
nature communications

Article https://doi.org/10.1038/s41467-022-32168-5

Secure human action recognition by
encrypted neural network inference

Miran Kim 1,2 , Xiaoqian Jiang 3, Kristin Lauter4, Elkhan Ismayilzada 5 &
Shayan Shams6

Advanced computer vision technology can provide near real-time home
monitoring to support “aging in place” by detecting falls and symptoms rela-
ted to seizures and stroke. Affordable webcams, together with cloud com-
puting services (to run machine learning algorithms), can potentially bring
significant social benefits. However, it has not been deployed in practice
because of privacy concerns. In this paper, we propose a strategy that uses
homomorphic encryption to resolve this dilemma, which guarantees infor-
mation confidentiality while retaining action detection. Our protocol for
secure inference can distinguish falls from activities of daily living with 86.21%
sensitivity and 99.14% specificity, with an average inference latency of 1.2 sec-
onds and 2.4 seconds on real-world test datasets using small and large neural
nets, respectively. We show that our method enables a 613x speedup over the
latency-optimized LoLa and achieves an average of 3.1x throughput increase in
secure inference compared to the throughput-optimized nGraph-HE2.

Human action recognition has emerged as an important area of
research in computer vision due to its numerous applications, such as
in video surveillance, telemedicine, human–computer interaction,
ambient assisted living, and robotics. In particular, application to tel-
emedicine is becoming increasingly critical as changes in demo-
graphics, such as declining fertility rates and increasing longevity, have
increased need for remote healthcare1–3. In many situations, elderly
peoplewho live alonedonot receive immediate emergency assistance,
and this failure may lead to serious injury or even death. Remote
monitoring systems fromhealthcare providers can advancehealthcare
services, but healthcare providers cannot manually monitor hundreds
of screens simultaneously. Uploading videos to cloud computing ser-
vice providers (e.g., Amazon, Google, or Microsoft) and running
recognition algorithms can be a promising way to solve this problem.
Indeed, cloud-based services are becoming the mainstream in online
marketplaces of digital services due to cost effectiveness and robust-
ness. Edge devices have limited capacity to supportmiscellaneous and
ever-growing types of digital services, so outsourcing of data and
computation to the cloud is a natural choice.

A cloud service provider can provide real-time face detection and
activity recognition (e.g., detecting behavioral pattern changes, emo-
tion, falling, and seizure) on real-time video by adopting advanced
artificial intelligence technologies. However, privacy concerns have
become a critical hurdle in providing virtual remote healthcare to
patients, especially in a cloudcomputing environment. Individualusers
donotwant sensitive personal data tobe sharedwith service providers.
In this paper, we propose a secure service paradigm to reconcile the
critical challenge by integratingmachine learning (ML) techniques and
fully homomorphic encryption (FHE). FHE enables us to perform high-
throughput arithmetic operations on encrypted data without
decrypting it, so the privacy-enhancing technology is considered to be
a promising solution for secure outsourced computation4,5. Notably, a
trusted home monitoring service was discussed as one of the applic-
able use scenarios in the Applications track at the 2020 HE Strategic
Planning meeting and the related white paper was published6.

In general, human action can be recognized from multiple mod-
alities such as RGB images or video, depth, and body skeletons. Among
these modalities, dynamic human skeletons, which represent 2D or 3D

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

Received: 9 December 2021

Accepted: 12 July 2022

Check for updates

1Department ofMathematics, HanyangUniversity, Seoul, Republic of Korea. 2Department of Computer Science, HanyangUniversity, Seoul, Republic of Korea.
3Center for SecureArtificial intelligence For hEalthcare (SAFE), School of Biomedical Informatics, University of TexasHealthScienceCenter,Houston, TX,USA.
4MetaAI Research, Seattle,WA, USA. 5Department ofComputer Science andEngineering, UlsanNational Institute of Science andTechnology, Ulsan, Republic
of Korea. 6Department of Applied Data Science, San Jose State University, San Jose, CA, USA. e-mail: miran@hanyang.ac.kr; Shayan.Shams@sjsu.edu

Nature Communications | (2022) 13:4799 1

http://orcid.org/0000-0003-3564-6090
http://orcid.org/0000-0003-3564-6090
http://orcid.org/0000-0003-3564-6090
http://orcid.org/0000-0003-3564-6090
http://orcid.org/0000-0003-3564-6090
http://orcid.org/0000-0001-9933-2205
http://orcid.org/0000-0001-9933-2205
http://orcid.org/0000-0001-9933-2205
http://orcid.org/0000-0001-9933-2205
http://orcid.org/0000-0001-9933-2205
http://orcid.org/0000-0002-1473-3702
http://orcid.org/0000-0002-1473-3702
http://orcid.org/0000-0002-1473-3702
http://orcid.org/0000-0002-1473-3702
http://orcid.org/0000-0002-1473-3702
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-32168-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-32168-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-32168-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-32168-5&domain=pdf
mailto:miran@hanyang.ac.kr
mailto:Shayan.Shams@sjsu.edu

joint coordinates, have attracted more attention since they are robust
against dynamic circumstances and are highly efficient in computation
and storage7–9. In thiswork, we adopt amethod that uses convolutional
neural networks (CNN) for action recognition using the skeleton
representation. The skeleton joints are easily captured by depth sen-
sors or pose estimation algorithms10–12. Then the detected joint key-
points in the video streams are encrypted using the public key of FHE
and sent to a cloud service provider. Then the cloud service runs the
machine-learning algorithms on the encrypted joint points. After
secure action recognition, the encrypted results are transmitted to a
trusted party (e.g., a nursing station) who decrypts them and decides
whether immediate intervention is necessary.Using encrypted joints as
a uniform representation of the human body, our workflow supports
multiple action recognition tasks concurrently as secure outsourcing
taskswith cloud computing, which overcomes the scalability limitation
of edge devices. This synergic combination of technologies can sup-
port monitoring of the elderly, while mitigating privacy concerns.

Theoretical progress has substantially reduced the time and
memory requirements of secure computing13–16, but adoption of it in
real-world applications requires refinements in technology. A cipher-
text in the FHE cryptosystem has an inherent error for security and
multiplication operations bring about an increased noise level.
Therefore, encryption parameters should be selected carefully to
ensure both the security and correctness of a decryption procedure.
Moreover, homomorphic operations result in different computational
costs compared to plain computation, so a straightforward imple-
mentation (i.e., direct conversion of a plaintext computation into an
encrypted domain) will be exceedingly slow. In particular, multi-
plication is amore costly operation than others. However, practical HE
cryptosystems can only evaluate low-depth circuits, so for efficiency, it
is imperative to balance multiplicative circuit depth and computation
cost. Therefore, it is a non-trivial task to enable an efficient imple-
mentation of secure neural network inference with FHE.

In this paper, we present an FHE-compatible CNN architecture for
skeleton-based action recognition, which is designed specially to be
computed by a low-depth circuit with low-degree activation functions.
Based on the proposed neural networks, we design a framework,
named Homomorphically Encrypted Action Recognition (HEAR),
which is a scalable and low-latency system to perform secure CNN
inference as cloud outsourcing tasks without sacrificing accuracy of
inference. We formulate a homomorphic convolution operation and
propose an efficient evaluation strategy for the homomorphic con-
volution to exploit parallel computation on packed ciphertexts in a

single instruction multiple data (SIMD) manner. We use the ciphertext
packing technique to represent multiple nodes of layers as the same
ciphertext while maintaining the row-major layout of tensors
throughout the whole evaluation process. As a result, the secure
inference solution avoids another level of complexity for switching
back-and-forth between different data layouts over encryption. Addi-
tionally, the intensive use of both space and SIMD computation
accelerates secure inference and reduces memory usage significantly.
We demonstrate the effectiveness of our secure inference system on
three benchmark datasets. HEAR enables a single prediction in 7.1 s on
average over a 2D CNN model for action recognition tasks, while
achieving 86.21% sensitivity and 99.14% specificity in detecting falls.
Our elaborated and fine-tuned solution of Fast-HEAR can evaluate the
same neural network in 2.4 s using only a few gigabytes of RAM while
maintaining the same sensitivity and specificity in fall detection as
HEAR. We also show that the proposed solutions achieve state-of-the-
art latency and throughput of action inference over previous methods
for secure neural network inference.

Results
Overview of HEAR
In the cloud-based action recognition system, FHE serves as a bridge to
convert intrusive video monitoring into trustworthy services (Fig. 1).
TheHEAR systementails three parties: themonitoring service provider
(e.g., a nursing station), end-users (data providers), and a cloud service
provider. In our paradigm, we assume that model providers train a
neural network with the cleartext data, and then offer the trained
model to the public cloud. An end-user wants to be provided with
privacy-preserving monitoring services while ensuring data con-
fidentiality, so theuser encrypts thedata byusing thepublic key of FHE
and provides the encrypted data to the cloud server. The cloud server
provides an online prediction service to data owners who uploaded
their encrypted data bymaking predictions on encrypted data without
decrypting them. After secure action recognition, the encrypted result
is transmitted to the monitoring service provider, who decrypts it and
decides how to respond to specific events. As described in Threat and
Security Model in the “Methods” section, the security of the HE cryp-
tosystem ensures that HEAR is secure against an honest-but-curious
adversary.

