. The fault
detection model consists of stacked RNNs, specifically long short-
term memory (LSTM) networks. The LSTM is governed by three
gate functions, namely input gate (it), forget gate (ft), and output
gate (ot), with the cell state (Ct) carrying the long-term information.
The three gate functions regulate the updates of the cell state and



Fig. 1. Diverse accident features following the accident types and malfunction modes.

Fig. 2. Integrated system framework.
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conclusive hidden state (ht) with the input (it) and the previous
hidden state (ht�1).

For the supervised learning of LSTM networks for sensor fault
detection, the consistency index was suggested to label each sensor
data. The consistency index (ci;t), of each sensor is determined
816
based on the squared relative accuracy of the measured value to the

real value, ð1� εi;tÞ2. If the relative error (εi;t) exceeds the threshold
error (εth), ci;t is fixed to zero. Fig. 4 shows examples of consistency
index labeling.



Fig. 3. Unsupervised and supervised learning-based sensor fault detection.

Fig. 4. Consistency index labeling rule.
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ci;t ¼

8>><>>:
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1� εi;t

�2 ¼
 
1�

����~Ai;t � Ai;t

Ai;t

����
!2

;0 � εi;t � εth

0; εi;t > εth

(1)

where εi;t is the relative error of the obtained signal to the real
signal, and εth is the allowable error.

The sensitivity of fault detection can be modulated by adjusting
the error allowance in the labeling rule and the decision logics,
which refer to the binary decision from the consistency index
output. If the error allowance and decision logics decide the fault
state with small margins, the model sensitively outputs faulty
sensor states. This can ensure a high true negative rate, which
817
means the proper classification of normal states; however, this
would also increase the false positive rate, which means the wrong
classification of normal states as faulty states. Accordingly, proper
criteria values for both error allowance and decision logics need to
be derived from sensitivity studies against useable data for opti-
mizing model performance.
2.3. Fault-informed accident diagnosis

Early phases of nuclear accidents are unclear situations because
the accident symptoms differ following various accident types and
scales. Unlike normal operation, a nuclear accident is accompanied
by a reactor trip, which is automatically actuated with pre-set pa-
rameters, and thus sudden changes in the parameters and alarms
simultaneously occur. In this situation, correct diagnosis of the
accident is essential to plan the appropriate responses. To support
the operator tasks related to accident diagnosis, several neural
network and knowledge-based methods have been investigated
[14e16]. Among the diagnosis algorithms, RNN models have ad-
vantages in terms of time contexts in both short- and long-term
scales. Studies including [Yang and Kim, 2018] and [Wang et al.,
2021] have shown fine performance of RNNs as an accident iden-
tification method [13,15].

To achieve fault-informed diagnosis, gated recurrent unit
(GRU)-decay (GRUD), which is an improved GRU model, was cho-
sen for the accident diagnosis with fault information model [16].
GRU has a simplified LSTM structure. Two gate functions, reset and
update, determine the hidden state from the input and previous
hidden state. The hidden state plays the role of both the cell state
and hidden state of the LSTM. In the GRUDmodel, a decay constant
(g) conducts a decay mechanism that affects the input and hidden
state.

zt ¼sðWzxt þUzht�1Þ (2)

~ht ¼ tanhðWxt þUðrt⨀ht�1ÞÞ (3)

ht ¼ð1� ztÞ⨀ht�1 þ zt⨀~ht (4)
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rt ¼sðWrxt þUrht�1Þ (5)

With the basic gate functions above, the update gate (zt) has the
function of the forget and input gates of the LSTM. It determines the
degree to which past and present information (past hidden state
and present input) is reflected. The reset gate (rt) determines the
extent of resetting the previous hidden state (ht�1). The candidate

(~ht) is the result of reset gate processing. The present hidden state
(ht), which is the result of the GRU cell, is generated with the up-

date of ~ht .

gt ¼ expð �maxð0;Wgst þbgÞÞ (6)

bxt ¼mtxt þ ð1�mtÞðgxt xt þð1�gxt ÞxtÞ (7)

bht�1 ¼ght
⨀ht�1 (8)

Originally, the GRUD model was made for the purpose of
treating datasets with missing data. The missing information is
marked with a masking (m) that activates the decay mechanism.
The decay mechanism is driven by a decay constant (gtÞ. As seen in
Eq. (6), gt is determined by the decay weight and bias (Wg; bg),
which are jointly trained from all the other parameters in the GRU
cell functions. Via negative exponentiated rectifier, the decay
mechanism drives a reasonable reduction following the importance
of the parameters. If the masking indicates a missing value at time t
(mt ¼ 0Þ, xt is decayed to xt , which is a predefined imputation value
(e.g., mean), and the hidden state is immediately decayed from
ht�1. The decay of the hidden state mainly reduces the influence of
the missing data, and the model results are acquired from the other
parameter calculations. The employed decay mechanism on the
GRUD cell is shown in Fig. 5.

