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Abstract— Stochastic multiarmed bandits (stochastic MABs)1

are a problem of sequential decision-making with noisy rewards,2

where an agent sequentially chooses actions under unknown3

reward distributions to minimize cumulative regret. The majority4

of prior works on stochastic MABs assume that the reward5

distribution of each action has bounded supports or follows light-6

tailed distribution, i.e., sub-Gaussian distribution. However, in a7

variety of decision-making problems, the reward distributions8

follow a heavy-tailed distribution. In this regard, we consider9

stochastic MABs with heavy-tailed rewards, whose pth moment10

is bounded by a constant ν p for 1 < p ≤ 2. First, we provide11

theoretical analysis on sub-optimality of the existing exploration12

methods for heavy-tailed rewards where it has been proven13

that existing exploration methods do not guarantee a minimax14

optimal regret bound. Second, to achieve the minimax optimality15

under heavy-tailed rewards, we propose a minimax optimal16

robust upper confidence bound (MR-UCB) by providing tight17

confidence bound of a p-robust estimator. Furthermore, we also18

propose a minimax optimal robust adaptively perturbed explo-19

ration (MR-APE) which is a randomized version of MR-UCB.20

In particular, unlike the existing robust exploration methods, both21

proposed methods have no dependence on ν p. Third, we provide22

the gap-dependent and independent regret bounds of proposed23

methods and prove that both methods guarantee the minimax24

optimal regret bound for a heavy-tailed stochastic MAB problem.25

The proposed methods are the first algorithm that theoretically26

guarantees the minimax optimality under heavy-tailed reward27

settings to the best of our knowledge. Finally, we demonstrate28

the superiority of the proposed methods in simulation with Pareto29

and Fréchet noises with respect to regrets.30

Index Terms— Heavy-tailed noise, mini-max optimality, multi-31

armed bandits (MABs), regret analysis.32

I. INTRODUCTION33

ASTOCHASTIC multiarmed bandit (stochastic MAB) is34

a fundamental decision-making problem under uncertain35

environment. In this problem, an intelligent agent selects an36

action among a set of K actions and receives a noisy reward37

corresponding to the selected action. Then, the goal of the38

agent is to find an optimal action, whose expected reward is the39

maximum, over total rounds T . However, due to the noise in40

rewards, the agent needs estimation of true expected rewards.41
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Hence, the agent should explore entire set of actions includ- 42

ing suboptimal one to obtain accurate estimations; however, 43

selecting suboptimal actions for exploration will make the 44

agent lose a large amount of rewards compared to an optimal 45

one. In this regard, the agent faces a natural dilemma between 46

exploration and exploitation: collecting more information to 47

estimate rewards accurately (exploration) and selecting the 48

best action based on experiences (exploitation). 49

The exploration methods should carefully balance this 50

dilemma to efficiently find an optimal action. Specifically, 51

efficiency of exploration methods can be measured by a 52

cumulative regret which is defined as an expected cumulative 53

difference between the maximum rewards and the expected 54

reward of selected actions. Hence, the smaller the regret, the 55

more efficient the algorithm. Most exploration methods have 56

conducted regret analysis to guarantee their efficiency. Espe- 57

cially, the majority of researches have assumed that the noise 58

of rewards follows sub-Gaussian distribution whose tail prob- 59

ability is dominated by the tail of Gaussian distribution. Under 60

the sub-Gaussian assumption, it is well known that, for any 61

algorithm, the gap-independent cumulative regret cannot be 62

lower than �(
√

K T ) [1]. Several approaches have been pro- 63

posed to achieve the gap-independent lower bound �(
√

K T ), 64

which is called a minimax optimal [2], [3], [4], [5], [6]. 65

While many methods have been studied under sub- 66

Gaussian noise, there still needs developing a robust explo- 67

ration method to address real-world problems which are 68

not covered by sub-Gaussian assumptions. However, few 69

researches have investigated the stochastic MAB problem 70

under heavy-tailed noise whose pth moment is bounded 71

by a constant νp. In general, heavy-tailed noise covers 72

wider range of noise distributions than sub-Gaussian noise. 73

Bubeck et al. [7] have first addressed the heavy-tailed noise 74

in a bandit problem by proposing a robust upper confi- 75

dence bound (robust UCB) whose gap-independent regret is 76

O((K ln(T )1−1/p T 1/p). Furthermore, Bubeck et al. [7] have 77

shown that, for any algorithm, the worst case cumulative regret 78

cannot be lower than �(K 1−1/pT 1/p) under heavy-tailed noise 79

assumptions. To achieve the lower bound, Lee et al. [8] have 80

proposed perturbation-based explorations called APE2 which 81

has achieved O(K 1−1/p T 1/p ln(K )) regret bound that is opti- 82

mal only with respect to T but is still suboptimal with respect 83

to K as factor ln(K ). Furthermore, Wei and Srivastava [9] have 84

proposed minimax optimal strategy by modifying the upper 85

confidence bound of the truncated mean estimator, but the 86

truncated mean estimator requires the prior knowledge about 87

νp, which is not desirable for the bandit setting that assumes 88

no prior knowledge about reward distributions. In this regard, 89

we develop the minimax optimal exploration for heavy-tailed 90

rewards without using the problem-dependent knowledge, νp. 91
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In this article, we propose a true minimax optimal explo-92

ration method which can guarantee �(K 1−1/pT 1/p) regret93

bound without using the prior information of νp. To remove94

the dependency of νp, we employ a robust estimator which95

is proposed in our prior work [8]. In [8], we have pro-96

posed the robust estimator, called a p-robust estimator, whose97

error probability decays exponentially fast while it does not98

depend on νp. More specifically, the error probability follows99

O(exp(−n1−1/p�)) where n is the number of sample and �100

is an error bound we consider. Note that the proposed robust101

mean estimator has worse decaying rate than other existing102

robust mean estimators, which have O(exp(−n� p/(p−1))), but103

it does not require prior information about νp while other104

estimators essentially need νp to guarantee the decaying105

rate O(exp(−n� p/(p−1))). Since the p-robust estimator has106

worse decaying rate, naíve UCB style exploration with the107

p-robust estimator shows suboptimal regret bound while it108

can remove dependency on νp. Hence, to reduce the regret109

bound, we modify the confidence bound of p-robust esti-110

mator by borrowing a technique in MOSS [10]. Further-111

more, we also extend modified upper confidence bound to112

the perturbation-based exploration and we derive the condi-113

tion of perturbation for the minimax optimality. From the114

theoretical results in Lee et al. [8], we first prove that the115

unbounded perturbation, whose supporting set is unbounded,116

cannot achieve the minimax optimality since ln(K ) factor117

cannot be removed. However, we also prove that we should118

employ a bounded perturbation to reduce the sup-optimal119

factor ln(K ). We finally propose a randomized version of120

robust UCB for the minimax optimality by combining the121

bounded perturbation method and modified confidence bound.122

We believe that the proposed methods can be extended into fur-123

ther structured bandit problems such as [11], [12], [13], [14],124

[15], [16], [17], and [18]. Our contribution can be summarized125

as follows.126

1) We analyze that robust UCB and perturbation-based127

exploration cannot achieve the minimax optimality.128

Especially, unbounded perturbation cannot remove the129

suboptimal factor ln(K ).130

2) For the minimax optimality, we propose a mod-131

ified upper confidence bound and prove that its132

gap-independent regret bound can matches to the lower133

bound �(K 1−1/pT 1/p). Hence, the modified upper con-134

fidence bound method is minimax optimal.135

3) We also propose a bounded perturbation method by136

combining with the modified upper confidence bound137

and prove that its gap-independent bound also matches138

to the lower bound �(K 1−1/pT 1/p). Thus, the proposed139

bounded perturbation method is minimax optimal.140

4) For both modified upper confidence bound and bounded141

perturbation method, we employ the p-robust estimator142

in [8] that does not require νp as a prior knowledge.143

In this regard, the proposed exploration methods have no144

dependency on νp while, interestingly, they can achieve145

the minimax optimality.146

5) We also verify the proposed methods show superior per-147

formance compared to other robust exploration methods148

for heavy-tailed noise.149

II. BACKGROUND 150

Consider a set of K actions, A := {a1, . . . , aK }, and 151

corresponding mean rewards {ra1 , . . . , raK }. At time t = 152

1, 2, . . . , T , an exploration algorithm chooses an action at and 153

receives a noisy reward for the selected action 154

Rt,at := rat + �t,at (1) 155

where �t,at is an identical and independently distributed zero 156

mean random noise for each time step and each action. 157

In multiarmed bandits (MABs), rak is generally assumed to 158

be unknown. Then, the goal of the exploration method is to 159

efficiently verify an optimal action a� := arg maxa ra . The 160

performance of the exploration strategy is often measured by 161

the cumulative regret over total round T , defined as follows: 162

RT :=
T∑

t=1

r� − E1:t
[
rat

] = K∑
k=1

�ak E
[
nak (T )

