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ABSTRACT This paper introduces a robust adaptive path-tracking control scheme via a predicted interval
approach for safe autonomous driving tasks under uncertainties. Specifically, a recursive least squares-
based set-membership mechanism is firstly designed to estimate a bounding set of acceptable values to
depict the uncertain parameters. Based on the estimated system parameters, an interval predictor is deployed
to improve the prediction accuracy in the primary control action design. Successively, the unconstrained
output feedback-based robust controller is proposed to yield the closed-loop system stabilization by utilizing
predicted interval output only. Meanwhile, a model predictive control technique is conceived from solving
an optimization problem that is given in the interval predictor to ensure robust constraint satisfaction. The
recursive feasibility of the controlled system is theoretically analyzed by applying the nonconservative
Lyapunov function with a novel structure and the closed-loop system possesses the input-to-state stability
criteria. Finally, simulation results are provided to verify the efficacy of the presented strategy under various
intricate scenarios. The results show that the suggested controller always maintains its cross-tracking error
and longitudinal velocity error at the lowest level even in the most challenging weather scenario.

INDEX TERMS Path tracking control, autonomous vehicle, interval prediction, model predictive control.

I. INTRODUCTION
With the speed of technological advances, autonomous vehi-
cles (AVs) have been intensively invested in bothmodernmil-
itary and civilian areas [1]. Creating an autonomous vehicle
equipped with a range of advanced functionalities presents
significant challenges. One of the fundamental challenges
is the trajectory tracking control task for AVs. Many stud-
ies have been conducted on this issue [2], [3], [4]. How-
ever, related studies often ignore the physical constraints
(e.g., workspace restrictions and speed) to mainly focus on
developing the feedback control principles that modulate the
tracking error. The saturation function [5] and the barrier
function [6] are two broad solutions to the aforementioned
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problem, although using them could compromise the control
performance.

Currently, Reinforcement Learning (RL) [7] is one of the
active research areas in the domain of appliedMachine Learn-
ing [8]. Nevertheless, it has hardly been applied to practical
applications, since the essence of the RL is based on eval-
uating targets empirically obtained from trial-and-error and
random exploration, i.e., iterative refinements and learning
from failures. In addition, it required sufficiently big data
from an environment interaction that cannot always be simu-
lated. Thus, they have rarely been applied to practical vehicle
control as of the present since mistakes must be thoroughly
avoided for safety.

A hint for these drawbacks is that the control approaches
should partially know the dynamic model. Even though
they have to face model uncertainties such as unknown
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parameters and exogenous disturbances, the simple efficien-
cies of model-based counterparts have often benefited better
than model-free counterparts. To leverage the advantages
from themodel knowledge, a model predictive control (MPC)
technique has been efficiently employed for control purposes
of real works [9], [10]. TheMPC technique not only addresses
multi-input multi-output systems but also deals with online
constrained optimization problems. It delivers the capability
of predicting vehicle behaviors, improving safety as well
as controlling performance by looking at several steps in
the future. To mention a few, a nonlinear MPC (NMPC)
scheme is presented in [11] for nonholonomic systems to
ensure system stability. In [12], Li et al. developed the NMPC
scheme with a neurodynamic optimization to enhance the
computational efficiency for tracking and formation. How-
ever, the uncertainty term is ignored in the abovementioned
approaches, which are unavoidable in actual AV applications.

Regarding the above restriction, a robust MPC (RMPC)
approach is an improved form of the standard MPC. It is
intrinsically robust to uncertainties given the tight system
constraints. In [13], an RMPC scheme is proposed to handle
constraints explicitly of bounded external disturbances. Sim-
ilarly, a tube-based RMPC scheme [14] is another variant,
which also tackles external disturbances by the robustness
constraint control scheme. In addition, another extension ver-
sion [15] is designed for constrained linear time-invariant sys-
tems that ensure robust exponential stability. It is noteworthy
that the uncertainty bound commonly assumes a prior known
in the above-mentioned studies. Moreover, they skipped the
model mismatch, i.e., the perfectly modeled system is only
concerned with external disturbances. This points out that
those methods are relatively conservative. Thus, the paramet-
ric uncertainty is required to be systematically and exactly
respected as to the additive disturbance or to consider the
worst-case realization [16]. Nonetheless, another challenge
comes from precisely approximating the effects of the para-
metric uncertainty when the system states distribute over
time.

Alternatively, an adaptive MPC (AMPC) is devised as a
promising solution, it focuses on the controlled system prop-
erties [17], [18]. In [18], the AMPC is developed based on ful-
filling the Persistence of Excitation (PE) condition, intending
to guarantee the controlled system properties of robust stabil-
ity, recursive feasibility and estimation convergence. In view
of this approach, model-updating strategies are required
by estimation/adaptation algorithms to determine the model
uncertainty [19] and the constraints during transients [20].
This poses the challenge that a highly accurate estimate of the
system state is required, which is often affected by restrictive
assumptions. Notwithstanding that, the model information
can be obtained by many approaches, which have been intro-
duced in [21], [22], [23], and [24]. A nonlinear disturbance
observer (NDO) is a well-known estimation method to utilize
for developing controllers against system uncertainties and
disturbances. Scholars in [21], [22], and [23] have proposed
several NDO versions with extremely robust performance.

However, this work focuses on the estimations of unknown
parameters and uncertainty sets to regard the conservatism of
the MPC algorithms [24]. Thus, the set-membership estima-
tion mechanism based on the recursive least-squares (RLS)
technique [25] is deployed to estimate along the way with
the bounding sets, which are described by ellipsoids or poly-
topes. Besides, the weighting factors are relatively easy to
be selected at a known interval from zero to infinity. Addi-
tionally, instead of deploying a regular solution, the interval
predictor is designed to tackle the uncertain system [26],
[27], [28], [29], [30]. In detail, the interval prediction tech-
nique is the evaluation of the set of acceptable values for the
state at each instant. It is practicable based on input-output
information. Nonetheless, the addition of time intervals from
uncertain elements may affect the system, causing instability.
Therefore, the predicted interval mechanism design should
take into account the stability and inclusion property.