Innovation of HEAR
The conventional CNN architectures stack a few convolutional layers
while periodically inserting a pooling layer between the convolutional

Fig. 1 | A workflow of our cloud-based action recognition protocol. At the
beginning of the protocol, the monitoring service provider generates the crypto-
graphic keys: (i) the secret key sk is used for decryption of ciphertexts; (ii) the
public key pk is used for data encryption; and (iii) the evaluation keys evk are used
for homomorphic computations (e.g., ciphertext-ciphertext multiplications or
ciphertext rotations). The public key is transmitted securely to the end-users and
the evaluation keys are transmitted securely to the cloud service provider. The
cloud server is where encrypted data are processed while in encrypted form, so it

has only access to the evaluation key for homomorphic computation. Video
recordings by stationary video cameras are used to generate skeleton joints, which
are encrypted using the public key of the underlying HE cryptosystem. The
encrypted skeletons are fed to the cloud service provider. The cloud processes
predictions on encrypted data and sends the encrypted classification results to the
monitoring service provider. Finally, the nursing station of the monitoring service
decrypts the results and responds to any alerts. For example, immediate inter-
vention is necessary when a fall or seizure isdetected.

Article https://doi.org/10.1038/s41467-022-32168-5

Nature Communications | (2022) 13:4799 2

layers. Practical FHE schemes enablemultiple values to beencrypted in
a single ciphertext and perform computations on encrypted vectors in
a SIMD manner17, so an average-pooling operation can be imple-
mented by a mean aggregation of adjacent entries of encrypted vec-
tors by using homomorphic slot rotations, yielding ciphertexts with
valid values stored sparsely. However, a decryption of intermediate
results is not allowed during secure outsourced computations, so the
sparsely packed ciphertexts are passed to the next convolutional layer.
A straightforward method is to perform the ordinary homomorphic
convolution on each sparsely packed ciphertext (Fig. 2a).

Here, we investigate the sparsity of ciphertexts to increase the
efficiency of implementation of homomorphic convolution operations
(Fig. 2b).Wefirst formulate thehomomorphicevaluation algorithm for
multi-channel convolution operations as FHE-compatible operations
on packed ciphertexts (e.g., SIMD addition, SIMD multiplication, and
slot rotation). To maximize SIMD parallelism of computation, we
extensively use entries that have non-valid values of ciphertexts. We
put together as many sparsely packed ciphertexts of output channels
from the previous pooling layer as possible into a single ciphertext
while interlacing them with each other. As each kernel is applied onto
an input channel, we perform simultaneous homomorphic convolu-
tion operations on the packed ciphertext, by using the concatenation
of the corresponding kernels. The intermediate convolution results are
involved together in the resulting ciphertext (i.e., the values are loca-
ted in different entries in the corresponding plaintext vector), which is
in turn summed together across plaintext slots to get the final output
channel. The fast homomorphic convolution method incurs an addi-
tional cost to incorporate values at distinct ciphertexts before the
ordinary convolution, and to aggregate values located in different slots
after the ordinary convolution. However, the computational com-
plexity of the convolution step is reduced by a predetermined factor
compared to the naive homomorphic convolution, which allows
greater efficiency. As a result, the whole process of the homomorphic
convolution operations can be expressed as FHE-compatible opera-
tions on packed ciphertexts, which leads to a substantial speedup,
especially in wide convolutional networks. This method has another
advantage, in that it substantially reduces the amount of memory
required for encoding model parameters as plaintext polynomials
compared to the straightforward approach. Additionally, it maintains
the row-major layout of tensors throughout the computation, thereby

avoiding another level of computation for switching back-and-forth
between different data layouts. Furthermore, we introduce a range of
algorithmic and cryptographic optimizations tailored to increase the
speed and reduce the memory usage of the secure neural network
inference from the approximate HE cryptosystem (Cheon-Kim-Kimg-
Song, CKKS15). To reduce the computational cost, we reformulate
homomorphic convolutional operations by using the properties of
ciphertext rotation operation. We also present the level-aware
encoding strategy that represents the weight parameters as plaintext
polynomials with small-sized coefficients enough to support required
computations (i.e., having the minimum computational level budget).
These innovations allow a speedup by an order of magnitude to
encodemodel parameters as plaintexts, and enable a drastic reduction
in the number of the encoded plaintexts.

Dataset
Our dataset contains two categories of data: (i) Activities of daily living
(ADLs) were selected from the J-HMDB dataset18. The selected action
classes are clap, jump, pick, pour, run, sit, stand,walk, andwave. (ii) The
fall action class was created by the UR Fall Detection dataset (URFD)19

and the Multiple cameras fall dataset (Multicam)20. OpenCV (version
3.4.1) was used for image processing.We used the pytorch (version 1.3)
implementation of the Deep High-Resolution network (HRNet, https://
github.com/leoxiaobin/deep-high-resolution-net.pytorch)12 pretrained
with the MPII Human Pose dataset21 to detect keypoint locations. The
network outputs 15 joint locations of each frame: ankles, knees, hips,
shoulders, wrists, elbows, upper neck, and head top. For each dataset,
the skeleton joints are first arranged as a 3D tensor of size 2 × 32 × 15
by concatenating the detected joint locations from 32 frames of the
generated clips. The transformed samples from the three datasets are
merged for analysis, and the merged dataset is split randomly into
training and testing sets that contain 70% (84 falls and 1346 non-falls)
and 30% (29 falls and 579 non-falls), respectively. We note that it takes
around94ms todetect 15 joint locations for each frameonaV100GPU.
So, it takes about 3.008 s to generate a 3D tensor from extracted ske-
leton joints of 32 frames.

Network architecture for action recognition
Our plain action recognition network was inspired by the design of Du
et al.22 to capture spatial-temporal information. The network consists

Fig. 2 | Multi-channel ordinary homomorphic convolution and fast homo-
morphic convolution. We denote by Enc(⋅) an encryption function. Given an
input tensor X with two channels X1 and X2, Yi denotes an output by the single-
input single-output convolution operation on the channel Xi with the convolution
kernel Fi. Z indicates a generated output channel by the convolution on the input
X, which can be computed as Z =Y1 +Y2 in the clear. a Ordinary homomorphic
convolution. Conv indicates a single-input single-output homomorphic convolu-
tion. Add indicates an ordinary homomorphic addition of two ciphertexts. b Fast
homomorphic convolution. Concat indicates a concatenation over ciphertexts or

plaintexts. Two punctured input ciphertextsEnc(X1) andEnc(X2) are fused to form
one ciphertext by using concatenation over encryption. Then we perform homo-
morphic convolution operation on the packed ciphertext Enc(X1∣∣X2) by using the
concatenated kernels (F1∣∣F2), to yield a ciphertext that encrypts the intermediate
results of (Y1∣∣Y2). At the end, we perform a homomorphic addition of the values
located in different entries of a plaintext vector, denoted by Add, which requires
homomorphic rotations and additions over encryption. As a result, it yields a
ciphertext that encrypts the output channel Z.

Article https://doi.org/10.1038/s41467-022-32168-5

Nature Communications | (2022) 13:4799 3

https://github.com/leoxiaobin/deep-high-resolution-net.pytorch
https://github.com/leoxiaobin/deep-high-resolution-net.pytorch

of three convolutional layers, which are each followed by a batch
normalization (BN), an activation layer, and a downsampling layer. The
network ends with a fully connected (FC) layer and softmax. We con-
sider two CNN models depending on the shape of input neurons and
the movement of kernels for a convolution operation. Each neuron in
the 2D-CNN models contains two-dimensional planes for input, and
the network consists of 2D convolutions in which the kernel slides
along twodimensions over the data (Fig. 3a). In the 1D-CNNmodels, 2D
matrices for kernels and feature maps are replaced with 1D arrays, and
the kernel slides along one dimension over the data (Fig. 3b). The
convolutional layers have a filter size of 3 × 3 (2D-CNN) or 3 (1D-CNN), a
stride of 1, and the samepadding.We follow the design rule ofResNet23

such that if the feature map size is halved, the number of filters in the
convolutional layers is increased to doubled. In our experiments, we
study one small net and one large net: CNN-64 and CNN-128, where 64
and 128 represent the number of filters in the first convolutional layer,
respectively. We replace the ReLU activation with a quadratic poly-
nomial, and adjust the coefficients during the training phase. The
downsampling is performed by average-pooling over window size of
2 × 2 or 2, with a stride of 2, or a global average pooling at the end.

Homomorphic convolution benchmark
Given a load number nP as the number of ciphertexts to fit into a single
ciphertext in the preprocessing step, we get a speedup of up to nP for
the convolution operation (Table 1). Therefore, we may offer more
performance benefits if we assemble asmany as ciphertexts within the
parameter limit and perform the homomorphic convolution on the
packed ciphertext. To be specific, weget the loadnumber nPof the t-th
convolutional layer as 2t−1 in 1D-CNN and 22(t−1) in 2D-CNN. For instance,
the third convolutional layer in the 2D-CNN-128 network has a load
number of nP = 16 in the Fast-HEAR system, and achieves a significant
speedup over HEAR. However, Fast-HEAR requires additional compu-
tational costs for pre/post-processing procedures, so the speedup for
the whole convolutional layer is slightly smaller than the load number.