]
(2) 163

where r� := maxa∈A ra and na(t) is the number of times 164

selecting a over t rounds, i.e., na(t) =∑t
k=1 I[ak = a]. Hence, 165

the smaller RT , the better exploration performance. 166

A. Minimax Optimality Under Sub-Gaussian Noise 167

In stochastic MABs, many researches usually assume that 168

each �t,a follows a σa-sub-Gaussian distribution with zero 169

mean, that is, the following inequality holds for all s ∈ R 170

and a ∈ A: 171

E
[
exp

(
s
(
�t,a − E

[
�t,a

]))] ≤ exp
(
σ 2s2/2

)
. (3) 172

Under the sub-Gaussian assumption, it is well known that the 173

gap-dependent lower bound is �(
∑

ak �=a�
ln(T )/�ak ) and the 174

gap-independent lower bound is �(
√

K T ), respectively, where 175

� indicates a lower bound [2], [19], [20]. There exist several 176

minimax optimal methods which guarantee matching the lower 177

bound to solve the stochastic MABs under sub-Gaussian 178

noise. In this article, we introduce two well-known algo- 179

rithms using confidence bounds under sub-Gaussian assump- 180

tions, which is highly related to the proposed method. 181

Auer et al. [19] have proposed upper confidence bound (UCB) 182

using the confidence bound of sample mean estimators, i.e., 183

(2 ln(T )/na(t))1/2. Audibert and Bubeck [2] have analyzed 184

that the minimax regret bound of UCB is O((K T ln(T ))1/2) 185

that is suboptimal. Hence, Audibert and Bubeck [2] have 186

extended UCB to minim-max optimal strategy in stochas- 187

tic MAB (MOSS) by modifying the confidence bound as 188

(ln+(T/(K na(t)))/na(t))1/2 where ln+(x) = max(ln(x), 0). 189

From this modification, MOSS achieved the minimax optimal 190

regret bound �(
√

K T ). 191

B. Minimax Optimality Under Heavy-Tailed Noise 192

While sub-Gaussian assumption has been well analyzed, 193

only few methods have extended an assumption on noise to 194

heavy-tailed noise whose pth moment is bounded, i.e., 195

E
[|�|p] ≤ νp (4) 196

where νp is a constant and p ∈ (1, 2] is the maxi- 197

mum number of the bounded moments. For heavy-tailed 198
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TABLE I

REGRET BOUNDS OF ALGORITHMS WITH PRIOR INFORMATION

noise, it is well known that the gap-dependent lower bound199

is �(
∑

a �=a�
ln(T )/�1/(p−1)

a ) and the gap-independent lower200

bound is �(K 1−1/pT 1/p) [7]. However, most algorithms suf-201

fer from the sub-optimality in terms of the gap-independent202

regret bounds. Bubeck et al. [7] have first proposed the robust203

UCB using the confidence bounds of general robust esti-204

mators. Bubeck et al. [7] have analyzed the regret bound205

of the robust UCB where the gap-dependent bound is206

O(
∑

a �=a�
ln(T )/�1/(p−1)

a + �a) and gap-independent bound207

is O((K ln(T ))1−1/pT 1/p), respectively. However, the robust208

UCB requires νp in prior to define a confidence bound of209

the robust estimator. Then, this condition restricts the via-210

bility of robust UCB since νp is generally not accessible211

in bandit settings. Furthermore, the upper regret bound of212

robust UCB has the suboptimal factor of ln(T )1−1/p . More213

precisely, Lee et al. [8] have proven that the lower bound of214

robust UCB is also �((K ln(T ))1−1/pT 1/p), hence, it is a215

tight bound. In other words, unfortunately, we cannot remove216

the suboptimal factor, ln(T )1−1/p . A similar restriction also217

appears in [21]. Vakili et al. [21] have proposed a determin-218

istic sequencing of exploration and exploitation (DSEE) by219

exploring every action with a deterministic sequence. It is220

shown that DSEE has the gap-dependent bound O(ln(T )), but,221

its result holds when νp and the minimum gap mina∈A/a� �a222

are known as prior information. Furthermore, in practice,223

DSEE often shows poor performance since the deterministic224

sequence cannot perform adaptive exploration. While other225

existing robust exploration methods have not guaranteed the226

minimax optimality, Wei and Srivastava [9] have recently227

proposed robust version of MOSS which can guarantee228

�(K 1−1/pT 1/p); however, the robust MOSS has a limitation in229

that νp is an essential prior information to achieve the minimax230

optimality. Agrawal et al. [22] also have proposed KLinf-UCB231

by adding two variants to the original UCB algorithm and232

proved that the problem-dependent regret bound of KLinf-233

UCB is O(log(T )2/3); however, it also requires νp as a prior234

knowledge to achieve the proposed regret bound.235

The dependence on νp is a crucial issue in a bandit236

problem since νp is problem-dependent prior information.237

Cesa-Bianchi et al. [23] have first removed in [23] only238

for p = 2 by developing a robust estimator using the239

influence function in the Catoni’s M estimator [24]. For240

exploration, the Boltzmann–Gumbel exploration (BGE) has241

been proposed. We observe one interesting fact that the robust 242

estimator proposed in [23] has a weak tail bound, whose error 243

probability decays slower than that of the original Catoni’s M 244

estimator [24]. However, BGE achieved gap-dependent bound 245

O(
∑

a �=a�
ln(T�2

a)
2/�a + �a) and gap-independent bound 246

O(
√

K T ln(K )) for p = 2. While ln(K ) factor remains, 247

BGE has a better bound than robust UCB in terms of T . 248

Lee et al. [8] have extended Cesa’s estimator to a p-robust 249

estimator for p ∈ (1, 2] and have applied perturbation-based 250

exploration inspired by BGE, which is named an adaptively 251

perturbed exploration with a p-robust estimator (APE2). 252

By combining p-robust estimator and perturbation methods, 253

Lee et al. [8] showed that APE2 can achieve the regret bound 254

of O(K 1−1/p T 1/p ln(K )) which is partially optimal with 255

respect to T but suboptimal with respect to K as the factor 256

of ln(K ). 257

In this article, we apply the idea of MOSS to our p-robust 258

estimator in [8] where upper confidence bound of the p-robust 259

estimator is modified to be tighter than the original UCB. 260

By combining MOSS and p-robust estimator, we can enjoy 261

both benefits of MOSS, i.e., the minimax optimality, and the 262

p-robust estimator, i.e., independence on νp. Then, we also 263

propose a randomized version of robust UCB by extending the 264

modification of robust UCB to the perturbation-based explo- 265

ration method. A comparison of existing robust exploration 266

methods including ours can be shown in Table I. Table I 267

shows a gap-dependent and gap-independent regret bounds and 268

essential prior information. 269

III. SUB-OPTIMALITY OF EXISTING METHODS 270

In this section, we discuss pessimistic results about existing 271

methods. First, we restate the sub-optimality of the robust 272

UCBs of Bubeck et al. [7]. Second, we newly prove the 273

sub-optimality of the unbounded perturbation methods in 274

Lee et al. [8]. The perturbation-based exploration employs 275

a random perturbation to encourage exploration. Hence, its 276

cumulative regret is closely related to the distribution of 277

random perturbation and Lee et al. [8] have revealed the 278

relationship between distribution of perturbation and cumu- 279

lative regret bounds. Unfortunately, from the results of 280

Lee et al. [8], we prove that the perturbation-based explo- 281

ration is minimax suboptimal if the random perturbation 282

is unbounded. 283
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A. Sub-Optimality of Robust UCBs284

The robust UCB employs a class of robust estimators which285

satisfies the following assumption.286

Assumption 1 (in [7]): Let {Rk}∞k=1 be i.i.d. random vari-287

ables with the finite pth moment for p ∈ (1, 2]. Let νp ≥288

E[|Rk |p] and r = E[Rk]. Assume that, for all δ ∈ (0, 1) and n289

number of observations, there exists an estimator r̂n(η, νp, δ)290

with a parameter η such that291

P
(
r̂n > r + ν1/p

p (η ln(1/δ)/n)1−1/p
) ≤ δ (5)292

and293

P
(
r > r̂n + ν1/p

p (η ln(1/δ)/n)1−1/p
) ≤ δ. (6)294

There exist several robust estimators that satisfy Assump-295

tion 1, such as truncated mean, median of mean, and Catoni’s296

M estimator [24]. This assumption naturally provides the297

confidence bound of the estimator r̂n , hence, we can easily298

employ UCB-based exploration with the robust estimators299

in Assumption 1. However, we would like to note that the300

estimator in Assumption 1 essentially requires νp as prior301

information to define the estimator, which is not available302

under bandit setting.303

Using the confidence bound in Assumption 1, we can derive304

a robust UCB strategy. For every step, robust UCB chooses305

an action based on the following strategy:306

at := arg max
a∈A

⎧⎨
⎩r̂t−1,a + ν1/p

p

(
η ln

(
t2
)

na(t − 1)

)1−1/p
⎫⎬
⎭ (7)307

where r̂t−1,a is an estimator which satisfies Assumption 1 with308

δ := t−2. In our previous work, we have shown that there309

exists a MAB problem that makes the strategy (7) have the310

following lower bound of RT .311

Theorem 1 (in [8]): There exists a K -armed stochastic312

bandit problem for which the regret of robust UCB has the313

following lower bound, for T > max(10, [(ν(1/(p−1))/η(K −314

1))]2):315

RT ≥ �
(
(K ln(T ))1−1/pT 1/p

)
. (8)316

The proof can be found in [8]. Theorem 1 clearly317

shows that the lower regret bound of the robust UCB is318

�((K ln(T ))1−1/p T 1/p). The theorem tells that there always319

exists a MAB problem that causes the suboptimal regret bound320

for the robust UCB. Hence, the robust UCB cannot remove the321

suboptimal factor ln(T )1−1/p from the gap-independent regret322

bound. Consequently, the robust UCB has two main drawbacks323

for a stochastic MAB. First, theorem 1 tells us the pessimistic324

fact that the sub-optimality of the robust UCB is caused by a325

fundamental issue of exploration strategy, rather than, by the326

lack of mathematical techniques such as employing a loose327

upper bound. Secondly, the estimators employed in the robust328

UCB usually require νp as a prior knowledge.329

B. Sub-Optimality of Adaptively Perturbed Exploration With330

Unbounded Perturbation331

Lee et al. [8] have proposed an APE2 that can guarantee332

the minimax optimality with respect to T while removing333

dependency on νp. However, it still has a limitation in that 334

its gap-independent regret bound is suboptimal with respect 335

to K . Especially, we prove that unbounded perturbation can- 336

not guarantee the minimax optimality in heavy-tailed MAB 337

problems. 338

In APE2, Lee et al. [8] have extended Catoni’s M estimator 339

by generalizing Catoni’s influence function where a new 340

influence function ψp(x) is defined as 341

ψp(x) := sgn(x) ln
(
bp|x |p + |x | + 1

)
(9) 342

where sgn(x) is a sign of x , I[·] is an indicator function, and 343

bp :=
[

2

(
(2− p)

