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3D stochastic interferometer detects picometer
deformations and minute dielectric fluctuations of
its optical volume
Guillaume Graciani 1,2, Marcel Filoche 3 & François Amblard 2,4✉

Speckle metrology harnesses the interferometric properties of disordered light to achieve

remarkable sensitivities. Often relying on time-domain analysis, it is rate-limited by the

acquisition of speckle images. In the present work instead, we use a frequency-domain

approach which spans 8 to 10 frequency decades up to 100MHz, and reveals minute changes

of speckle decorrelation spectra. We built a 3D stochastic interferometer using a centimeter-

sized quartz-powder cavity with arbitrary shape and high Lambertian reflectivity. Filled with a

coherent monochromatic photon gas, it creates statistically isotropic and homogeneous 3D

interference patterns, whose variations arise from cavity deformations or fluctuations of the

dielectric tensor field inside. Speckle decorrelation depends neither on where the perturbation

sits nor on where it is measured. With an average 62 m photon transit path and a finesse of

10500, cavity deformations are detected with a power noise floor of 4 × 10−3 pm2, i.e.,

2.7 pm at 1 kHz. We also demonstrate a 100-fold sensitivity gain compared to conventional

light scattering techniques when probing thermal motions of single and multiply scattering

colloids.
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Light interferometry is most familiar to us as a unique tool for
measuring variations of optical lengths or wavelengths, i.e.
1D optical features. From Fizeau’s experiment in 1851 on

the speed of light1 or Michelson and Morley’s measurement of
the relative motion of the Earth and the Luminiferous Ether in
1887 2, to the most recent detection of gravitational waves down
to typical strains of 10−21 3 provided by the LIGO and VIRGO
observatories, optical interferometers have consistently redefined
what constitutes the limits of metrology and brought major
contributions to our understanding of physical laws.

Unlike these techniques which require an extremely precise
geometry of the optical field, speckle metrology methods have
been devised in the past decades to harness the interferometric
response of strongly disordered but coherent light. While it has
proven to provide exceptionally sensitive measurements, in par-
ticular for wavelength determination and spectral analysis4,5, it
has also been used recently for small angles and displacements
metrology6 or refractive index sensing7, and recent quantitative
comparisons indicate that it can reach sensitivity levels that come
close to those of interferometers using well-ordered light8.

However and to the best of our knowledge, all speckle
metrology methods are based on the time-domain analysis of
speckle patterns, i.e. of the images of the speckle field, either
through the analysis of spatial correlations of the interference
pattern8 or even the analysis of spatial phase singularities in the
field9. Consequently, time frequencies cannot be probed beyond
the image acquisition rate.

In the present work, we propose instead to measure the
intensity fluctuation of a single speckle grain to calculate the
frequency spectrum of perturbations. By homogeneously filling
an ultra-high reflectivity Lambertian cavity of arbitrary shape
with a coherent and isotropic photon gas, we produce a fully
developed 3D speckle field that is ergodically sensitive to minute
fluctuations of its optical volume. Here, we present the design of
this 3D stochastic interferometer, together with theoretical pre-
dictions of sensitivity confirmed by experimental results. We find
that the frequency spectrum is sensitive to volume deformations
across 8–10 frequency decades below 100MHz, with a sensitivity
better than 10−5λ at 1 kHz. We also show that the interferometer
can measure picometric motions of scattering objects placed
inside the cavity. We show an increase in sensitivity of about 100-
folds in comparison to conventional and multiple light-scattering
techniques.

Results
Description of a 3D random light field. Practically, a single-
frequency laser light with central wavelength λ0= 660 nm and
coherence length Λcoh ≈ 95 m is fiber-coupled into a closed diffuse
reflective cavity, with walls made of compressed quartz powder10

that provide a uniform Lambertian reflectivity with an albedo A
close to unity. A cylindrical shape was used with centimetric size
(Fig. 1a). Thanks to a very small reflection loss coefficient
ϵ ¼ 1�A � 6 ± 0:5´ 10�4, each photon is subjected to an
average number of reflections given by Gw= 1/ϵ ≈ 1700, which
represents the path length multiplication factor or geometric gain
of the empty cavity (see the “Methods”, section “Construction
and optical properties”). Using the classical notion of finesse
applied to our cavity and defined from the reflection losses A by
F ¼ �2π=lnA, we obtained F ≈ 10,50011. In addition, since the
Lambertian reflectivity is due to multiple elastic light scattering
events by the frozen disorder of the quartz powder structure of
the wall, the reflection process is deterministic. However, the
extreme complexity and the symmetries of diffuse reflections are
such that any incident photon is reflected as an apparently
“random” photon, in the sense that its wavevector is distributed

according to Lambert’s law, and it has a phase and a polarization
state that are uniformly distributed on [0,2π] and on the Poincaré
sphere, respectively. These statistical properties of reflected pho-
tons suggest a strong analogy with the random geometry and
polarization of the photon gas emitted by the walls of a blackbody
cavity.

The optical field generated at any point P inside the cavity
(Fig. 1b), in the far-field relative to the scattering walls, can
therefore be considered as a random field obtained by super-
imposing a very large number of elementary plane waves
independently taken from a unique statistical distribution. This
unique probability distribution does not depend on the position r
of point P and jointly aggregates three independent variables: a
wavevector k isotopically distributed on the sphere
jkj ¼ k0 ¼ 2π=λ0, a uniform phase ϕ on [0,2π], and a polariza-
tion state represented by a complex vector d uniformly
distributed on the Poincaré sphere (Fig. 1d). The total field can
be described as highly composite random variable constructed as
the sum of a random number of independently and identically
distributed plane waves Eα (r,t). It writes

E r; t;Cð Þ ¼ ∑
NC

α¼1
aαe

iϕαdαe
ikαr�iωαt ð1Þ

where NC is the number of elementary plane waves. C refers to
one generic choice of the total random field, i.e. a microscopic
configuration of the field. From the Huygens–Fresnel principle,
we know that the optical field at P is determined by the field on
the cavity boundary, which comes with a very large but finite
number of degrees of freedom. This sets a minimal value for NC

in Eq. (1). A lower estimate of NC is given by the number of
degrees of freedom associated with wavevectors, which typically
amounts to Σc=λ

2
0 � 1010 where Σc is the surface area of the cavity

wall. Equation (1) exactly corresponds to what is known as the 3D
random wave model12, which will be referred here to as the 3D
Berry field. It has been the focus of several theoretical numerical
investigations but has never been used to formally describe an
experimental realization of a 3D speckle field, to the best of our
knowledge; nor it has been used in the context of interferometry.
In our experiments, the randomness and the high statistical
symmetry of the optical field arise from the linear transformation
of the input laser field by the extreme but deterministic
complexity of multiple scattering by the frozen disorder of the
wall structure. This highly complex boundary condition act as
feedback that leads to the interferometric properties of the 3D
Berry field.

