
Li and Ding, Sci. Adv. 8, eabq2900 (2022)     5 October 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

1 of 8

P H Y S I C S

Origin of the herringbone reconstruction of 
Au(111) surface at the atomic scale
Pai Li1 and Feng Ding1,2*

The origin of the herringbone reconstruction on Au(111) surface has never been explained properly at the atomic 
level because the large periodic length (~30 nm) does not allow ab initio simulations of the system and because 
of the lack of highly accurate empirical force field. We trained a machine learning force field with high accuracy to 
explore this reconstruction. Our study shows that the lattice deformation in Au deeper layers, which allows the 
effective relaxation of the densified and anisotropic top layer lattice, is critical for the herringbone reconstruction. 
The herringbone reconstruction is energetically more favorable than the stripe reconstruction only if the slab 
thickness exceeds 12 atomic layers. Furthermore, we reveal the high stability of herringbone reconstruction at 
high temperatures and that a slight strain of about ±0.2% can induce a transition from the herringbone pattern to 
the stripe pattern, and both agree well with the experimental observations.

INTRODUCTION
The coordination number of atoms on a transition metal surface is 
lower than that in the bulk, which generally leads to tensile stresses 
in the pristine metal surface and a tendency for the surface to recon-
struct and release tensile stresses (1). Although this tendency holds 
true for all metals, gold is the only one where the close-packed (111) 
surface reconstructs into a herringbone pattern under ambient con-
ditions. The reconstruction from a pristine Au(111) surface to a 
herringbone pattern (fig. S1) can be understood by a two-step pro-
cess: (i) The top layer densifies into a so-called 22 × ​​√ 

_
 3 ​​ stripe pattern 

by inserting an extra Au atom into an <110> atomic chain every 
22 lattice constants. This densification creates a slight surface corru-
gation of 0.2 Å on the surface, which is distinguishable by scanning 
tunneling microscopy (STM) imaging. (ii) The formation of stripe 
pattern mainly releases the tensile stress in Au top layer along the 
<110> direction, and, according to continuum elastic theory (2), this 
stripe pattern is not stable and will further reconstruct into a her-
ringbone pattern with periodic stress domains (3). Note that dis-
locations are formed at the elbows of the herringbone pattern during 
the reconstruction. These elbows are active sites for absorbing hetero-
geneous metals, such as Ni and Co (4).

The Au(111) surface is one of the most used substrates for many 
applications, such as being used as the template for organic molecular 
self-assembly (5, 6), the substrate for low-dimensional materials 
growth (7, 8), especially for the synthesis of carbon nanoribbon (9, 10). 
It is also an ideal substrate to explore the chemical or physical prop-
erties of various molecular or atomic absorbents (11–13). In previous 
studies, especially theoretical calculations, the surface reconstruction 
was generally ignored and, thus, the full understanding of the impact 
of Au(111) surface reconstruction on these research studies is still 
an issue.

Theoretically, ab initio methods have been used to study the 
simple 22 ×​ ​√ 

_
 3 ​​ stripe reconstruction using four- to five-layer slab 

models with about 200 atoms in the primitive cell (14–16). The her-
ringbone pattern has a much larger period length of ~30 nm (17, 18), 

which makes it impossible to explore using ab initio methods. Con-
tinuum elastic theory revealed the importance of long-range elastic 
interactions in deeper layers of the herringbone reconstruction, but 
it lacks atomic details, such as the role of elbow dislocation that can-
not be properly considered (19). Many atomistic models—such as 
the two-dimensional (2D) Frenkel-Kontorova (FK) model (19, 20), 
the tight-binding second-moment approximation (21), and the 
embedded-atom method force field (22, 23)—have been applied to 
explore the Au(111) surface reconstruction. On the basis of these 
approaches, defective energy in the elbows, strain distribution, and 
lattice distortions was discussed. For example, Bulou and Goyhenex 
(21) found that the hydrostatic pressure is greatest in the elbows 
of the herringbone pattern, which partially explains the fact that 
Au atoms in the elbows are easily substituted by smaller metal 
atoms. Unfortunately, all these previous studies showed that her-
ringbone reconstruction from the simple 22 × ​​√ 