(p − 1)

)1−2/p

+
(
(2− p)

(p − 1)

)2−2/p
]− p

2

. 344

Using ψp(x), Lee et al. [8] define a p-robust estimator and 345

derive its confidence bounds as follows. 346

Theorem 2 (in [8]): Let {Yk}∞k=1 be i.i.d. random variables 347

sampled from a heavy-tailed distribution with a finite pth 348

moment, νp := E|Yk |p, for p ∈ (1, 2]. Let y := E[Yk] and 349

define an estimator as 350

Ŷn := c

n1−1/p
·

n∑
k=1

ψp

(
Yk

cn1/p

)
(10) 351

where c > 0 is an arbitrary constant. Then, for all δ > 0 352

P
(
Ŷn > y + c ln

(
exp

(
bpνp/c

p
)
/δ

)
/n1−1/p

) ≤ δ (11) 353

and 354

P
(
y > Ŷn + c ln

(
exp

(
bpνp/c

p
)
/δ

)
/n1−1/p

) ≤ δ. (12) 355

The entire proof can be found in [8]. Compared to Assump- 356

tion 1, a p-robust estimator has clear benefits in that a p-robust 357

estimator does not depends on νp while robust estimators 358

defined in Assumption 1 require νp as prior knowledge to guar- 359

antee the confidence bounds. This property of a p-robust esti- 360

mator makes APE2 independent on νp. However, a p-robust 361

estimator has a drawback since the confidence bound of (10) 362

is looser than Assumption 1 for a fixed δ. 363

By combining the estimator in (10) with a perturbation 364

method, APE2 selects an action based on the following deci- 365

sion rule: 366

at := arg max
a∈A

{
r̂t−1,a + βt−1,a Gt,a

}
(13) 367

where βt−1,a := c/(na(t − 1))1−1/p, na(t − 1) is the number 368

of times a has been selected, Gt,a is sampled from F , and 369

F(g) := P(G < g). 370

The lower bound of APE2 is derived by constructing a 371

counterexample as follows. 372

Theorem 3 (in [8]): Let F(g) be a log-concave CDF. For 373

0 < c < (K − 1)/(K − 1 + 2p/(p−1)) and T ≥ (c1/(p−1)(K − 374

1)/2p/(p−1))|F−1(1 − (1/K ))|p/(p−1), there exists a K -armed 375

stochastic bandit problem where the regret of APE2 is lower 376

bounded by 377

RT ≥ �
(
K 1−1/pT 1/p F−1(1− 1/K )

)
. (14) 378

The proof is done by constructing the worst case bandit 379

problem whose rewards are deterministic. When the rewards 380
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are deterministic, no exploration is required, but, APE2 unnec-381

essarily explores suboptimal actions due to the perturbation.382

In other words, the lower bound captures the regret of APE2
383

caused by useless exploration. The lower bound tells us that384

tail behavior of perturbation plays a crucial role in determining385

the effect of K on the regret bound. From the lower bound,386

we can derive a novel pessimistic result on APE2 that employs387

unbounded perturbation for exploration.388

Corollary 1: If the support of F(g) is bounded, then, the389

lower bound of RT of APE2 becomes �(K 1−1/pT 1/p).390

Corollary 1 is induced by Theorem 3. Due to the term F−1(1−391

1/K ), if G has an unbounded support, then, F−1(1 − 1/K )392

will grow as K increases and, thus, the lower bound of APE2
393

has a suboptimal dependency on K . In other words, if G394

is unbounded, then, the lower bound of APE2 cannot match395

�(K 1−1/pT 1/p). From this observation, we conclude that396

bounded perturbation is needed to obtain the minimax optimal-397

ity. Furthermore, from the observation of the sub-optimality398

of the robust UCB, we argue that the confidence bound of399

robust estimator in [7] is too loose to capture the error tightly400

and, thus, causes unnecessary exploration. To handle this issue,401

we modify the confidence bound of a p-robust estimator402

much tighter and extend the modified confidence bound to403

the perturbation method.404

IV. MINIMAX OPTIMAL STRATEGY FOR405

HEAVY-TAILED REWARDS406

We propose two novel exploration methods to guarantee the407

minimax optimality under heavy-tailed noise. The first one is a408

minimax optimal robust upper confidence bound (MR-UCB),409

whose confidence bound is modified to a much tighter one, and410

the second one is a minimax optimal robust adaptively per-411

turbed exploration (MR-APE), which is a randomized version412

of robust UCB using a bounded perturbation. The main benefit413

of MR-UCB and MR-APE is not only minimax optimality but414

also the minimal requirement of prior knowledge.415

A. Minimax Optimal Robust UCB416

In general, the regret bound of UCB often depends on the417

convergence rate of estimators. Especially, a robust estimator418

should satisfy two key properties to achieve efficient explo-419

ration performance. The first one is that the error probability420

decays exponentially fast and the second one is tight con-421

fidence bound for exploration. The main idea to design a422

minimax optimal exploration without dependency on νp is423

employing a p-robust estimator with tight confidence bound.424

The p-robust estimator satisfies exponential decaying from425

Theorem 2. However, if we employ the naïve confidence426

bound in (11) and (12), then, its minimax regret bound427

is suboptimal with respect to T . Hence, we propose more428

tight confidence bound than the naïve confidence bound.429

In MR-UCB, the selection rule is defined as430

at := arg max
a∈A

{
r̂t−1,a + βt−1,a

}
(15)431

βt−1,a := c ln+
(

T

K na(t − 1)

)
/[na(t − 1)]1−1/p (16)432

where ln+(x) := max(ln(x), 1). Similar to MOSS [2], we sim- 433

ply modify confidence bound from the naïve confidence 434

bound, O(ln(T )), to tighter one, O(ln(T/na(t − 1))), that 435

becomes tighter than O(ln(T )) as the number of selecting 436

a increases. Then, we derive the gap-dependent and gap- 437

independent regret bounds as follows. 438

B. Minimax Optimal Robust Adaptively Perturbed 439

Exploration 440

MR-APE is a randomized algorithm of MR-UCB. MR-APE 441

replaces the optimism in MR-UCB with simple randomization. 442

Instead of directly employing the confidence bound of the 443

p-robust estimator, MR-APE is to employ a value randomly 444

chosen between lower and upper confidence intervals using 445

bounded perturbation within [−1, 1]. Then, the selection rule 446

of MR-APE is defined as 447

at := arg max
a∈A

{
r̂t−1,a + (1+ �)βt−1,a Gt,a

}
(17) 448

where Gt,a is a bounded random perturbation within [−1, 1] 449

and � is an auxiliary hyperparameter. If the sampled pertur- 450

bation is negative, the perturbation term can be interpreted as 451

the lower confidence bound. Otherwise, the perturbation term 452

is similar to the upper confidence bound. Hence, MR-APE 453

employs both lower and upper confidence bounds for decision- 454

making. Furthermore, if we set Gt,a = 1 and � = 0 almost 455

surely, then, MR-APE is equivalent to MR-UCB. The entire 456

algorithm is summarized in Algorithm 1. 457

C. Theoretical Analysis 458

We provide gap-dependent and gap-independent upper 459

bounds of the cumulative regret of MR-UCB and MR-APE. 460

First, we derive the gap-dependent regret bounds and then, 461

extend gap-dependent bounds to the gap-independent bounds. 462

The main idea of our proof is decomposing the event of 463

selecting suboptimal actions into three events. Before decom- 464

position, we assume that ra1 > ra2 > ra3 > · · · > raK without 465

loss of generality. Then, let us define Z := min1<t≤T r̂t−1,a� + 466

βt−1,a� and za := ra�−�a/6. Then, using Z and za , we define 467

the event Ēa := {za ≤ Z}. Based on Ēa, we decompose 468

the expected regret into three terms as follows, for any k0 ∈ 469

[1, . . . , K ]: 470

RT ≤ T�ak0
+ T

K∑
j=k0+1

P

(
Ēc

a j

)(
�a j −�a j−1

)
(18) 471

+
K∑

k=k0+1

�ak

T∑
t=1

P
(
Ēak ∩ Et,ak

)
(19) 472

where Et,a := {at = a} indicates the event of selecting a 473

at time t . By computing the bound of each term, we can 474

derive the gap-dependent and gap-independent upper bounds. 475

We would like to note that this decomposition technique 476

follows the proof of MOSS [2] and it generally holds without 477

any special assumption on reward distributions. However, 478

in [2], the remaining part for proving the minimax optimality 479

of MOSS heavily depends on the sub-Gaussian assumption. 480

In particular, to prove the minimax optimality, the second term 481
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Algorithm 1 Minimax Optimal Robust Adaptively Perturbed Exploration (MR-APE)

Input: p, c, T, �, and F−1(y)
Output: {r̂T,a}a∈A
1: Initialize {r̂0,a = 0, na(0) = 0} for all a ∈ A and select a1, . . . , aK and receive R1,a1 , . . . ,RK ,aK once
2: for t = K + 1, . . . , T do
3: βt−1,a ← c ln+

(
T

K na(t−1)

)
/(na(t − 1))1−1/p and Gt,a ← F−1(u) with u ∼ Uniform(0, 1)