The phase ϕα of each field component Eα is related to the phase
of the laser input transformed by a random number nr(α) of
reflections alternated with random chords across the cavity with a
random travel time τc. This leads to the notion that the field in P
at time t combines the phases of the laser input taken at a large
number of earlier time points t−τα (Fig. 1b), where the values of
τα are the propagation times or mode lengths between the laser
input point and the probe point P. The statistical distribution of
these propagation times is assessed from the response of the
cavity to a 120 ps laser pulse (Fig. 1c), which leads to the average
photon transit or residence time �τα � 207 ns, and the average
photon path length �Λ � 62m. From the mean chord length
theorem13,14, it is known that the mean chord length �Λc is given
by the ratio �Λc ¼ 4Vc=Σc of the cavity volume to the wall area,
regardless of the shape. We obtain �Λc � 3:5 cm, the average
number of reflections �nr � 1700, and finally the geometric gain
mentioned above Gw ¼ �nr (see the “Methods” section “Optical
setup”). These observations lead to two key remarks on the set of
phases fϕαgC. First, since the average chord length �Λ is 8 orders of
magnitude larger than the wavelength, the same is true for the
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Fig. 1 3D stochastic interferometer construct. a Experimental setup: a single-frequency laser is injected by an optical fiber into a high reflectivity
Lambertian cavity. Regardless of the cavity shape, the resulting 3D random field is fully coherent and generates a fully developed 3D speckle pattern which
is probed at point P by a single mode fiber. The fiber is split, and the intensity is detected by 2 photon counters. The intensity cross-correlation is then
calculated by a digital correlator. b Schematic representation of three generic path photons or modes, as a succession of diffuse reflections, between the
laser input and a probe point P. c Intensity response function of a compressed quartz powder cavity to a 120 ps laser pulse at 670 nm represented in a y-log
scale. d Coherent superposition of 3 plane waves at point P, with their respective complex polarization and Poincaré sphere representing the uniformly and
randomly distributed polarizations of the plane waves interfering at point P. In particular, the polarization states of the aforementioned 3 plane waves are
represented, as well as the 2D polarization state of the wave generated at point P.
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standard deviation of the path length distribution, and this
strongly supports our assumption that the phases ϕα are
uniformly distributed on [0,2π]. Second, the aforementioned
coherence length Λcoh of the laser exceeds the average �Λc by a
factor of 1.5. This feature was set by design, to ensure that
practically any pair of fields fEα1

; Eα2
g would be mutually

coherent since 90% of the paths are shorter than �Λc. Therefore,
the 3D coherence matrix for any such pair of fields is a rank-two
matrix. The coherent sum Eα1

þ Eα2
, therefore, has a 2D

polarization, with a plane and a state of polarization that both
depend on the polarization states fdα1

; dα2
g and the phase

difference ½ϕα1 � ϕα2 �15. The total field Eðr; t;CÞ is therefore fully
polarized (Fig. 1d), but its plane and state of polarization do
strongly depend on the position r, with unique geometric and
topological properties. In conclusion, in the absence of phase
noise or any perturbation of the cavity, a unique microscopic
configuration C is created and maintained, and the optical field
Eðr; t;CÞ is a fully developed 3D spherical Gaussian speckle field.
This field is associated with a position-dependent wavevector
kðr;CÞ and polarization state dðr;CÞ. Previous theoretical and
numerical investigations of the 3D Berry field have revealed a rich
set of entangled lines of optical singularities with unique
geometric and topological properties16–20. In particular, the field
lines associated with the field of wavevectors kðr;CÞ are expected
to exhibit strong curvature radii that can reach λ18,19, and the
optical field is highly structured with very complex geometry at
the scale of λ. As a consequence, each point of the aperture plane
of the probe fiber is projected as a 2D circular Gaussian field, with
an exponentially distributed intensity I r;Cð Þ ¼ hE:E � itðr;CÞ and
a contrast close to unity (see Supplementary Note 1 “Speckle
Statistics”).

Interferometric response of an unperturbed cavity. Experi-
mentally, the 3D speckle field is probed by introducing a single-
mode fiber that equally splits the light toward two avalanche
photodiodes and a digital correlator (Fig. 1a) which provides
the intensity autocorrelation function g(2) (τ) of the time-lag τ.
The normalized intensity autocorrelation function jgð1Þj2 ¼
½gð2ÞðτÞ � 1�=β, is derived using the so-called coherence factor
β ¼ gð2Þð0Þ � 1 (see the “Methods”, sections “Data acquisition—
normalization—representation”). In the unperturbed cavity,
simply filled with air under atmospheric pressure at ambient
temperature and thermal equilibrium with maximal environ-
mental stability (see the “Methods”, section “Environment con-
trol”), we reproducibly find a minute exponential decorrelation of
amplitude 5 × 10−4 with a time-constant τ= 500 μs (Fig. 2a), due
to the internal dynamics of the laser gain. While this decorrela-
tion is not detectable on the usual linear [0–1] scale, a complete
decorrelation is observed for very long time-lags, with a 50%
decorrelation for a time-lag τ1/2 that increases with increasing
acquisition time Tacq. Beyond Tacq ≥ 5 × 104 s, a fixed value of
τ1/2 ≈ 3000 s is reached (Fig. S5), which reflects the decorrelation
probably caused by the fluctuations of the central wavelength of
the laser (Supplementary Note 2 “Sources of noise and digital
correlation noises”).

The unperturbed cavity thus provides a stable speckle field that
decorrelates in a highly reproducible fashion because of known
instrumental causes. Therefore, the normalized autocorrelation
function of the unperturbed cavity can serve as the baseline of
instrumental speckle fluctuations. To assess the interferometric
response to various perturbations, we simply measure the excess
decorrelation relative to the instrumental baseline, by computing
the autocorrelation difference (Supplementary Note 3 “Data
handling and Baseline subtraction”). The noise associated with

this procedure, i.e. the root-mean square (rms) noise floor of our
measurements, is a function of τ given by the standard deviation
σ jgð1Þ j2 ðτÞ associated with the baseline (Fig. 2b). This noise
function which has multiple noise sources (Supplementary Note 2
“Sources of noise and digital correlation noises”) reflects the
complex fourth-order statistics of the intensity and will be
referred to as “baseline noise”. It decreases for increased laser
intensity and longer acquisition times. Since the primary signal,
i.e. the decorrelation amplitude, cannot be larger than unity, the
detection range has a ceiling fixed by the unity decorrelation. The
dynamic range is therefore entirely determined by the minimal
rms noise amplitude. The dynamic range reaches up to 6 (resp. 4)
decades when the acquisition time is 3 (resp. 1) hours (Fig. 2b).

