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ABSTRACT Developers use defect prediction models to efficiently allocate limited resources for quality
assurance and appropriately make a plan for software quality improvement activities. Traditionally, defect
predictions are conducted at the module level, such as the class or file level. However, a more recent trend
is to perform defect prediction for a single or consecutive commits to the repository, which is known as
just-in-time (JIT) defect prediction. JIT defect prediction finds error-prone changes instead of error-prone
modules, and as a result, the developer only needs to investigate error-prone changed lines instead of the
entire module. When building JIT defect prediction models, researchers used various metrics, including
developer experience metrics which measure the developer’s experiences. Despite the fact that software
defectiveness is likely to be affected by the experience of developers, developer metrics were understudied
in the literature. In this work, we investigate the impact of various novel developer experience metrics and
their combinations on JIT defect prediction. Our experimental results are positive.We found that it is possible
to improve the cost-effectiveness of defect prediction models consistently and statistically significantly by
using our new developer experience metrics.

INDEX TERMS Software defect prediction, just-in-time defect prediction, developer experience metric,
software quality management.

I. INTRODUCTION
Defect prediction helps developers identify software artifacts
that are likely to have defects. It provides a sorted list of
the potentially defective artifacts (those that are likely to be
more error-prone appear earlier in the list), based on which
developers can make a quality improvement plan considering
limited resources [1]. To predict the error-proneness of each
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software module,1 most defect prediction techniques use a
prediction model trained with various code metrics, such as
the code complexity [2] and change histories [3] known to be
effective in estimating error-proneness.

Although a defect prediction technique helps developers
narrow down the modules to inspect, module inspection
still requires a large effort because the module predicted

1While in many programming languages, a module is defined as a file,
some languages, such as Terraform, define amodule as a directory containing
a collection of files.
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to be error-prone may contain many lines of code (LOCs).
To overcome this drawback of module-level defect pre-
diction, recent studies have introduced just-in-time (JIT)
defect prediction models. Given a set of code changes
committed to the repository, JIT defect prediction models
predict whether this set of code changes contains a defect.
Because the number of changed lines at each commit is
typically much smaller than the size of a potentially defective
file, predicting defect-inducing code changes is known to
be more effective in locating the defective lines. Moreover,
JIT defect prediction techniques can provide feedback at the
earlier stage of development compared to file-level defect
prediction because defect prediction can be conducted as
soon as a change is made into the source code repository,
rather thanwaiting until a new version of the software is ready
for inspection [4], [5].

To predict whether a code change induces a defect,
researchers have proposed various change-level metrics,
some of which are shown in Table 1. These metrics measure,
for example, how big a code change is (Size), how many
modules are changed (Diffusion), which developer modified
the code and how experienced the developer is (Experience).

To obtain accurate and useful prediction results from
a defect prediction model, it is important to use metrics
effective for defect prediction. To improve defect prediction
performance,we propose novel metrics extending the existing
developer experience metrics. Despite the fact that software
defectiveness is likely to be affected by the experience
of developers, developer metrics were understudied in the
literature. In this work, we investigate the impact of various
novel developer experience metrics and their combinations
on JIT defect prediction. In particular, we compare the
cost-effectiveness between different metrics. That is, we aim
to find metrics that can reveal as many defects as possible
after investigating the limited number of lines of changed
code.

This paper makes the following contributions:
1) We propose new developer experience metrics extend-

ing the existing ones. We extend developer metrics
with two different dimensions. For the first dimension,
we consider various granularities of modules (e.g., sys-
tems, subsystems, and files). For the second dimension,
we consider various ways to measure how recently
the developer made a change on the module (e.g.,
commit time and version numbers). We also consider
the combinations of both dimensions.

2) We empirically evaluate our new developer experi-
ence metrics. We compare the performance (i.e., the
cost-effectiveness of trained models) of our metrics
with the existing ones. We find that our new experience
metrics improve the cost-effectiveness of defect predic-
tionmodels. In particular, we report which combination
of our metrics results in consistent and statistically
significant improvements.

The rest of this article is organized as follows. Section II
discusses the background of our study. Section III describes

TABLE 1. Common change-level metrics used in the previous studies.

the new developer experience metrics that we propose.
Section IV discusses the design of our experiments, and
Section V presents the results of the experiments. Section VI
reports the threats to validity, and Section VII provides the
related works. Finally, Section VIII presents the conclusions
and future work of this study.