Based on the above GRUD structure, a fault-tolerant accident
diagnosis model was proposed [4]. The GRUD model has the same
function as GRU in the case where the masking always indicates
that all parameters are normal ðmt ¼ 1Þ, and thus the GRUD model
operates in an error-free state with the same high performance as
general RNN models. When the fault state is transferred (mt ¼ 0Þ,
Fig. 5. GRU-decay cell structure with decay mechanism.
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the algorithm diminishes the influence of the faulty sensors by
decaying the hidden state and input, which results in a diagnosis
from the other sensor inputs.

3. Real-time model connection

Each previously developed RNNmodel for sensor fault detection
and accident diagnosis was separately evaluated with simulation
data and showed fine performance. However, the real-time
connection of the two models might present performance degra-
dations, such as from an uncertain or random time of fault infor-
mation transfer due to the time required for sensor fault detection.
The required time for fault detection can vary by the different de-
grees of sensor faults, accident types, fault injection times, and so
on. In this section, the real-time integration of the two models,
namely sensor fault detection and fault-informed accident diag-
nosis, was carried out as a pilot study. Based on the initial results,
additional logics were analyzed to minimize the effect of the
observed performance degradations.

3.1. Overview of the integrated system with real-time inputs

The first step for the real-time execution of the integrated sys-
tem is time window (twindow) extraction from the multivariate time
series data. Two-dimensional accident data are generated with
time-steps and sent to the sensor fault detection LSTM and accident
diagnosis GRUD models. The LSTM model generates the estimated
consistency index output, which is close to zero if the sensor is in a
fault state and otherwise close to one. The consistency outputs are
processed by the sensor fault decision logic, so that the fault in-
formation brings about a binary sensor fault state. The binary
sensor state can be used as-is as a masking input of GRUD; more
specifically, an index value of 1, meaning a normal sensor, is
regarded as a useable input in the diagnosis model, while an index
value of 0, meaning a faulty sensor, is excluded from calculation in
the diagnosis model. The GRUD model generates the probability of
each accident label with the time window input and masking. The
accident is diagnosed by the probabilities of the accident labels
processed by the diagnosis decision logic. Fig. 6 describes the data
flow from the sensor signals in an accident situation to the diag-
nosis output.

3.2. Pilot study of real-time execution

To observe any potential unexpected negative effects from the
integration of the models, a pilot study of the developed system
was tested with accident simulation data containing sensor faults.
Here, sensor fault data produces diverse diagnosis outputs. The
trends of the diagnosis outputs can be classified into four cases, as
shown in Table 1 and the examples in Fig. 7. Case 1 involves un-
changing true trends, or in other words, in this case the output with
the maximum probability accurately indicates the occurred acci-
dent, as shown in Fig. 7(a). Case 1 takes up 91.8% of the overall data,
meaning that the faulty data were not overly influential or that the
faults were isolated before any fault effect appeared. Case 2, pos-
sessing 1.8% of the total cases, reflects a negative effect of sensor
isolation. These cases occurred when a highly weighted parameter
was isolated, e.g., the secondary radiation sensor faults in the SGTR
accident. From such an isolation, the stable true trends of the
diagnosis output rapidly deteriorated, as in Fig. 7(b). After the true
trend interruption though, the output gradually recovered over
time, meaning the accident diagnosis was sufficiently generated
based on the other sensors. Case 3 represents the appropriate
functioning of sensor fault detection and isolation. By the sensor
fault effect, the true diagnosis output initially deteriorates, but after



Fig. 6. Data flow and fault information transfer.

Table 1
Pilot study of the integrated system with faulty data.