In this work, we develop a robust adaptive path-tracking
control scheme for safe autonomous driving tasks via
a predicted interval (PI) algorithm. To start with, the
unknown parameters are first estimated along the way by the
RLS-based set-membership estimation mechanism. This set
estimator yields not only a nonincreasing estimation error
but also a sequence of bounding sets where the uncertain
parameters can be freely distributed. For the simplicity of
implementation and computational efficiency, instead of rely-
ing on zonotopes [31], [32], the proposed prediction approach
is deployed based on intervals for the system state predic-
tion. Successively, this interval predictor is further exploited
for the promising combination of the AMPC-based safety
controller and the robust output feedback control (ROFC)
strategy. The proposed control scheme is operated in a way
that leverages the AMPC technique to reach the vicinity of
the origin. Meanwhile, the unconstrained ROFC is imme-
diately executed to maintain the system stabilization that
only utilizes the predicted interval variables. The stability
of the closed-loop control is theoretically analyzed based on
a novel nonconservative Lyapunov function assisted by the
conditions of linear matrix inequalities (LMIs). Finally, the
effectiveness and feasibility of the proposed algorithm are
investigated in high-fidelity simulations with a number of
weather scenarios. The key contributions of this work are
summarized as follows:
• The RLS-based set-membership estimation mechanism
determines the unknown parameters with the nonin-
creasing estimation error. It delivers the sequence of
bounding sets, where the uncertain parameters can be
freely expanded.

• A robust adaptive path tracking control scheme is
proposed based on the interval predictors for exponen-
tially stabilizable nonlinear systems. The suggested con-
trol action design is harmoniously combined between
the stabilizing AMPC technique and the uncon-
strained ROFC framework. It allows us to guar-
antee the constraint satisfaction and robust system
stabilization.
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• The stability and recursive feasibility of the controlled
system are theoretically analyzed by a novel noncon-
servative Lyapunov function with the assistance of the
LMIs conditions.

The remainder of the paper is organized as follows.
Section III describes the dynamic system and objectives.
Section IV outlines the design procedure of the proposed
approach including the estimator, predictor and controler.
Section V describes the simulation scenarios and discusses
the results. Finally, the conclusions are summarized in
Section VI.

II. NOTATIONS
The symbols N and R are sets of natural numbers and real
numbers, respectively. Denote n = 1, 2, . . . , n, ∀n ∈ N. The
symbol In denotes the n × n identity matrix. For a matrix
A ∈ Rn×n, denote A+ = max {0,A} ,A− = A+ − A and the
absolute values of the matrix as |A| = A+ + A−. The inputs
u : R≥0 → Rn with ||u||≥0 < ∞ is denoted as 0n. Given a
matrix P ∈ Rn×n,P � 0 implies that a symmetric matrix is
negative semi-definite.

III. PROBLEM STATEMENT
In this section, we first formulate the dynamic model of
Educational Robot Platform (Wego-ERP42) developed by the
WeGoRobotics company [33] for autonomous driving, which
is illustrated in Fig. 1, then control objectives of this study are
given.

A. DYNAMIC MODEL
The vehicle dynamic model is described by the classical
single-track model represented in (1) with a mass m and a
yaw moment of inertia Iz. According to Newton’s Second
Law, the degrees of freedom of the longitudinal and lateral
velocities, the yaw angle and the orientation error can be
obtained from [34] and [35]. As the results, the vehicle
dynamics model is derived as follows:

v̇x = a−
Cf δ sin δ

m
+
Cf (lf ω + υy) sin δ

mvx
+ ωυy

v̇y =
Cf δ cos δ

m
−
Cf (lf ω + vy) cos δ

mvx
+
Cr (lrω − vy)

mvx
− ωvx

ω̇ =
lf Cf δ cos δ

Iz
−
lf Cf (lf ω + vy) cos δ

Izvx

−
lrCr (lrω − vy)

Izvx

θ̇e = ω −
υx cos θe − υy sin θe

1− yeκ
κ

(1)

where vx , vy, and ω are the dynamic states corresponding
to lateral velocity, longitudinal velocity, and yaw angle with
the respect to the coordinates of the vehicle (Ox ,Oy); θe is
the orientation error with road curvature κ; ye is the lateral
deviation in the curvilinear frame, i.e., distance from the
vehicle center to the closest point p on the desired path; the

FIGURE 1. The architecture of the testing vehicle; (a) the WeGo-ERP42
was created by the WeGo Robotics company, (b) The dynamic model and
its variables with respect to the reference path.

front steering angle δ and the longitudinal acceleration a are
considered as the control actions; Cf /Cr and lf /lr are the
stiffness coefficients of the tires and the distances from the
center of gravity to the front/rear wheel axes, respectively.
In cases the longitudinal velocity vx becomes almost zero,
introducing and adding a small constant value εmay alleviate
the singularity phenomenon.

Based on (1), the complete state-space model is given by
the formula in time-domain representation as follows:

{
ẋ(t) = A(ξ (t))x(t)+ Bu(t)+ d(t)
y(t) = Cx(t)+ γ (t)

(2)

where x(t) = [vx , vy, ω, θe]> ∈ Rp denotes the vehicle
state with an initial state x(0) = x0 and its derivative ẋ(t);
u(t) = [δ, a]> ∈ Rq denotes the control input; d(t) ∈ Rr

is the external disturbances; y(t) denotes the measurement
output; γ (t) ∈ R2p is the measurement noise; the uncertain
variables ξ (t) = [vx , vy, θe, κ] ∈ RN belongs to a confidence
region set D ⊂ Rd ; time index is t ∈ N,∀t ≥ 0; the system
matrices A ∈ Rp×p, B ∈ Rp×q and C ∈ Rn×p based on the
nonlinear embeddingmethod [36] are derived inAppendix A.