II. BACKGROUND
A. DEFECT PREDICTION
When developing software, software quality is one of
the most critical aspects to the stakeholders of software
development (e.g., customers, developers, and managers).
Given limited resources, it is usually not feasible to take a
close look at all parts of the software. Thus, it is important
to know which part of the software is likely to be buggy so
that developers can improve the software quality as much
as possible within a limited time. For this purpose, defect
prediction was proposed [6].

Defect prediction is typically performed using a machine
learningmodel. Figure 1 shows the typical workflow of defect
prediction consisting of two phases. In the first phase (the
upper right box of the figure), a defect prediction modelM is
trained with data where each item of the data consists of the
values of nmetrics (where n represents the number of metrics
used to train M ) and the label indicating whether the item is
defective or not. As for metrics, diverse data such as code
size, code complexity, and developer experience have been
used in the literature, as shown in Table 1. The ‘‘Name’’ and
‘‘Description’’ column describes the name of the metrics and
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FIGURE 1. Overview of the defect prediction activity.

their descriptions, respectively. In defect prediction research,
metrics are often categorized into several groups, as shown in
the ‘‘Group’’ column of the table. Training data is typically
mined from version-control systems. Once a defect prediction
model M is trained, in the second phase (the lower right box
of the figure), M is used to locate modules that are likely to
be defective.

B. JUST-IN-TIME DEFECT PREDICTION
In a modern software development environment where
software is constantly changing, developers continue to
commit their code changes to a code repository. In this
environment, developers need to know whether their code
changes are defective or not. For this reason, JIT (Just-
In-Time) defect prediction was introduced — JIT defect
prediction predicts how much the current code changes are
likely to be buggy.

C. CHANGE-LEVEL DEVELOPER EXPERIENCE METRICS
USED IN JIT DEFECT PREDICTION
Metrics related to developer experience have been used in
previous work [7], [8], [9], [10], [11], with the rationale that
more experienced developers are less likely to write faulty
code. While developer experience is difficult to measure, it is
commonly approximated by counting the number of changes
made by the developer—typically, one commit to a version
control system is considered one change.

Specifically, the following three metrics have been used
widely in the literature on defect prediction to measure
developer experience: EXP (developer experience metric),
SEXP (subsystem developer experience metric), and REXP
(recent developer experience metric).

1) EXP
First, EXP for a change c is defined as:

EXP(c) = |Changes(dc)|

where dc and Changes(dc) represent the developer who made
the change c, and the changes dc made on the project until c
is made (including c), respectively.

Consider Figure 2 where the developer has made <Change
#4> after making three changes from <Change #1> to
<Change #3>. Then, EXP(<Change #4>) is 4 since the
developer made a total of 4 changes, including <Change #4>.
See the EXP column of Table 2.

2) SEXP
In a modern distributed software development environment,
developers typically work on specific subsystems. Thus,
a developer usually has different levels of expertise on differ-
ent subsystems. A developer who has substantial expertise on
a subsystem S1 may not be familiar with another subsystem
S2 and is more likely to induce fault on S2 than on S1.
However, the EXP metric does not distinguish the developer
experience between different subsystems. Meanwhile, the
second metric, SEXP, measures the developer’s experience
with the subsystems under change. The following is the
definition of SEXP.

SEXP(c) = |Changes(dc, S(c))|

where S(c) and Changes(dc, S(c)) represent the subsystems
modified by the change c, and the changes dc made on a
subsystem s ∈ S(c) until c is made (including c), respectively.
In our running example, SEXP(<Change #4>) is 3 since

with <Change #4>, the developer has made a change on two
subsystems, subsys1 and subsys2, and she also changed one
of those two subsystems at <Change #1> and <Change #2>.
See the SEXP column of Table 2.

3) REXP
As developers accumulate experience on the system under
development, they are less likely to write faulty code. REXP,
defined in the following, correlates the error-proneness of the

128220 VOLUME 10, 2022



Y. Cho et al.: Extending Developer Experience Metrics for Better Effort-Aware Just-In-Time Defect Prediction

FIGURE 2. An example scenario of code changes.

TABLE 2. The values of the metrics for the example scenario shown in
Figure 2.

change with how recently that change was made.

REXP(c) =
∑

c′∈Changes(dc)

1
1+ Y (c, c′)

where Y (c, c′) is bY (c)−Y (c′)c where Y (c) refers to the year
when change c is made.