Time requirement of secure action recognition
To demonstrate the scalability and practicability of our secure action
recognitionprotocol,weperformed adetailed analysis of running time
requirement for the HEAR and Fast-HEAR systems over various CNN
models. We divide the process into five steps: key generation, encod-
ing of weight parameters, data encryption, secure inference, and

decryption. (i) Key generation: Fast-HEAR requires one additional level
of plaintext-ciphertextmultiplication for eachpreprocessing step than
HEAR, so Fast-HEAR uses slightly larger HE keys than HEAR, and
thereby incurs 38–62% increase in runtime for key generation (Fig. 4a).
The FHE cryptosystem requires public rotation keys specified by
rotation amounts for ciphertext rotations. The large increase in run-
time between HEAR and Fast-HEAR from 1D models to 2D models is
due to an increasing number of rotation keys required for the pre-
processing and postprocessing steps. (ii) Encoding of weight para-
meters: In the Fast-HEAR system, the weight parameters are encoded
as plaintext polynomials more compactly together than in HEAR, to
align with packed ciphertexts; this difference shows a considerable
reduction in time and memory usage when a large load number nP is
used. For example, Fast-HEAR has the largest parameters nP in the 2D-
CNN-128 network, so Fast-HEAR shows the largest speedup of 7x over
HEAR (Fig. 4b). (iii) Encryption: Both systems takes 1.34–1.54 s to
encrypt 608 samples of the test set, yielding an amortized rate of
22–25ms per sample. (iv) Secure inference: The intensive use of SIMD
computation in Fast-HEAR speeds up the process of secure inference
(Fig. 4c). The average speedup of Fast-HEAR over HEAR on the test set
using the 2D-CNN-128 network inference is 3x (7.073 s vs 2.419 s). In
particular, Fast-HEAR achieves a substantial improvement of 2D CNN
inference over HEAR, because 2D CNN uses a larger nP than 1D CNN,
even for the same number of filters. (v) Decryption: After the evalua-
tion, the cloud server outputs a single ciphertext of the predicted
results; the decryption takes 1.6ms on average.

Memory requirements of secure action recognition
The Fast-HEAR system offers the substantial memory benefit for
storingmodel parameters. Fast-HEAR uses 35% and 15% asmuch space
as HEAR to encode the weight parameters on the 1D-CNN and 2D-CNN
models, respectively (Fig. 4d, e). This speedup occurs because the
filters are packed more tightly in Fast-HEAR system than in HEAR.
Furthermore, Fast-HEAR shows better memory management in
homomorphic computation by using 47%–64% as much space
as HEAR.

Communication cost
A freshly encrypted input tensor of the network has ~1.4–1.6MB from
the user to the cloud server. The current protocol can make 3600/
2.4 ≈ 1500 predictions per hour using the 2D-CNN-128 network on a

Fig. 3 | Convolutional neural network architectures for our action recognition.
f denotes the number of filters in the first convolutional layer, and we used

f ϵ {64, 128} in the experiment. a The convolutional neural network with the 2D
convolutions. b The convolutional neural network with the 1D convolutions.

Article https://doi.org/10.1038/s41467-022-32168-5

Nature Communications | (2022) 13:4799 4

single server. The encrypted prediction result is ~0.13MB, so servers
are sufficient to support the 0.13 × 1500 ≈ 195MB bandwidth require-
ment for ciphertexts loads to the monitoring service provider
per hour.

Classification performance
To examine the classification performance of fall detection, we used
the typical performance metrics such as classification accuracy, sen-
sitivity, specificity, precision, and F1-score. We expected that our
selection of parameter sets would offer a trade-off between evaluation
performance and output precision of HEAR and Fast-HEAR. Surpris-
ingly, both secure inference solutions achieved the same performance
on the test set as the unencrypted inference except for the classifica-
tion accuracy (Fig. 4f). Our systems can distinguish falls from ADLs
with 86.21% sensitivity, 99.14% specificity, and 84.75% F1-score on all
networks.When the large neural nets are evaluated (e.g., CNN-128), the
values are slightly affected by errors from homomorphic computa-
tions, and therefore show an accuracy degradation of 0.16–0.17%.
These results indicate that the proposed securemethods show perfect
data protection at the cost of a slight loss in classification accuracy.
Notably, the promising point is that our solutions can distinguish
between falls and non-falls just as well as the unencrypted inference
can (Fig. 4g, h).

Comparison to prior work
CryptoNets24 was the first protocol for enabling secure neural network
inference on the MNIST dataset25. Their protocol is to encrypt each
node in the network as distinct ciphertexts and emulate unencrypted
computation of neural network inference in the normal way while
making predictions on thousands of inputs at a time. The follow-up
studies of nGraph-HE26 and nGraph-HE227 significantly improved the
inference throughput by using scheme-dependent cryptographic
optimizations of underlying homomorphic operations such as
plaintext-ciphertext addition and multiplication. However, they have
high inference latency even for a single prediction and can lead to
memory problems when applied to large-scale neural networks.

The most relevant method is LoLa28, which uses the ciphertext
packing method to represent multiple values from network nodes as
the same ciphertext. In LoLa, a convolutional layer is expressed either
as a restricted linear operation by flattening the kernels to a single
dimension, or as a product of a large weight matrix and an encrypted
data vector. In particular, the matrix-vector product is computed
simply by a series of dot-products between each row of thematrix and
the data vector, giving the output of each filter at each location.
However, these simplifications lead to a substantial number of
homomorphic operations over large-dimensional inputs, which is the
case for wide networks. We refer to the “Methods” section for a the-
oretical comparison of computational costs of homomorphic con-
volutions in nGraph-HE2, LoLa, and Fast-HEAR.

We provide the runtime for homomorphic evaluation of nGraph-
HE2 and LoLa over various neural network models (Fig. 5a). Specifi-
cally, nGraph-HE2 performs 608 predictions simultaneously in 1.2 h
using the 2D-CNN-128 network; of this time, the second and third
convolutional layers consume47min and 17min, respectively (Fig. 5b).
LoLa performs a single prediction in 15.4min; of this time, the second
and third convolutional layers consume 13min and 2.4min, respec-
tively. Fast-HEAR achieves a 3.1 times increase in secure inference
throughput on average compared to the throughput-optimized
nGraph-HE2, and it is on average 613 times faster than the latency-
optimized LoLa in secure inference (Fig. 5c). We note that nGraph-HE2
takes on average 11.8 s to encrypt 608 samples of the test set into a
single ciphertext over the 2D-CNN-128 network from n = 10 indepen-
dent experiments, yielding an amortized rate of 19ms per sample.
LoLa takes on average 74ms to encrypt a single sample over the same
network from n = 10 independent experiments. We measured averageTa

b
le

1
|H

o
m
o
m
o
rp

h
ic

co
n
vo

lu
ti
o
n
m
ic
ro
b
en

ch
m
ar
k
in

o
ur

ac
ti
o
n
re
co

g
n
it
io
n
n
et
w
o
rk

O
ut
p
u
t

#(
C
ip
h
er
te
xt
s)

O
rd

in
ar
y

Fa
st

co
n
vo

lu
ti
o
n
(m

ill
is
ec

o
n
d
s)

S
p
ee

d
up

M
ap

In
p
u
t

O
ut
p
ut

P
ac

ke
d

C
o
n
vo

lu
ti
o
n

S
te
p
s

Fr
o
m

N
et
w
o
rk

La
ye

r
S
iz
e

#F
ilt
er
s

n i
n

n o
u
t

n
P

(m
ill
is
ec

o
n
d
s)

P
re

C
o
n
v

P
o
st

To
ta
l

Fa
st
-H

EA
R

2 1
D
-C

N
N
-6
4

co
nv

2
24

0
12
8

4
8

2
4
0
9
±
30

6
5
±
7

28
3
±
19

4
2
±
6

39
0
±
22

1.
1

co
nv

3
12
0

25
6

8
16

4
4
22

±
53

4
9
±
10

15
6
±
10

37
±
5

24
2
±
17

1.
7

1D
-C

N
N
-1
28

co
nv

2
24

0
25

6
8

16
2

79
4
±
10

8
6
8
±
7

56
0
±
30

4
7
±
3

6
74

±
30

1.
2

co
nv

3
12
0

51
2

16
32

4
14
16

±
21
5

4
7
±
10

4
0
8
±
29

59
±
6

51
4
±
32

2.
8

2D
-C

N
N
-6
4

co
nv

2
(1
6
,7
)

12
8

4
8

4
9
8
5
±
13
6

70
±
12

55
0
±
31

74
±
5

6
9
4
±
35

1.
4

co
nv

3
(8
,3

)
25

6
8

16
8

11
4
5
±
21
7

4
7
±
11

28
8
±
20

50
±
5

38
5
±
23

3.
0

2D
-C

N
N
-1
28

co
nv

2
(1
6
,7
)

25
6

8
16

4
21
73

±
4
14

75
±
12

8
56

±
51

79
±
4

10
10

±
54

2.
2

co
nv

3
(8
,3

)
51
2

16
32

16
4
25

1±
76

6
4
9
±
10

50
7
±
31

10
4
±
6

6
6
0
±
3
5

6
.4

In
th
e
se

co
nd

co
lu
m
n,

co
nv

ii
nd

ic
at
es

th
e
i-t
h
co

nv
ol
ut
io
na

ll
ay

er
in
th
e
ne

tw
or
k.
Th

e
th
re
e
co

lu
m
ns

fo
r#

(C
ip
he

rt
ex

ts
)c

or
re
sp

on
d
th
e
nu

m
b
er

n i
n
of

in
p
ut

ci
p
he

rt
ex

ts
,t
he

nu
m
b
er

n o
u
t
of

ou
tp
ut

ci
p
he

rt
ex

ts
,a
nd

th
e
nu

m
b
er

n P
of

in
p
ut

ci
p
he

rt
ex

ts
to

fi
ti
nt
o
a
si
ng

le
ci
p
he

rt
ex

t
fo
r
th
e
fa
st

ho
m
om

or
p
hi
c
co

nv
ol
ut
io
n
op

er
at
io
n.