4: r̂t−1,a ← c/(na(t − 1))1−1/p
∑t−1

k=1 I[ak = a]ψp(Rk,a/(c · (na(t − 1))1/p))
5: Choose at = arg maxa∈A{r̂t−1,a + (1+ �)βt−1,a Gt,a}, receive Rt,at , and update nat (t)← nat (t − 1)+ 1
6: end for

is bounded using Hoeffding’s maximal inequality that cannot482

be employed under unbounded heavy-tailed noise. Hence,483

to bound the second term we employ the integration bound that484

provides the upper bound of the summation. Consequently,485

we achieve the minimax optimal regret bound without using486

Hoeffding’s maximal inequality.487

1) Gap-Dependent Regret Bound of MR-UCB: Now,488

we provide the gap-dependent bound of each term for489

MR-UCB. The upper bound of the second term can be490

obtained as the following lemmas.491

Lemma 1: For the second term of (18), MR-UCB satisfies492

the following inequality:493

T
K∑

j=k0+1

P

(
Ēc

a j

)(
�a j −�a j−1

) ≤ O

⎛
⎝ K∑

j=k0+1

K c
p

p−1

�
1

p−1
a j

⎞
⎠. (20)494

The entire proof of this lemma can be found in Appendix B.495

The main idea of to compute the upper bound of P(Ēc
a j
) is to496

employ the integration bound where there exist a upper bound497

f (s) such that P(Ēc
a j
) = P(Z < za j ) ≤

∑T
s=1 f (s) holds and498

the summation of f (s) can be bounded by the integral of f (s).499

The trick that bounds the summation by the integration will500

be generally used throughout the proof of our lemmas.501

The final term of (19) can be bounded by the following502

lemma.503

Lemma 2: For the final term of (19), MR-UCB satisfies the504

following inequality:505

K∑
k=k0+1

�ak

T∑
t=1

P
(
Ēak ∩ Et,ak

)
(21)506

≤ O

⎛
⎜⎜⎜⎝

K∑
k=k0+1

max

(
3 ln

(
T
K�

p
p−1

ak

)
/2, 1

) p
p−1

�
1

p−1
ak

+ c
p

p−1 e
b pνp

c p

�
1

p−1
ak

⎞
⎟⎟⎟⎠.507

(22)508

The entire proof of this lemma can be found in Appendix B.509

The main idea of the proof is counting the number of rounds510

for making confidence bound βt−1,a small enough. For small511

βt−1,a , the final term can be bounded by the summation of512

the probability of estimation error. By combining two lemmas513

and setting k0 = 1 whose �1 = 0 by definition, then, we can514

obtain the gap-dependent regret bound.515

Theorem 4: Assume that νp < ∞ and r̂t,k is a516

p-robust estimator. Then, the gap-dependent regret517

bound of MR-UCB is 518

O

⎛
⎜⎜⎜⎝
∑
a �=a�

max

(
ln

(
T
K�

p
p−1

a

)
, 1

) p
p−1

�
1

p−1
a

+ K c
p

p−1 e
b pνp

c p

�
1

p−1
a

⎞
⎟⎟⎟⎠. (23) 519

The proof is simply done by combining two lemmas and 520

pick k0 = 1 that makes T�ak0
= 0 since ra1 = r�. The 521

gap-dependent bound of MR-UCB shows the poly-logarithmic 522

dependency on T . Compared to gap-dependent bound of 523

robust UCB, the superiority of the gap-dependent bound can 524

vary depending on {�a}. In general, the gap-dependent bound 525

of MR-UCB follows ln(�p/(p−1)
a T )p/(p−1)/�

1/(p−1)
a while that 526

of robust UCB follows ln(T )/�1/(p−1)
a . Hence, if �a is suf- 527

ficiently large, then, ln(T ) dominates ln(�p/(p−1)
a ) and this 528

fact results in that robust UCB can have a smaller regret 529

bound since ln(T ) < ln(T )p/(p−1). On the other hand, if �a 530

is sufficiently small, then, ln(�p/(p−1)
a ) becomes a negative 531

value for �a � 1 and, hence, it can dominantly reduce the 532

term ln(�p/(p−1)
a T )p/(p−1). In this regard, MR-UCB can have a 533

smaller regret than robust UCB. From this fact, we can observe 534

that MR-UCB is superior to robust UCB for a challenging 535

MAB problem that has small gaps, which requires large 536

samples to distinguish optimal action from suboptimal actions. 537

This property makes it available that MR-UCB guarantee the 538

optimal minimax regret bound. 539

2) Gap-Independent Regret Bound of MR-UCB: The gap- 540

independent regret bounds can be derived from the similar 541

strategies of gap-dependent bound. Now, we compute the 542

gap-independent bounds for each term in (18) and (19). 543

Lemma 3: For the second term of (18), MR-UCB satisfies 544

the following gap-independent inequality: 545

T
K∑

j=k0+1

P

(
Ēc

a j

)(
�a j −�a j−1

) ≤ O
(

c
p

p−1 e
b pνp

c p K 1− 1
p T

1
p

)
. 546

(24) 547

The proof can be found in Appendix C. The main strategy 548

of the proof is to bound the summation,
∑K

j=k0+1 P(Ēc
a j
)(�a j− 549

�a j−1), by the integration, � − �ak0
+ ∫ 1

�
P(Z < ra� − 550

(u/6))du, which is borrowed from [2]. Then, the probability 551

P(Z < ra� − (u/6)) can be bounded using the same technique 552

in Lemma 1. 553

The third term of (19) can be bounded as follows. 554
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Lemma 4: For the final term of (19), MR-UCB satisfies the555

following gap-independent inequality:556

K∑
k=k0+1

�ak

T∑
t=1

P
(
Ēak ∩ Et,ak

) ≤ O
(

c
p

p−1 K 1− 1
p T

1
p

)
. (25)557

The proof can be found in Appendix C. The proof starts558

from Lemma 2. We pick k0 such that �ak0
< � < �ak0+1559

where � = max(e p, e−(3(p−1)/2p))(K/T )1−1/p . Then, the560

gap-dependent bound in Lemma 2 is a decreasing function for561

�a > �. Hence, we can replace �a of Lemma 2 with � to562

get an upper bound. By combining two lemmas, we can obtain563

gap-independent bound of MR-UCB as following theorems.564

Theorem 5: Assume that νp < ∞ and r̂t,k is a p-robust565

estimator. Then, the gap-independent regret bound is566

RT ≤ O
(

c
p

p−1 e
b pνp

c p K 1− 1
p T

1
p

)
. (26)567

From Lemmas 3 and 4, we can bound the second term568

of (18) and third term of (19) with O(K 1−1/p T 1/p). Then,569

the remaining part of the proof is to check the first term570

in (18), T�k0 , is bounded by O(K 1−1/p T 1/p). Fortunately,571

since we pick k0 such that �ak0
< � < �ak0+1 holds, we572

have T�k0 < T� = O(K 1−1/p T 1/p). Consequently, we can573

guarantee that the gap-independent regret bound of MR-UCB574

is O(K 1−1/p T 1/p) that matches the global minimax optimal575

regret bound for heavy-tailed MAB problems.576

3) Gap-Dependent Regret Bound of MR-APE: Now, we will577

derive the gap-dependent regret bound of MR-APE. We can578

derive the regret bound of MR-APE by only proving the third579

term of (19) since other two terms in (18) can be bounded580

using the same way of MR-UCB. For the third term of (19),581

we first introduce xa := ra+�a/3 and ya := ra�−�a/3. Then,582

let us define three events, Êt,a := {r̂t,a ≤ xa}, Ẽt,a := {r̂t−1,a+583

(1 + �)βt−1,a Gt,a ≤ ya}, and Ēt,a := {za ≤ r̂t−1,a� + βt−1,a� }.584

From the definition of three events, we have Et,a ∩ Ēa ⊂585

Et,a ∩ Ēt,a since za ≤ min1<t≤T r̂t−1,a� + βt−1,a� implies za ≤586

r̂t−1,a� + βt−1,a� . Then, we decompose Et,a ∩ Ēt,a into three587

subsets588

Et,a ∩ Ēt,a = E (1)
t,a ∪ E (2)

t,a ∪ E (3)
t,a (27)589

where E (1)
t,a = Et,a∩ Ēt,a∩ Êc

t,a, E (2)
t,a = Et,a∩ Ēt,a∩ Êt,a∩ Ẽc

t,a,590

and E (3)
t,a = Et,a∩Ēt,a∩Êt,a∩Ẽt,a . Hence, the final term of (19)591

can be bounded using the following inequality:592

P
(
Et,a ∩ Ēa

) ≤ P

(
E (1)

t,a

)
+ P

(
E (2)

t,a

)
+ P

(
E (3)

t,a

)
.593

Each term has the following meanings.594

1) The first event, E (1)
t,a , mainly counts the number of595

times that the suboptimal action a is selected due to596

the estimation error of r̂t−1,a . Hence, this term will597

be bounded by the error probability of the p-robust598

estimator.599

2) The second event, E (2)
t,a , considers the case of choosing600

suboptimal action due to the large perturbation, Gt,a,601

while its reward estimation is well concentrated. This602

term can be controlled by coefficient βt−1,a since this603

event depends on the magnitude of sampled perturbation.604

3) The final event, E (3)
t,a , indicates that suboptimal action 605

was selected even though r̂t−1,a is well estimated and the 606

perturbation, Gt,a is not too large. This event can happen 607

when the estimation of the optimal reward is incorrect 608

and the perturbation of the optimal action, Gt,a� , is not 609

large enough to overcome the under-estimation. 610

The basic idea of deriving bounds of E (1)
t,a , E (2)

t,a , and E (3)
t,a is 611

followed by Kim and Tewari [5], Lee et al. [8], and Cesa- 612

Bianchi et al. [23]. We apply techniques in [5], [8], and 613

[23] to our modified confidence bound. Now, we provide the 614

gap-dependent bounds for three terms. 615

Lemma 5: The probabilities of E (1)
t,a , E (2)

t,a , and E (3)
t,a can be 616

bounded as follows: 617

T∑
t=1

P

(
E (1)

t,a

)
≤
(3c)

p
p−1 exp

(
bpνp

cp

)