The REXP column of Table 2 shows how REXP(<Change
#4>) is computed. Notice in Figure 2 that the developer made
<Change #1> 800 days (less than 3 years) ago, <Change #2>
400 days (less than 2 years) ago, and <Change #3> 30 days
(less than 1 year) ago. As shown in Table 2, REXP(<Change
#4>) is the sum of 1/(1+2), 1/(1+1), 1/(1+0), and 1/(1+0).

III. NEW DEVELOPER EXPERIENCE METRICS
In this section, we describe our new developer experience
metrics.

A. MODULE-BASED METRICS
1) MEXP
Although SEXP considers developer experience at a finer
granularity level (i.e., a subsystem) than EXP, it may not be
fine-grained enough. We propose a more fine-grained metric,
MEXP, which considers developer experience at the module
level — in this work, we define a module as a file. We define
MEXP as follows:

MEXP(c) = |Changes(dc,M (c))|

where M (c) and Changes(dc,M (c)) refer to the modules
modified by the change c, and the changes dc made on a

module m ∈ M (c) until c is made (including c), respectively.
MEXP counts the number of changes developer dc made on
the M (c) modules.

In our running example, MEXP(<Change #4>) is 2 since at
<Change #4>, moduleA and moduleE are modified, and one
of these two modules is modified at <Change #1>. See the
MEXP column of Table 2.

2) AVG_MEXP AND AVG_SEXP
Consider the following two scenarios. In the first scenario,
the developer has created the initial version of 100 modules
and committed them to the repository. In the second scenario,
the developer has modified a single module she previously
modified 99 times. Although the first change would be more
error-prone than the second one, MEXP does not distinguish
between them — in both cases, MEXP is 100. While this
example is an extreme case, it reveals the limitation of
MEXP. Motivated by this problem, we suggest a new metric
AVG_MEXP defined as follows, which computes the average
value of MEXP:

AVG_MEXP(c) =
MEXP(c)
|M (c)|

where M (c) refers to the modules modified by change
c. In our running example, AVG_MEXP(<Change #4>) is
1 sinceMEXP(<Change #4>) is 2 and <Change #4>modifies
two modules.

Similar to AVG_MEXP, we also use AVG_SEXP defined
as follows:

AVG_SEXP(c) =
SEXP(c)
|S(c)|

where S(c) refers to the subsystems modified by change c.

3) SimEXP
Suppose that a developer d made the following two
code changes. In the first code change c1, she modified
module m1. In the second code change c2, she modified
two modules, m1 and m2. The developer may gain different
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experiences when performing these two changes. While the
task performed at c1 is concentrated on a single module m1,
the second change c2 is likely to involve interaction between
the two modified modules. When the same developer d later
makes a new change only on a modulem1, the experience she
gained from c1 is more likely to be relevant to the current task
than the other experience gained from c2. Conversely, when
d modifies the two modules m1 and m2, the opposite is more
likely to be true. More generally, we conjecture that the more
similar the past experience of the developer is to the current
change, that experience is likely to have a bigger influence on
the current change. Here, the similarity between two changes
c1 and c2 is proxied by the similarity between the two sets of
modules modified in c1 and c2, which we formally describe
as follows:

|M (c1) ∩M (c2)|
|M (c1) ∪M (c2)|

where M (ci) represents the modules modified in change ci.
Based on this notion, we define a new metric SimEXP as
follows:

SimEXP(c) =
∑

c′∈Changes(dc)

∣∣M (c) ∩M (c′)
∣∣

|M (c) ∪M (c′)|

In our running example, SimEXP is 1.5 as shown
in Table 2. Note that for <Change #1>, (|M (c) ∩
M (c′)|)/(|M (c) ∪ M (c′)|) is |{moduleA}|/|{moduleA,
moduleE}|, which equals 0.5. The rest of the changes can
be handled similarly.

B. TEMPORAL METRICS
1) RVEXP AND RvEXP
Themotivation of REXP is to assign a larger weight to a more
recent change. To define how recent a past change c is, REXP
compares the time when c was made and the time when the
current change is made.

There is another way to measure how recently the past
changes were made. Many software products are maintained
using the semantic versioning scheme [12], n1.n2.n3, where
n1, n2 and n3 represent the major version number, the minor
version number, and the patch version number, respectively.
By comparing the versions of two different changes (i.e.,
commits), one can measure the interval between those two
changes.