Th
e
tim

in
g
re
su

lt
s
re
p
or
te
d
ar
e
m
ea

n
±
st
an

d
ar
d
d
ev

ia
tio

n
(s
.d
.)
fr
om

n
=
6
0
8
in
d
ep

en
d
en

t
sa
m
p
le
s
on

th
e
te
st

se
t.
Th

e
co

lu
m
n
fo
r
O
rd
in
ar
y
co

nv
ol
ut
io
n
g
iv
es

tim
in
g
fo
r
th
e
or
d
in
ar
y
ho

m
om

or
p
hi
c

co
nv

ol
ut
io
n
in

th
e
H
EA

R
sy
st
em

.T
hr
ee

co
lu
m
ns

fo
r
Fa

st
co

nv
ol
ut
io
n
co

rr
es

p
on

d
to

th
e
p
re
p
ro
ce

ss
in
g
st
ep

(f
us

in
g
d
iff
er
en

t
ci
p
he

rt
ex

t
in
to

a
si
ng

le
ci
p
he

rt
ex

t)
,t
he

or
d
in
ar
y
m
ul
ti-
ch

an
ne

lh
om

om
or
p
hi
c
co

nv
ol
ut
io
ns

ov
er

as
se

m
b
le
d
ci
p
he

rt
ex

ts
,a

nd
th
e

p
os

tp
ro
ce

ss
in
g
st
ep

(a
cc

um
ul
at
io
n
of

in
te
rm

ed
ia
te

co
nv

ol
ut
io
n
re
su

lt
s)
.T

he
to
ta
le

xe
cu

tio
n
tim

e
of

th
es

e
p
ro
ce

d
ur
es

is
g
iv
en

in
th
e
fo
llo

w
in
g
co

lu
m
n.

Th
e
la
st

co
lu
m
n
g
iv
es

a
sp

ee
d
up

of
th
e
fa
st

ho
m
om

or
p
hi
c
co

nv
ol
ut
io
n
ov

er
th
e
or
d
in
ar
y
ho

m
om

or
p
hi
c

co
nv

ol
ut
io
n.

Article https://doi.org/10.1038/s41467-022-32168-5

Nature Communications | (2022) 13:4799 5

memory usage during secure inference (Fig. 5d, e). The implementa-
tion of nGraph-HE2 consumes 98.5%–99.5% of the memory utilization
during homomorphic computation (376 GB on average). In particular,
the memory usage for the evaluation step in nGraph-HE2 showed a
similar tendency to increasing numbers of intermediate channels
during an unencrypted computation. In contrast, the implementation
of LoLa consumes 98.2%–99.7% of the memory utilization during
parameter encoding (547 GB on average). As a result, Fast-HEAR uses
97.8%–98.5% less space than nGraph-HE2 and LoLa, and therefore uses
a significantly less memory usage than they do. We remark that
nGraph-HE2 and LoLa have the same multiplicative circuit depths as
HEAR and Fast-HEAR, respectively. nGraph-HE2 and HEAR emulate an
unencrypted inference process using different network node encryp-
tion methods, so they have the same depth for secure inference. On
the other hand, Fast-HEAR requires one more plaintext-ciphertext
multiplication to put sparsely packed ciphertexts into a single
ciphertext in the 2nd and 3rd fast convolution than HEAR. Similarly,

LoLa requires one more plaintext-ciphertext multiplication after the
matrix-vector product (i.e., 2nd and 3rd convolutions) as the scattered
results of the product are packed into the same ciphertext and per-
formed together by the subsequent activation. As a result, we set the
same encryption parameters of nGraph-HE2 and LoLa as HEAR and
Fast-HEAR, respectively. As errors from homomorphic computations
are determined primarily by encryption parameters, nGraph-HE2 and
LoLa achieved the same classification performance on the test set as
our methods (Fig. 5f).

Other approaches are available for privacy-preserving deep
learning prediction that usesmulti-party computation (MPC) and their
combinations with HE29,30. These methods provide good latency but
assume the tolerance of intensive communication overhead, which is
not feasible in practice, because the number of bits that the parties
need to exchange during the MPC protocol is proportional to the
number of nodes in the neural network. Most of all, the systems are
interactive, so all participating parties should join the computation,

Fig. 4 | Experimental results of secure action recognition inference over var-
ious CNN networks. a Running time required to generate all required crypto-
graphic keys for secure computation. Data are presented asmean± s.d. from n = 20
independent experiments. b Running time for encoding the weight parameters.
Data are presented asmean ± s.d. from n = 20 independent experiments. c Average
running time for secure inferenceonn = 608 independent samples from the test set
over various neural network models. Boxplot displays the median values with the
first and third quartiles, and the whiskers boundaries extend to the largest and

smallest data values no more than 1.5 times the interquartile range (IQR) from the
corresponding hinge. d, e Average peak memory usage during execution of
homomorphic computation on the CNN-64 network models (d) and CNN-128
network models (e). Data are presented as mean ± s.d. of n = 20 independent
experiments. f Classification performance comparisons of the unencrypted and
encrypted models on the test set. g, h Confusion matrices of the unencrypted
computation (g) and Fast-HEAR system (h) on the test set over the 2D-CNN-128
network.

Article https://doi.org/10.1038/s41467-022-32168-5

Nature Communications | (2022) 13:4799 6

and this requirement demands an additional complicated setup.
Therefore, data providers should stay online during the entire proto-
col execution, and it is difficult to operate in reality. In our case, mul-
tiple values from input are encrypted as a single ciphertext and it is
enough to be transmitted once before secure computation. The
communication cost is proportional to the number of inputs, so our
solution is asymptotically more efficient in communication than those
other approaches. Contrary to MPC-based approaches, a service pro-
vider performs a large amount of work, and a client does not need to
be involved in the computation. Additionally, the hybrid protocols
require decryption of homomorphically encrypted ciphertexts after
linear computation, which can leak information about data. Instead,
our method provides end-to-end encryption and is allowed to decrypt

only the predicted result, so it does not leak any information
about data.

Discussion
Homomorphic encryption has recently attractedmuchattention in the
application of privacy-preserving Machine Learning as a Service
(MLaaS). In this paper, we address the real-world challenge in privacy-
preserving human action recognition by presenting a scalable and low-
latency HE-based system for secure neural network inference. Our
solution shows highly promising results for enhancing privacy-
preserving healthcare monitoring services for aging in place in a
cost-effective and reliable manner, which can have abundant social
and health value.

Fig. 5 | Comparison with state-of-the-art methods. a, b Boxplots display the
median values with the first and third quartiles, and the whiskers boundaries
represent the largest and smallest data values nomore than 1.5 times the IQR from
the corresponding hinge. Average running time for secure inferenceof nGraph-HE2
(from n = 10 independent experiments) and LoLa (from n = 50 independent sam-
ples) over various neural network models (a). Detailed average running time for
each step in secure inference of Fast-HEAR (from n = 50 independent samples),
nGraph-HE2 (from n = 10 independent experiments), and LoLa (from n = 50

independent samples) over the 2D-CNN-128 network (b). c Performance compar-
ison including secure inference throughput (samples per second). The fifth column
indicates the throughput increase from Fast-HEAR over nGraph-HE2. The last col-
umn indicates the latency speedup from Fast-HEAR over LoLa. d, e Average peak
memory usage during execution of homomorphic computation on the CNN-64
network models (d) and CNN-128 network models (e). Data are presented as
mean ± s.d. from n = 10 independent experiments. f Classification performance
comparisons of the models on the test set.

Article https://doi.org/10.1038/s41467-022-32168-5

Nature Communications | (2022) 13:4799 7

Our study was enabled by the synergistic combination of
machine-learning technologies and cryptographic development.
Although significant progress in the theory and practice of FHE has
been made towards improving efficiency in recent years, FHE-based
approaches are believed to have a key bottleneck to achieving prac-
tical performance and the cryptographic protocol is still regarded as
theoretical. However, theoretical breakthroughs in the HE literature
and a strong effort of the FHE community31 have enabled massive
progress and offered excellent potential for secure computation in a
wide range of real-world applications such asmachine learning24,27,28,32,
biomedical analysis33–35, private set intersection36, and private infor-
mation retrieval37.

Notably, iDASH (integrating Data for Analysis, Anonymization,
Sharing)38 has hosted a secure genome analysis competition over the
last decade, and practical yet rigorous solutions to real-world biome-
dical privacy challenges are being developed. Recently, FHE-based
machine-learning approaches39,40 have demonstrated the feasibility
and scalability of privacy-preserving genomic data analysis. We hope
that our study can provide a reference for the development of FHE-
based secure approaches.