(

2p−1
p−1

)
�

p
p−1

a

(28) 618

T∑
t=1

P

(
E (2)

t,a

)
≤

max
(

3(1+ �) ln
(

T
K�

p/(p−1)
ak

)
, 1

) p
p−1

�
p/(p−1)
ak

(29) 619

T∑
t=1

P

(
E (3)

t,a

)
≤ M�

max
(

6(2+ �) ln
(

T
K�

p/(p−1)
ak

)
, 1

) p
p−1

�
p/(p−1)
ak

. 620

(30) 621

The entire proofs of the lemma can be found in Appendix D. 622

By combining all lemmas, we can bound the third term of (19). 623

Consequently, we have the following gap-dependent regret 624

bound of MR-APE. 625

Theorem 6: Assume that the pth moment of rewards is 626

bounded by a constant νp <∞, r̂t,k is a p-robust estimator and 627

G is a bounded perturbation within [−1, 1], and there exists 628

a constant M� only dependent on � such that P(G < (1/(1+ 629

�)))/P(G > (1/(1 + �))) < M� . Then, the gap-dependent 630

regret bound of MR-APE is 631

RT ≤ O

⎛
⎜⎜⎜⎝

K∑
k=1

M+� max

(
(2 + �) ln

(
T
K�

p
p−1
ak

)
, 1

) p
p−1

�
1

p−1
ak

632

+K c
p

p−1 e
b pνp

c p

�
1

p−1
ak

⎞
⎟⎟⎟⎠ (31) 633

where M+� := max(M� , 1). 634

The proof is simply done by combining two lemmas with the 635

proof of MR-UCB, and picking k0 = 1 that makes T�ak0
= 636

0 since ra1 = r�. We can observe that the gap-dependent bound 637

of MR-APE is the same as that of MR-UCB up to a constant. 638

4) Gap-Independent Regret Bound of MR-APE: Now, 639

we can derive the gap-independent regret bound of MR-APE 640

using the same technique of MR-UCB. 641

Theorem 7: Assume that the pth moment of rewards is 642

bounded by a constant νp <∞, r̂t,k is a p-robust estimator and 643

G is a bounded perturbation within [−1, 1], and there exists 644

a constant M� only dependent on � such that P(G < (1/(1+ 645
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�)))/P(G > (1/(1 + �))) < M� . Then, the gap-independent646

regret bound of MR-APE is647

RT ≤ O
(

max
(

M+� (2+ �)
p

p−1 , c
p

p−1 e
b pνp

c p

)
K 1−1/pT 1/p

)
. (32)648

The proof is omitted here and can be found in Appendix E.649

Similar to the gap-dependent bound, the gap-independent650

bound of MR-APE also has the same order of T and K as651

that of MR-UCB. Consequently, MR-APE also guarantee the652

minimax optimal regret bound.653

5) Comparison Between MR-UCB and MR-APE: While654

MR-APE and MR-UCB have the same mini-max optimal655

regret bound, the main difference between MR-APE and656

MR-UCB comes from the gap-dependent regret bounds in657

Theorems 4 and 6. In Theorem 4, the logarithmic term in658

the gap-dependent bound of MR-UCB is independent on c659

and only the final term O(K c p/(p−1) exp(bpνp/c p)/�
1/(p−1)
ak )660

depends on c. In this regard, controlling c does not affect661

the order of T . However, in Theorem 6, MR-APE has an662

auxiliary controllable parameters M� and � that can affect to663

the logarithmic term of the gap-dependent bound of MR-APE.664

Furthermore, we can interpret MR-APE as the unifying frame-665

work between UCB-like exploration and perturbed explo-666

ration. Intuitively speaking, from the condition of P(G <667

1/(1+ �))/P(G > 1/(1+ �)) < M� , most of probability mass668

of the perturbation is located near one, hence, MR-APE has669

randomness but works similar to MR-UCB. More specifically,670

the condition on G and M� can be rewritten as P(G > 1/(1+671

�))−1− 1 < M� , then, if P(G > 1/(1+ �)) is getting smaller,672

the constant M� should become larger to satisfy the condition.673

In this case, MR-APE mainly employs the perturbation for674

exploration, rather than depends on the confidence bound.675

On the other hand, if P(G > 1/(1+�)) is getting bigger, most676

of probability mass should be located near G = 1 to make M�677

small enough. Under this condition, MR-APE behaves similar678

to MR-UCB. Such property of MR-APE allows it to enable679

more adaptive exploration in practice, since we can control not680

only c but also M� and � using the distribution of perturbation.681

V. EXPERIMENTAL RESULTS682

A. Experimental Setup683

We verify the properties of the proposed methods and com-684

pare the proposed methods to other existing methods. First,685

we compare two proposed methods, MR-UCB and MR-APE.686

Especially, we prepare various types of MR-APE that have687

different bounded perturbations. We separate bounded pertur-688

bations into two groups. The first group is a positive bounded689

perturbation whose random variable only has a positive value.690

The second group is a both-sided bounded perturbation whose691

random variable can have both positive and negative values.692

For the first group, we employ Bernoulli distribution and693

Uniform distribution with [0, 1] as a bounded perturbation694

in MR-APE. For the second group, we employ Rademacher695

distribution whose value can have −1 or 1, and Uniform distri-696

bution with [−1, 1]. Hence, the proposed exploration scheme697

is tested in five different algorithms: MR-UCB, MR-APE698

with Bernoulli, MR-APE with Uniform(0, 1), MR-APE with699

Rademacher, and MR-APE with Uniform[−1, 1]. We com- 700

pare the proposed methods with existing robust exploration 701

methods such as robust UCB [7], DSEE [21], and APE2 with 702

unbounded perturbation [8]. For APE2, we utilize Fréchet 703

and Pareto distributions as an unbounded perturbation. Hence, 704

the comparisons are conducted with APE2 with Fréchet and 705

APE2 with Pareto. Note that robust UCB and DSEE utilize the 706

truncated mean estimator, and APE2, MR-UCB, and MR-APE 707

mainly utilize the p-robust estimator. 708

We prepare synthetic and real-world data for simula- 709

tions. First, for all synthetic simulations, we synthesize a 710

heavy-tailed MAB problem with K actions. The optimal action 711

has 1 mean reward and K − 1 suboptimal actions have 712

1 − � mean reward. Hence, � determines the gap between 713

the maximum reward and other rewards. By controlling �, 714

we can measure how the gap influence the regret of each 715

exploration method. Then, we add a heavy-tailed noise to the 716

observation of rewards. The heavy-tailed noise is created by 717

transforming a Pareto and Fréchet random variable. Let zt be 718

a heavy-tailed random variable, zt ∼ Pareto(α�, λ�) where α� 719

is a shape parameter and λ� is a scale parameter. Then, a noise 720

is defined as �t := bt(zt − E[zt ]) where bt is a Rademacher 721

random variable that has +1 value with probability 1/2 and 722

get −1 value with probability 1/2. From the definition, �t 723

is a mean zero heavy-tailed noise. In simulation, we observe 724

a noisy reward Rt,a := ra + �t,a for every step. Each 725

simulation runs T rounds and we measure the time average 726

regret Rt/t := ∑t
k=1(ra� − rak )/t for t ∈ [1, T ]. Second, for 727

real-world data, we employ cryptocurrency dataset [25] that 728

contains daily returns of cryptocurrency from April 1, 2019 to 729

July 1, 2021. We select ten cryptocurrency, such as Bitcoin, 730

Ethereum, Doge, Monero, Stellar, or EOS, based on market 731

value. Then, the goal of this simulation is to identify the 732

most profitable currency, which is motivated by the practical 733

scenario that an investor wants to invest a fixed budget in 734

a cryptocurrency and get return as much as possible. For this 735

scenario, an action is defined as buying a specific currency and 736

the corresponding reward is defined as the daily profit. Note 737

that it is a well-known fact that the financial data often show 738

the inherent characteristic of heavy tails [26], [27], hence, 739

we believe that identifying the most profitable cryptocurrency 740

is a practical application of the proposed methods. 741

Consequently, we prepare four simulations. The first sim- 742

ulation compares the performance of exploration methods on 743

various p and � with two heavy-tailed noises. The second 744

simulation verifies the effect of increasing K for the regret 745

bound. The third simulation measures the effect of scale 746

hyperparameter for the performance of exploration methods. 747

The final simulation compares the performance of exploration 748

methods on real-world cryptocurrency dataset. 749

B. Performance Comparison for Various Noises, p, and � 750

We compare the performance of every exploration method. 751

For MR-UCB, robust UCB, MR-APE, and APE2, we optimize 752

the hyperparameter c using a grid search. We would like to 753

note that, for robust UCB, we modify the confidence bound 754

in Assumption 1 by multiplying a scale parameter c since 755
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Fig. 1. Time-average regret for various p and � with Pareto noise. A bold line indicates the average value over ten different random seeds and shaded
region indicates half-standard deviation area. All figures share the legend. (a) p = 1.2, � = 0.3, K = 10. (b) p = 1.2, � = 0.7, K = 10. (c) p = 1.5, � =
0.3, K = 10. (d) p = 1.5, � = 0.7, K = 10. (e) p = 1.8, � = 0.3, K = 10. (f) p = 1.8, � = 0.7, K = 10.