In this study, we experiment with two newmetrics (RVEXP
and RvEXP), each of which computes the interval at the
granularity of the major versions (RVEXP) and the minor
versions (RvEXP), respectively. We define these two new
metrics as follows:

RVEXP(c) =
∑

c′∈Changes(dc)

1
1+ V (c, c′)

RvEXP(c) =
∑

c′∈Changes(dc)

1
1+ v(c, c′)

where V (c, c′) and v(c, c′) represent the version difference
between c and c′ at the granularity of major versions and
minor versions, respectively.

In our running example, RVEXP is 3 as shown in Table 2.
Note that themajor version at <Change #1> and <Change #2>
is 2, while the major version at <Change #3> is 3. Thus, for
<Change #1> and <Change #2>, value 1/(1+1) is obtained.
Meanwhile, for <Change #3> whose major version is 3, value
1/(1+0) is obtained.

RvEXP is computed similarly based on minor versions,
as shown in Table 2. For example, the minor version
difference between <Change #3> and <Change #1> is 5
(the version change history is shown in the bottom part of
Figure 2), and the value 1/(1+5) is obtained.

2) RSEXP, RMEXP, RVSEXP, RVMEXP, RvSEXP AND RvMEXP
We also define temporal metrics at the subsystem and module
levels as follows, similar to before.

RSEXP(c) =
∑

c′∈Changes(dc,S(c))

1
1+ Y (c, c′)

RMEXP(c) =
∑

c′∈Changes(dc,M (c))

1
1+ Y (c, c′)

RVSEXP(c) =
∑

c′∈Changes(dc,S(c))

1
1+ V (c, c′)

RVMEXP(c) =
∑

c′∈Changes(dc,M (c))

1
1+ V (c, c′)

RvSEXP(c) =
∑

c′∈Changes(dc,S(c))

1
1+ v(c, c′)

RvMEXP(c) =
∑

c′∈Changes(dc,M (c))

1
1+ v(c, c′)

3) AVG METRICS
For the six metrics shown in Section III-B2, we define the
AVGmetrics. For example, AVG_RSEXP andAVG_RMEXP
are defined as follows:

AVG_RSEXP(c) =
RSEXP(c)
|S(c)|

AVG_RMEXP(c) =
RMEXP(c)
|M (c)|

IV. EXPERIMENT DESIGN
A. RESEARCH QUESTIONS
In this paper, our main goal is to see whether using our new
developer experience metrics improves the performance of
defect prediction. We accordingly ask the following research
questions.

1) Do our module-basedmetrics improve the performance
of defect prediction?

2) Do our temporal metrics improve the performance of
defect prediction?
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TABLE 3. Dataset used in our experiment.

3) Does the performance of defect prediction improve
when our module-based and temporal metrics are
combined?

B. DATASET
We extracted the dataset from the five open-source projects
listed in Table 3. The table shows meta-data about the
projects, including (from left to right) the domain of the
projects, the programming languages used in the projects,
LOC ,2 the number of commits, the number of developers
who contributed to the projects, and the ratio of defective
commits. Our dataset covers diverse domains and program-
ming languages. Note that the datasets used in the previous
studies [4], [9], [13], [14] do not contain our new metrics and
cannot be directly used for our experiments.

We extracted all 14 change-level metrics shown in
Table 1.3 In addition, we extracted our new experience
metrics descried in Section III. To label whether a change is
defective or not, we use the standard SZZ algorithm [16].

C. JIT DEFECT PREDICTION MODELS
We train our JIT defect prediction models using random
forest [17]. Random forest is a classification (and regression)
technique usingmultiple decision trees (we used 100 decision
trees in our experiments). A classification decision (e.g.,
whether a change is defective or not) is made by performing
the majority voting with the trained multiple decision trees.
Random forest is commonly used in the literature of defect
prediction research due to its high effectiveness [18], [19],
[20]

D. PERFORMANCE MEASURES
To measure the performance of effort-aware JIT defect
prediction, we use the Area Under the Cost Effectiveness
Curve (AUCEC). AUCEC is commonly used in the literature
on defect prediction to measure the cost-effectiveness of
defect prediction [20], [21], [22].