B. CONTROL OBJECTIVE
The objective of this work is to develop a robust adaptive
path tracking controller for the system (2) based on the PI
technique supported by the online uncertain parameter esti-
mation, where its stabilization and robust constraint satisfac-
tions have to be guaranteed. With the intention of achieving
the stabilization of the control system against uncertainties
and disturbances in the vicinity of the origin, for all t ≥ 0,
the system (2) is subject to the constraint sets of the state
x(t) ∈ S ⊂ Rp and control u(t) ∈ A ⊂ Rq. In order to obtain
an estimated confidence region set D̂(t) ⊆ D containing the
uncertain parameters ξ , the form of A(ξ ) is defined as the
following.
Assumption 1: The matrices A, ρ1, . . . , ρN ∈ Rp×p are

known existence such that the relations are satisfied ∀ξ ∈ D
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as follows:

A(ξ ) = A+
N∑
i=1

ρiξi. (3)

Assumption 2: In the system (2), there exist admissible
perturbation bounds d, d ∈ 0r , γ , γ ∈ 02p such that d ∈
[d(t), d(t)], γ ∈ [γ (t), γ (t)],∀t ≥ 0, both containing the
origin in their interior. In addition, x0, x0 ∈ 0

p such that the
initial conditions x0 ∈ [x0, x0] ⊂ S. The initial uncertainty
set is defined by D0 =

{
ξ ∈ RN , |ξ − ξ0| ≤ ξ

}
, where an

initial ξ0 and ξ are positive values.
Assumption 1 is given in order to provide the desired

solution by the PI approach, which requires a careful selec-
tion of hypotheses to ensure robust stability. Different from
other methods, the cooperativity and stability of the estima-
tion error dynamics are guaranteed by a suitable choice of
weighting factors. In Assumption 2, it is supposed that the
perturbations belong to the know bounded interval, which is
the standard hypothesis for interval estimation [30]. Further,
this assumption indicates the bounded uncertainties. Due to
the limit of physical systems, it is normally utilized in the
literature on the path tracking problem.

IV. THE PROPOSED CONTROL STRATEGY
In this part, a robust adaptive MPC scheme with an inter-
val predictor is developed for safe autonomous driving. The
structure shown in Fig. 2 describes the main modules of
the designed control algorithm. As first, an online strategy
is first deployed to determine the unknown parameters and
the uncertainty set simultaneously. Next, the interval pre-
diction block is developed with the inclusion properties to
precompute the information on the observed current states.
Later, two primary module blocks are the ROFC block and
the AMPC-optimizer block relying on the interval predic-
tor results. Moreover, the final optimal control signal is
decided based on the condition of the extended state reach-
ing the vicinity set of origin. The outstanding features of
the proposed approach consist of the capability of guar-
anteeing robust constraint satisfaction from the designed

FIGURE 2. Block diagram of the proposed control scheme.

AMPC approach. Meantime, ROFC-based closed-loop con-
trol uses the interval predictor variables only, which delivers
asymptotic performances with unconstrained stabilizing. The
detail of the designed control approach is presented as the
following.

A. PARAMETERS ESTIMATION
In order to derive the uncertainty set for the unknown parame-
ters, we assume that the nominal term3(x(t), u(t), ξ ) without
the uncertainty terms is linearly dependent on ξ . To lever-
age the statistical tools developed for nonasymptotic linear
regression, (2) is given by Y (t) = 3(t)ξ∗ + ϑ(t), in which
3(t) = [ρ1xn(t), . . . , ρN xn(t)] ∈ Rp×N ,∀n are known sig-
nals. A hypothesis on the level of its excitation is introduced
in [37] and [38]; ξ∗ denotes the true parameter of ξ at time
instant t with ξ∗ ∈ D(0) and ϑ(t) = d(t)+γ (t) is the lumped
uncertainty in a regression model, which is from 0p under
assumptions 1 and 2. It is also implied that ||ϑ || ≤ ϑ , with
ϑ = max

{
||d ||, ||d ||

}
+max

{
||γ ||, ||γ ||

}
.

In order to determine D̂(t), the set-membership technique
based on [25] is employed to calculate the estimation vector
ξ̂ (t) of uncertain parameters ξ,∀t ≥ 0, it can be expressed as:

˙̂
ξ (t) = ξ̂ (t)+ κ̇e(t) ˙̆σ (t)3(t) ˙̃ϑ(t) (4)

where ξ̂ (t) ∈ RN , σ̆ (0) = 1 and the following equalities:

˙̃ϑ(t) = Y (t)−3(t)ξ̂ (t) (5a)

˙̆σ (t) =
σ̆

1+ κ̇e(t)σ̆3(t)2
(5b)

κ̇e(t) =


0, if

∣∣∣ ˙̃ϑ∣∣∣ ≤ ϑ,∣∣∣ ˙̃ϑ(t)∣∣∣− ξ
ϑ3(t)2 ˙̆σ (t)

otherwise
(5c)

In order to ensure the robust satisfaction of constraint
against uncertainties and disturbances, the objective of the
following step is to compute an appropriate set of all admis-
sible values D̂(t) ⊆ D, meaning that ξ , ξ̂ (t) ∈ D̂(t),∀t ≥ 0.
Based on (4), the set D̂(t) can be given as follows:

D̂(t) = D
⋂
ι∈[%,t]

{
ξ∗ ∈ RN

: |ξ∗ − ξ̂ (ι)| ≤ δ̃(ι)
}

(6)

where δ̃(ι) = $ (ι)σ̆
1
2 in which the expression$ (0) = ξ and

$ (t) at time instant t is defined by

$̇ (t) =
(
$ 2(t)+ κ̇e

(
ϑ
2
−

δ̃2

1+ κ̇e32σ̆

)) 1
2

(7)

It is evident that the property D̂(t) ⊆ D, t ≥ 0 is fulfilled
while its size is shrinking. The estimation features can be
summarized as the following lemma.
Lemma 1: The true parameter ξ∗ belongs to D(t) and the

bounded error ξ̃ = ξ∗ − ξ̂ (t) of (4) is guaranteed to be
nonincreasing, for all t > 0 when Assumptions 1-2 are
satisfied.