Fig. 2. Time-average regret for various p and � with Fréchet noise. A bold line indicates the average value over ten different random seeds and shaded
region indicates half-standard deviation area. All figures share the legend. (a) p = 1.2, � = 0.3, K = 10. (b) p = 1.2, � = 0.7, K = 10. (c) p = 1.5, � =
0.3, K = 10. (d) p = 1.5, � = 0.7, K = 10. (e) p = 1.8, � = 0.3, K = 10. (f) p = 1.8, � = 0.7, K = 10.

the original robust UCB consistently shows poor performance756

even if νp is given. Then, c for robust UCB is also optimized757

using a grid search. We prepare six synthetic MAB problems758

by combining � = 0.3, 0.7 and p = 1.2, 1.5, 1.8 for two759

noise types. Figs. 1 and 2 show the results of Pareto noise760

and Fréchet noise, respectively.761

As shown in Fig. 1, first, MR-UCB consistently outperforms762

other exploration methods except for the case of (p =763

1.2,� = 0.7). In the MAB with (p = 1.2,� = 0.7),764

MR-UCB shows comparable performance with robust UCB765

and MR-APE with Bernoulli. For � = 0.3, as shown in766

Fig. 1(a), (c), and (e), we can observe that MR-UCB signif- 767

icantly outperform other methods while the performance gap 768

between MR-UCB and other methods is marginal when � = 769

0.7. Furthermore, the performance gap between MR-UCB 770

and other methods increases as the order of the moment, p, 771

decreases. This observation implies that MR-UCB shows more 772

robust performance against heavy-tailed noise. As p is getting 773

closer to 2, a robust estimator generally converges much faster 774

than the case that p is close to 1, hence, reward estimators 775

used by all exploration methods are concentrated with a 776

fewer number of trials. This fact reduces the performance gap 777
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between MR-UCB and other methods since the algorithm can778

distinguish the optimal action from suboptimal actions with779

fewer trials. However, as p is close to 1, the convergence780

speed of reward estimators is getting slower and requires781

a lot of samples to concentrate on the true mean. It hin-782

ders the convergence speed of exploration methods, however,783

MR-UCB outperforms other exploration methods as shown in784

Fig. 1(a) and (b).785

As shown in Fig. 1, for MR-APE, we can observe786

that bounded perturbation usually shows the second-best787

performance for various settings under Pareto noises. In par-788

ticular, MR-APE with positive perturbations generally outper-789

forms MR-APE with both-sided perturbations. Furthermore,790

MR-APE with Bernoulli often shows the second best perfor-791

mance for various settings such as (p = 1.2,� = 0.3), (p =792

1.2,� = 0.7), (p = 1.5,� = 0.7), and (p = 1.8,� = 0.3).793

However, we can observe that there is no clear dominance794

between MR-APE, APE2, and robust UCB. From the tendency795

shown in Fig. 1, we can observe that the performance gap796

between MR-APE and other exploration methods, such as797

APE2s, Robust UCB, and DSEE, increases as � decreases798

from 0.7 to 0.3.799

For Fréchet noise setting, MR-UCB also outperforms APE2
800

with unbounded perturbations and Robust UCB as shown in801

Fig. 2. However, unlike the Pareto noise setting, MR-APE802

with bounded positive perturbations shows comparable per-803

formance with MR-UCB in various problem settings, and804

even outperforms MR-UCB in several settings. In particular,805

MR-APE with Uniform(0, 1) shows similar performance to806

MR-UCB including (p = 1.8,� = 0.7), (p = 1.8,� = 0.3),807

(p = 1.5,� = 0.7), (p = 1.5,� = 0.7), (p = 1.5,� = 0.7)808

and outperforms MR-UCB for (p = 1.2,� = 0.7). While809

MR-APE that randomizes MR-UCB shows inferior perfor-810

mance for Pareto noise settings, in Fréchet noise settings,811

MR-APE has advantages over MR-UCB. In summary, from812

the empirical results shown in Figs. 1 and 2, MR-UCB that813

employs modified upper confidence bound clearly outperforms814

other exploration methods for heavy-tailed MAB problems and815

MR-APEs shows comparable performance in general cases but816

dominates other algorithms in several special cases.817

C. Performance Comparison for Varying K818

In this experiment, we verify the effect of the number of819

actions in heavy-tailed bandits. We employ a Pareto noise set-820

ting with p = 1.8 and � = 0.7. For all exploration methods,821

we measure the final time average regret after 20 000 rounds.822

The simulation is conducted varying K from 10, 30, 50, 70,823

and 100. In Fig. 3, we plot the average value over ten824

random seeds. For each K , we conduct the hyperparameter825

optimization using a grid search.826

As shown in Fig. 3, all algorithms show a similar tendency827

that RT /T increases as the number of actions increases since828

the number of exploring an individual action is reduced if829

K increases with fixed T . Hence, the plot in Fig. 3 shows830

the effect of K on the cumulative regret. First, the most831

robust algorithm against increasing the number of cation832

is MR-UCB. Especially, MR-UCB outperforms all other833

Fig. 3. Effect of number of actions. The time-average final regret RT /T
at the final round is plotted for different K . All regrets are measured under
p = 1.8 and � = 0.7 with Pareto noise distribution. The bold line is an
average value of RT /T over ten different random seeds and the shaded area
indicates a half-standard deviation region.

exploration methods as the number of actions K increases. 834

However, the performance of APE2 with Fréchet is drastically 835

getting worse as K increases while MR-APEs with bounded 836

perturbations show a moderate performance drop. This result 837

clearly supports the fact that using modified confidence bound 838

helps to reduce the regret by removing the suboptimal fac- 839

tor ln(K ) from APE2 with unbounded perturbations. Other 840

methods except for MR-UCB and APE2 with Fréchet show 841

comparable performance with each other. Interestingly, Robust 842

UCB and DSEE show similar performance to MR-APEs such 843

as Uniform, Bernoulli, and Rademacher perturbations. These 844

results indicate that the regret bound of Robust UCB and 845

DSEE has the same dependency on K 1/p as the regret bound 846

of MR-APEs while it has suboptimal factor ln(T )1/p with 847

respect to T . In summary, we can conclude that MR-UCB 848

outperforms other exploration methods as the number of 849

actions increases under heavy-tailed settings since the modified 850

confidence bound removes the suboptimal factor of K in the 851

minimax regret bounds of MR-UCB. 852

D. Effect of Hyperparameter 853

In this experiment, we verify the sensitivity of each explo- 854

ration method with respect to the hyperparameter c. For 855

MR-UCB, robust UCB, MR-APE, the exploration tendency 856

depends on scale parameter c. To verify the effect of c for 857

each algorithm, we measure the final time average regret with 858

50 different c values after 20 000 rounds. For this simulation, 859

we set K = 10, � = 0.7, and T = 20 000 and run each 860

algorithm with ten different random seeds. In Fig. 4, we can 861

observe valley-shaped plots for varying hyperparameter c. 862

In general, if c is small, then, an algorithm shows the worst 863

regret since small c makes the algorithm rarely explore an 864

action space. With the similar reason, if c is large, then, 865

an exploration method also shows the worst regret since large 866

c hinders exploitation or convergence to the optimal action. 867

Hence, the regret is reduced at the proper range of c as 868

shown in the valley-shaped plots in Fig. 4. For each algorithm, 869

we would like to focus on analyzing the plateau of valley 870

that shows sensitivity of exploration tendency with respect to 871

hyperparameter. The wide plateau implies that the algorithm 872

is less sensitive to hyperparameters and the proper hyperpara- 873

meter can be easily found with smaller number of grid search. 874

On the contrary, the narrow plateau indicates that the algorithm 875

is more sensitive for hyperparameter optimizations. To visually 876
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Fig. 4. Effect of hyperparameter. The time-average final regret RT /T at final round is plotted for different c. All regrets are measured under p = 1.8 and
� = 0.7 with Pareto noise distribution. The red dotted line indicates RT /T = �/3. The bold line is average value of RT /T over ten different random seeds
and shaded area indicates a half-standard deviation region. (a) MR-UCB and robust UCB. (b) MR-APE with uniform(0, 1). (c) MR-APE with uniform(−1, 1).
(d) Unbounded APE2.

Fig. 5. Time average regret for cryptocurrency dataset. The bold line is an
average value over ten different random seeds and the shaded area indicates
a half-standard deviation region.