_
 3 ​​ stripe pattern 

is energetically unfavorable, which resulted in a long-standing puz-
zle about the origin of the Au(111) herringbone reconstruction at 
the atomic level. For example, the surface energy of the herringbone 
superstructure calculated by tight binding is even higher than 
that of the pristine surface (21). The atomic simulation is still a 
challenge due to the very large supercell size of the herringbone 
pattern and the subtle energy change during the reconstruction. 
The former requires high computational efficiency, and the latter 
requires high accuracy of the interatomic potential. Both empirical 
potentials and ab initio methods meet only one of the two critical 
requirements.

In this work, we used the state-of-the-art machine learning method 
to train an Au machine learning force field (MLFF) for the explora-
tion of the Au(111) surface. Our MLFF-based atomic simulations 
show that herringbone reconstruction is energetically more favor-
able than stripe reconstruction. We reveal that large deformations 
in deeper layers are critical for the herringbone reconstruction, which 
leads to further relaxation of the atoms in the top layers. In addition, 
we examine the vibration contribution to the free energy via molecu
lar dynamics (MD) simulations and reveal the high stability of the 
herringbone reconstruction at elevated temperatures. With the help 
of our MLFF, we show that a slight strain can induce a transition 
from herringbone pattern to stripe pattern, in accordance with the 
reported experimental results.
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RESULTS
The Au MLFF was trained using the DeePMD-kit package (24). The 
structures in the training set were labeled with energies and forces 
calculated using density functional theory (DFT) as implemented in 
the Vienna Ab initio Simulation Package (VASP) (25, 26). MLFF-MD 
simulations were realized with large-scale atomic/molecular mas-
sively parallel simulator (LAMMPS) (27) and atomic simulation envi-
ronment (ASE) (28). We adopted an iterative scheme with a series 
of training/MLFF-MD/labeling loops (29) to generate the complete 
training set, for which four sets of structures are built (more details can 
be found in Methods). A total of 11,008 structures were labeled, con-
taining about 3 million force components. One thousand structures 
were extracted randomly as a test set, and all the others were used 
to train MLFF. The root mean square error of the final MLFF is very 
low, 0.85 meV/atom for energy and 11.2 meV/Å for force (Fig. 1, A 
and B). The calculated phonon dispersion (30) and mechanical prop
erties of both Au bulk and surfaces are in agreement with those ob-
tained by using DFT calculations (Fig. 1, C and D, and table S1). 
As shown in Fig. 1E, the MLFF-MD simulation and structure re-
laxation lead to a herringbone pattern that perfectly matches the 
experimental STM pattern. All this indicates the high accuracy of 
our Au MLFF.

Tensile stress relaxation was considered as the main driving force 
of the Au(111) reconstruction. On the basis of our MLFF calcula-
tions, the pristine Au(111) surface has an isotropic tensile stress of 
164.1 meV/Å2 as shown in Table 1. The formation of the 22 × ​​√ 

_
 3 ​​ 

stripe reconstruction reduces the stress along the compressed direc-
tion by 42% (to 94.5 meV/Å2), but along the perpendicular direction, 
it only reduces by 11% (to 148.4 meV/Å2). DFT calculation using a 
five-layer stripe model containing 222 atoms shows very similar 
tensile stress reduction from 168.5 to 99.6 meV/Å2 and from 168.5 
to 156.2 meV/Å2, respectively. The herringbone reconstruction lowers 
the anisotropicity of the surface stress as compared to the stripe one, 
but the mean value of diagonal stress of the former (121.15 meV/
Å2) is almost the same as the latter (121.45 meV/Å2). Overall, the 
herringbone reconstruction reduces the tensile stress by about 26% 
from that of the pristine Au(111) surface, which is in good 

agreement with the experimentally reported value of 22% (32). 
Note that neither the herringbone nor stripe reconstruction re-
duces the surface stress to near zero, which implies that the origin 
of the herringbone reconstruction cannot be fully understood by a 
continuum model and that the atomistic details, such as the energy 
of atomic stacks and dislocations, must be considered.