Proof: See in Appendix B.
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B. ROBUST ADAPTIVE PATH TRACKING CONTROL
In this part, we develop a new robustness constraint strategy,
which leverages the results obtained from the aforementioned
estimations including the current state x(t) belongs to [y(t)−
γ (t), y(t) + γ (t)] with the initial conditions [x0, x0] and the
estimated confidence region D̂(t), as well as the admissible
exogenous bounds [d(t), d(t)], to generate bounded interval
estimates [x(t), x(t)] ∈ Rp such that

x(t) ≤ x(t) ≤ x(t),∀t ≥ 0. (8)

Since the estimated set D̂(t) is determined by (6) and ξ ∈
D̂(t) ⊆ Dwhile the systemmatrix A and the setD are known,
then there exist the bounded matrices A,A:

A ≤ A(ξ ) ≤ A (9)

According to Assumption 1, the confidence region D̂(t)
can be enclosed on ξ obtained from (6) into a polytope for
A(ξ ), which can be expressed as follows:

A(ξ ) = A0 +
2N∑
i=1

χi4i (10)

where A0 = A(ξ̂ (t)), χ ≥ 0,
∑2N

i=1 χi = 1,4i = A(ξ̂ + kĩδ)−
A0 for ki ∈ {−1, 1}N with i ∈ 2N . In addition, to inherit ben-
eficial features of nonnegative systems, all the off-diagonal
components of the center matrix A0 are nonnegative, i.e., it is
Metzler.
Assumption 3: There exists a nonsingular matrix

H ∈ Rp×p with H−1A0H being Metzler.
In fact, the above assumption is frequently satisfied when-

ever A0 is a diagonalizable matrix or a scalar output system
can be observed [39]. Additionally, suppose that H = Ip in
order to decompose the notation and ensure that the system
(2) is already in the correct form:

ẋ(t) =

A0 + 2N∑
i=1

χi4i

 x(t)+ Bu(t)+ d(t) (11)

To obtain the new states at time τ , with τ ≤ t , while still
guaranteeing the bounded feature 9, the interval predictor is
designed as follows:

ẋ(τ ) = A0x(τ )−4+x−(τ )−4−x+(τ )
+Bu(τ )+ d(τ )− d(τ ),

ẋ(τ ) = A0x(τ )−4+x−(τ )−4−x+(τ )
+Bu(τ )+ d(τ )− d(τ )

(12)

where the polynomials 4+ =
∑2N

i=14
+

i , 4
−
=
∑2N

i=14
−

i .
In order to integrate the interval predictor (12) into the

suggested robust control scheme, we define the extended state
vector of the predictors as X = [x>, x>]>, then the equation
(11) can be rewritten as follows:

Ẋ (t) = η1X (t)+ η2X+(t)− η3X−(t)+ βu(t)+ ψ(t) (13)

where ψ(t) = [d(t), d(t)]> ∈ R2p is a bounded input

vector. Its norm is in the ratio to d, d and η1 =
[
A0 0
0 A0

]
,

η2 =

[
0 −4−

0 4+

]
, η3 =

[
−4+ 0
4− 0

]
, β = [B>,B>]>. Since the

existence of X+(t) and X−(t) is the globally Lipschitz non-
linearities in (13), thus this equation is considered a nonlinear
system.

According to (8), the bounded property of X (t) is equiv-
alent to the property of x(t). With the purpose of the input-
to-state stabilizers, the asymptotic amplitude of the extended
state X (t) with regard to ψ(t) [40] is obtained from the
proposed robust output feedback control u(t) ∈ A, which is
designed as follows:

u(t) = κ1X (t)+ κ2X+(t)− κ3X−(t)+ fψ(t) (14)

where κj for j = (1, 2, 3) andf ∈ Rq×2p are the control gains.
Minimizing ||βf+ I2p||, f is easily chosen. Substituting the
control law (14) into the closed-loop system (13), the form
can be obtained as follows:

Ẋ (t) = υ1X (t)+ υ2X+(t)− υ3X−(t)+ ψ̃(t) (15)

where ψ̃(t) = (βf + I2p)ψ(t) and υj = βκj + ηj, and the
control gains κj can be determined as follows.
Theorem 1: Suppose that there exists diagonal matrices

G, G+, G−, P, Gc, G+c , G
−
c , F, F

+, F−, Fc, F+c , F
−
c ,

H+, H−, L ∈ R2p×2p and matrices Kj ∈ Rq×2p such
that P,H+,H−,L are positive definite, while �,9 (see in
Appendix C) are negative semi-definite and the following
inequalities hold:

P+min
{
H+,H−

}
> 0, (16a)

G+min
{
G+,G−

}
+ 2min

{
F+,F−

}
> 0, (16b)

Gc +min
{
G+c ,G

−
c
}
+ 2min

{
F+c ,F

−
c
}
> 0, (16c)

then the closed-loop system (15) driven by the proposed con-
trol signal u(t)with the control gains κ1 = K1P, κ1 = K2H+,
κ3 = K3H− is input-to-state stability (ISS) [41] with regard
to (d, d).

Proof: See in Appendix C.
Remark 1: The existence of a diagonal solution of symmet-

ric matrix P in υ>1 P+ Pυ1 � 0 in [42] and the stability of a
Metzler matrix υ1 are equivalent, thus the matrix P has to be
diagonally unrestricted.

Based on the candidate Lyapunov function V2(X ) in the
proof of Theorem 1, all trajectories in (13) are asymptotically
shrunk in the vicinity set, which is determined as follows:

R =
{
X ∈ R2p

: V2(X ) ≤
1
ϒ
sup
t≥0

∣∣∣ψ̃>(t)Lψ̃(t)∣∣∣} (17)

where ϒ = min
i∈2p

λi( 2
P+H++H− ) with a scalar value λ(•) is an

eigenvalue of (•) and the term 2 is the sum of the diagonal
matrices in the inequality (16b).