Interferometric response to picometric deformations. To
demonstrate how our 3D interferometer responds to minute
deformations, the cavity was split into two halves, with two
1 mm-thick piezo actuators inserted in between at a 120° angular
distance to harmonically modulate the separation distance Δl and

Fig. 2 Properties of the speckle intensity autocorrelation in the
unperturbed quartz cavity. The laser input power is 300mW if not stated
otherwise and the light is collected with a monomode fiber. a Normalized
intensity auto-correlation ½gð2ÞðτÞ � 1�=β as a function of the time delay τ.
From left to right, acquisition times Tacq in seconds are 2.5 × 103, 3.6 × 103,
and 6.5 × 103. Each dark curve is the average of three repetitions and
smoothed by a moving average window along the logarithmic time, with a
width corresponding to a factor 2. The yellow curve represents one of those
repetitions. The insert magnifies the initial decorrelation for
Tacq= 3.6 × 103 s fitted by an exponential decay at 2 kHz (red line). b Noise
(standard deviation) of the intensity autocorrelation function (black lines)
measured for different acquisition times. The blue lines are moving
averages of the raw data and the blue dots are additional data points
showing the value of the noise standard deviation at the shortest
measurable time delay (12.5 ns) for acquisition times Tacq of 5, 30, 60, 120,
and 180min from top to bottom.
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hence the cavity shape and volume at 1 kHz (Fig. 3a and see the
“Methods”, section “Setup for piezo experiments”). As expected,
the speckle intensity decorrelation exceeds the instrumental
baseline by a difference that is modulated at the same frequency
(Fig. 3b), with a depth of modulation that grows linearly with the
modulation amplitude of the piezo voltage and thickness (Fig. 3c).
In this set of experiments with a 3-h acquisition time, the
response coefficient for the decorrelation amplitude is
3.7 × 10−5 pm−1, the experimental noise is reached for a 2.7 pm
piezo amplitude at a 1 kHz detection frequency, and the signal-to-
noise ratio is ≈40 for a 1 Å modulation amplitude. Using the
experimental measurement of the aforementioned “baseline noise
amplitude” (Fig. 2b), we can express the power spectrum of the
noise associated with the susceptibility to geometric deformations
(Fig. 3d). At 1 kHz, the noise amounts to 4 × 10−3 pm2 for a 3-h
acquisition time. This 3-h acquisition time is the best compromise
to mitigate the so-called “triangular averaging” noise due to the
digitization process and the long-term laser wavelength noise,
which respectively decreases and increases with the acquisition
time. We analyzed the autocorrelation noise based on the pre-
vious reports21–24 (see Supplementary Note 2 “sources of noise

and digital correlation noises” and Supplementary Figs. S6 and
S7). Our data also suggest that the response is no longer linear for
piezo amplitudes larger than 1 nm because the decorrelation
signal saturates when reaching unity. Although the modulation
actuated by the piezo is in units of length, what is being probed
are the variations of the 3D geometry (volume, surface, and
shape), which then boil down to variations of the geometric
length invariant �Λc. The cavity deformation experiment primarily
delivers the power spectrum of the variations of that length
invariant.

The above results somehow contradict the observed non-
ergodicity of the unperturbed cavity. By analogy with the sensitivity
of a two-arm interferometer that is proportional to |sinΔϕ| where
Δϕ is the phase difference between the arms, the interferometric
response of the Berry field is different for each microscopic
configuration C. It is indeed determined by the specific contribution
of the phase difference Δϕα1;α2 for each pair fEα1

; Eα2
g of elementary

fields contained in C. This is not what we observe, since the
perturbed cavity indeed responds in a reproducible way. The
fundamental reason is that any physical perturbation of the cavity
shape can be considered to be microscopically irreversible. The

Fig. 3 Interferometer response to harmonic cavity shape deformations. a Home-made cylindrical quartz cavity (height hc= 6 cm, diameter φc= 5 cm,
wall thickness 3 cm). Two voltage-driven piezo actuators (thickness 1 mm, placed at a 120° angle) are inserted between the two halves of the cavity. A
sinusoidal 1 kHz voltage is fed to the piezo actuators to deform the cavity. b Intensity decorrelation of the speckle intensity ½1� jgð1ÞðτÞj2� as a function of
time delay τ for voltage amplitudes of 10, 5, and 2 V. The noise baseline is the standard deviation σ jgð1Þ j2 ðτÞ of the auto-correlation function for the
unperturbed cavity (black line). The acquisition time was 5min with 300mW laser input power, and experiments were averaged over 10 repetitions.
c Recorrelation amplitude obtained from b as a function of the piezo voltage and actuation amplitude. The acquisition time was 5min for voltages above 1 V
and 30min below. The error bars represent the uncertainty at which the recorrelation amplitude can be read, as per the noise intensity baseline. d Noise
power spectrum of the system expressed in pm2 as a function of frequency, for a 3-h acquisition time.
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speckle field thus undergoes a self-ergodization process caused by
the perturbations of the cavity.

We can then estimate the sensitivity of our interferometer, by
analogy with the Lorentzian finesse of a Fabry–Pérot, which is
given by the ratio of the free spectral range over the full-width at
half-maximum linewidth of the spectral line shape: F¼ ΔνFSR

Δν .
Since our interferometer has an equivalent free spectral range
ΔνFSR ¼ c

�Λc
and a finesse F¼2πGw

11, we can derive that our

capacity to resolve a small change in wavelength goes as λ2

2πGw
�Λc
.