In reality, different health-related events bear out different
weights for each individual. Clinical applications (i.e., stroke rehabili-
tation, Alzheimer’s disease monitoring) would benefit from different
action recognition tasks measured at different frequencies. Fall
recognition is one application of remote healthcare. A client (espe-
cially an elderly one who has comorbidities)may subscribe tomultiple
tasks; if so, theymustbedeployed acrossmultiple neural networks and
managed by the backend algorithms simultaneously. In a cloud-based
outsourced scenario, the user only needs to encrypt the data once
before outsourcing them, and the encrypted data can be used for
different tasks. This characteristic eliminates the need to reprogram
the end devices whenever the model providers tweak neural network
models, so the overhead of end-users is significantly reduced. As a
result, our solution can support multiple concurrent and hetero-
geneous tasks in elastic cloud computing with mitigated privacy risks
for end-users. Therefore, by secure outsourcing with HE, the archi-
tecture allows us to build a secure and privacy-preserving ecosystem
between algorithm developers and data owners.

The presented secure inference method is based on wide CNN
models.Non-detected fallmay lead to adeath, so further improvement
is required to improve the sensitivity of a classifier by increasing the
depth or width of the network, or using more complex network
models. Nevertheless, we expect that the proposed evaluation
approach canbe used for suchnetworks toprovide accurate inference.
However, depending on applications, the algorithm developers or
providers might not want to disclose their intellectual properties. For
example, a company trained a machine-learning model on sensitive
private data from their customers. To decrease the risk of data being
intercepted, damaged, or stolen, the clouds are provisioned with
encrypted prediction models to use as a classifier. We are foreseeing
that it can be addressed by adapting our secure inference method.
Another limitation is that the current CNN computation was manually
designed, heavily optimized, and carefully implemented by using the
structure of networks. An avenue for future research is to build a deep
learning computation protocol that exploits our findings, auto-
matically generates homomorphic tensor operations, and optimizes
the end-to-end performance.

Methods
Threat model
We consider the following threat models. First, we assume that all
parties are semi-honest (i.e., honest but curious); that is, they follow
the protocol and execute all steps correctly. The underlying HE
scheme is indistinguishable against chosen-plaintext attack (IND-CPA)
under the Ring Learningwith Errors assumption41. All computations on

the server are processed in encrypted form, so the server does not
learn anything about the user’s input due to the IND-CPA security of
HE. Therefore, we can ensure the confidentiality of data against the
cloud service provider. Second, secure authenticated channels are
required between end-users and cloud and between cloud and mon-
itoring service providers to prevent an attacker from tampering with
an encrypted user’s data or impersonating the cloud or themonitoring
service provider. Third, we assume that the monitoring service provi-
der is not allowed to collude with the cloud server. The cloud can
access the decrypted skeleton joints if they share data. Finally, we
remark that the CKKS scheme is secure against the key-retrieval attack
if plaintext results of decryption are revealed only to the secret-key
owner42. The decrypted results from the monitoring service provider
are not shared with any external party, so our protocol is secure
against the key-retrieval attack.

Notation
The binary logarithmwill be simply denoted by logð�Þ, and v[i] indicates
the i-th entry of the vector v. If two matrices A1 and A2 have the same
number of rows, (A1∣A2) denotes a matrix formed by horizontal con-
catenation. We use a row-major ordering map to transform a matrix in
Rd1 ×d2 into a a vector of dimension n =d1d2. More specifically, for a
matrix A= ðaijÞ 2 Rd1 × d2 , we define a bijective map vec : Rd1 ×d2 ! Rn

by vecðAÞ= ða11,a12, . . . ,a1d2
, . . . ,ad11

,ad12
, . . . ,ad1d2

Þ. The vectorization
can be extended to tensors. A tensor A 2 Rd1 ×d2 × d3 is simply inter-
preted as a vector in Rd1 �d2 �d3 by vecðAÞ= ðvecðA1Þ∣vecðA2Þ∣ . . . ∣
vecðAd1

ÞÞ, whereA‘ 2 Rd2 ×d3 is a matrix obtained by taking an index of
ℓ in the outermost dimension. The vectorization process matches a
method for storing tensors in the row-major order (i.e., the inner-most
dimension is contiguously stored).

Single-channel homomorphic convolutions
We start with a simple convolution of a single-input X in Rh ×w with a
single (fh × fw) filter and the stride parameters (sh, sw). The output of a
neuron in a convolutional layer can be computed as

zi,j = ∑
∣u∣≤ bf h=2c

∑
∣v∣ ≤ bf w=2c

xi�sh +u,j�sw + v � f u,v, ð1Þ

where xi,j and zi,j the input and output of the neuron located in row i
and column j, and fu,v represents the weight located at row u and
column v. Assume that the input channel is encrypted as a single
ciphertext in row-major order, i.e., it is converted into a 1D vector by
vectorization of a matrix and the resulting plaintext vector is
encrypted. As the convolution kernel slides along the input matrix,
we perform a dot product of the kernel with the input at each sliding
position. We can take advantage of SIMD computation to get
convolution results at all the positions at a time. This can be achieved
by simply computing fh ⋅ fw rotations of the encrypted input, multi-
plying each rotated ciphertext by a plaintext polynomial with the
weights of the filter, and adding the resulting ciphertexts. To be
specific, we have

xi�sh +u,j�sw + v = vecðXÞ½ði � sh +uÞ �w + j � sw + v�=ρu�w + vðvecðXÞÞ½i � sh �w+ j � sw�
ð2Þ

where ρℓ indicates a rotation operation to the left by ℓ positions, so
Equation (1) can be expressed as follows:

zi,j = ∑
∣u∣≤ bf h=2c

∑
∣v∣≤ bf w=2c

ðρu�w+ vðvecðXÞÞ½i � sh �w+ j � sw�Þ � f u,v ð3Þ

= ∑
∣u∣ ≤ bf h=2c

∑
∣v∣ ≤ bf w=2c

ρu�w+ vðvecðXÞÞ � f u,v
 !

½i � sh �w+ j � sw�: ð4Þ

Article https://doi.org/10.1038/s41467-022-32168-5

Nature Communications | (2022) 13:4799 8

Accordingly, the simple convolution on an input ciphertext ctX of
the input X can be computed by

HE�ConvðctX ,fpt:Fu,vgÞ= ∑
∣u∣≤ bf h=2c

∑
∣v∣≤ bf w=2c

MultPlainðρu�w+ vðctX Þ, pt:Fu,vÞ, ð5Þ

where pt. Fu,v are plaintext polynomials that have the weights of the
filters in appropriate locations, and MultPlain(ct, pt) denotes a multi-
plication of a plaintext pt to a ciphertext ct (Fig. 6a). It follows from
Equation (4) that the (i ⋅ sh ⋅w + j ⋅ sw)-th entry of the resulting cipher-
text is zi,j. We remark that Equation (5) can be applied to the 1D con-
volution by taking a filter size fh × fw as fh = 1.

Multi-channel homomorphic convolutions
The multi-channel convolution is represented as c filter banks fFj 2
Rc× f h × f w g on an input tensor X 2 Rc ×h×w (Fig. 6b). For 0 ≤ ℓ < c, let
Xℓ =Xℓ,:,: be the matrix obtained by taking an index of ℓ in the outer-
most dimension. For the sake of brevity, we assume that the input

tensorX is given as a ciphertext ct representing its vectorization. Then,
the homomorphic property yields

Dec
�
ρh�w�‘ðctÞ� ≈ ρh�w�‘ vecðXÞð Þ= vecðX‘Þ∣vecðX‘+ 1Þ∣ � � �∣vecðX‘+ c�1Þ

� �
,

ð6Þ

where the subscript index is modulo c. We start with the first convolu-
tion filter F0 = fF0‘ 2 Rf h × f w gc�1

‘=0 while taking into account the first h ⋅w
plaintext slots. The homomorphic convolution consists of two steps: (i)
Extra-rotation: the input ciphertext is rotated by multiples of h ⋅w, and
this action corresponds to a kernel-wise process and (ii) Intra-rotation:
at each rotating position ℓ, we perform a single-channel convolution on
the rotated ciphertext of the input channel Xℓ with the kernel F0ℓ, as in
Equation (5). We repeat the process for all the rotating positions and
sum up the results to generate a single-output channel. Only the first
h ⋅w entries for the convolution with F0 were used. If h ⋅w ⋅ c is less than
the maximum length of plaintext vectors from the encryption

Fig. 6 | Illustration of homomorphic 2D convolution operations.
aHomomorphic evaluation of ordinary 2D convolution with a kernel size of 3 and a
stride of 1. We denote by vec(⋅) a row-major vectorization, Enc(⋅) an encryption
function, ρℓ(⋅) a ciphertext rotation to the left by ℓ positions, and MultPlain a
plaintext-ciphertext multiplication. b Plain convolution algorithm of the feature
maps fFj = ðFjlÞc�1

l =0
2 Rc × fh × fw g0�j< c on an input X= fXi 2 Rh×wg0�i< c and an out-

put Y= fYi 2 Rh×wg0�i< c. Operation * indicates the multi-channel convolution.
c Homomorphic convolution algorithm. The input X is given as a fully packed

ciphertext ct, and pt:Fj = fpt:Fj,u,vgjuj�bfh=2c,jvj�bfw=2c
denotes a set of the plaintext

polynomials of the kernels F0,j, F1,j+1,…, Fc−1,j+c−1. Operation *s indicates the
parallelized ordinary convolution of a single-input channel with a single
kernel over encryption, where HE -ConvðctX,fpt:Fu,vgÞ=∑juj�bfh=2c∑jvj�bfw=2c
MultPlainðρu�w + vðctXÞ,pt:Fu,vÞ. d Preprocessing and postprocessing procedures for
fast homomorphic convolution. Colored entries in the preprocessing step are valid
values as the output responsemaps of the pooling layer; entries marked # are non-
valid values.