According to Theorem 1, the suggested control signal (14)
enables the predictive scheme (12) and its stability in an
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area R of the origin. Meantime, the size of R is in the ratio
to the uncertainty in the system (2). This can be optimized
by the selection of κi. We developed a new robust adaptive
path tracking control strategy to deal with the error between
the anticipated output variables and the reference values as
little as possible, allowing for precise trajectory tracking and
lateral stability for the vehicles. This was done to assure the
robust satisfaction of constraints. Given the bounded con-
straint sets for the state x(t) ∈ S and the control u(t) ∈ A,
the control problem would be resolved based on (8), which
also causes the system (12) to approach the vicinity of the
origin. Denoting the time step Tm and ts = sTm,∀s ∈ N+,
and the prediction horizon of the MPC solution is denoted
as Tp > Tm. It means that an optimal control issue at each
nonnegative ts is solved on the interval [ts, ts+Tp] to compute
the input u(t), and this optimal control issue is resolved again
after Tm units of time, i.e., the obtained optimal control is
executed on the interval [ts, ts + Tm). The objective function
can be constructed as follows:

J (X (ts), u(ts))

= X>
(
ts + Tp

)
ω1X (ts + Tp)

+

∫ ts+Tp

ts
X>(τ )ω2X (τ )+ u>(τ )ω3u(τ )dτ (18)

where ωi � 0 ∈ R2p×2p are the weight gains as positive
definite symmetric matrix structures. In order to react against
the influence of great measurement disturbances, the bounded
estimation at ts is given as follows:

[x(ts), x(ts)]

=



[y(ts)− γ (ts), y(ts)+ γ (ts)]

∩[x0, x0], s = 0

[y(ts)− γ (ts), y(ts)+ γ (ts)]

∩[x(ts−1 + Tm), x(ts−1 + Tm)], s ≥ 1

(19)

where (x>(ts−1 + Tm), x>(ts−1 + Tm))> = ξ (ts−1 + Tm) is
obtained during the prediction on the previous iteration.

Firstly taking D̂(ts) from (6) and calculating the matrices
A0 and 4i calculated in (10) with i ∈ 2N , then the inter-
val prediction-based robust adaptive path tracking control
scheme can be formulated by the finite horizon optimal con-
trol issue as follows:

1U (ts)

= argmin
u:[ts,ts+Tm]→Rq

J (X (ts), u(ts))

s. t. X : [ts, ts + Tm]→ R2p

is a solution of (4) and (19),

X (ts + Tm) ∈ R,
X (τ ) ∈ S2, u(τ ) ∈ A, ∀τ ∈ [ts, ts + Tm]. (20)

By solving the optimization problem (20), the sequence of
optimal input deviations computed at time t ∈ [ts, ts + Tm)

and the gains control κj are taken from (14). Subsequently,
either the proposed robust feedback control or the suggested
AMPC-based interval prediction is utilized in the final opti-
mal control design. The preferred command is induced by the
dependence relationship between the extended state X (t) and
the vicinity setR, which is manifested as

u(t) =

{
u(t) if X (ts) ∈ R,
1U (t) Otherwise.

(21)

Remark 2: Based on [15] and [43], the proposed control
scheme is established on the orchestration idea of switching
between the AMPC technique and the ROFC approach which
both exploit the predicted intervals. In detail, the AMPC-
based open-loop optimal control as a safety controller is
to guarantee a robust constraint satisfaction for the state
x(t) ∈ S by reaching a neighborhood of the origin R.
Meanwhile, the ROFC-based closed-loop robust controller
with the control signal u(t) ∈ A in (14) can be applied
where the extended states X (t) are inside the vicinity setR in
(17) to maintain robust closed-loop stability, which provides
asymptotic performances.

In addition, the initial prediction condition (19) is chosen
in a way to use all available information about the state,
which means that the set is an intersection of the measured
interval [y(ts) − γ (ts), y(ts) + γ (ts)] and the set [x0, x0] at
t0 = 0 (according to Assumption 2). Next, we again take
the measured information and project it into the interval
[x(ts−1 + Tm), x(ts−1 + Tm)] at ts with s ≥ 1, which
is the predicted set of admissible values of x(ts) at ts−1
with the switched optimal control (21). Since the construc-
tion of the inclusion property (8) is always satisfied for
the predictor (12), the crossing of [y(ts) − γ (ts), y(ts) +
γ (ts)] (measured currently) with [x(ts−1 + Tm), x(ts−1 +
Tm)], at Tm units of time ago, may reduce the influence
of γ (t).
Theorem 2: Under Assumptions 1-3 and the conditions

of Theorem 2, when having x0, x0 ∈ S, i.e., the bounded-
ness of the unknown parameter estimation in Lemma 1, the
closed-loop system presented in (2) possesses both the ISS
criterion with respect to x, x and the practical ISS criterion
for x about d, d in the vicinity set R. Moreover, not only
robust constraint satisfaction but also recursive feasibility of
the proposed control scheme are guaranteed with reachingR
in a finite time.

Proof: See in Appendix D.
Remark 3: Lemma 1, Theorems 1 and 2 imply that the

proposed control scheme can absolutely ensure recursive
feasibility and closed-loop stability, depending on a conser-
vative bound on the admissible uncertainties. A potential
solution to reduce the conservatism of the proposed method
is to update the vicinity set, which guarantees the estima-
tion error to be nonincreasing. It is clear from Theorem 2
that the considered system free of disturbances can be sta-
bilized for arbitrarily parametric uncertainty and additive
disturbances.
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FIGURE 3. Various conditions in the MORAI simulation environment; (a) Top view, the weather scenarios as (b) Sunny, (c) Storm.