Independently of the Fabry–Pérot theory, the interferometric
sensitivity of the cavity can also be directly derived from Eq. (1),
leading to the same result. Practically, if we measure an intensity
trace with nph photons, with a frequency-dependent signal-to-
noise ratio SNR(τ) given by the noise power spectrum in Fig. 2b,
we can write our detection limit as

δλj jmin ¼
λ2

2πGw
�Λc

SNR τð Þ= ffiffiffiffiffiffiffi
nph

p ¼ 1:1´ 10�15 ´ SNR τð Þ= ffiffiffiffiffiffiffi
nph

p
ð2Þ

which, for a typical number of photons nph= 105 photons and
SNR ≥ 10 gives δλj jmin ¼ 3:5 ´ 10�17 m. To account for the
observed picometer sensitivity, we consider that a rms variation
of the path length distribution and a rms variation of the
wavelength have conjugated effects on the phase, and hence have
statistically similar effects: δ�Λc

�� ��=�Λc ¼ δλj j=λ, and it comes:

δ�Λc

�� ��
min

� 1:6 ´ 10�12 m ð3Þ
This simple theory leads to a 4-fold smaller sensitivity

compared to experiments, and this underestimation is likely
due to two fundamental difficulties. First, it is physically
impossible to probe the actual 3D isotropic Berry field described
by the theory, simply because the optical fiber truncates the field
by casting a shadow that necessarily destroys its spherical
symmetry. Second, the fiber does not even probe that truncated
3D field, but only its 2D isotropic projection on the fiber input
plane. The fiber does not collect the theoretical 3D speckle
intensity, but it probes the projected intensity of the truncated
field, spatially integrated over the fiber aperture. Given the
geometric complexity of the field lines of k(r) and the field
correlations at the scale of λ, the susceptibility to optical
fluctuations is expectedly larger for the actual 2D “projected”
speckle for the 3D Berry speckle intensity.

Interferometric response to minute dielectric fluctuations. To
demonstrate how 3D stochastic interferometry probes optical
fluctuations generated inside the cavity volume with unperturbed
walls, we first introduced a dense and strongly scattering jammed
emulsion made of calibrated oil-in-water droplets with a mono-
dispersed radius of 459 ± 15 nm. It has been extensively char-
acterized for its optical and mechanical properties25. Given the
very high volume-fraction used here (0.785), droplets are elasti-
cally jammed with small shape deformations, and they undergo
sub-nanometer thermal motions that saturate at a root-mean-
square (rms) amplitude of 900 pm which corresponds to the low-
frequency plateau modulus. As a result, we find that the speckle
intensity decorrelation is proportional to the time-lag τ for
10 ns < τ < 10 µs, and saturates at a plateau decorrelation of the
value of 6% (Fig. 4a, purple line) with a cross-over time of
τ= 70 µs (see the “Methods”, section “Details on the experiments
with intra-cavity samples”). Using the known values of the rms
displacement of droplets as a function of τ25, we find that the
decorrelation scales linearly with the mean-square displacement
(Fig. 4a inset). Our results indicate that jammed droplets exhibit
high-frequency Brownian fluctuations and demonstrate that we

can measure rms motion amplitude up to 100MHz with high
sensitivity: at the shortest time scale, a 25 pm rms motion
amplitude is recovered.

In comparison, Fig. 4a shows in blue a measurement on the
very same sample and under the same acquisition conditions in
conventional diffusing wave spectroscopy (DWS) in a transmis-
sion configuration26–28. While the DWS measurement also
recovers the saturation plateau of longer time delays, it only
provides a readable signal down to about 10−6 s for a 314 pm
displacement. The noticeably less noisy signal from the cavity
spans 8 frequency decades and is limited here by the acquisition

Fig. 4 Interferometric response to intracavity light scattering
perturbations. Data averaged from N= 3 repetitions of 1 h acquisition
times, laser power is 300mW for all experiments. The cavity has a volume
Vc= 118 cm3, a wall area Σc= 134 cm2, and a mean chord length
�Λc ¼ 3:53 cm. The effective gain is ge≈ 1700. a Plot (purple line) of the
speckle intensity decorrelation 1� jgð1ÞðτÞj2 measured inside the cavity and
caused by the thermal fluctuations of a jammed monodisperse emulsion of
polydimethylsiloxane (PDMS) oil-in-water, with an average droplet radius
459 ± 15 nm, volume fraction 0.738, transport mean free path
l�s1 ¼ 0:25mm. The sample volume is Vs1= 0.785 cm3, the surface area
Σs1= 4.71 cm2, and the mean chord length �Λs1 ¼ 0:67 cm. The arrows point
to specific values of the root-mean-square (rms) displacement of the
droplets computed from ref. 25. Black curves represent the standard error
σ jgð1Þ j2 ðτÞ=

ffiffiffiffi
N

p
measured with the empty unperturbed cavity from three 1 h

acquisitions (rescaled by
ffiffiffiffi
N

p
compared to Fig. 2b). (Inset) Measured

decorrelation amplitude as a function of the rms displacement amplitude in
picometers, with the solid line showing the linear response. The (blue line)
represents a measurement of the same sample performed under the same
experimental conditions on a self-made Diffusing Wave Spectroscopy
setup. b Plots of the intensity decorrelation signal 1� jgð1ÞðτÞj2 for water
suspensions of 20 µm diameter polymethyl methacrylate (PMMA) spheres
in water. The response for a 10−5 volume fraction (purple line) inside the
cavity is compared to the baseline noise amplitude (black line) of an empty
unperturbed cavity. The (yellow line) represents a measurement of the
same sample performed under the same experimental conditions using a
commercial dynamic light spectroscopy instrument. (Inset) Decorrelation
signal obtained with the cavity for three volume fractions, 10−3 (blue,
l*= 0.7 mm), 10−4 (red, l*= 7mm) and 10−5 (purple, l*= 70mm). All
samples have a volume Vs2= 19.6 cm3, a surface area Σs2= 55 cm2, and a
mean chord length �Λs2 ¼ 1:43 cm.
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rate of our digital correlator (τsampling= 12.5 ns). Our capacity to
detect motions approximately one order of magnitude smaller
than for DWS at frequencies two orders of magnitude higher for
these samples clearly shows the amplification of multiple
scattered light fluctuations. Our data also indicates that SNR ≈
2000 for the detection of 0.8 nm rms motions in the 0.1–100 kHz
frequency range. This suggests that 8 pm motions could be
detected with SNR= 20 in that frequency range, with a dynamic
range that can reach almost 4 decades. Keeping in mind that the
decorrelation signal is proportional to the mean chord length of
the sample, which amounts to 6.7 mm in these emulsion
experiments, one could access the fluctuation dynamics of sub-
millimeter-sized scattering samples in miniature cavities with
Angstrom level sensitivity.