measure the range of plateau, we mark the threshold at red877

dotted line in Fig. 4.878

In Fig. 4(a), it can be observed that MR-UCB has the879

wider plateau than Robust-UCB. Hence, this plot implies that880

MR-UCB is less sensitive than Robust-UCB. Especially, the881

performance of the best hyperparameter of MR-UCB is lower882

than that of Robust-UCB. Consequently, the result shows that883

MR-UCB is more robust and has a better performance than884

Robust-UCB with respect to hyperparameter optimization.885

Comparing MR-APE with Uniform(0, 1) with MR-APE with886

Bernoulli, MR-APE with Bernoulli shows much robust perfor-887

mance with wider range of the plateau of valley in hyperpara-888

meters. Especially, MR-APE with Bernoulli perturbation has889

much wider plateau than MR-APE with Uniform perturbation.890

Furthermore, the plateau of MR-APE with Bernoulli is much891

wider and shows lower cumulative regret than the plateau892

of MR-UCB. This result shows that the randomization of893

MR-UCB such as Bernoulli perturbation has the effect of894

widening the plateau of valley in hyperparameter space.895

In practice, finding a proper hyperparameter c is a896

demanding task for applying exploration methods in practi-897

cal applications. Hence, algorithms that are less sensitive to898

hyperparameters are more suitable for practical problems since899

such properties reduce the cost of optimizing hyperparameters.900

From the experimental results of hyperparameter optimization,901

we can conclude that MR-UCB and MR-APE with bounded902

perturbations are more desirable for practical applications.903

E. Performance Comparison for Cryptocurrency Dataset904

In this experiment, we test all exploration methods on905

real-world cryptocurrency dataset [25]. Similar to other simu-906

lations, we optimize hyperparameters of each algorithm using907

a grid search. In Fig. 5, we plot the average value over908

10 random seeds. As shown in Fig. 5, MR-UCB shows the909

best performance and MR-APE with Uniform(−1, 1) shows910

the second best performance. Especially, among the set of 911

bounded perturbations, the uniform perturbation on (−1, 1) 912

shows the best performance. Furthermore, the results show the 913

similar tendency to the results from synthetic simulations. It is 914

worth mentioning that MR-UCB and MR-APE with Uniform 915

(−1, 1) clearly outperform Robust-UCB, DSEE, and APE2. 916

Overall, with synthetic and real-world simulations, we have 917

verified the superiority of the proposed methods. 918

VI. CONCLUSION 919

We have studied the minimax optimality under heavy-tailed 920

noise assumption for stochastic MABs where the pth moment 921

of rewards is bounded by a constant νp for 1 < p ≤ 2. 922

We first investigated and found two critical drawbacks of 923

existing robust explorations. First, existing robust exploration 924

methods often depend on a robust mean estimator that requires 925

prior knowledge about νp where νp is not accessible in many 926

real-world problems. Second, we proved the sub-optimality of 927

existing robust exploration methods for heavy-tailed rewards. 928

Based on the analysis of the sub-optimality of existing 929

methods, we have proposed two algorithms, MR-UCB 930

and MR-APE, that can guarantee the minimax optimality 931

with minimal information. Both proposed methods are 932

independent on νp and this fact allows us to employ the 933

proposed exploration methods with minimal prior knowledge 934

compared to existing exploration methods. MR-UCB utilizes 935

the modified confidence bounds that can provide more 936

precise confidence bound of robust mean estimators. Then, 937

MR-APE is the randomized version of MR-UCB that employ 938

bounded perturbation whose scale follows the modified 939

confidence bound in MR-UCB. Furthermore, we analyzed 940

both gap-dependent and gap-independent regret bounds of two 941

proposed methods and guaranteed that both proposed methods 942

have the minimax optimal regret bounds. In simulations, 943

we demonstrate the superiority of the proposed methods 944

for various heavy-tailed synthetic and real-world data. 945

Furthermore, MR-UCB clearly outperforms other algorithms 946

as the number of actions increases under heavy-tailed noise. 947

Consequently, we can conclude that the proposed methods 948

have benefits over heavy-tailed MAB problems. 949

APPENDIX A 950

PROOF OF COROLLARY 1 951

Proof of Corollary 1: If the supporting interval of F(g) is 952

bounded, then, there exists some constants A and B such that, 953

for all y ∈ [0, 1], A < F−1(y) < B holds. Then, the following 954
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inequalities also hold, A < F−1(1 − 1/K ) < B, due to the955

bounded support of F(g). From this fact, we get956

K 1−1/pT 1/p A ≤ K 1−1/pT 1/p F−1(1− 1/K )957

< K 1−1/pT 1/p B.958

This fact induces the following relation:959

K 1−1/pT 1/p F−1(1− 1/K ) = �(
K 1−1/pT 1/p

)
.960

Therefore, we have961

RT ≥ �
(
K 1−1/p T 1/p F−1(1− 1/K )

) = �(
K 1−1/pT 1/p

)
.962

�963

APPENDIX B964

PROOFS FOR THEOREM 4965

Lemma 6 (First Step of Theorem 5 in [2]): Without loss966

of generality, assume that ra1 > ra2 > · · · > raK . Then, for967

any k0 ∈ [1, . . . , K ], the following bound holds:968

E[RT ] ≤ T�ak0
+ T

K∑
j=k0+1

P

(
Ēc

a j

)(
�a j −�a j−1

)
(33)969

+
K∑

k=k0+1

�ak

T∑
t=1

P
(
Ēak ∩ Et,ak

)
. (34)970

Proof: The proof can be found in [2]. �971

Proof of Lemma 1: To prove Lemma 1, we employ the972

concentration property of the p-robust estimator. We have973

K∑
j=k0+1

P

(
Ēc

a j

)(
�a j −�a j−1

)
(35)974

=
K∑

j=k0+1

P

(
Z < ra� − �a j

6

)(
�a j −�a j−1

)
. (36)975

Then, we can bound the probability P(Z < ra� − (�a j /6)) as976

P
(
Z < ra� −�a j /6

)
(37)977

= P

(
min

1<t≤T
r̂t−1,a� + βt−1,a� < ra� − �a j

6

)
(38)978

≤
T∑

s=1

P

(
ra� − r̂s,a� >

c ln+
(

T
K s

)
s1− 1

p

+ �a j

6

)
(39)979

≤
T∑

s=1

exp

(
− ln+

(
T

K s

)
− �a j s

1− 1
p

6c

)
(40)980

≤ K

T

T∑
s=1

s exp

(
−�a j s

1− 1
p

6c

)
(41)981

≤ K

T

(
6cp

e(p − 1)�a j

) p
p−1

+ K

T

∫ ∞
0

xe−
�a j x

1− 1
p

6c dx (42)982

≤ K

T

(
6cp

e(p − 1)�a j

) p
p−1

+
K

(
3p−1
p−1

)
2T

(
6c

�a j

) p
p−1

. (43)983

Then, we can obtain a gap-dependent bound for the second984

term of (18) as follows:985

T
K∑

j=k0+1

P

(
Ēc

a j

)(
�a j −�a j−1

)
(44)986

≤ Cc
p

p−1 K
K∑

j=k0+1

�a j

�
p

p−1
a j

= O

⎛
⎝ K∑

j=k0+1

K c
p

p−1

�
1

p−1
a j

⎞
⎠ (45) 987

where C is a constant independent on c, T , K , and �a . � 988

Proof of Lemma 2: To prove the upper bound, we first 989

introduce the stopping time τk = min{t : Bk,t < zak } where 990

Bk,t := r̂t−1,ak + c ln+(T/(K nak (t − 1)))/(t − 1)1−1/p. Then, 991

we have {Z > zak } ⊂ {nak ,T < τk} from the definition of Z 992

and selection rule of MR-UCB. Then,
∑T

t=1 P(Ēak ∩Et,ak ) can 993

be first bounded by E[I[Z > zak ]nak ,T ]. Hence, by combining 994

two facts, we have 995

K∑
k=k0+1

�ak

T∑
t=1

P
(
Ēak ∩ Et,ak

)
(46) 996

≤
K∑

k=k0+1

�ak E
[
I
[
Z > zak

]
nak ,T

] ≤ K∑
k=k0+1

�ak E[τk]. (47) 997

Then, we can compute the upper bound of the expectation of 998

τk as follows: 999

E[τk] ≤ �0 +
∞∑

l=�0+1

P(l < τk) (48) 1000

= �0 +
∞∑

l=�0+1

P
(∀t ≤ l, Bk,t > zak

)
(49) 1001

≤ �0 +
∞∑

l=�0+1

P

(
r̂l,ak − rak >

5�ak

6
− ln+

(
T
Kl

)
l1− 1

p

)
. (50) 1002

Then, we bound the expectation of τk by properly setting �0. 1003

Let us take �0 as follows: 1004

�0 = max

⎛
⎜⎝
[
6 ln

(
T
K�

p/(p−1)
ak

)] p
p−1

(
4�ak

)p/(p−1) ,
1

�
p/(p−1)
ak

⎞
⎟⎠. 1005

For l > �0, we have l > �
−p/(p−1)
ak due to the definition of �0, 1006

and thus, ln+((T/Kl))/ l1−1/p ≤ 4�ak/6. Hence, the following 1007

condition holds: 1008

5�ak/6− ln+
(

T

Kl

)
/ l1− 1

p ≥ 5�ak/6− 4�ak/6. (51) 1009

Hence, we can bound E[τk] as follows: 1010

E[τk] ≤ �0 +
∞∑

l=�0+1

P

(
r̂l,ak − rak >

�ak

6

)
(52) 1011

≤ �0 + exp

(
bpνp

c p

) ∞∑
l=�0+1

exp

(
− l1− 1

p�ak

6c

)
(53) 1012

≤ �0 + exp

(
bpνp

c p

)∫ ∞
0

exp

(
− x1− 1

p�ak

6c

)
dx (54) 1013

≤ max

⎛
⎜⎜⎜⎝
[

6 ln

(
T
K�

p
p−1

ak

)] p
p−1

(
4�ak

) p
p−1

,
1

�
p

p−1
ak

⎞
⎟⎟⎟⎠ (55) 1014

+
(6c)

p
p−1 e

b pνp
c p 

(
2p−1
p−1

)
�

p
p−1

ak

. (56) 1015
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Finally, using the bound of E[τk], we get1016

K∑
k=k0+1

�ak E[τk] (57)1017

≤ O

⎛
⎜⎜⎜⎝

K∑
k=k0+1

max

(
3 ln

(
T
K�

p
p−1

ak

)
/2, 1

) p
p−1

�
1

p−1
ak

(58)1018

+c
p

p−1 e
b pνp

c p

�
1

p−1
ak

⎞
⎟⎟⎟⎠. (59)1019

�1020

Proof of Theorem 4: The proof can be done by combining1021

Lemma 1 and 2. By combining all gap-dependent bounds and1022

setting k0 = 1, we can obtain the gap-dependent bounds as1023

O

⎛
⎜⎜⎜⎝

K∑
k=2

max

(
ln

(
T
K�

p
p−1

ak

)
, 1

) p
p−1

�
1

p−1
ak

+ K c
p

p−1 e
b pνp

c p

�
1

p−1
ak

⎞
⎟⎟⎟⎠. (60)1024

�1025

APPENDIX C1026

PROOFS FOR THEOREM 51027

Proof of Lemma 3: The proof starts from Lemma 2 as1028

follows:1029

K∑
k=k0+1

�ak

T∑
t=1

P
(
Ēak ∩ Et,ak

)
(61)1030

≤ O

⎛
⎜⎜⎜⎝

K∑
k=k0+1

max

(
3 ln

(
T
K�

p
p−1

ak

)
/2, 1

) p
p−1

�
1

p−1
ak

+ c
p

p−1 e
b pνp

c p

�
1

p−1
ak

⎞
⎟⎟⎟⎠.1031

(62)1032

Then, for all gap-independent bounds, we set k01033

such that �ak0
< � < �ak0+1 where � =1034

max(e p, e−(3(p−1)/2p))(K/T )1−1/p . For �a > e p(K/T )1−1/p
1035

and e p(K/T )1−1/p > e−(3(p−1)/2p)(K/T )1−1/p , the upper1036

bound in (61) is a decreasing function. Hence, replacing1037

�a with � makes the upper bound greater. Consequently,1038

we have1039

K∑
k=k0+1

�ak E[τk] ≤ O
(

c
p

p−1 e
b pνp

c p K 1− 1
p T

1
p

)
. (63)1040

�1041

Proof of Lemma 4: Let � be (e(1/4)(K/T ))1−(1/p). Let k01042

be an index of the action such that �ak0
≤ � < �ak0+11043

K∑
j=k0+1

P

(
Ēc

a j

)(
�a j −�a j−1

)
(64)1044

=
K∑

j=k0+1

P

(
Z < ra� − �a j

6

)(
�a j −�a j−1

)
(65) 1045

≤ �−�ak0
+

∫ 1

�

P

(
Z < ra� − u

6

)
du. (66) 1046

For a fixed u ∈ [�, 1], we have 1047

P(Z < ra� − u/6) (67) 1048

= P

(
min

1<t≤T
r̂t−1,a� + βt−1,a� < ra� − u/6

)
(68) 1049

≤
T∑

s=1

P

((
ra� − r̂s,a�

)
>

c ln+(T/(K s))

s1− 1
p

+ u

6

)
(69) 1050

≤
T∑

s=1

exp
(
− ln+(T/(K s))−us1− 1

p /(6c)
)