Figure 3 illustrates AUCEC. In the figure, the X and Y-axis
represent the ratio of inspected changed lines and the ratio of
detected defects, respectively. Each point (x, y) of the curve
denotes the portion of the detected defects (represented with
the y value) after investigating the x portion of the changes
(represented with the x value). Note that the ratio of the

2We obtained LOC using CLOC (https://github.com/AlDanial/cloc)
3We used the CodeRepoAnalyzer tool [15].

FIGURE 3. Area Under the Cost Effectiveness Curve (AUCEC).

inspected changed lines is used as a proxy for the effort the
developers put in.

When measuring AUCEC, we assume that the developers
investigate changes c in the order of their cost-effectiveness
scores ce(c) computed using the following formula.

ce(c) = p(c)× (1−
e(c)

max
i∈Changes

e(i)
) (1)

where p(c) represents the error-proneness of c returned from
the trained JIT defect prediction model,4 e(c) represents the
effort proxied by the number of changed lines of c, and
Changes represents a set of changes to investigate. Notice
that as p(c) increases (i.e., c is predicted to be more error-
prone) and e(c) decreases (i.e., cmodifies the smaller number
of lines), the value of ec(c) increases.

If a defect prediction model A shows a higher AUCEC
value than another model B, this implies that after investi-
gating the same amount of lines of code, more defects are
detected by A than B. In the literature on defect prediction,
it is often assumed that developers usually investigate only
N% of the changed lines within a limited time. As for the
value of N , 20 is most often used, and we also use the same.
We use the notation AUCEC20 to denote the AUCEC score
obtained after inspecting the 20% of SLOC (source lines of
code).

E. EVALUATION METHODS
To assess how useful our extended metrics are, we perform
defect prediction with two different datasets, Mbase and
Mtarget where Mbase contains the common existing metrics
used in previous studies while Mtarget is defined as Mbase ∪

4Random forest computes the error-proneness score by computing the
ratio of the number decision trees which determine the given change is
defective over the total number of decision trees.
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TABLE 4. AUCEC20 of our module-based metrics; positive improvement rates (shown in the ‘‘� rate’’ column), p-values less than or equal to 0.5, and
effect sizes (shown in the ‘‘effect’’ column) larger than or equal to 0.1 are highlighted in yellow.

{extended metric(s)}. More specifically, we first add all
metrics shown in Table 1 except for two developer experience
metrics, SEXP and REXP, into Mbase. To refer to these
common base metrics, we use the notation Mcommon. Then,
depending on which extended metrics are evaluated, we add
either SEXP or REXP into Mbase. When evaluating module-
based metrics, we define Mbase as Mcommon ∪ {SEXP}.
Meanwhile, when evaluating temporal metrics, we define
Mbase asMcommon∪{REXP}. This is to evaluate module-based
(or temporal) metrics separately without them being affected
by temporal (or module-based) metrics. When assessing
RQ3 where we consider both module-based and temporal
metrics, and accordingly defineMbase asMbase asMcommon ∪

{SEXP, REXP}.
Given Mbase and Mtarget , we compare their perfor-

mance using the two validation methods described in the
following.

1) 30 TIMES 10-FOLD TIME-AWARE CROSS VALIDATION
The 10-fold cross-validation method is commonly used to
evaluate machine-learning models. This method splits the
dataset into 10 folds and uses 9 for training and the remaining
one for testing. In total, 10 different pairs of training/testing
sets can be obtained, and all of them are used for validation.
We repeat this process 30 times.

Considering the fact that a defection prediction model is
trained with the past data, we make sure all commits in

training set Strain are made before the commits in the testing
set Stest , using the following method. For a given testing
dataset Stest , we sort Stest in reverse chronological order.
We also prepare two lists, S ′test and S ′train, initialized with
an empty set and Strain, respectively. Then, we perform the
following two tasks in a row.

1) We move the first itemMtest from Stest to S ′test .
2) We find itemsMtrain ∈ Strain committed later thanMtest

and then removeMtrain from S ′train.
We repeat these two steps as long as |S ′train|/|S

′
test | is larger

than 9.

2) TIME-AWARE HOLD-OUT CROSS VALIDATION
We found that the 30 times 10-fold time-aware cross-
validation often results in low statistical power. To compen-
sate for this problem, we also apply hold-out cross validation.
We sort our dataset in chronological order and use the first
90% of the data for training and the last 10% for testing.
We train and test a model 300 times for each metric we
evaluate.