V. SIMULATION VALIDATION
A. ENVIRONMENT SETUP
To evaluate the robustness and effectiveness of the suggested
control algorithm for safe autonomous driving, our plan is to
conduct a series of trials on theWeGo-ERP42 [33], first using
a MORAI simulator [44] in various environment settings
while still ensuring the safety for extreme conditions. It is
a high-fidelity simulation environment based on actual data
logs from deployed vehicles that provide both typical and
realistic urban layouts under various real scenarios, as shown
in Fig. 3 with different weather conditions. Specifically,
Fig. 3 (a) shows a top view of route selection for the trials,
which is challenging on 1) curving road with large curvature,
2) perpendicular road and 3) circular road in the roundabout.
Moreover, the vehicle enters the road with a target speed is
7 m/s on a light blue segment, then increases speed from
7 m/s to 7.5 m/s on a light yellow segment, and reaches the
speed of 7.5m/s on a brown segment. In addition, to generate
challenges for path tracking similar to lane-keeping appli-
cations, both control strategies are implemented in various
weather situations with unknown tire friction. Specifically,
the vehicle is operated on a dry road in a Sunny situation,
which is considered a relatively ‘‘standard’’ scenario, as seen
in Fig. 3 (b). Meanwhile, a Storm situation with heavy rain
andwinds is considered a ‘‘hazardous’’ scenario. It caused the
vehicle frame to be shaken as well as influenced the traction
of the wheels on the road due to the slippery road, as seen in
Fig. 3 (c).

In order to validate the genuine perspective on the
path-tracking efficiency of the proposed methods, the stan-
dard MPC in [10] and the RMPC method in [14] are used
for comparison purposes. At the point O(0, 0), the vehicle
starts to move in the direction with positive coordinates. For
the control design, the optimal control issue is solved every
sampling period of 20 Hz to find the appropriate control
actions and the prediction horizon is chosen as Tp = 1.25 s.
The front steering angle and longitudinal acceleration of the
vehicle are bounded within the limits A = ±

[
π
4 1.25

]> and

S = ±
[
8 2 3 10

]>. Instead of simply tracking the posi-
tion of the vehicle compared with the reference trajec-
tory, we desire the longitudinal velocity at the profile
to change from 7 m/s at 60 s to 7.5 m/s at 100 s.
Furthermore, to facilitate the observation of the fluctua-
tions of the results, the standard deviations for each curve
in the trial scenarios are calculated by the formulation,(√

1
Ns−1

∑Nt
i=1 | •i −mean(•)|

2
)
, where (•) is the data set

and Ns is the number of time steps in the population. It is
chosen as Ns = 5 steps when computing the responses of the
cross tracking errors and the longitudinal velocity errors and
Ns = 10 steps for the optimal control signals.

B. RESULTS
The whole trajectories by the center point O of the
WeGo-ERP42 are depicted in Fig. 4 under numerous trial
conditions. The simulation time starts to record at the start
point corresponding to 0 s in the time axis. It can be observed
that the vehicle controlled by the proposed strategy achieved

FIGURE 4. Trajectories of the center point O(t) of the testing vehicle.
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an extremely high accuracy in which the vehicle path was
almost identical to the reference path on straight segment
roads (e.x., from 105 s to 120 s) and sectionswith small curva-
ture under the ‘‘standard’’ weather. Seeing that the difference
between the two paths was relatively clearer in the change
curvature sections, as shown in the inserted figures. It is seen
that the MPC and RMPC approach was seriously affected
by additive disturbances from the hard conditions and the
challenged reference trajectories. Specifically, the third con-
sideration of the segmented road is a circular road with high
speed at a roundabout, which is an incredibly hazardous
situation for vehicle control. Nevertheless, the performance
of the proposed strategy provides the best robust performance
with acceptably small tracking errors in any situation.

To further indicate the efficacy of the proposed strategy,
Fig. 5 expresses the performance of the controller in terms of
the cross-tracking error (CTE), which is here defined as the
distance between the reference path and the actual coordinate
position, i.e., ye = vx sin θe + vy cos θe. The subfigures are
inserted to show the standard deviation values for specifically
each case. In the large curvature of the road, the peak CTE
value of the MPC and the RMPC technique reached about
0.55 m and 0.85 m in sunny weather, respectively, as clearly
shown in zoom-in figure. Furthermore, the maximum CTE
value of the RMPC technique about 1.2m and 2.4m occurred
at 90 s and 138 s in the Storm situation. And the error resulting
from MPC is nearly twice RMPC in each case. Its control
performance was significantly degraded when it worked with
increasing both the vehicle speed and road curvature under
the harder weather situation. Meanwhile, the CTE values of
the proposed approach on the entire test route are mostly
below 0.5 m, which can be considered acceptable on the line
track with a width of 3 m. It is exhibited that the proposed
control scheme provides better robustness performance over
three times in the same operating condition.

FIGURE 5. The cross tracking errors with respect to the different weather
scenarios.

Fig. 6 describes the reference and responses of the lon-
gitudinal velocity profiles with respect to various scenarios,
respectively. It is inserted the zoom-in figures for the three
typical segment roads mentioned above explanation. Like-
wise, Fig. 7 is displayed its errors as the standard deviation

FIGURE 6. The longitudinal velocities response with respect to the
various scenario.

FIGURE 7. The longitudinal velocity errors response with respect to the
various scenario.

indices. To these results, the response speed of the designed
controller is better than those of the MPC and RMPC.
In details, the MPC performance was increased with the error
peak in the Sunny case nearly two times that of the Storm
case, from 0.2 m/s to 0.39 m/s at 10 s, from 0.29 m/s to
0.52 m/s at 91.5 s and from 0.32 m/s to 0.69 s at 165.5 s
corresponding to it happens on 1) curving road, 2) perpen-
dicular road and 3) circular road. Meanwhile, the RMPC
delivers its better robustness performance with an error peak
increased from 0.1 m/s, 0.12 m/s and 0.19 m/s to 0.2 m/s,
0.23m/s and 0.39m/s at two weather situations, respectively.
In contrast, the designed controller still maintained its merit
with the peak error kept in a small range, 0.1 m/s at 10.5 s
and 0.17m/s at 136.5 s. On the whole, it is quite clear that the
reference tracking performance is apparently good although
a bit of error exists when changing velocity at 62 s as well
as at circular curvature around 135 s, which still stays in an
acceptable range. Such problems often come from neglecting
the role of the tractionmotor variables, resulting in the control
signal not being fully effective to follow the speed reference
perfectly.

Fig. 8 and Fig. 9 show the time evolution of the control
inputs of the front steering angle and the longitudinal accel-
eration, respectively. As shown in these figures, it is obvious
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FIGURE 8. The optimal control signals of the front steering angle.