(70) 1051

≤ K

T

T∑
s=1

s exp
(
−us1− 1

p /(6c)
)

(71) 1052

≤ K

T

(
6cp

e(p − 1)u

) p
p−1

+ K

T

∫ ∞
0

xe−
ux

1− 1
p

6c dx (72) 1053

= K

T

(
6cp

e(p − 1)u

) p
p−1

+ K

2T


(
3 p − 1

p − 1

)(
6c

u

) p
p−1

(73) 1054

≤ Cc
p

p−1
K

T
u−

p
p−1 (74) 1055

where C is a large constant including only c and p from the 1056

above inequality. From the above inequality, we can bound the 1057

integration as follows: 1058∫ 1

�

P(Z < ra� − u/6)du ≤ Cc
p

p−1
K

T

∫ 1

�

u−
p

p−1 du (75) 1059

= Cc
p

p−1
K

T

[
−(p − 1)u−

1
p−1

]1

�
≤ C �c

p
p−1

K

T
�−

1
p−1 (76) 1060

where C � is a constant greater than C(p− 1). Finally, we get 1061

T
K∑

j=k0+1

P

(
Ēc

a j

)(
�a j −�a j−1

)
(77) 1062

≤ T�+ C �c
p

p−1 K�−
1

p−1 ≤ O
(

c
p

p−1 K 1− 1
p T

1
p

)
. (78) 1063

� 1064

Proof of Theorem 5: The proof can be done by combining 1065

Lemma 3 and 4. We combine all gap-independent bounds and 1066

for all gap-independent bounds, we set k0 such that �ak0
< 1067

� < �ak0+1 where � = max(e p, e−(3(p−1)/2p))(K/T )1−1/p. 1068

Then, T�k0 < T� = O(K 1−1/pT 1/p) holds. Finally, we can 1069

obtain the gap-independent bounds 1070

E[RT ] ≤ O
(

c
p

p−1 e
b pνp

c p K 1−1/p T 1/p
)
. (79) 1071

� 1072

APPENDIX D 1073

PROOFS FOR THEOREM 6 1074

Proof of Lemma 5: For a fixed a ∈ A, We first define 1075

a stopping time τk for the kth selection of a. Using τk , the 1076
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following bound can be derived:1077

T∑
t=1

P

(
E (1)

t,a

)
=

T∑
t=1

P
(
Et,a ∩ Ēt,a ∩ Êc

t,a

)
(80)1078

≤
T−1∑
k=0

P
(
r̂a,τk > xa

) ≤ exp

(
bpνp

c p

) T−1∑
k=0

e−
k
1− 1

p �a
3c (81)1079

≤
(3c)

p
p−1 exp

(
bpνp

cp

)

(

2p−1
p−1

)
�

p
p−1

a

. (82)1080

The probability of E (2)
t,a can be bounded by the probability1081

of Êτk ,a ∩ Ẽc
τk ,a as follows:1082

T∑
t=1

P

(
E (2)

t,a

)
=

T∑
t=1

P
(
Et,a ∩ Ēt,a ∩ Êt,a ∩ Ẽc

t,a

)
(83)1083

≤
T−1∑
k=0

P
(
Êτk ,a ∩ Ẽc

τk ,a

)
(84)1084

=
T−1∑
k=0

P
(
r̂a,τk ≤ xa, r̂τk ,a + (1+ �)βτk ,a Gτk ,a > ya

)
(85)1085

≤
T−1∑
k=0

P
(
xa + (1+ �)βτk ,a Gτk ,a > ya

)
(86)1086

≤ �0 +
T−1∑

k=�0+1

P
(
xa + (1+ �)βτk ,a Gτk ,a > ya

)
. (87)1087

Then, similar to Lemma 2, we properly take �0 to bound the1088

sum of probability. Now, let us take1089

�0 = max

(
3(1+ �) ln

(
T

K
�p/(p−1)

ak

)
, 1

) p
p−1

/�p/(p−1)
ak

.1090

Then, for l > �0, we have l > �−p/(p−1)
ak , and thus1091

(1+ �) ln+
(

T

Kl

)
/ l1−1/p ≤ �ak/3. (88)1092

Hence, we have1093

�0 +
T−1∑

k=�0+1

P
(
xa + (1+ �)βτk ,a Gτk ,a > ya

)
(89)1094

≤ �0 +
T−1∑

k=�0+1

P
(
Gτk ,a > 1

)
(90)1095

=
max

(
3(1+ �) ln

(
T
K�

p/(p−1)
ak

)
, 1

) p
p−1

�
p/(p−1)
ak

(91)1096

where (�a/3(1+ �))β−1
τk ,a

> 1 for l > �0 and G is a random1097

variable within [−1, 1] and hence, P(G > 1) = 0 holds.1098

Finally, to prove the bound of the sum of the probability1099

of E (3)
t,a , we barrow the idea from [3] and [23]. Let Fk,a :=1100

P(r̂τk ,a� + βτk ,a�Gτk ,a� > ya). Using F , we can derive the1101

following bound:1102

T∑
t=1

P

(
E (3)

t,a

)
=

T∑
t=1

P
(
Et,a ∩ Ēt,a ∩ Êt,a ∩ Ẽt,a

)
(92)1103

≤
T−1∑
k=0

E

[
1− Fk,a

Fk,a
I

(
ra� −

�a

6
− βτk ,a� < r̂τk ,a�

)]
(93) 1104

≤
T−1∑
k=0

1− Fk,a

Fk,a
≤

T−1∑
k=0

P

(
G < 1

(1+�) − �a
6(1+�)βτk ,a�

)
P

(
G > 1

(1+�) − �a
6(1+�)βτk ,a�

) (94) 1105

≤
�0∑

k=0

P(G < 1/(1+ �))
P(G > 1/(1+ �)) (95) 1106

+
T−1∑

k=�0+1

P
(
G < 1/(1+ �)−�a/

(
6(1+ �)βτk ,a�

))
P
(
G > 1/(1+ �)−�a/

(
6(1+ �)βτk ,a�

)) . 1107

(96) 1108

Similar to the MR-UCB, let us take 1109

�0 = max

(
6(2 + �) ln

(
T

K
�p/(p−1)

ak

)
, 1

) p
p−1

/�p/(p−1)
ak

. 1110

For l > �0, we have l > �
−p/(p−1)
ak , and thus 1111

ln+
(

T

Kl

)
/ l1−1/p ≤ �ak/6/(2+ �). (97) 1112

In other words, we have 1113

1/(1+ �)−�ak/
(
6(1+ �)βτl ,a�

) ≤ −1. (98) 1114

Hence, P(G < (1/(1 + �)) − (�a/6(1 + �)βτk ,a� )) = 0 since 1115

G is a random variable in [−1, 1]. Finally, we get 1116

T∑
t=1

P

(
E (3)

t,a

)
≤ M�

max
(

6(2+ �) ln
(

T
K�

p/(p−1)
ak

)
, 1

) p
p−1

�
p/(p−1)
ak

1117

(99) 1118

where P(G < 1/(1+ �))/P(G > 1/(1+ �)) < M� . � 1119

Proof of Theorem 6: First, using Lemma 5, we can bound 1120

the final term in (19) as follows: 1121

�ak

T∑
t=1

P
(
Et,a ∩ Ēa

) = �ak E
[
I
[
Z > zak

]
nak ,T

]
(100) 1122

≤ �ak

T∑
t=1

P
(
Et,a ∩ Ēt,a

)
(101) 1123

≤ �ak

T∑
t=1

[
P

(
E (1)

t,a

)
+ P

(
E (2)

t,a

)
+ P

(
E (3)

t,a

)]
(102) 1124

≤ O

⎛
⎜⎝M�

max
(
(2+ �) ln

(
T
K�

p/(p−1)
ak

)
, 1

) p
p−1

�
p/(p−1)
ak

(103) 1125

+
(3c)

p
p−1 exp

(
bpνp

cp

)
�

1/(p−1)
ak

⎞
⎠. (104) 1126

Hence, from Lemma 6, the gap-dependent regret bound of 1127

MR-APE can be obtained as follows: 1128

O

⎛
⎜⎝ K∑

k=1

M+�
max

(
(2 + �) ln

(
T
K�

p/(p−1)
ak

)
, 1

) p
p−1

�
1/(p−1)
ak

(105) 1129
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+
K c

p
p−1 exp

(
bpνp

cp

)
�

1
p−1

ak

⎞
⎠ (106)1130

where M+� := max(M�, 1) that combines (89) and (99). �1131

APPENDIX E1132

PROOFS FOR THEOREM 71133

Proof of Theorem 7: The proof can be simply done1134

by picking k0 such that �ak0
< � < �ak0+1 where1135

� = max(e p, e−(3(p−1)/2p))(K/T )1−1/p . Then, T�k0 <1136

T� = O(K 1−1/p T 1/p) holds. Finally, we can obtain the1137

gap-independent bounds as1138

O
(

max
(

M� (2+ �)
p

p−1 , c
p

p−1 e
b pνp

c p

)
K 1−1/p T 1/p

)
. (107)1139

�1140
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