# Percentage

Case 1 Unchanging true trends 91.3%
Case 2 True trend interrupted by sensor isolation but recovered after a period of time 1.8%
Case 3 False trend from sensor fault occurred but recovered by faulty sensor isolation 6.4%
Case 4 False trend from sensor fault occurred and not recovered 0.5%
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sensor fault isolation, the diagnosis result is dramatically recovered
to the true results. This case takes up 6.4% of the total cases. The last
case, Case 4 taking up 0.5% of the total cases, shows the result of
when the sensor fault effect is not removed via sensor isolation.
This case may imply the existence of high-importance sensors that
cannot be isolated in accident diagnosis, i.e., their isolation cannot
be recovered by other sensors like in Case 2.
3.3. Additive logics in the integrated system

Among the observed cases, Cases 1 and 3 demonstrated the
successful execution of the suggested model. As Case 4 reflected a
situation in which sensor isolation does not support accident
diagnosis, this case is excluded from further analysis. On the other
hand, Case 2 of the pilot study revealed a negative aspect of the
suggested system, and therefore additive processing measures
need to be applied. The issue in Case 2 is that the isolation of an
important sensor interrupts the stable true diagnosis trend. The
reasons for this negative effect are believed to be that the isolated
sensor is a decisive source for accident diagnosis and that there are
no other features that sufficiently represent the occurred accident.
But as the accident symptoms accumulate over time, the diagnosis
result is recovered to the true accident label, as in Fig. 7(b).

In Case 2, one fact to notice is the GRU result, for which the
sensor is not isolated with the masking maintained as 1 even if a
sensor fault is detected (see Section 2.3), indicates the true diag-
nosis result. For improving the diagnosis performance against Case
2, additive logic processing of the diagnosis output would be
helpful. We recognized that the failed cases from the sensor
isolation showed high instability and no specific label was main-
tained at a high value due to the insufficient basis for ensuring the
diagnosis. Taking this observation into account, we applied two
additive diagnosis decision logic strategies as below, each with
multiple logics, and then conducted a case study with the inte-
grated system applying the additive logics in the next section.
819
3.3.1. Output processing logic
The first strategy was to apply an additional accident decision

logic by processing the probabilities of each label. As shown in
Fig. 7(b), there is a region in the results after sensor isolation in Case
2 with unstable peaks of false labels. In Case 3, there is also a region
of diagnosis failure from an accumulated fault effect. To design a
logic effective for Cases 2 and 3, a strategy considering the proba-
bilities within the time interval was suggested. At each time step,
the diagnosis label is chosen from the summation of probabilities
within the defined time interval. The two logics employed for this
are as follows.

- Cumulative: Diagnosis is determined by the accumulation of
the SoftMax output from the reactor trip point to the present
time.

Racc
t ¼argmax

 Xt
0
f GRUDðYtÞdt

!
(9)
- Moving average: Diagnosis is determined by the average
value of the SoftMax output for the defined time interval.

Racc
t ¼argmax

 Xt
t�n

f GRUDðYtÞdt
!

(10)

Where, Yt is the diagnosis outputs inM � 1matrix form, whereM is
the number of accident labels. The argmax function refers to the
generation of an identical matrix marked with an index of 1 on the
maximum coordinate and an index of 0 on the other input vectors.
With the argmax logic, the label having the maximum probability
accumulation is highlighted as the one-hot vector, Racct , which is the
final diagnosis result.



Fig. 7. Diagnosis results examples: (a): Case 1, (b): Case 2, (c): Case 3, (d): Case 4.

J. Choi and S.J. Lee Nuclear Engineering and Technology 55 (2023) 814e826
3.3.2. Output stability logic
The second strategy involved selective sensor isolation. As

previously mentioned, we observed very unstable and inconsistent
diagnosis output in Case 2, where it is believed that the isolation of
an important sensor causes diagnosis failure due to the resulting
lack of essential symptom information. In most cases, the diagnosis
was rather successful when the sensor fault was not isolated. By an
additive logic for selective sensor isolation, we intended the model
to generate an output either with sensor isolation or no isolation.
Before and after the sensor fault detection (isolation) points, the
stabilities of the diagnosis outputs were compared. Three measures
for output stability were evaluated as below.

- Variance: Variance of the SoftMax output at the time of
diagnosis

- Complexity (Information theory): Information entropy of the
SoftMax output at the time of diagnosis
820
- Hand-crafted threshold: Average of the maximum labels
before and after the diagnosis point in the time interval

Racc
t ¼

(
argmax

�
f GRUDðXtÞ

�
;HðXt�1Þ>HðXtþ1Þ

argmax
�
f GRUðXtÞ

�
;HðXt�1Þ � HðXtþ1Þ

(11)
4. Case study

4.1. Data description

The data source for the case study was a compact nuclear
simulator developed by the Korea Atomic Energy Research Institute
(KAERI) [17,18]. The compact nuclear simulator has a one-
dimensional nodalization design based on the SMABRE thermal-
hydraulic code for fast computation and is based on a three-loop
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pressurized water reactor design by Westinghouse [19,20]. Such
CNSs have been used for the data generation of several data-driven
machine learning applications in the nuclear field. They can
simulate emergency or accident data with typical malfunction
options including several representative scenarios, and the clear
symptoms for diagnosis have been precisely confirmed. Referring to
existing emergency operating procedures, five accident scenarios
were selected for data generation; Table 2 shows the eight accident
labels with detailed break (malfunction) location and severities.