To further demonstrate the interferometric response to
intracavity optical fluctuations, we introduced three different
suspensions of Mie scatterers (20 µm diameter PMMA spheres,
anisotropy coefficient g ≈ 0.957), with volume fractions such that
the most (resp. least) concentrated sample is in the multiple (resp.
single) scattering regime (Fig. 4b). The speckle intensity
decorrelation exhibits the expected monotonic increase, from
the instrumental noise floor to unity decorrelation. The response
combines a diffusive regime with a linear decorrelation with τ,
followed by a quadratic scaling dominated by sedimentation-
induced motions (Fig. 4b, purple line). Given the diffusion
coefficient and the sedimentation velocity, the 1 nm rms
displacement expected for τ= 10 μs is detected with SNR= 30.
In comparison, measurement is done on the same sample with a
commercial dynamic light scattering (DLS)29 sizer instrument
yields a measurement much noisier and more limited in dynamic
range (Fig. 4b, yellow line). Indeed, the signal is readable for times
larger than ≈2 × 10−4 s and is about 150 times smaller than the
cavity signal. The cavity extends the frequency range by two
orders of magnitude and the dynamic range of decorrelation. By
1.5–2 decades. We also observe with our cavity that the
decorrelation amplitude unexpectedly scales with the transport
mean free path length (inset to Fig. 4b). This observation points
to the need for a theory to better explain how the cavity amplifies
the fluctuation amplitude of scattered light intensity compared to
classical methods of DLS and DWS.

Discussion
In the present work, we have introduced the concept of 3D sto-
chastic interferometry enabled by the feedback of a diffuse
reflective cavity on a coherent and monochromatic photon gas. It
detects minute variations of the “optical volume”, as qualitatively
defined by the geometry of the cavity, and the dielectric tensor
field inside. Thanks to the feedback on the 3D Berry field, the
decorrelation function essentially detects all geometric and
dielectric fluctuations through a 3D random paths integration
process that is statistically isotropic and homogeneous, and fun-
damentally non-local. Indeed, the detection fiber statistically
probes all geometric or dielectric perturbations regardless of
where they occur. No information can be recovered on their
spatial structure. More theoretical and experimental work is
needed to quantitatively define this concept of “optical volume”,
and especially to characterize quantitatively the statistical
response of the random optical field to the variations of the
dielectric tensor field. Beyond the preliminary theory sketched
here, several other theoretical problems arise, such as the photon
statistics of the intensity probed by the fiber30, the expectedly
extreme degree of classical entanglement of the Berry field31, the
consequences of its complex sub-wavelength structure and super-
oscillations19,32 on the interferometric properties, or a quantita-
tive theory for the amplification of light scattering.

Practically, despite the simplicity of the design which can also
be used for incoherent applications33,34, our 3D interferometer
provides a fluctuation spectrum over almost 10 frequency dec-
ades, with a dynamic range of 4–6 decades for the decorrelation
signal and a picometric sensitivity. The resulting finesse
F ≈ 10,500 competes favorably when compared to the best clas-
sical room-temperature Fabry–Perot interferometers designed
with similar laser sources. Alternative designs can be envisioned
in the frequency- and time-domain, with cations in the fields of
light scattering and for ultrasensitive dielectric spectroscopy. In
particular, thanks to the amplification of the fluctuation spectrum
by the reflectivity gain Gw, the cavity can be used to measure
dynamic light scattering from highly diluted or miniature
samples35 and quasi-non-scattering objects such as proteins, thus
providing the spectrum of internal modes of motion without
labels or marker36. Cavity deformations could also be coupled to
various external force fields (gravity, seismic motion or acoustic
vibration, electromagnetic forces) for 3D picometer metrology
and ultrasensitive detection of these force fields using quite a
simple design.

Methods
Construction and optical properties of quartz powder cavities. Quartz cavities
were made from a synthetic amorphous silica powder (ZANDOSIL 30, Heraeus) in
a process first described by the group Ed Fry10,33,37. Using transparent quartz
molds (1 cm thick), the powder was mechanically compressed into a cylindrical
shape, which was then baked and machined to obtain the desired cavity shape. The
typical internal radius of such cylindrical cavities was 2.5 cm while the height was
6 cm and the thickness of the walls 3 cm (Fig. S8). To characterize the reflectivity of
the cavity (albedo) and monitor its degradation induced by air humidity, it was
measured using a ring-down method described by Fry et al. (2006)37. The response
of the empty cavity to a laser pulse directly yields the reflection coefficient of the
walls. Practically, a picosecond laser was used (PC-670M and PDL-800B, Pico-
Quant) with 120 ps and 2 nJ pulses at 670 nm, together with a time-correlated
single photon counter (TCSPC PicoHarp 300 system, PicoQuant) with a 4 ps time
bin width, a dead time smaller than 95 ns, and 2 16-bits channels. The albedo of the
quartz cavity was found to be ρ= 0.9994= 1–6 × 10−4, in agreement with the
0.99919 value found by Cone et al.10 at 532 nm. The Lambertian reflectivity profile
of the walls was confirmed through the measurement of the angular intensity
profile using a goniometer equipped with a power meter (Fig. S1). The expected
cosine law was recovered.

Optical setup. The laser used for all interferometry measurements was a single
frequency CW laser (Cobolt Flamenco 04-01 series), with a central wavelength λ0
= 659.6 ± 0.3 nm and an optical bandwidth, Δν ≤ 1MHz, i.e. a wavelength band-
width Δλ≤ 2:5 fm. This corresponds to a coherence time τcoh ¼ 1=πΔν � 0:3 μs
and a coherence length Λcoh ¼ c=πΔν � 95m. Typically, over 8 h and when the
temperature fluctuations do not exceed 2 °C, the central wavelength fluctuations
saturate with a maximal standard deviation σλ0 ≤ 1 pm. The laser intensity is
subjected to fluctuations with the time that typically does not exceed 2% over 8 h if
temperature variations are <3 °C, and the relative rms intensity noise is <0.1% in
the 20 Hz–20MHz frequency range. The laser is injected into the cavity with
multimode optical fiber (NA= 0.22, FG050LGA, Thorlabs).

The speckle intensity was detected inside the cavity by inserting a single-mode
fiber at 670 ± 50 nm with insertion loss <3.9 dB (TW630R5F1, Thorlabs). The fiber
was split into two branches connected to two-photon counting avalanche
photodiodes (SPCM-AQRH, Excelitas) with the following characteristics: diameter
180 µm, 65% efficiency at 650 nm, 10 ns output pulse width, 22 ns dead time, and
1.4% after-pulsing probability. The photodiodes were connected to a two-channel
correlator (LS Instruments) operated in the 16/8 multi-tau correlation scheme with
the following features: lag times spanning from 12.5 ns to 3436 s, 322 channels, a
54,976 s lag time range, and a maximum count rate of 2 × 107 counts per second
over 52 ms integration time intervals.