Atomistic models used in previous studies generally ignored dis-
tortion in deeper atomic layers. In 1992, Narasimhan and Vanderbilt 
(19) adopted the FK model with parameters fitted by DFT calcula-
tions to explore the Au(111) surface reconstruction. Their FK model, 
with a rigid truncated substrate, showed that the stripe reconstruc-
tion was more stable than the herringbone reconstruction, and the 
authors concluded that long-range elastic deformations in Au bulk 
must be considered. However, because of the lack of substrate relax-
ation in their model, they failed to explain how the herringbone re-
construction is stabilized by long-range elastic deformations.

As shown in Fig. 2, our atomic simulation gives notable distor-
tion in deeper layers. This distortion is generated during the two-step 
herringbone reconstruction process. First, during the strip recon-
struction (Fig. 2B), the densification of the top layer exerts shear forces 
in the deeper layers, leading to a periodic deformation in the x and 
y directions. The corrugated top layer also causes shifts in the z direc-
tion for atoms in the deeper layers. Second, further reconstruction 
into the herringbone pattern induces large displacements along the 
y direction in the deeper layers to balance the shear force from the top 
layer. For the herringbone reconstruction, the distortion of the sec-
ond layer along the y direction has the largest amplitude of ~0.5 Å near 
the domain walls (Fig. 2A), which is much larger than that of the 
stripe reconstruction (~0.10 Å) as seen in Fig. 2B. To quantify the 
deformation decay rate in the deeper layers, we calculated the SD of 
the atomic displacements in each layer. As shown in Fig. 2C, the dis-
placement along the x direction decreases exponentially fast and reaches 
near zero at ~10th layer; along the z direction, the decay is slower and 
approaches zero at ~20th layer. On the other hand, the displacements 
along the y direction decay very slow, implying a thickness-dependent 
behavior of the herringbone pattern, which is in stark contrast to 
that of the stripe reconstruction (Fig. 2D).

Fig. 1. Performance of the MLFF and the simulated Au(111) surface reconstruction. (A) Energy and (B) force errors of the MLFF evaluated on a test set of 1000 struc-
tures. RMSE, root mean square error. (C and D) Phonon dispersion and density of state (DOS) for (C) Au bulk and (D) five-layer slab with pristine Au(111) surfaces. DFT and 
MLFF results are shown in black and red, respectively. (E) The simulated Au(111) reconstruction pattern compared to the experimentally observed STM pattern. The STM 
pattern is adapted from the literature (31) with rotation. (F and G) The atomic details of the two elbows in (E).
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Considering the large deformation along the y direction, it is 
necessary to revisit the original 2D FK model where all the atoms in 
the deeper layers are frozen at the face-centered cubic (fcc) lattice 
sites. In such an FK model, all top-layer atoms located on a sub-
strate are modeled with a periodic potential, and all nearest neigh-
boring atoms are connected by a spring force. The system energy is 
given by (19)

	​ E  = ​ ∑ 
i
​ ​ ​ ​V​ S​​(​r​ i​​ ) + ​∑ 

j
​ ​ ​k ​(​l​ j​​ − b)​​ 2​ / 2​	 (1)

	​​ V​ S​​(r ) = ​∑ 
G

​ ​​ ​V​ S​​(G ) ​e​​ −iG·r​​	 (2)

where i denotes the Au atoms and j denotes the bonds (springs) on 
the top layer, k is the spring constant, lj is the length of the jth bond, 

b is the equilibrium bond length, G is the reciprocal vector of the 
lattice, and VS(G) is the coefficient of the 2D Fourier expansion of 
the periodic substrate potential. To account for the large elastic de-
formation along the y direction in the deeper layers, we modified 
the substrate potential field by introducing a periodic sinusoidal 
deformation along the y direction

	​​ V​ S​​(r ) = ​∑ 
G

​ ​​ ​V​ S​​(G ) ​e​​ −iG[r−a·sin​(​​​2​r​ x​​ _ ​L​ x​​ ​​ )​​·​   y ​]​​	 (3)

where a is the y-deformation amplitude, Lx is the periodic length of 
the herringbone pattern along the x direction, and ​​   y ​​ is the unit vector 
along the y direction. The sinusoidal deformation mimics the large 
deformations in the second layer of the herringbone reconstruction. 
The substrate potential fields of the FK and MFK models are illus-
trated in Fig. 3A. This potential field makes those original long Au 
bonds shorter and those short bonds longer (Fig. 3B), which results 
in an anisotropic stress relaxation of the top-layer atoms as can be 
understood via a spring interaction picture (fig. S2).