V. EXPERIMENT RESULTS
A. RQ1. DO OUR MODULE-BASED METRICS IMPROVE
THE PERFORMANCE OF DEFECT PREDICTION?
Tables 4(a) and 4(b) show the results for RQ1 from 30 times
10-fold time-aware cross validation and time-aware hold-out
cross validation, respectively. The first column of the table
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FIGURE 4. Time-aware hold-out cross-validation: performance comparison between SEXP and our three new metrics (MEXP,
AVG_MEXP, SimEXP).

TABLE 5. 30 times 10-fold time-aware cross-validation: AUCEC20 comparison between REXP and the metrics behind the double vertical bar (||); positive
improvement rates (shown in the ‘‘� rate’’ column), p-values less than or equal to 0.5, and effect sizes (shown in the ‘‘effect’’ column) larger than or equal
to 0.1 are highlighted in yellow.

shows the subjects under evaluation, and the second column
shows the median AUCEC20 score obtained when the base
metrics Mbase is used. Recall that for RQ1, we define Mbase
as Mcommon ∪ {SEXP}.

To assess our extended module-based metrics, we measure
the AUCEC20 score after replacing SEXP with each of those
extended metrics. The third to fifth columns of the table show
the results. For each extended metric, we report the median
AUCEC20 score, the improvement rate (� rate) (which we
describe shortly), p-value, and effect size. We compute the
p-value and effect size using the Wilcoxon-Mann-Whitney
test [23]. The improvement rate shows how much AUCEC20
score improves when SEXP is replaced with the metric

under consideration. We define the improvement rate as
((mediantarget − medianbase) / medianbase) ×100.

The results of the first validation (30 times 10-fold
time-aware cross-validation) show that our module-based
metrics tend to cause a positive effect, although statistical
significance is not observed except for one (AVG_SEXP
for React). However, the hold-out validation results show
that in most cases, statistically significant improvement
is observed. Our three metrics, MEXP, AVG_MEXP, and
SimEXP outperform SEXP across all subjects. In particular,
AVG_MEXP outperforms SEXP with statistical significance
(i.e.,≤ 0.05) across all subjects except for Notepad++where
the p-value is 0.058.
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TABLE 6. Time-aware hold-out cross-validation: AUCEC20 comparison between REXP and the metrics behind the double vertical bar (||); positive
improvement rates (shown in the ‘‘� rate’’ column), p-values less than or equal to 0.5, and effect sizes (shown in the ‘‘effect’’ column) larger than or equal
to 0.1 are highlighted in yellow.

The box plots in Figure 4 illustrate the observation that
MEXP, AVG_MEXP, and SimEXP outperform SEXP.

B. RQ2: DO OUR TEMPORAL METRICS IMPROVE THE
PERFORMANCE OF DEFECT PREDICTION?
For RQ2, we define Mbase as Mcommon ∪ {REXP}. Similar
to RQ1, we measure the AUCEC20 score after replacing
REXP with each of our temporal metrics. Tables 5 and 6
show the results for RQ2 from 30 times 10-fold time-aware
cross validation and time-aware hold-out cross validation,
respectively. As compared to the module-based metrics,
positive effects are less observed. Nonetheless, we can
observe from Table 6 that AVG_RVMEXP outperforms
REXP across all subjects. Also, performance improve-
ment is observed for all subjects except for React when
RSEXP, RVSEXP, RvSEXP, RvMEXP, or AVG_RvMEXP is
used.

C. RQ3: DOES THE PERFORMANCE OF DEFECT
PREDICTION IMPROVE WHEN OUR MODULE-BASED AND
TEMPORAL METRICS ARE COMBINED?
Since combining 6 module-based metrics and 18 temporal
metrics results in too many combinations (108), we combine
the three best module-based metrics with which perfor-
mance improvement is observed across all subjects (i.e.,
AVG_MEXP, SimEXP, and AVG_RVMEXP) and the six
temporal metrics with which performance improvement
is observed in at least 4 subjects (i.e., AVG_RVMEXP,
RSEXP, RVSEXP, RvSEXP, RvMEXP, and AVG_RvEXP).
We compare each of the 18 combinations with the base
case where we define Mbase as Mcommon ∪ {SEXP, REXP}.
Note that SEXP and REXP are the existing module-level and
temporal metrics, respectively.