Environmental control. All experiments were performed in an isolated acrylic box,
covered with foam panels for thermal and acoustic isolation, and enclosed in a
Faraday cage for precautionary measures against electromagnetic noise. The setup
was placed on an active isolation optic breadboard (DVIA-T, Daeil Systems) on top
of a compressed-air passive isolation optical table. Hygrometry and temperature
inside the box were continuously monitored, as well as the temperature of the laser
which was passively cooled. All measurements were made after waiting a precau-
tionary 30 min warm-up time of the cavity to ensure a steady-state behavior was
reached. The temperature inside the cavity reached maximum fluctuations of about
±0.1 °C and did not drift from the timescale of minutes to days.
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Setup for piezo experiments. Two piezoelectric ceramics with perovskite struc-
tures (ABO3)(1−x)Ba(Zr0.2Ti0.8)O3−x(Ba0.7Ca0.3)TiO3 (x= 0.5), Curie tempera-
ture= 100 °C) were used as piezo actuators. These actuators had a thickness of
1 mm and a surface of 0.8 m2. They were inserted in between the two halves of the
cavity and their thickness was harmonically modulated at 1 kHz with a range of
voltage amplitudes using a function generator. Using piezo-response force micro-
scopy, the piezoelectric coefficient was measured at about d33= 300 ± 15 pC/N, and
the ferroelectric domains were visualized with the same technique as well as
polarization/strain graphs (Fig. S3).

Details on the experiments with intra-cavity samples. For experiments con-
ducted with samples inside the cavity (Fig. 4), the setup can be characterized by the
geometric parameters shown in Fig. S2:

1. the volumes (in cm3) are Vc= 118, Vs1= 0.785 and Vs2= 19.6 for the cavity,
the jammed emulsion and suspended microsphere samples, respectively.

2. the surface areas (in cm2) are, respectively, Σc= 134, Σs1= 4.71 and
Σs2= 55.

3. the resulting mean chord (in cm) are, respectively, �Λc ¼ 3:53, �Λs1 ¼ 0:67
and �Λs2 ¼ 1:43 given by the mean-chord length formula �Λ ¼ 4V=Σ.

The first series of samples (Fig. 4a) consists of a jammed emulsion of
monodisperse polydimethyl siloxane (PDMS) oil-in-water prepared and
characterized by Kim et al.25 (kindly provided by Prof. Thomas Mason, UCLA).
The average droplet radius is 459 ± 15 nm with a refractive index 1.401 ± 0.001 at
660 nm, and their volume fraction is 0.738. The resulting transport mean free path
is l�s1 ¼ 0:25mm. Given the size of emulsion samples, the mean chord length
�Λs1 ¼ 6:7mm exceeds l�s1 by a factor of 27. Light is thus multiply scattered by the
jammed emulsion, and the photons follow a Brownian excursion through the
sample with typically 700 scattering events. In addition, because of the path
invariance in scattering media13,14, the average length of Brownian paths before
exiting the sample volume equals �Λs1 regardless of l�s1. Given the estimated

absorption length lðaÞs1 ¼ 104 mm, the absorption probability along the Brownian
path is given by l�s1=l

ðaÞ
s1

� 1=4000 and can be safely neglected. However, the effect
on the albedo is obtained by multiplying this very small absorption probability by
the probability of a random cavity chord to intersect the volume sample, which is
given by the view factor of the sample from the cavity. This factor can be estimated
by the surface ratio (≈1/30), and the estimated contribution to the loss typically
amounts to 10−5. Practically, we found a larger reflection loss, probably due to the
sample container absorption. The effective albedo drops from 99.94% to 99.8% and
the cavity gain are reduced from 1700 to about 500, thus reducing the overall
amplifying effect of the cavity.

The second series of samples (Fig. 4) consists of R= 10 µm radius polymethyl-
methacrylate (PMMA) particles in water (Bangs Laboratories), with a refractive
index 1.488 ± 0.001 at 660 nm. Given the particle size and the refractive index
difference with water (0.156 ± 0.001), the scattering anisotropy coefficient is

g= 0.9571, and the root-mean light deviation angle is
ffiffiffiffiffiffiffiffiffiffiffi
hδθ2i

p
� 11� . With a

density of 1.19 kg/m3 at 20 °C, the density difference with water is
Δρ= 0.192 ± 0.001 kg/m3. Knowing the viscosity of water η= 10−3 Pa s and the
gravity g, the resulting sedimentation velocity given by the Stokes Law is

V sed ¼ 2R2gΔρ
9η ¼ 42 μm=s ¼ 42 pm=μs. From the Stokes–Einstein equation, the

diffusion coefficient is D ¼ kBT=6πηR ¼ 2:1 ´ 104 pm2=μs (with the Boltzmann
constant kB and the temperature T). The motion of these particles in water crosses
over from a short-time regime dominated by thermally activated Brownian
diffusion to a long-time regime dominated by gravity-driven sedimentation. The
cross-over time given by hδr2ðτÞit ¼ 6Dτ ¼ V2

sedτ
2 is τcross ¼ 6D

V2
sed

¼ 71 μs. The

volume fractions used were 0.1% (transport mean free path l*= 0.7 mm), 0.01%
(l*= 7 mm) and 0.001% (l*= 70 mm). The sample volume was Vs2= 19.6 cm3, its
surface Σs2= 55 cm2, and its mean chords length was �Λs2 ¼ 1:43 cm. Because the
values of the ratio �Λs2=l

� indicating the scattering multiplicity are, respectively, 20,
2, and 0.2 for decreasing volume fractions, the first sample produces multiple
scattering while the third one is in the single scattering regime. Even for the largest
volume fraction, the probability of absorption through the sample is far below the
wall reflection loss coefficient ϵ.

Cavity geometry—statistics—photon budget
Statistics of reflections and intracavity radiance. Thanks to the high diffuse
reflectance of cavity walls, the optical intensity P0 injected into the cavity ends up
being multiplied and uniformly reflected by the cavity walls. The reflection effi-
ciency can be considered at the quantum level by a photon survival probability that
corresponds to the Albedo Aw. At steady-state, uniform reflection losses exactly
balance the intensity P0, and the walls receive a uniform irradiance Irc over a total
surface area Σc, such that P0 ¼ ð1�AwÞΣcIrc. Consequently, the wall radiance
originates from the irradiance as

Rc ¼ AwIrc=π. The number nr of reflections follows a geometric distribution
with probability p nr

� � ¼ Anr
w 1�Aw

� �
for 0 ≤ nr, and its mean gives the cavity

gain Gw as

�nr ¼ Gw ¼ Aw= 1�Aw

� � ð4Þ
The total intensity reflected by the wall surface is, therefore, GwP0, and the wall

radiance is

Rc ¼ GwP0=πΣc ð5Þ
Practically, with the relatively large gain we obtained, namely Gw ≈ 1700, and

using a typical input intensity of P0 ¼ 100mW � 3:3 ´ 1017 ph s�1 injected into a
cylindrical cavity with a height hc= 6 cm and a diameter ϕc= 5 cm, Σc= 134 cm2

and the radiance is Rc ¼ 5 ´ 1021 ph s�1 m�2 sr�1. The losses of energy at the
cavity walls are small: Gw ≈ 6 × 10−4, that optical energy is very slightly imbalanced
in their vicinity. This is not true at the point of laser injection, where the local
radiance exceeds the average wall radiance by a factor ð1�AwÞΣc=Σlaser, where
Σlaser is the effective cross-section area of the laser input. This heterogeneity of the
wall radiance can be mitigated by installing a simple baffle screen.