Within a certain range, a larger deformation in deeper layers 
releases more stress anisotropy in the top layer as shown in Fig. 3C, 
but this comes at the expense of an elastic energy penalty in the 
deeper layers. This elastic energy penalty in the deeper layers can be 
estimated as a function of deformation amplitude. Without taking into 
account the deeper layer deformation, the energy in the top layer of 
the herringbone reconstruction is about 1 eV per supercell greater than 
that of the strip reconstruction, which is consistent with previous studies 
(19). As shown in Fig. 3C, by taking into account the deformation in 
the deeper layers, the energy of the top layer decreases rapidly with 
the increase of the deformation amplitude, a. At the same time, the 
energy penalty of deeper-layer deformation increases rapidly. The sum 
of these two terms leads to a total energy minimum at ~0.5 Å defor-
mation amplitude, which is consistent with our MLFF results.

To verify our above conclusions, we build a series of Au slab 
models with a fixed bottom layer and a thickness ranging from 5 to 
32 layers. For the relaxed model with only five layers, the distortion 

Table 1. Surface stresses of different Au(111) surfaces. Principal 
elements of the stress tensor for different surfaces. The pristine Au(111) 
surface is isotropic. For the stripe reconstruction, the first principal axis is 
along the soliton line and the second principal axis is perpendicular to the 
first. For the herringbone reconstruction, the second principal axis is 
parallel to the domain wall and the first is perpendicular to the domain 
wall. Values in brackets are obtained by DFT calculations. The unit of 
surface stress is in millielectron volt per square angstrom. 

First principal Second principal

Pristine 164.1 (168.5) 164.1 (168.5)

Stripe (5 layers) 149.7 (156.2) 94.1 (99.6)

Stripe (32 layers) 148.4 94.5

Herringbone (32 layers) 133.8 108.5

Fig. 2. Deeper layer atomic displacements in reconstructed 32-layer Au(111) 
slab models. The displacements of Au atoms in the second to 20th atomic layer 
along the x, y, and z directions in the (A) herringbone and (B) stripe reconstructed 
32-layer models. The SD of the displacement in the x, y, and z directions for each 
layer in the same (C) herringbone and (D) stripe reconstructed 32-layer models.

Fig. 3. The new FK model that counts the displacement of the substrate. (A) The 
substrate potential energy surface (PES) in the top view given by the original FK 
and the modified FK (MFK) models. Brighter color corresponds to higher energy. 
For the MFK model, a much shorter Lx is adopted for visualization. (B) Illustration of 
the change in the local atomic environment of a top-layer atom due to the defor-
mation of the deeper layers. Six nearest neighbor atoms are located at the vertices 
of the hexagon (shown in gray) that is uniaxially compressed due to the stripe re-
construction. The small red arrows denote the displacement along the y direction, 
and the blue dashed lines give the final configuration of the local atomic environ-
ment. (C) Energy contributions from the top layer (red dashed curve), deeper layers 
(blue dashed curve), and their summation (black solid curve).
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amplitude of the second layer in the y direction is only 0.15 Å, and 
the herringbone reconstruction has higher energy than the stripe 
reconstruction by ~0.5 eV per supercell (Fig. 4). The herringbone 
reconstruction prevails over the stripe reconstruction if the layer 
number is greater than 12. When the model thickness reaches 32 
layers, the energy difference is about to converge at around −0.6 eV.  
This result indicates that a thin slab model is not sufficient to re-
lieve the anisotropic stress in the top layer of the herringbone pat-
tern due to the very small deformation along the y direction in the 
deeper layers. The local energy difference between 5- and 32-layer 
surfaces is presented in fig. S3. We note that, although gold is a well-
known soft metal, the gain in energy due to the herringbone recon-
struction is small. For a given deformation, the softer the material, 
the smaller the energy penalty for deformation in the deeper layers, 
and thus, the herringbone pattern is more favorable. This analysis 
also indicates that the fcc(111) herringbone reconstruction is less 
favorable in hard metals such as platinum, whose shear modulus is 
more than twice that of gold (33), and it does not form a herringbone 
pattern (34, 35).