Article https://doi.org/10.1038/s41467-022-32168-5

Nature Communications | (2022) 13:4799 9

parameter setting, then we can pack together c distinct kernels of the
feature maps in plaintext slots and perform c ordinary convolutions
simultaneously in a SIMDmanner without additional cost; the resulting
ciphertext represents c output channels stacked together.

In general, a convolutional layer is parameterized by cin and cout,
which indicate the number of input channels and output channels. We
use �cin and �cout to denote the numbers of the input channels and
output channels to be packed into a single ciphertext, respectively.
Then the number of input ciphertexts and output ciphertexts are
nin = dcin=�cine and nout = dcout=�coute, respectively. Suppose that a
ciphertext cti represents the tensor input obtained by extracting from
the ð�cin � ði� 1Þ+ 1Þ-th channel to ðð�cin � iÞÞ-th channel. For j = 1, 2…, nout,
the multi-channel convolution of the j-th output block can be securely
computed by

HE�Convjðct1, . . . ,ctnin
,fpt:Fi,j,k,‘gÞ= ∑

1≤ i ≤nin

∑
0≤ ‘<�cin

HE�Convðρdist�‘ðctiÞ,fpt:Fi,j,k,‘gÞ

ð7Þ

= ∑
1 ≤ i≤nI

∑
0≤ ‘<�cin

∑
∣k∣≤ f

MultPlainðρrk + dist�‘ðctiÞ,pt:Fi,j,k,‘Þ, ð8Þ

where f is defined as (1 + 2 ⋅ ⌊fh/2⌋) ⋅ (1 + 2 ⋅ ⌊fw/2⌋), pt. Fi,j,k,ℓ are plaintext
polynomials that have the weights of the filters in appropriate loca-
tions, dist indicates the distance of two adjacent channels over plain-
text slots (e.g., dist = h ⋅w in Fig. 6b), rk denotes a rotation amount for
the ordinary convolution (e.g., rk = u ⋅w + v in Equation (5)). To be
precise, the output ciphertext represents from the ð�cout � ðj � 1Þ+ 1Þ-th
output channel to the ðð�cout � jÞÞ-th output channel, so that the output
channels are stored in row-major order over all the ciphertexts.

Fast homomorphic convolutions
We propose a fast homomorphic convolution operation that uses the
merge-and-conquer method, which extensively uses components that
have non-valid values of input ciphertexts to exploit the SIMD paral-
lelism of computation. We take into account convolution operations
that take as inputpunctured ciphertexts,which is a typical case inCNN.
For a convolutional layer with cout feature maps of size cin, we achieve
this in three steps. We assume that each input ciphertext has valid
values of c input channels. (i)Wemultiply the output ciphertexts of the
pooling layer by a constant zero-one plaintext vector to annihilate the
junk entries marked # in Fig. 6c. As mentioned above, these non-valid
entries are derived from rotations for the pooling operation. We then
rotate each ciphertext by an appropriate amount and sum up all the
resulting ciphertexts to obtain a ciphertext that contains all the valid
entries of the response maps of the pooling. This procedure can be
seen as a homomorphic concatenation of the sparsely packed
ciphertexts of output channels from the pooling layer. We define the
load number nP as the number of ciphertexts to fit into a single
ciphertext in the preprocessing step. Then we need nP plaintext-
ciphertext multiplications and (nP − 1) rotations to bring them toge-
ther. Now each output ciphertext contains (c ⋅ nP) valid values. (ii) We
then conduct the ordinary homomorphic convolution with cin/(c ⋅ nP)
input ciphertexts, in which each ciphertext contains (c ⋅ nP) inter-
mediate convolution results. (iii)We sum these results across plaintext
slots to get c output channels from (c ⋅ nP) intermediate results. It can
be done by doing precisely the opposite of the first step, that is, per-
forming (nP − 1) rotations with the same amounts of the first step in the
reversedirection. Furthermore,wecan reduce the number of rotations
down to dlognPe rotations by accumulating them with recursive
rotate-and-sum operations (Supplementary Note 2).

Non-convolutional layers
Previous studies24,28 collapsed adjacent linear layers such as convolu-
tion and pooling layers. We observe that the following layers can be
collapsed while maintaining the same network structure: addition of a

bias term in convolution operation, BN, polynomial activation, and
scaling operation of the average pooling. We can adjust these para-
meters during the training phase, so they can be precomputed before
secure inference. As a result, the collapsed layers become a polynomial
evaluation per feature map, which applies to the elements of the same
feature map in a SIMD manner. After feature extraction, the final cin
outputs are fed into a FC layerwith cout output neurons. LetW and v be
the cout × cin weightmatrix and length-cin data vector, respectively. The
input vector v is split into sub-strings with the same length c = 16, i.e., it
is given asmultiple ciphertexts (each of which has c values of the input
vector in a sparse way). To align with this format, we split the original
matrixW into (cout × c)-sized smaller blocks and perform computation
on the sub-matrices. Consequently, the output ciphertext has cout
predicted results (Supplementary Note 3).

Data encryption
The CKKS cryptosystem supports homomorphic operations only on
encrypted vectors, so an input tensor needs to be converted into
such a plaintext format. Let N2 = N/2, which is the maximum length
of plaintext vector from the encryption parameter setting. We
denote by PoT(x) the smallest power-of-two integer that is greater
than or equal to x. J is the number of skeleton joints in each frame
and T is the number of frames of the skeleton sequence. Using the
estimated skeleton joints of size 2 × T × J, each 2D channel of size
T × J is converted to a 1D vector in row-major order. Then it is zero-
padded on the right to make the size of the vector as a power-of-
two, so that N2 is divisible by the vector size. One way to encrypt the
input tensor is to generate a ciphertext that holds the concatenation
of the two converted vectors. Alternatively, we stack asmany copies
of the input tensor as possible while interlacing the input channels,
so that we can fully exploit the plaintext space for homomorphic
computation. Afterward, we encrypt it as a fully packed ciphertext,
then feed the generated ciphertexts into the CNN evaluation. We
remark that if we do not pad with extra zero entries and make as
many copies of the input, then the resulting plaintext vector has
zeros in the last few entries, so those positions have different
rotation results.

Algorithmic and cryptographic optimizations
We employ the residue number system (RNS) variant of the CKKS
scheme43 to achieve efficiency of homomorphic operations. We first
reformulate homomorphic convolution by applying the idea of the
baby-step/giant-step algorithm44. Permutations on plaintext slots
enable us to interact with values located in different plaintext slots;
however, these operations are relatively expensive, so we aim to ela-
borate on the efficient implementation of Equation (8) to reduce the
number of rotations by using the identity ρa+b = ρa ∘ ρb = ρb ∘ ρa for any
integers a and b. (i) Full-step strategy: We precompute all the rotated
ciphertexts of the form ρrk + dist�‘ðctiÞ and perform plaintext-ciphertext
multiplications by pt. Fi,j,k,ℓ. (ii) Giant-step strategy: Equation (8) can be
reformulated as

∑
k
ρrk ∑

i,‘
MultPlain ρdist�‘ðctiÞ

�
,ρ�rk ðpt:Fi,j,k,‘Þ

� �
: ð9Þ

This method is to precompute the rotated giant ciphertexts
ρdist⋅ℓ(cti)’s for i and ℓ, performplaintext-ciphertextmultiplications, sum
up the product results, and perform the evaluation of the rotation ρrk .
(iii) Baby-step strategy: The equation can be expressed as

∑
‘
ρdist�‘ ∑

i,k
MultPlain ρrk ðctiÞ,ρ�dist�‘ðpt:Fi,j,k,‘Þ

� �� �
: ð10Þ

Therefore, one can precompute the rotated baby ciphertexts
ρrk ðctiÞ’s for i and k, aggregate the products, and perform the

Article https://doi.org/10.1038/s41467-022-32168-5

Nature Communications | (2022) 13:4799 10

evaluation of the rotation ρdist⋅ℓ. In practice, the evaluation strategies
show different running time tendencies depending on the number of
input/output ciphertexts (Supplementary Table 1 and Supplemen-
tary Fig. 2).

We adopt three cryptographic optimizations for homomorphic
computation: (i)Hoistingoptimization:One can compute the common
part of multiple rotations on the same input ciphertext. We note that
we can benefit from the hoisting optimization to reduce the com-
plexity of multiple rotations on the same input ciphertext. That is, we
can compute only once the common part that involves the computa-
tion of the number theoretic transformation (NTT) conversion on the
input. As a result, the required number of NTT conversions can be
reduced from k to 1 if we use hoisting optimization on k rotations of a
ciphertext instead of applying each one separately. The hoisting
technique is exploited for homomorphic convolution operations. (ii)
Lazy-rescaling: Rescaling is not necessary after every multiplication.
For instance, when evaluating Equation (8), we can first compute
products between plaintext polynomials and ciphertexts, sum up all
the resulting ciphertexts, and perform the rescaling operation only
once to adjust the scaling factor of the output ciphertext. (iii) Level-
aware model parameter encoding: When using plaintext polynomials
of the trained model parameters, only a small subset of polynomial
coefficients is needed for computation (Supplementary Fig. 1).

Experimental setting
Our experiments were conducted on amachine equippedwith an Intel
Xeon Platinum 8268 2.9 GHz CPU with a 16-thread environment. Our
source code is developed by modifying Microsoft SEAL version 3.445,
which implements the RNS variant of the CKKS scheme. All experi-
ments used encryption parameters to ensure 128 bits of security
against the known attacks on the LWE problem from the LWE
estimator46 and HE security standard white paper47 (Supplementary
Table 2).