As a result, if we virtually introduce a small planar two-sided object with two
opposite surfaces ±~δσ at a random point inside the cavity, we can safely assume
that both surfaces will be receiving the same irradiance Rc but with opposed
orientations. We can also safely assume that the same irradiance will impact the
entrance surface of any light detection device introduced inside the cavity, such as
the surface of a small camera, or the input cross-section of a fiber introduced to
collect light as described in the “Methods”, section “Optical setup”. However, the
light collected by such objects is removed from the intracavity power density and
this leads to a reduction of the effective Albedo. This is why the effective Albedo
must be calibrated for each cavity configuration, and this precaution obviously
includes the situations where a possibly absorbing sample is introduced into the
cavity. Under this provision, the cavity gain Gc and the cavity radiance are correctly
given by the effective Albedo A determined from the pulse response by

Rc ¼ GcP0=πΣc ð6Þ

�nr ¼ Gc¼A= 1�Að Þ ð7Þ
Statistics of intracavity chord length and photon path length. The pulse response
function (Fig. 1) indicates the residence time of optical pulse energy inside the
cavity, or the typical time a photon survives before it is absorbed by the walls. A
simplistic picture can be considered, in which a random photon path is made of a
succession of a random number nr of reflections, and nc= nr+ 1 free-space chords
through the cavity. These chords can be represented by the random variable Λc,
and the well-known mean-chord-length property applies13,14: for any finite volume
V enclosed by a surface Σ and filled with any perfectly scattering medium, be it
homogeneous and isotropic or not, and regardless of the geometry of the cavity or
the medium, a particle entering the volume with a uniform and isotropic incidence
will follow a random trajectory inside the volume with a mean given by the very
simple geometric invariant 4V/Σ. For our cavities, this property implies that the
mean of free-space chords with cavity volume Vc is

�Λc ¼ 4
Vc

Σc
ð8Þ

The free-space path length variable Λ is therefore the product of the two
independent random variables nc and Λc, which averages to
ncΛc ¼ nc:Λc ¼ 4GcVc=Σc.

Besides the free-space contribution to the photon path, the diffusive random
walk inside the walls needed for the reflection process corresponds to an additional
random variable τr that reflects the random reflection time. Its mean has been
measured for visible light as a typical delay of �τr � 5 ps. As a consequence, the total
reflection time averages as nrτr ¼ nr:τr � Gcτr .The total photon path length can
be represented as a composite random variable

Λ ¼ ncΛc þ nrcτr ð9Þ
with the variance σ2Λ and the average �Λ given by

�Λ ¼ Gc
�Λc þ c�τr
� � ð10Þ

Practically, in the conditions of our setup, with cylindrical cavities with
hc= 6 cm and ϕc= 5 cm, it comes:

�Λc ¼ hc=
1
2
þ hc

ϕc

� 	
ð11Þ

and �Λc ¼ 3:5 cm, while cτr= 1.5 mm. The mean total photon path, therefore,
corresponds to a length of �Λ � 62m and a mean residence time �τ ¼ �Λ=c � 207 ns.
Importantly, the coherence length of the laser exceeds the average photon path
length by a factor Λcoh=�Λ � 1:5. <10% of the photon path is longer than the
coherence length. This leads us to safely assume that most pairs of modes are
mutually coherent, and the optical field is practically coherent across the cavity,
thus enabling multiphoton interferences.

Photon density. The light inside the cavity can be considered as an isotropic and
monochromatic photon gas, with a homogeneous density ρph. This density can be
computed from the photon energy, hc/λ0, the photon injection rate
P0;ph ¼ P0λ0=hc, and the mean residence time �τ described above. It comes
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ρph ¼ P0;ph�τ=Vc, or ρph ¼ 4πRc;ph=c:Gc. With P0= 100 mW as considered above,

the photon injection rate is P0;ph � 3:3 ´ 1017ph s�1 and the photon density is,
while the photonic radiance is Rc;ph � 5 ´ 1021 ph s�1 m�2 sr�1.

Capture of the speckle intensity by a monomode fiber. Using the photon gas picture,
we can estimate the rate at which photons can be collected from the cavity with the
single-mode fibers used in our experiments. Knowing the surface of the collected
optical fiber, we can use the concept of irradiance to calculate the number of
detected photons. Here, the irradiance is Ec;ph ¼ π:Rc;ph so that the flux through
an optical fiber with a core of cross-section σdet= 19 μm2 (diameter 5 μm) would
be about 1.2 × 1012 ph s−1 or 0.5 × 10−6W. Taking the fiber losses into account
(excess loss (0.3 dB), insertion loss (4.2 dB), optical return loss (60 dB)) the flux
detected is about 1.7 × 10−10 mW or 5.6 × 105 ph s−1 which agrees with the typical
experimental detection rates of 104–105 ph s−1. We should also stress here that the
measurement fundamentally perturbs the speckle pattern as the fiber destroys the
spherical symmetry of the field statistics.

Data acquisition. The purpose of the acquisition and analysis is to measure the
temporal fluctuations of the speckle intensity, from the autocorrelation of the
intensity entering the detection fiber inside the cavity29. The normalized auto-
correlation function of the intensity is mathematically defined for the time delay τ
by

gI τð Þ ¼ hIðtÞihIðt þ τÞit
hI2it

ð12Þ

but the usual autocorrelation functions g(1)(τ) and g(2)(τ) used in experiments are
not normalized in the same way. The field autocorrelation function reads

g 1ð ÞðτÞ ¼ hEðt þ τÞEðtÞ�it
hEðtÞEðtÞ�it

ð13Þ

while the intensity autocorrelation function is defined by

g 2ð ÞðτÞ ¼ hIðt þ τÞIðtÞit
hIðtÞi2t

¼ γgI ðτÞ ð14Þ

where the factor γ ¼ hI2it=hIi2t reflects the statistics of the intensity fluctuations.
These two latter correlation functions are connected by the Siegert relation
½gð2ÞðτÞ � 1� ¼ βjgð1ÞðτÞj2 used to define the so-called coherence factor β, which is
usually determined by the instrumental design. Since gð1Þ ¼ gI ¼ 1 for τ= 0, we
obtain γ= 1+ β. The coherence factor is an important parameter for dynamic light
scattering experiments, which reflects the statistics of the intensity fluctuations due
to the degree of coherence of the optical field over the area where the intensity is
probed. Practically, since the autocorrelator delivers the values of βjgð1ÞðτÞj2, the
normalization procedure described below requires that each data be normalized by
the particular value of β it contains.