The subtle energy difference between the herringbone and stripe 
pattern makes the herringbone pattern easily affected by some ex-
ternal factors. As reported before, this pattern can be affected by 
multiple vacancies created by STM tips (36), ion sputtering induced 
vacancy islands (37), surface steps (23), and species adsorption (31). 
Furthermore, the pristine Au(111) surface has a lower atomic den-
sity on the top layer compared to the reconstructed surface and thus 
has more low-frequency vibrational modes (38). It should lower the 
relative stability of the reconstructed surface at high temperatures 
due to the vibrational free energy difference. However, STM mea-
surements show that the herringbone pattern exhibits high stability 
at 400 K (39), and the densified surface phase has been observed at 
1250 K in x-ray scattering experiments (18).

Our high-accuracy MLFF allows us to explore the temperature 
effects on the stability of the reconstructed surfaces. To account for 
the temperature-induced vibrational free energy, we performed 
MLFF-MD simulations to obtain the local vibrational density of 
state (LVDOS) from the Fourier transform of the velocity autocor-
relation function. Our results show that the free energy difference 
between the pristine and the reconstructed surfaces decreases with 
the increase of the temperature as shown in Fig. 5A. However, below 
the Au melting point, the reconstructed surfaces are always more 
stable than the pristine ones, in accordance with the experimental 

observations. Note that the increase in temperature also leads to an 
increase in the free energy difference between the herringbone and 
stripe reconstructions as shown in Fig. 5B. The difference in pho-
non DOS between pristine and reconstruction surfaces is notable, 
but that between stripe and herringbone patterns is not obvious 
(Fig. 5, C and D). A clear difference is that the LVDOS of the top 
layer of the herringbone pattern is more isotropic than that of the 
stripe pattern (fig. S4), which is consistent with the surface stress 
analysis. The herringbone structure has slightly more LVDOS on the 
soft-phonon side and less on the hard side, which accounts for their 
large free energy difference at a higher temperature. We also note 
that the pristine Au(111) surface corresponds to a local minimum 
of the potential energy surface (PES), and thus, the transition to the 
herringbone structure is not phonon-modulated.

The formation of asymmetric herringbone patterns and the tran-
sition from herringbone to stripe patterns induced by applied strains 
have been largely observed (40–42), but an accurate theoretic analy-
sis is still missing. To study the effect of strain on the Au(111) surface 
reconstruction, we applied tensile/compressive strain along with one 
of the soliton directions of the herringbone pattern. As shown in 
Fig. 6A, the surface pattern is very sensitive to the applied strain. The 
mirror-symmetric herringbone pattern is stable on a strain-free Au(111) 
surface only, and a slight strain of 0.1% introduces notable changes 
in the pattern (Fig. 6B). The grain, with its soliton direction parallel 
to the strain direction, shrinks/expands if a tensile/compressive 
strain is applied. When the magnitude of the tensile/compressive 
strain becomes larger than ~0.2%, the stripe pattern supersedes the 
herringbone pattern. We note that the strain response is asymmetric. 
If a stripe pattern along a specific direction is energetically more 
stable under a tensile strain, then it is less stable under a compressive 
strain. These results are obtained with relaxed static energy, corre-
sponding to a low-temperature case. After considering the vibration-
al free energy corrections, the herringbone pattern becomes slightly 

Fig. 4. The comparison of herringbone and stripe reconstructed Au(111) slabs 
of different thicknesses. The energy difference between herringbone and stripe 
models (red curve) and the corresponding deformation amplitude of the second 
layer along the y direction (purple curve) for herringbone models with different 
thicknesses, ranging from 5 to 32 layers. For each model, the bottom layer is fixed 
in the calculation.