Training
Weused StochasticGradientDecent (SGD)optimizerwith amini-batch
size of 64, a momentum of 0.9, and a weight decay of 5e−4 to train the
model for 200 epochs. The initial learning rate was set to 0.05 with a
decay of 0.1.

Data preprocessing
The coordinate values for joints that were not detected or were
detected with low probability were set as zero. For the frame selection
mechanism,we calculate the Euclideandistance for the corresponding
joint location for two consecutive frames.We calculate themeanof the
distances to calculate the interchangeability score for the frames. If the
score is below thepredefined threshold of 5, the frame isdroppeduntil
we reach the required number of selected frames. This mechanism
ensures that the action recognition network is independent of the
frame per second (FPS) rate of the video camera.

First, the skeleton joints of each frame is encoded to 2D coordi-
nates. Then, the joint location values are normalized separately for the
two coordinates by applying the min-max normalization method. The
normalization ensures that the action recognition network can work
independently of body size or distance to the camera. Afterward, the
coordinates of all joint coordinates in each frame are separately con-
catenated in a way that the spatial structure of each frame is repre-
sented as rows and the temporal dynamics across the frames in a video
is encoded as changes in columns. Finally, 32 frames are selected to
generate a 3D tensor of size 2 × 32 × 15.

Theoretical comparison to prior work
Throughput-optimizedmethods such as CryptoNets and nGraph-HE2
require O(fh ⋅ fw ⋅ h ⋅w ⋅ cin ⋅ cout) plaintext-ciphertext multiplications

to homomorphically evaluate a convolutional layer of kernel size
(fh × hw) with cout feature maps on a (cin × h ×w)-sized input. In LoLa,
the first convolutional layer is implemented using a restricted linear
operation. Tobe precise, given aweight vectorw = (wj) of length r and
an input data vector v = (vk), there exists a set of permutations σi such
that the i-th output of the linear transformation is ∑1 ≤ j ≤ rwjvσiðjÞ.
Therefore, the output can be computed using r plaintext-ciphertext
multiplications with r ciphertexts of ðvσiðjÞÞ. In general, assuming that
the entries of the data vector are encrypted as a single ciphertext, the
network input is represented as r = fh ⋅ fw ⋅ cin ciphertexts to perform
2D convolutions using r plaintext-ciphertext multiplications. The
subsequent convolutional layers are represented as a series of dot-
products between input neurons and one channel of size fh ⋅ fw ⋅ cin,
each requiring Oðlog2ðfh � f w � cinÞÞ homomorphic operations.
This process is repeated as many times as the number of output
channels in the layer, so it imposes a complexity of Oðh �w�
cout � log2ðfh � fw � cinÞÞ. Meanwhile, Fast-HEAR requires O(fh ⋅ fw ⋅ cin ⋅
cout) plaintext-ciphertext multiplications.

Related work
In other recent work, the TFHE scheme14 was used for secure neural
network inference on Boolean circuits48. However, it is relatively slow
for integer arithmetic, and is therefore not practically applicable in
large neural networks for time-sensitive tasks. In the SHE system32, the
ReLU and max-pooling are expressed as Boolean operations and
implemented by the TFHE homomorphic Booleangates. Although SHE
achieves state-of-the-art inference accuracy on the CIFAR-10 dataset, it
requires thousands of seconds to make inference on an encrypted
image. The most relevant studies are LoLa28, CHET49, and EVA50, which
use the ciphertext packing method to represent multiple values from
network nodes as the same ciphertext. In LoLa, the convolutional layer
is expressed as a restricted linear operation or matrix-vector multi-
plication, which requires a substantial number of rotations for an
evaluation of convolution operations. In an orthogonal direction,
CHET and EVA are FHE-based optimizing compilers to ease the task of
making secure predictions by simplifying neural networks to homo-
morphic circuits. Their general-purpose solutions cannot fully take
advantage of advanced techniques of FHE, and therefore may not be
optimal for all tasks in either time or space. In contrast to their gen-
eralized approach, we come up with an efficient method to perform
CNN evaluation by investigating the structure of CNN models and
expressing required operations in an HE-compatible manner. In par-
ticular, our approach is efficient in computation complexity by
exploiting the plaintext space and performing homomorphic con-
volutions in parallel.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The ADL data are available from the J-HMDB (http://jhmdb.is.tue.mpg.
de). The fall action class data are available from the URFD (http://fenix.
univ.rzeszow.pl/mkepski/ds/uf.html) and Multicam (http://www.iro.
umontreal.ca/labimage/Dataset/). The dataset used for pretrain is
available at MPII Human Pose dataset (http://human-pose.mpi-inf.
mpg.de). The raw data used for secure inference in this study are
publicly available at https://github.com/K-miran/HEAR51. Source data
are provided as a Source Data File. Source data are provided with
this paper.

Code availability
The software code of the secure CNN inference is publicly available at
https://github.com/K-miran/HEAR51.

Article https://doi.org/10.1038/s41467-022-32168-5

Nature Communications | (2022) 13:4799 11

http://jhmdb.is.tue.mpg.de
http://jhmdb.is.tue.mpg.de
http://fenix.univ.rzeszow.pl/mkepski/ds/uf.html
http://fenix.univ.rzeszow.pl/mkepski/ds/uf.html
http://www.iro.umontreal.ca/labimage/Dataset/
http://www.iro.umontreal.ca/labimage/Dataset/
http://human-pose.mpi-inf.mpg.de
http://human-pose.mpi-inf.mpg.de
https://github.com/K-miran/HEAR
https://github.com/K-miran/HEAR

References
1. National Institute on Aging. Aging in place. https://www.nia.nih.

gov/health/topics/aging-place National Institute on Aging (2022).
2. Alwan, M. et al. Impact of monitoring technology in assisted living:

outcome pilot. IEEE Trans. Inform.Technol. Biomed. 10,
192–198 (2006).

3. Scanaill, C. N. et al. A review of approaches to mobility tele-
monitoring of the elderly in their living environment. Ann. Biomed.
Eng. 34, 547–563 (2006).

4. Berger, B. & Cho, H. Emerging technologies towards enhancing
privacy in genomic data sharing. Genome Biol. 20, 1–3 (2019).

5. Kaissis, G. A., Makowski, M. R., Rückert, D. & Braren, R. F. Secure,
privacy-preserving and federated machine learning in medical
imaging. Nat. Machine Intell. 2, 305–311 (2020).

6. Jiang, X., Kim, M., Lauter, K., Scott, T. & Shams, S. in Protecting
Privacy through Homomorphic Encryption. 87–95 (Springer, 2021).

7. Du, Y., Wang, W. & Wang, L. Hierarchical recurrent neural network
for skeleton based action recognition. In Proc. IEEE Conference on
Computer Vision and Pattern Recognition, 1110–1118 (IEEE, 2015).

8. Shahroudy, A., Liu, J., Ng, T.-T. &Wang, G. Ntu rgb+ d: A large scale
dataset for 3d human activity analysis. In Proc. IEEE Conference on
Computer Vision and Pattern Recognition, 1010–1019 (IEEE, 2016).

9. Song, S., Lan, C., Xing, J., Zeng, W. & Liu, J. An end-to-end spatio-
temporal attention model for human action recognition from ske-
letondata. In Proc. AAAI Conference onArtificial Intelligence, Vol. 31
(AAAI Press, 2017).

10. Cao, Z., Simon, T., Wei, S.-E. & Sheikh, Y. Realtime multi-person 2d
pose estimation using part affinity fields. In Proc. IEEE Conference
onComputer Vision andPatternRecognition, 7291–7299 (IEEE, 2017).

11. He, K., Gkioxari, G., Dollár, P. & Girshick, R. Mask r-cnn. In Proc. IEEE
International Conference on Computer Vision, 2961–2969
(IEEE, 2017).

12. Sun, K., Xiao, B., Liu, D. & Wang, J. Deep high-resolution repre-
sentation learning for human pose estimation. In: Proc. IEEE Con-
ference on Computer Vision and Pattern Recognition, 5693–5703
(IEEE, 2019).

13. Brakerski, Z., Gentry, C. & Vaikuntanathan, V. (Leveled) fully
homomorphic encryption without bootstrapping. In Proc. of ITCS,
309–325 (ACM, 2012).

14. Chillotti, I., Gama, N., Georgieva, M. & Izabachène, M. Faster fully
homomorphic encryption: Bootstrapping in less than 0.1 seconds.
In Advances in Cryptology–ASIACRYPT 2016: 22nd International
Conference on the Theory and Application of Cryptology and
Information Security, 3–33 (Springer, 2016).

15. Cheon, J. H., Kim, A., Kim, M. & Song, Y. Homomorphic encryption
for arithmetic of approximate numbers. In Advances in
Cryptology–ASIACRYPT 2017: 23rd International Conference on the
Theory and Application of Cryptology and Information Security,
409–437 (Springer, 2017).

16. Fan, J. & Vercauteren, F. Somewhat practical fully homomorphic
encryption. Cryptology ePrint Archive, Report 2012/144. https://
eprint.iacr.org/2012/144 (2012).