Each accident can have distinct failure features and severity. The
LOCA, SGTR, and excess steam demand events are distinguished by
several break locations and break sizes. The loss of all feedwater
and reactor trip accidents do not have different severities from the
break but vary by the timing of component failures. For example,
LOCA includes the total failure of the main feedwater pumps and
auxiliary feedwater pumps, where the malfunctions of the six
pumps can generate various combinations of failure sequences and
time intervals between failures. Based onTable 2,1397 training data
and 453 test data were generated.
4.1.1. Fault injection taxonomy
Fault data were artificially generated by injecting expected fault

behaviors into the simulated data. Fault modes include sensor drifts
and stuck faults, which are generally considered in prior sensor
fault monitoring studies [21e23], and the faults are expected to
arbitrarily produce similar signal trends with consistent sensor
signals. Among the formulas below, the fault signal, f ðtÞ, is gener-
ated from the original signal, sðtÞ, with the fault behavior reflected
by dðtÞ:
4.1.1.1. Drift faults. A sensor drift refers to the continual and accu-
mulative deviation of a sensor value from the correct value, as
shown in Fig. 8. The fault scale, d, determines the degree of devi-
ation at each time step. Drift faults can be injected with diverse
scales and directions. Slow and rapid drifts are divided by the de-
gree of the fault, and upward and downward drifts are classified by
the direction of the deviation. The deviated (or drifted) value is a
scaled change of the present sensor value from the prior one.
Table 2
Data description.

Accident type Accident labels and break (malfunction) locat

Loss of coolant accident (LOCA) 1. LOCA- Loop #1 cold leg
- Loop #2 cold leg
- Loop #3 cold leg
- Loop #1 hot leg
- Loop #2 hot leg
- Loop #3 hot leg
- Vessel top
- Vessel bottom

2. PORV LOCA- Pressurizer (top)
Steam generator tube rupture (SGTR) 3. SGTR- Loop #1 S/G

- Loop #2 S/G
- Loop #3 S/G

Excess steam demand event (ESDE) 4. ESDE in containment(Main steam line bre
- Loop #1 inside-containment
- Loop #2 inside-containment
- Loop #3 inside-containment

5. ESDE outside containment(Main steam li
- Loop #1 outside-containment
- Loop #2 outside-containment
- Loop #3 outside-containment

Loss of all feedwater (LOAF) 6. LOAF- All feedwater pumps trip in Loop #
- All auxiliary FW pumps trip in Loop #1,

Reactor trip 7. Reactor coolant pump failure- Reactor co
8. Reactor protection system failure- Spuri
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f ðtÞ¼ sðtÞ þ dðtÞ; (12)

dðtÞ¼ d*ðsðtÞ� sðt�1ÞÞ (13)

To implement an upward drift, which refers to a positive accu-
mulated deviation, d is defined as below.

d up¼

8><>:
d; if ; sðtÞ � sðt � 1Þ
1
d
; if ; sðtÞ< sðt � 1Þ

(14)

And for a downward drift, referring to a negative accumulated
deviation, d is defined as below.

d down¼

8><>:
1
d
; if ; sðtÞ � sðt � 1Þ

d; if ; sðtÞ< sðt � 1Þ
(15)

4.1.1.2. Stuck faults. A stuck fault refers to a falsely constant sensor
signal that differs from the original sensor value, as shown in Fig. 9.
The implemented stuck faults include stuck constant and stuck zero
faults. The stuck constant fault maintains a fixed sensor value at the
time of the fault occurrence as below.

f ðtÞ¼ sðt0Þ (16)

Stuck zero faults have a fixed zero value from when the fault
occurs.

f ðtÞ¼0 (17)

4.2. Sensor fault detection performance e sensitivity studies

Even though supervised learning-based sensor fault detection
performance has been fully evaluated in a prior study [3,4], the
performance of the model should be reevaluated with the newly
ion Severity

5e150 cm2

4e100 cm2

ak inside the containment)

ne break outside the containment)

In-containment:
100e1000 cm2

Outside-containment:
360e2000 cm2

1, 2, and 3
2, and 3
olant pump trip
ous reactor trip from a reactor protection system failure



Fig. 8. Example of a sensor drift fault.