Fig. 5. Temperature-dependent stabilities of pristine, herringbone, and 
stripe-constructed Au(111) surfaces. (A) Free energy difference between the 
reconstructed surfaces and the pristine Au(111) surface at different temperatures. 
The vertical dashed line denotes the Au melting point of 1337 K. The inset shows 
the magnified zone around T = 0 K. (B) Free energy difference between the her-
ringbone and stripe reconstruction at different temperatures. (C) LVDOS of pristine, 
stripe, and herringbone surfaces including top three layers. (D) The LVDOS differ-
ence between herringbone and stripe surfaces.
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more stable than the stripe pattern and the transition strain shift to 
about ±0.6% at room temperature (see Fig. 6C). Our trial MD simu-
lations give consistent results (fig. S7). In experiments, the transition 
strain is estimated to be around 0.5% (43), which is in good agree-
ment with our result.

DISCUSSION
The herringbone reconstruction on Au(111) surface is first formed 
by densification into the stripe pattern and then the transformation 
into the herringbone pattern. The stripe pattern originates from the 
uniaxial densification of the pristine Au(111) surface due to the large 
tensile stress of the latter. For late transition metals (4d and 5d series), 
the surface tensile stress is mainly aroused by the d-band width shrink 
due to the reduced coordination number (1). We calculated the 5d 
electron density of states for bulk, Au(111) pristine, and ​22 × ​√ 

_
 3 ​​ re-

constructed surface as shown in fig. S8. The bulk system has the 
widest d-band, while the pristine surface has the narrowest one. The 
densified ​22 × ​√ 

_
 3 ​​ reconstruction slightly recovers the d-band 

width. This picture is consistent with the fact that the densification 
releases a small amount of surface stress (~22%) from the pristine  
surface.

For Au, its d-orbitals are about fully occupied, and thus, we do 
not expect a very strong d-binding between Au atoms. For others with 
unoccupied d-orbitals such as Pt, its stronger d-d interaction leads to 
shorter bond length, larger cohesive energy, and stronger surface stress 
as compared to Au. Therefore, the driving force for surface atom den-
sification is even larger than that for Au (44). However, to densify the 
surface, a portion of atoms is inevitably pushed onto the bridge or top 
sites of the second atomic layer. If the direction-dependent d-binding 
is stronger, bridge or top sites are less stable, and thus, the densifica-
tion can be suppressed. We calculated the PES of the top-layer atom 
at different sites. As shown in fig. S9, the energy of a Pt atom locating 
on a bridge site is about twice that of Au. It implies that the energy 
penalty of Pt surface reconstruction is much larger than that of Au.

The transformation from the stripe pattern to the herringbone 
pattern is attributed to the fact that the stripe pattern is more aniso-
tropic and thus mainly allows the stress relaxation along one 

direction on Au(111). The rearrangement of the stripe pattern into 
a more isotropic herringbone pattern allows the relaxation of the 
stress in another direction, which lowers the system energy. How-
ever, the introduction of defects, which increases the formation 
energy, is essential to form such a pattern. Thus, the competition 
between stress relaxation and defect formation is critical for the for-
mation of herringbone patterns.

To summarize the above discussion, we conclude that Au(111) 
happens to meet the densification condition and that the herringbone 
pattern is formed with a small energy gain than that of the stripe 
pattern. Pt(111) is around the critical point so that it tends to densify 
into a double line pattern, which is substantially different from the 
herringbone pattern of Au(111) surface, only at higher tempera-
tures or under Pt vapor conditions (34).

In short, we have studied the herringbone reconstruction of 
Au(111) with an accurate MLFF without fitting any experimental 
knowledge. Our simulated herringbone pattern looks identical to the 
experimentally observed STM pattern, and the 26% stress relief of 
the reconstructed surface is consistent with the experimental re-
sults as well. We explain how the deformation in deeper layers leads 
to the stability of the herringbone reconstruction on Au(111) sur-
face. We further reveal the atomistic mechanisms of many experimental 
observations, such as the strain-induced asymmetric herringbone 
pattern and the transition from the herringbone pattern to the stripe 
pattern and the high stability of the reconstructed surface at high 
temperatures. Our study extends the application of machine learn-
ing interatomic potentials and opens a practicable avenue to study 
large systems outside the scope of competence for both DFT and 
traditional empirical force fields.