Tables 7 and 8 show the results. Table 7 shows the result
of the 30 times 10-fold time-aware cross-validation, and it is
observed that SimEXP+AVG_RvMEXP outperforms Mbase
across all subjects.
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FIGURE 5. Time-aware hold-out cross-validation: performance comparison between SEXP+REXP and the four combination of our metrics.

Table 8 shows the result of the time-aware hold-out cross-
validation. It is observed that in most cases, p-values are
less than 0.05, and effect sizes are larger than 0.1, indicating
statistically-significant non-negligible results are obtained.
As compared to RQ1 and RQ2, combining our module-based
and temporal metrics tends to cause more visible changes in
performance.

SimEXP+AVG_RVMEXP outperforms Mbase across all
subjects, with statistical significance. In addition to that,
in three more combinations (i.e., AVG_MEXP+AVG_
RVMEXP, AVG_MEXP+RSEXP, and AVG_MEXP+
AVG_RvMEXP), performance improves across all subjects.
The box plots in Figure 5 illustrate the observation that
these four combinations outperform the base case using the
combination of SEXP and REXP.

VI. THREATS TO VALIDITY
A. CONSTRUCT VALIDITY
We collected independent variables (i.e, the change-level
metrics) based on the CodeRepoAnalyzer [15], and the
dependent variable (i.e., the variable indicating whether
a commit is defective or not) using the SZZ algorithm.
Although these algorithms have been widely used in defect
prediction studies [4], [24], they may produce incorrect
results (e.g., non-defective change may be labeled defective).
The computation of REXP and its extended metrics (i.e.,
RSEXP, RMEXP) are computed based on the commit
history. There is a potential threat to the validity in
case the developers ‘‘squash’’ (merge) multiple commits
since by doing so, the commit order between commits is
lost.

B. INTERNAL VALIDITY
When measuring AUCEC, we used 20% as the cutoff point,
as commonly conducted in the literature on defect prediction.
Nonetheless, it is unknown which cutoff point is best.
To mitigate this threat, we also evaluated the performance

with the 10% cutoff point and observed the same general
tendency.

C. EXTERNAL VALIDITY
We conducted the experiments with data from five open-
source projects. Although we carefully chose various projects
with different sizes, domains, and programming languages
used, our subjects may not represent all software projects.
Nonetheless, to the best of our knowledge, this is the first
study that investigates the impact of extended developer
experience metrics on defect prediction. We expect our pos-
itive results to foster further studies on developer experience
metrics.

VII. RELATED WORKS
A. IDENTIFICATION OF BUGGY PATTERNS BASED ON
DEVELOPER EXPERIENCE FACTORS
Matsumoto et al. [25] defined five metrics that characterize
a developer’s activities for a specific version of the software
and analyzed the correlation between those metrics and the
ratio of the buggy commits authored by a developer. The
five metrics they defined for each developer for a specific
software version are 1) the number of commits made by
a developer 2) the number of lines revised by a developer
3) the number of unique modules revised by a developer,
4) the number of unique packages revised by a developer,
and 5) the ratio of buggy commits by a developer for the
previous version. Analysis results showed that the number
of unique modules revised and the ratio of buggy commits
for the previous version significantly correlated with the
ratio of buggy commits for the chosen version. Although the
authors used version information in collecting a developer’s
experience, those developer experience metrics are defined
per developer for a specific version rather than per change.
Moreover, whether these metrics are a good predictor of
defect predictionwas not determined, even though the authors
showed that developer experiences may have an impact on
software quality.

Bird et al. [26] examined the effects of code ownership
on software quality. For each file, they counted the number
of contributors; the number of minor or major contributors,
which is distinguished by the ratio of the contribution,
whether it is higher than 5%; and the ownership, which
is computed by using the top contributor’s contribution
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TABLE 7. 30 times 10-fold time-aware cross-validation: AUCEC20 comparison between SEXP+REXP and the metrics behind the double vertical bar (||);
positive improvement rates (shown in the ‘‘� rate’’ column), p-values less than or equal to 0.5, and effect sizes (shown in the ‘‘effect’’ column) larger than
or equal to 0.1 are highlighted in yellow.

ratio. To evaluate the effects of four ownership metrics on
software quality, they conducted a correlation analysis of
the pre- and post-release failures and built linear regression
models using code metrics and ownership metrics as the
independent variables and failures as the dependent variable.
They specified that their purpose for building the linear
regression models was not to predict whether a file contains
any defect but to check whether the ownership metrics
can be effectively used in classification models. Based on
their experimental results, they recommended that developers
should review the changes made by minor contributors more
carefully since their limited experiences may induce defects.
Unlike our work, this work is conducted at the file level, not
at the change level.