Fig. 9. Example of a sensor stuck fault.
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extracted dataset. In the prior evaluation, the fault detection model
achieved complete classification of both normal and fault data.
However, the test results in the present study with novel data
showed notably unstable consistency outputs, especially for the
normal data. To prevent false cases from normal data, the model
sensitivity was modulated by adjusting the labeling rule and con-
sistency output processing logic. As explained in Section 2.2, the
labeling rule of the consistency index affects the sensitivity with an
error allowance that sets the consistency index directly to zero.
Output processing with constrained fault decision will also prevent
false positive cases. False positive cases need to be thoroughly
eliminated because the false indication of a sensor fault would
disable a healthy sensor and negatively impact plant safety. To
confirm the true negative cases, a sensitivity study on the error
allowance and output processing was conducted, with results
shown in Table 3.

Overall, higher error allowance and more restricted output
Table 3
Specificity (true negative rate) of the sensor fault monitoring model with fault decision

Consistency threshold Error allowance 30%

Moving average

0.4 1 99.96%
0.5 1 99.96%

2 100.00%
3 100.00%
5 100.00%

0.6 5 97.22%
10 98.63%
15 99.51%
20 100.00%

0.7 10 92.14%
25 95.01%
30 95.45%
40 96.16%
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processing logic achieved high specificity except for the combina-
tion of 30% error allowance and 0.7 output consistency threshold.
We selected several options of error allowance and output pro-
cessing that satisfy the complete specificity; four options were
tested with fault data prioritizing the lower criteria that achieve
high sensitivity, as shown in Table 4. Among the four options, the
one with 10% error allowance and 0.5 consistency threshold with
3 s averaging showed the optimal results with a complete classi-
fication of the fault data within the shortest time.

4.3. Diagnosis performance with additive decision logics

Based on the adjusted sensor fault detection performance from
the sensitivity studies, the additional diagnosis decision logics
suggested in Section 3.3 were applied. The logics are actuated with
the transferred fault information from the fault detection model.
The diagnosis accuracy of each logic is measured with the
logic and error allowance of consistency labeling.

20% 10% 5%

99.87% 99.65% 98.68%
99.82% 99.51% 98.15%
100.00% 99.91% 99.21%
100.00% 100.00% 99.56%
100.00% 100.00% 99.78%
96.20% 97.35% 96.60%
98.23% 98.76% 98.45%
99.34% 99.74% 99.38%
99.96% 100.00% 99.91%
93.82% 94.08% 91.57%
99.60% 99.38% 96.91%
99.82% 99.60% 97.79%
100.00% 100.00% 98.76%



Table 4
Sensitivity (true positive rate) of sensor fault monitoring model with fault decision logic and error allowance of consistency labeling.

Error allowance 20% 10% 10% 10%

Consistency threshold 0.5 0.5 0.6 0.7
Moving average 2 3 20 40
Sensitivity 99.94% (10876/11325) 100.00% (11325/11325) 100.00% (11325/11325) 100.00% (11325/11325)
Time for detection 31.5 s 19.7 s 33.4 s 49.2 s

Fig. 10. Diagnosis accuracy with decision logics.

Table 5
Results of the integrated system with determined diagnosis decision logic.

# Percentage

Case 1 Unchanging true trends 92.6%
Case 2 True trend interrupted by sensor isolation but recovered after a period of time 0.4%
Case 3 False trend from sensor fault occurred but recovered by faulty sensor isolation 6.4%
Case 4 False trend from sensor fault occurred and not recovered 0.5%
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percentage of exact matches between the diagnosed label and the
true accident label per time step. Fig. 10 shows the measured ac-
curacy at the early phases of the accidents.

The first noteworthy aspect of the results is the degraded ac-
curacy of GRU diagnosis without the fault mitigation feature. The
first observations (10 s) showed a considerably lower performance
Fig. 11. Diagnosis ac
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of GRU due to the injected fault coincidence with the reactor trip
(0 s). As the accident features accumulate, the overall accuracies
including the GRU results showed increasing trends of accuracy. But
after the temporary improvement (from 80 s), the diagnosis accu-
racy of GRU fell, which is estimated to result from the accumulation
of fault severities causing more diagnosis failures in the latter
curacy results.