METHODS
DFT calculation
DFT calculations were carried out with the VASP (25, 26). The general 
gradient approximation parameterized by Perdew et al. (45) was 
adopted as the exchange-correlation functional. The projector aug-
mented wave (46) method was used to describe core-valence inter-
action. A kinetic energy cutoff of 400 eV was used for the plane 

Fig. 6. Au(111) surface reconstruction with the applied strains. (A) The energy difference between the herringbone and stripe models under strain. The asymmetric 
herringbone becomes metastable when the applied strain exceeds about ±0.2%, and the stripe pattern supersedes. (B) The corresponding herringbone pattern for 
different applied strains. The white transparent arrow gives the direction of the applied strain. The gray STM images presented as comparisons are adapted from (43). 
(C) Diagram of Au(111) surface reconstruction with respect to temperature and applied strain.
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wave basis set. The energy convergence threshold was set to 1 × 
10−5 eV. For structure optimization, the conjugate gradient method 
was used until the force on each atom was less than 0.01 eV/Å. The 
slide is separated from its neighboring images in the periodic condi-
tion by a larger than 12-Å vacuum layer. The Monkhorst-Pack 
method (47) was used for K-point sampling with spacing less than 
0.016 × 2 Å−1.

Au MLFF training
We used DeePMD-kit (24) to train our MLFF with a radial cutoff 
of 6.5 Å. The size of the fitting net is 240 × 240 × 240. The whole 
training set can be classified into four categories. For the first part, 
we built a bulk model, a perfect pristine Au(111) surface model with 
five atomic layers, and seven similar Au(111) models with different 
defects or steps on the top layer. We performed a series of MD sim-
ulations for each model at more than 10 temperatures ranging from 
3000 to 10 K. Here, an iterative scheme is adopted to repeatedly 
train coarse MLFF for generating new structures (29). In each circle, 
we run MD with the updated coarse MLFF, extract structures from 
MLFF-MD trajectories to perform DFT static calculations to enrich 
the training set, and then retrain a better MLFF with the enlarged 
training set. About 1953 structures are extracted from these calcula-
tions. For the second part, we focus on the layer and shear strain 
effect. We build 15 models with the number of atomic layers rang-
ing from 6 to 20 and performed MLFF-MD simulation with seven 
temperatures ranging from 800 to 10 K. A total of 330 structures are 
extracted from MD trajectories, and DFT static calculations are per-
formed for these structures. Further, random shear strains in the 
range from −5 to 5% are applied to the same 15 models, and 424 
more structures are accordingly obtained with MLFF-MD and DFT 
static calculations. For the third part, we focus on the stripe re-
construction and possible distortions. We built seven 22 ×​ ​√ 

_
 3 ​​ and 

22 × 1 densified surface models with or without point defects, sur-
face steps, and uniaxial strains. For this part, we performed struc-
ture optimization and ab initio MD (AIMD) simulation at 300 and 
600 K. Here, 2478 structures are extracted from these calculations. 
For the fourth part, we focus on the effect of atomic density and 
strain on the top layer. We built 12 models with varying degrees of 
surface densifications from 8 × 1 (inserting one extra Au atom in 
every eight atoms in each <110> atomic chain on the top layer) to 
30 × 1 and performed structure optimization and AIMD. Here, 
689 structures are extracted. Besides, different uniaxial and uniform 
strains ranging from −2% to 2% are applied on these 12 models to 
perform optimization and AIMD, and 3999 more structures are ex-
tracted. Combined with primitive cells, isolated Au, and structures 
with top-layer atom translation on the xy plane, we have 11,008 struc-
tures in total, containing 2,962,365 force components. We randomly 
extracted 1000 structures as the test set, and all others are used to 
train the final MLFF.