Technically, the intensity autocorrelation function is delivered in real-time by
the correlator for a set of times delays τ according to a correlation scheme
classically called 16/8 multi-tau. These time delays are logarithmically separated, as
multiples of τ0, between a minimal value τ0= 12.5 ns that corresponds to the
sampling time of the photodiodes, and a maximal value of 3436 s. The primary data
handled by the correlator is a time series of binary counts n(ti) sampled with the
minimal delay ti+1 – ti= τ0. For each time delay τ, the instruments compute the
running average count rate defined by

n0 ¼
1

N τð Þ ∑
N τð Þ

1
n ti
� � ð15Þ

and the running autocorrelation value defined by

GðτÞ ¼ 1
N τð Þ ∑

N τð Þ

1
nðtiÞnðti � τÞ ð16Þ

where N(τ) is the total number of samples for the time delay τ. From n0 and G(τ),
the correlator updates in real-time the function

g 2ð ÞðτÞ ¼ G τð Þ � n20
n20

ð17Þ

and delivers the values of the function gð2ÞðτÞ � 1 ¼ βjgð1ÞðτÞj2.
In order to avoid two major artifacts caused by the binary detection of photons

by APDs, namely the issues of dead-time and afterpulse, we systematically used a
split fiber and performed the cross-correlation between the photon streams
detected by the two photodiodes. In the cross-correlation algorithm, the squared
running average n20 is simply replaced by the product nðdet#1Þ

0 ´ nðdet#2Þ
0 of the

running averages, and the correlation G(τ) is computed from the cross-products
nðdet#1ÞðtiÞnðdet#2Þðti � τÞ instead of nðtiÞnðti � τÞ.

Data normalization. As mentioned above, virtually all correlators primarily deliver
the function gð2ÞðτÞ � 1 ¼ βjgð1ÞðτÞj2 which decreases from β to 0 and is usually
represented in a semilog-x or linear scale, in the usual data handling procedure,
since jgð1ÞðτÞj ¼ 1, β is assessed from the τ= 0 intercept of βjgð1ÞðτÞj2, and then

used to produce the normalized autocorrelation function jgð1ÞðτÞj2. Much like the
factor γ defined by Eq. (14), the coherence factor β takes values between 1 and 0,
depending on the degree of coherence of the optical field on the surface over which
the intensity is integrated. In principle, β only depends on the area on which the
intensity is sampled, it thus takes a constant value for a fixed light collection
geometry.

Data representation. This section describes the graphical representations intro-
duced in this paper (see Fig. S4) to

a. evidence very small decorrelation amplitudes more clearly
b. fully exploit the large dynamic range of our cavity interferometer (up to 6

decades)
c. exhibit signal-to-noise ratio by displaying the noise together with the signal.

Autocorrelation data is classically represented by plotting the normalized
autocorrelation function

gð2ÞðτÞ � 1
β

¼ jg 1ð ÞðτÞj2 ð18Þ

on a semilog-x graph. It shows the decay on a linear vertical scale from 1 to 0 with a
rather limited dynamic range. To exhibit small decorrelation amplitudes with a
large dynamic range, we replace the linear vertical scale by a logarithmic one, on
which we plot the decorrelation function defined as 1� jgð1ÞðτÞj2. However,
experiments done with the empty unperturbed cavity systematically exhibit an
autocorrelation decay due to a 2 kHz gain relaxation and finite sample noise (see
next section). Therefore, decorrelation measurements only make sense when
compared to the 'reference’ decorrelation function measured with the unperturbed
cavity. As a consequence, the decorrelation jgð1ÞðτÞj2measure obtained in a given
experiment should not be compared to the function jgð1ÞðτÞj2 � 1, but to the
decorrelation jgð1ÞðτÞj2ref obtained from reference experiments conducted with the
unperturbed cavity. The relevant signal is therefore the excess of decorrelation
given by the difference:

EðτÞ ¼ ½1� jg 1ð ÞðτÞj2measure� � ½1� jg 1ð ÞðτÞj2ref � ð19Þ
Practically, the data is processed as follows (see Fig. S4): for all experimental

conditions (defined by the laser power and the acquisition time), a set of reference
decorrelation functions βjgð1ÞðτÞj2 is acquired with the unperturbed cavity
(Fig. S4a). Since each function comes with a particular value of β as explained in
the previous section, they need to be individually normalized by their own value of
β. From the set of normalized reference functions jgð1ÞðτÞj2 (see Fig. S4b), we can
derive an average reference for jgð1ÞðτÞj2ref (Fig. S4c) and measure the statistical
quality of that average reference by estimating the standard deviation σ jgð1Þ j2ref ðτÞ. To
measure the cavity response to some perturbation, the same scheme is applied, with
the acquisition of multiple samples of βjgð1ÞðτÞj2 (Fig. S4a), the individual
normalized by their β values (Fig. S4b), and the computation of the average
normalized response jgð1ÞðτÞj2measure (Fig. S4c). The temporal structures of the
reference decorrelation and the perturbation decorrelation (respectively, blue and
red curves on Fig. S4c) can be more easily inspected by plotting their complement
to 1, i.e. 1� jgð1ÞðτÞj2ref and 1� jgð1ÞðτÞj2measure (Fig. S4d), but the meaningful signal
is their difference EðτÞ, which measures the decorrelation caused by the
perturbation and defined by Eq. (11). Finally, EðτÞ is plotted with a logarithmic
vertical scale, together with noise floor given by the experimental standard
deviation introduced above as σ jgð1Þ j2ref ðτÞ (Fig. S4e). If the measured perturbation
has no effect, the decorrelation excess function EðτÞ should be exactly equal to the
noise floor function σ jg

ð1Þj2ref ðτÞ multiplied by
ffiffiffi
2

p
. As a consequence, Fig. S4d

directly indicates the signal-to-noise ratio (SNR) up to a factor
ffiffiffi
2

p
, by the

logarithmic 'distance’ between the signal EðτÞ and the noise floor (respectively, the
black and the green curves).

Data availability
All data needed to evaluate the conclusions in the paper are present in the paper and/or
the Supplementary Materials. All data are available from the corresponding author upon
reasonable request.
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