FIGURE 9. The optimal control signals of the longitudinal acceleration.

that the proposed control approach significantly reduces the
control efforts. Even though the control effort signals gener-
ated by the proposed control approach are the smallest, the
control performance is best in the comparative controllers.
It can be observed that the input constraints are satisfied
by using the proposed method. Generally, the CTE values
and longitudinal velocity errors controlled by the proposed
approach are concurrently near zero along the straight path
(from 100 s to 120 s), but the control performances are
affected by the difficulty of the scenario as the fast-changing
reference (during the speed increasing period or large bend at
about 138 s).

In order to have a quantitative comparison of the effec-
tiveness by the control approaches in different scenarios,
the performance indices of the cross-tracking error ye and
the longitudinal velocity error ve in Fig. 10 are calculated
by using the absolute integral error (AIE) indices [45]. The
period of evaluation for each trial scenario is selected from 8 s
to 10 s for 1) large curvature road (Fig. 10 (a), (b)), from 88 s
to 94 s for 2) perpendicular road (Fig. 10 (c), (d)) and from
128 s to 151 s for 3) circular road in the roundabout (Fig. 10
(e), (f)). As shown in these figures, the proposed control
method re-confirmed the effectiveness with the smallest AIE
of the CTEs and the longitudinal velocity errors thanks to the
flexible combination of the ROFC method and the AMPC
approach. It enables the design of an effective controller,

FIGURE 10. The absolute integral error indices of each trial scenario;
(a), (b) large curvature road; (c), (d) perpendicular road; (e), (f) circular
road in the roundabout.

which significantly outperforms the other approach with
great performance and robust stabilization.

VI. CONCLUSION
This paper presented the robust adaptive path tracking control
scheme for safe autonomous driving subject to parametric
uncertainties and additive disturbances. To improve the accu-
racy, the online estimation of unknown model parameters is
conducted, where the bounded estimation error is guaranteed
to be nonincreasing. The integration of the interval predictors
into both the ROFC approach and the AMPC-based safety
controller carries out the great control performance in com-
parison to the RMPC approach with identical specifications.
In addition, we theoretically show the stability and recursive
feasibility in finite time of the controlled system by a novel
nonconservative Lyapunov function. The robust stability con-
ditions are expressed in terms of LMIs. Finally, simulation
studies are conducted to verify the efficacy of the proposed
method. The strategies are verified in the environmental sim-
ulation under various scenarios that display effectiveness as
well as potential in practical AV applications in the future.

In the future, the proposed algorithm will be expanded in
more complex operation scenarios in the presence of traffic
lights, multi-lanes and multi-obstacles. More importantly, the
personalization of the proposed algorithm will be focused
to increase its adaptability. For instance, the target velocity
will be adjusted to the different driving styles. The bounded
uncertainty set will be flexibly updated. Additionally, the
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RL or deep learning will be combined with the proposed
algorithm.

APPENDIX A
MATHEMATICAL MODEL

Proof: Based on the non-linear embedding approach
[36], [46], the linear parameter-varying matrices in (2) are
obtained as

A =


0 A12 A13 0 0 0
0 A22 A23 0 0 0
0 A32 A33 0 0 0
A41 0 1 0 0 0

 ,

B =


B11 1
B21 0
B31 0
0 0

 (22)

with

A12 =
Cf sin δ
mvx

, A13 =
Cf lf sin δ
mvx

+ vy,

A22 = −
Cr + Cf cos δ

mvx
, A23 =

Cr lr − Cf lf cos δ
mvx

− vx ,

A23 =
Cr lr − Cf lf cosδ

Ivx
, A33 =

Cr l2r − Cf l
2
f cos δ

Ivx
,

A41 =
vx cos θe − vy sin θe

(1− yeκ)vx
κ,

B11 = −
1
m

sin δCf ,

B21 =
1
m

cos δCf , B31 = −
1
Iz
cos δCf lf . (23)

The parameter values are given as follows: lf = 0.52 m,
lr = 0.63 m, m = 198 kg and Iz = 275.8 kg.m2.

APPENDIX B
PROOF OF LEMMA 1

Proof: The Lyapunov function is considered in the form:

V1(t) = ξ̃>(t)
1
σ̆
ξ̃ (t) (24)

According to [47], the time derivative of V1 is calculated as

V̇1(t) = V1(t)+ κ̇e

(
ϑ2(t)−

δ̃2(t)
1+ κ̇e32(t)σ̆ (t)

)
≤ V1(t)+ κ̇e

(
ϑ
2
(t)−

δ̃2(t)
1+ κ̇e32(t)σ̆ (t)

)
(25)

Substituting (7) into (24), [27] one obtains:

V̇1(t) = V1(t)+ $̇ 2(t)−$ 2(t) (26)

In practice, we obtain V1(t) ≤ $ 2(t), meaning V̇1(t) ≤
$̇ 2(t) [25]. Owing to ξ∗ ∈ D(0), we can give the conclusion
that ξ∗ ∈ D(t),∀t ≤ 0. Furthermore, the expressions (5c)
and (7) yield $̇ (t)2 −$ 2(t) ≤ 0. As the result, (26) can be
led to V̇1(t) ≤ V1(t). Thus, it is straightforward to confirm
that | ˙̃ξ |2 ≤ |̃ξ |2 and the boundedness of the estimation error
is verified. The proof is completed.

APPENDIX C
PROOF OF THEOREM 1

Proof: Let the interval estimation error be defined as
e = x − x and e = x − x then substituting them into (12),
we have: {

ė(t) = A0e(t)+ ς1(t)+ ς2(t),

ė(t) = A0e(t)+ ς1(t)+ ς2(t),
(27)

where ς
1
=

∑2N
i=1 χi4ix + 4+x− + 4−x+, ς1 =

−
∑2N

i=1 χi4ix + 4+x+ + 4−x−, ς2 = d − d + d, ς2 =
−d + d − d .