17. Smart, N. P. & Vercauteren, F. Fully homomorphic SIMDoperations.
Design Codes Cryptogr. 71, 57–81 (2014).

18. Jhuang, H., Gall, J., Zuffi, S., Schmid, C. & Black, M. J. Towards
understanding action recognition. In Proc. IEEE International Con-
ference on Computer Vision, 3192–3199 (IEEE, 2013).

19. Kwolek, B. & Kepski, M. Human fall detection on embedded plat-
form using depth maps and wireless accelerometer. Comput.
Method. Program. Biomed. 117, 489–501 (2014).

20. Auvinet, E., Rougier, C., Meunier, J., St-Arnaud, A. & Rousseau, J.
Multiple cameras fall dataset. DIRO-Université de Montréal, Tech.
Rep 1350 (2010).

21. Andriluka, M., Pishchulin, L., Gehler, P. & Schiele, B. 2D humanpose
estimation: New benchmark and state of the art analysis. In Proc.

IEEE Conference on Computer Vision and Pattern Recognition,
3686–3693 (IEEE, 2014).

22. Du, Y., Fu, Y. & Wang, L. Skeleton based action recognition with
convolutional neural network. In 2015 3rd IAPR Asian Conference
on Pattern Recognition (ACPR), 579-583 (IEEE, 2015).

23. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image
recognition. In Proc. IEEE Conference on Computer Vision and
Pattern Recognition, 770–778 (IEEE, 2016).

24. Gilad-Bachrach, R. et al. Cryptonets: Applying neural networks to
encrypteddatawith high throughput andaccuracy. In International
Conference on Machine Learning, 201–210 (PMLR, 2016).

25. LeCun, Y. The MNIST Database of Handwritten Digits. http://yann.
lecun.com/exdb/mnist/ (1998).

26. Boemer, F., Lao, Y., Cammarota, R. & Wierzynski, C. nGraph-HE: a
graph compiler for deep learning on homomorphically encrypted
data. In Proc. 16th ACM International Conference on Computing
Frontiers, 3–13 (ACM, 2019).

27. Boemer, F., Costache, A., Cammarota, R. & Wierzynski, C. nGraph-
HE2: Ahigh-throughput framework for neural network inferenceon
encrypted data. In Proc. 7th ACM Workshop on Encrypted Com-
puting & Applied Homomorphic Cryptography, 45–56 (ACM, 2019).

28. Brutzkus, A., Gilad-Bachrach, R. & Elisha, O. Low latency privacy
preserving inference. In International Conference on Machine
Learning, 812–821 (PMLR, 2019).

29. Juvekar, C., Vaikuntanathan, V. &Chandrakasan, A.GAZELLE: A low
latency framework for secure neural network inference. In 27th
USENIX Security Symposium (USENIX Security 18), 1651–1669
(USENIX Association, 2018).

30. Liu, J., Juuti, M., Lu, Y. & Asokan, N.Oblivious neural network pre-
dictions via minionn transformations. In Proc. 2017 ACM SIGSAC
Conference on Computer and Communications Security, 619–631
(ACM, 2017).

31. Homomorphic encryption standardization (HES). https://
homomorphicencryption.org HES (2022).

32. Lou,Q.& Jiang, L. SHE: A fast andaccuratedeepneural network for
encrypteddata.Adv. Neural Inform. Process. Syst.32, https://arxiv.
org/abs/1906.00148 (2019).

33. Cheon, J. H., Kim, M. & Lauter, K. Homomorphic computation of
edit distance. In International Conference on Financial Crypto-
graphy and Data Security, 194–212 (Springer, 2015).

34. Froelicher, D. et al. Truly privacy-preserving federated analytics for
precisionmedicine withmultiparty homomorphic encryption.Nat.
Commun. 12, 5910 (2021).

35. Kim, M. et al. Ultrafast homomorphic encryption models enable
secure outsourcing of genotype imputation. Cell Syst. 12,
1108–1120.e4 (2021).

36. Cong, K. et al. Labeled PSI from homomorphic encryption with
reduced computation and communication. In Proc. 2021 ACM
SIGSAC Conference on Computer and Communications Security,
1135–1150 (ACM, 2021).

37. Ali, A. et al. Communication-Computation trade-offs in PIR. In 30th
USENIX Security Symposium (USENIX Security 21), 1811–1828
(USENIX Association, 2021).

38. iDASH (integrating Data for Analysis, Anonymization, Sharing)
privacy & security workshop - secure genome analysis
competition. http://www.humangenomeprivacy.org/
iDASH (2022).

39. Kim, A., Song, Y., Kim,M., Lee, K. & Cheon, J. H. Logistic regression
model training based on the approximate homomorphic encryp-
tion. BMC Med. Genom. 11, 83 (2018).

40. Kim, M., Song, Y., Li, B. & Micciancio, D. Semi-parallel logistic
regression for GWAS on encrypted data. BMC Med. Genom. 13,
1–13 (2020).

41. Lyubashevsky, V., Peikert, C. & Regev, O. On ideal lattices and
learning with errors over rings. In Annual International Conference

Article https://doi.org/10.1038/s41467-022-32168-5

Nature Communications | (2022) 13:4799 12

https://www.nia.nih.gov/health/topics/aging-place
https://www.nia.nih.gov/health/topics/aging-place
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://homomorphicencryption.org
https://homomorphicencryption.org
https://arxiv.org/abs/1906.00148
https://arxiv.org/abs/1906.00148
http://www.humangenomeprivacy.org/

on the Theory and Applications of Cryptographic Techniques, 1–23
(Springer, 2010).

42. Li, B. & Micciancio, D. On the security of homomorphic encryption
on approximate numbers. In Annual International Conference on
the Theory andApplications ofCryptographic Techniques, 648–677
(Springer, 2021).

43. Cheon, J. H., Han, K., Kim, A., Kim, M. & Song, Y. A. full RNS variant
of approximate homomorphic encryption. In International Con-
ference on Selected Areas in Cryptography, 347–368
(Springer, 2018).

44. Halevi, S. & Shoup, V. Faster homomorphic linear transformations
in HElib. In Annual International Cryptology Conference, 93–120
(Springer, 2018).

45. Microsoft Research. Microsoft SEAL (release 3.4). https://github.
com/Microsoft/SEAL (2019). Microsoft Research, Redmond, WA.

46. Albrecht, M. R., Player, R. & Scott, S. On the concrete hardness of
learning with errors. J. Math. Cryptol. 9, 169–203 (2015).

47. Albrecht, M. et al. Homomorphic encryption security standard.
Tech. Rep., HomomorphicEncryption.org, Toronto, Canada (2018).

48. Bourse, F., Minelli, M., Minihold, M. & Paillier, P. Fast homomorphic
evaluation of deep discretized neural networks. In Annual Inter-
national Cryptology Conference, 483–512 (Springer, 2018).

49. Dathathri, R. et al. CHET: an optimizing compiler for fully-
homomorphic neural-network inferencing. In Proc. 40th ACM
SIGPLAN Conference on Programming Language Design and
Implementation, 142–156 (ACM, 2019).

50. Dathathri, R. et al. Eva: An encrypted vector arithmetic language
andcompiler for efficient homomorphic computation. In Proc. 41st
ACM SIGPLAN Conference on Programming Language Design and
Implementation, 546–561 (ACM, 2020).

51. Kim, M., Jiang, X., Lauter, K., Ismayilzada, E. & Shams, S. Secure
human action recognition by encrypted neural network inference,
HEAR (release 1.0.0), https://doi.org/10.5281/zenodo.
6820564 (2022).

Acknowledgements
This work of M.K. and E.I. was supported by Basic Science Research
Program through the National Research Foundation of Korea(NRF) fun-
ded by the Ministry of Education (No.2021R1C1C101017312). X.J. is CPRIT
Scholar inCancer Research (RR180012), and hewas supported in part by
Christopher Sarofim Family Professorship, UT Stars award, UTHealth
startup, the National Institutes of Health (NIH) under award number
R13HG009072 and R01AG066749-S1.

Author contributions
All authors designed the secure action recognition scenario. M.K. and
S.S. conceived the methodology. M.K., E.I., and S.S. implemented the
software. M.K. conducted the benchmarking experiments and super-
vised the work. All authors wrote the manuscript and approved the final
manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary informationTheonline version contains supplementary
material available at
https://doi.org/10.1038/s41467-022-32168-5.

Correspondence and requests for materials should be addressed to
Miran Kim or Shayan Shams.

Peer review information Nature Communications thanks Ximeng Liu
and the other, anonymous, reviewer(s) for their contribution to the peer
review of this work. Peer reviewer reports are available.

Reprints and permission information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

Article https://doi.org/10.1038/s41467-022-32168-5

Nature Communications | (2022) 13:4799 13

https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL
https://doi.org/10.5281/zenodo.6820564
https://doi.org/10.5281/zenodo.6820564
https://doi.org/10.1038/s41467-022-32168-5
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Secure human action recognition by encrypted neural network inference
	Results
	Overview of HEAR
	Innovation of HEAR
	Dataset
	Network architecture for action recognition
	Homomorphic convolution benchmark
	Time requirement of secure action recognition
	Memory requirements of secure action recognition
	Communication cost
	Classification performance
	Comparison to prior work

	Discussion
	Methods
	Threat model
	Notation
	Single-channel homomorphic convolutions
	Multi-channel homomorphic convolutions
	Fast homomorphic convolutions
	Non-convolutional layers
	Data encryption
	Algorithmic and cryptographic optimizations
	Experimental setting
	Training
	Data preprocessing
	Theoretical comparison to prior work
	Related work
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