Eyolfson et al. [27] studied the correlation between the
error-proneness of a commit and the developer’s experience,

which was proxied by the days passed after the first commit
the developer made on the Linux kernel and PostgreSQL
projects. They reported that there are several threats that
may affect the interpretation of the relationship between
the developer experience metric and the bugginess of a
commit, such as more experienced developers working on
more complex source code or inflation of the developer
experience metric value caused by his/her extremely low
commit frequency. Nonetheless, the authors observed that
data from both projects showed that the error-proneness of
a commit decreases as the author’s experience increases
in general, and they reported that this correlation could
be exploited in predicting the locations of buggy code.
Although the authors showed the possibility of using
developer experience metrics in defect prediction, they used
a very basic method in quantifying a developer’s experience.
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TABLE 8. Time-aware hold-out cross-validation: AUCEC20 comparison between SEXP+REXP and the metrics behind the double vertical bar (||); positive
improvement rates (shown in the ‘‘� rate’’ column), p-values less than or equal to 0.5, and effect sizes (shown in the ‘‘effect’’ column) larger than or equal
to 0.1 are highlighted in yellow.

Moreover, the performance impact of the developer experi-
ence metric they proposed for defect prediction models was
not evaluated.

Tufano et al. [28] analyzed the effect of the experience
level of developers on the bugginess of a commit on five Java
open-source projects. They defined four different developer
experiencemetrics at the change level that consider the lexical
experience and the frequency of experience on modified
files. More specifically, the lexical experience metric is
calculated by using the textual similarity between the texts
in a modified file and the concatenated texts from all files
modified by an author of the change. After obtaining the
lexical experience on the files that weremodified in a commit,
the authors computed themean value of the lexical experience
on multiple files to ensure that the metric is defined at the

change level. The frequency of experience was computed
by counting the number of commits that were made by
the author on the file modified in the target commit, and
then dividing that counted number by the number of the
commits the author made in the past. Furthermore, two
additional developer experience metrics were defined in the
same manner as the previous two metrics, except that these
metrics only consider the commits from the past six months.
The authors concluded that the mean value of the four
developer experience metrics from fix-inducing commits and
clean commits was significantly different. Although they
defined four new developer experience metrics and showed
the possibility of the usefulness of these metrics in defect
prediction models, they used fixed time windows for calcu-
lating the developer’s recent experience, and the performance
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impact of these metrics on JIT defect prediction was not
shown.

B. DEVELOPER EXPERIENCE METRIC ON JIT DEFECT
PREDICTION
Mockus and Weiss [8] suggested various change-level
metrics, including EXP, SEXP, and REXP described in
Section II. Kamei et al. [4] used various metrics, including
the developer experience metrics of Mockus and Weiss [8] to
evaluate the performance of JIT defect prediction. However,
they did not extend developer experience metrics. McIntosh
and Kamei [9] proposed the author awareness metrics, which
is defined as the proportion of past changes that were made to
a subsystem that the reviewer has authored or reviewed. They
did not find this metric useful in improving the performance
of the JIT defect prediction. In this work, we proposed another
developer experience metrics that show a positive effect on
the performance of JIT defect prediction.

VIII. CONCLUSION AND FUTURE WORK
In this work, we have proposed novel developer experience
metrics. In particular, we extended the widely-used two
experience metrics, SEXP and REXP. SEXP is defined at
the granularity of subsystems, and we have proposed MEXP
defined at the file granularity. We also proposed SimEXP,
which measures the similarities between commits. Regarding
REXP, which measures how recently the developer made a
change with the unit of the year, we have suggested RVEXP
and RvEXP, which measures the same with the unit of the
major and minor versions, respectively. We also suggested
the variation of those metrics (i.e., AVG_RVMEXP) by
averaging the experiences, instead of summing them up.
We also combined these metrics together when conducting
experiments.

Our experimental results show that our new metrics often
improve the cost-effectiveness of defect-prediction models.
When we combined module-based metrics and temporal
metrics, we obtained stronger results. In particular, when
combining SimEXP and AVG_RVMEXP, the statistically
significant performance improvement was observed across
all 5 subjects. In future work, we plan to experiment with
more subjects to study how general our findings are.
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