In addition, from bounded conditions (8) and (9), we get:

A+x+ − A
+
x− − A−x+ + A

−
x− ≤ Ax

≤ A
+
x+ − A+x− − A

−
x+ + A−x− (28)

Substituting (10) into (28), [27] one obtains:

−4+x− −4−x+ ≤
2N∑
i=1

χi4ix ≤ 4+x+ +4−x− (29)

From the above-mentioned calculated scope, the terms
(ς

1
, ς1) are non-negative provided that (8) holds.Meanwhile,

non-negativity or the terms (ς
2
, ς2) also follow to Assump-

tion 2. Based on [48], we have e(t), e(t) ≥ 0,∀t ≥ 0,
then the inclusion property (8) is confirmed. The optimization
problems are performed by solving the LMI conditions, and
some other expressions in (16a) are expressed as

� =


�11 �12 �13 P

�>12 �22 �23 Z+

�>13 �>23 �33 −Z−.

P Z+ −Z− −0


with

�11 = υ
>

1 P+ Pυ1 + G, �22 = υ1>H+ + υ2H+ + G+,

�12 = υ
>

1 H
+
+ υ2P+ F+, �23 = H+υ3 − υ2>H− + G,

�13 = Pυ2−υ>1 H
−
− F−, �33=−H−υ3 − υ>3 H

−
+ G−,

and

9 =


911 912 913 I
9>12 922 923 I
9>13 9>23 933 −I
I I −I −L


with

911 = P−1υ>1 + υ1P
−1
+ β>K>1 + βK1 + Gc,

912 = P−1υ>1 + υ2(H
+)−1 + βK2 + β

>K>1 + F
+
c ,

913 = P−1 − υ>1 + υ3(H
−)−1 + βU3 + β

>K>1 + F
−
c ,

922 = (H+)−1υ>2 + υ2(H
+)−1 + β>K>1 + βK2 + G+c ,

923 = −(H+)−1υ>2 + υ3(H
−)−1 − β>K>2 + βK3 + Fc,

933 = −(H−)−1υ>3 − υ3(H
−)−1 − β>K>3 − βK3 + G−c .
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The conditions P > 0, H+ > 0, H− > 0 mean
that the inequality (16a) is satisfied. Whilst all matrices
in inequalities (16b) and (16c) have a diagonal structure,
so they are equivalent under situation Gc = P−1GP−1,
G+c = (H+)−1Q+(H+)−1, G−c = (H−)−1Q+(H−)−1, F+c =
P−1F+(H+)−1, F−c = P−1F−(H−)−1. In addition, denoting
� = M>9M with M =

[
P H+ H−

]
I2p+3, K1 = κ1/P,

K2 = κ2/H+, K3 = κ3/H−, and the condition 9 � 0 leads
to M � 0. As the consequence, all above conditions are
confirmed for κ1 = U1P, κ2 = U2Z+ and κ3 = U3Z−.
To analyze its stability in the system, the Lyapunov candi-

date function is considered as follows:

V2 = X>PX + X>H+X+ − X>H−X−

=

2p∑
i=1

Pi,iX2
i + H

+

i,i|X |X
+

i + H
−

i,i|X |X
−

i (30)

It is obvious that V2 > 0 provided that (16a). Denoting
X̃ = [X ,X+,X−, ψ̃]> and taking the time derivative of the
above Lyapunov function, one obtains:

V̇2 = 2Ẋ>PX + 2Ẋ>H+X+ − 2Ẋ>H−X−

= X̃>�X̃ − X>GX − (X+)>G+X+

−(X−)>G−X− − 2(X+)>FX−

−2(X+)>F+X− − 2(−X−)>F−X + ψ̃>Lψ̃ (31)

We have (X+)>FX− = 0, (X+)>F+X ≥ 0,
(−X−)>F−X ≥ 0 for any diagonal matrix F , F+ ≥ 0 and
F− ≥ 0. Besides, if � � 0, the Theorem 1 holds, then (31)
is bounded as follows:

V̇2 ≤ −X>GX − (X+)>G+X+ − (X−)>G−X−

−2(X+)>F+X − 2(−X−)>F−X + ψ̃>Lψ̃

≤ −X>2X + ψ̃>Lψ̃

= −ϒV2 + ψ̃>Lψ̃ (32)

where the term 2 equals to the inequality (16b) and ϒ =
min
i∈2p

λi( 2
P+H++H− ) with a scalar value λ(•) is an eigenvalue

of (•).
In conclusion, it is explicit that the evidence features of

V2 and its derivative V̇2 confirmed that (15) is ISS [41],
[49], [50] with respect to the extended input ψ . The proof
is completed.

APPENDIX D
PROOF OF THEOREM 2

Proof: It is worth to note that the optimal con-
trol action is obtained from (14) when the initial condi-
tions (x>(ti), x>(ti))> ∈ R ⊂ S2, for some ti > 0.
Based on Theorem 1, the system is ISS in regarding to
X (t) = [x>(t), x>(t)]>,∀t ≥ ti. According to the inclusion
property (8), |X (t)| ≥ |x(t)| for t ≥ ti and |X (ti)| ≤ |x(ti)|+ε
in which ε is a positive value, the practical ISS for the
successive variable of x(t).
Applying the final proposed control rule for t ∈ [0,Tm),

the extended state X (t) ∈ S and u(t) ∈ A exists on this time

interval. At t = t1 = Tm, if (x>(t1), x>(t1))> ∈ S2
\ R

(where x(t1), x(t1) are calculated as in (19)), then there exists
a solution to (18). Due to the designed feature of D̂(t) and the
perturbed signals d(t), d(t)−d(t) are non-increasing. In other
words, we have the solution at ts that is a sub-optimal branch
computed at ts−1, ∀s ≥ 1. Therefore, recursive feasibility
is satisfied. It is noted that R is a vicinity set, and the cost
function (18) withωi is minimized inside. Additionally, when
the optimal control 1U is executed, i.e., X (ts + Tp) ∈ R
in (20) and [x(ts), x(ts)] ⊂ [x(ts−1 + Tm), x(ts−1 + Tm)],
then reaching R is in finite time ti ≥ Tp, i.e., (x>(ti),
x>(ti))> ∈ R. The proof is completed.
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