Au(111) herringbone reconstruction modeling
The 22 ×​ ​√ 

_
 3 ​​ stripe reconstruction model is first built and optimized. 

Then, two grains are extended and rotated with different angles 
to build the herringbone pattern assisted with Atomsk (48) and 
ASE (28) packages. The bilaterally symmetrical model has a size 
of 108 × 15​​√ 

_
 3 ​​ and 32 layers, containing 103,824 atoms in total. The 

top layer has 3384 atoms, with its density 4.44% larger than the bulk 
layers. The periodic length of the herringbone pattern in our model 
is 317.4 Å, which is around the typical values observed in experiments 

(17, 18). The asymmetrical models are built similarly, but a nonor-
thogonal box is used to satisfy the periodicity and asymmetry 
requirements. For structure optimizations, we first performed MD 
simulation at 300 K for 10 ps to overcome possible energy barriers, 
and then, structure optimization was taken until the force on each 
atom is less than 0.001 eV/Å to get the final energy. LAMMPS (27) 
is used to perform both MD and structure optimizations with MLFF 
for large supercell models. For both AIMD and MLFF-MD, if other-
wise specifically mentioned, the NVT ensemble is used.

Estimation of the deformation energy for deeper layers
The deformation in deeper layers is estimated as an exponential decay

	​ D(i ) = D(2 ) × ​e​​ (2−i)​​	

where i is the index of layer, D(2) is the deformation in the second 
layer, and the parameter  is set to be 0.1 to mimic the decay behavior 
in the bulk. A verification of this exponential form of decay is provided 
in the Supplementary Materials. The deformation response force is

	​ F  =  As / d​	

where  is the shear modulus, A is the area that applied deforma-
tion, s is the deformation amplitude, and d is the space between two 
domain walls. The energy that is needed to induce this deformation 
on the substrate is estimated as

	​ E  =  2 ​ ∑ 
i=2

​​​ ​∫0​ 
D(i)

 ​​Fds​	

which is a quadratic function of D(2) and can be solved numerically. 
The coefficient 2 denotes the two domains in one supercell.

Vibrational free energy calculation
We first run MD simulation in NPT ensemble for Au bulk system to 
get the equilibrium lattice constant at 300 K. Then, the box sizes of 
surface models are adjusted according to this equilibrium lattice 
constant and used for NVT-MD simulations at the same temperature 
for 30 ps. The velocities at the last 20 ps are extracted to calculate the 
velocity autocorrelation function. The LVDOS is finally obtained from 
the Fourier transform of velocity autocorrelation function as (49)

	​ g( ) = ​∫0​ 
∞

 ​​ ​e​​ −it​ ​ 〈v(t ) v(0 ) 〉 ─ 〈v(0 ) v(0 ) 〉 ​ dt​	

where  is the vibrational frequency, v is the velocity of Au atoms, 
and the angle brackets denote the ensemble average. The vibration-
al free energy is subsequently calculated as (49)

	​​ F  = ​ k​ B​​ T ​∫0​ 
∞

 ​​ln​(​​2sinh ​  ℏ ─ 2 ​k​ B​​ T ​​)​​g( ) d​​	

where kB is the Boltzmann constant, T is temperature, and ℏ is the 
reduced Planck constant.

Calculation details of the strain-induced reconstruction 
pattern transition
Because of the different symmetry of the top layer from the deeper 
layers, we have no way to obtain the optimal reconstructed pattern 
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for a given strain using structure optimization. Instead, we build a 
series of reconstruction models with different symmetries as shown 
in fig. S5. These models are distinguished by symmetry factors. For 
each model, we applied a series of uniaxial strains ranging from −1 to 
1%. As can be expected, the mirror-symmetric structure with a 
symmetry factor of 0.5 has the lowest energy when no strain is 
applied. With the symmetry factor deviating from 0.5, the structure 
energy increases and can be even higher than that of the stripe 
reconstruction (red curve in fig. S6). When a strain is applied, the 
local minimum shifts from the center as shown in fig. S6, which 
indicates that asymmetric structures supersede the symmetric one. 
We use spline interpolation to find the minimum energy point.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abq2900
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