Fig. 12. Confusion matrix of diagnosis with sensor fault data without fault-isolation (upper)
and with fault isolation (lower).
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phases. On the other hand, the diagnosis accuracy of the GRUD
models with additional decision logics showed steadily increasing
trends except for the entropy-based logic. Among the compared
results, the hand-crafted logic exhibited the best performance
improvement. As shown in Table 5, by maintaining the proper role
of fault-isolated diagnosis, the integrated systemwith hand-crafted
logic minimizes Case 2, in which the system application causes an
adverse effect by an interruption of the true diagnosis.

Applying the hand-crafted logic to the diagnosis model, Case 2
decreased to 0.4% from 1.8%. The difference goes to the Case 1
because the 1.4% formerly in Case 2 had a steady true value without
the decay mechanism following the addition of the logic. The other
rates were maintained.

With the optimized diagnosis output decision logic, real-time
operation of the sensor fault detection and fault-tolerant accident
diagnosis systemwas tested. Fig. 11 shows the diagnosis accuracies
of GRU with fault and fault-free data as well as the constructed
GRUD-based system with fault data. The results of GRU with fault-
free data show a gradual increase from the start point and reach
complete diagnosis before 100 s. This means that the simulated
accident data contained enough symptoms for successful diagnosis,
and that the GRU model was aware of the accident symptoms and
generated proper accident diagnosis results. Even though the
diagnosis accuracy was remarkably worsened from artificial sensor
faults, the integrated system removed the influence of the sensor
faults and recovered the degraded diagnosis accuracy to almost the
same level as the fault-free data.

From the diagnosis results at 300 s where the diagnosis per-
formance reached its full recovery, confusion matrices were
derived as in Fig. 12 with and without the fault-isolated diagnosis
strategy in the sensor fault state. The most cases were observed in
the LOCA label, but the sensor faults had the biggest effect on the
misdiagnosis of SGTR considering the proportions of each label.
Sensor faults in the secondary sensor, which is a crucial parameter
to distinguish the SGTR accident, still largely affected the diagnosis
results. The other labels had an even diagnosis accuracy degrada-
tion from the sensor faults. After the fault mitigation, only 1.6%
cases in the LOCA label and 3.3% of OUT_ESDE label were observed,
while the other cases were completely recovered from the appli-
cation of fault isolation. It is believed that these results came from
the data imbalance, the largest uncertainty in the LOCA data came
from having the most diverse break sizes and locations, and
indistinctive symptom of OUT_ESDE accident.

5. Conclusion

The integrated sensor fault and fault-tolerant diagnosis system
was applied to simulated real-time accident data from a nuclear
power plant simulator. The sensor fault detection model, which has
an LSTM basis, was evaluated with the newly generated dataset,
and the model training and output processing were optimized via
sensitivity studies. To observe the effect of a delayed transfer of
fault information to the diagnosis model and the effect of feature
isolation, a pilot study was conducted. Two cases showed unin-
tended diagnosis failure due to the isolation of an important
feature. Additional diagnosis decision logics in the GRUD model
were compared to generate accurate diagnosis based on the
optimal diagnosis output processing and whether to apply the
decay mechanism. In the tested situation with sensor faults, the
sensor-fault tolerant diagnosis system with added logic presented
comparable diagnosis performance with senor fault-free diagnosis.

As pointed out regarding the execution of the integrated system
comprising two RNNs, the real-time transfer of sensor fault infor-
mation has an inevitable time delay to detect the faults, during
which the diagnosis model is exposed to the influence of any faults
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before the related sensor is isolated by the received sensor fault
information. Even though the diagnosis accuracy of the integrated
system with fault data recovered to almost the same level as fault-
free cases over some elapsed time, its performance at the very early
phases of the simulated accidents was lower due to the delayed
detection of faults and the delay from the additional decision logic
of the diagnosis model. To further improve the diagnosis accuracy
of the suggested system for sensor faults, the following three points
should be considered: (1) improvements to the diagnosis perfor-
mance of the GRU model itself, (2) upgrades of the sensor fault
detection model for quicker detection of sensor faults to reduce the
time delay, and (3) more sophisticated decision logics to make up
for the inefficient diagnosis performance in early phases.

In the nuclear field, diverse neural network-based operator
support systems targeting emergency situations have been devel-
oped, with many using RNNs. A nuclear emergency situation ur-
gently requires prompt actions, and thus providing accurate
information in a real-time manner is essential. In addition to the
presented integrated system, the developed sensor fault moni-
toring technique can be unified with plant parameter predictions,
autonomous operation, and other support systems [24e26] to
prevent model failures from sensor faults.
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