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Abstract— The use of low-resolution digital-to-analog and1

analog-to-digital converters (DACs and ADCs) significantly ben-2

efits energy efficiency (EE) at the cost of high quantization noise3

for massive multiple-input multiple-output (MIMO) systems.4

This paper considers a precoding optimization problem for5

maximizing EE in quantized downlink massive MIMO systems.6

To this end, we jointly optimize an active antenna set, precoding7

vectors, and allocated power; yet acquiring such joint optimal8

solution is challenging. To resolve this challenge, we decompose9

the problem into precoding direction and power optimization10

problems. For precoding direction, we characterize the first-order11

optimality condition, which entails the effects of quantization12

distortion and antenna selection. We cast the derived condition13

as a functional eigenvalue problem, wherein finding the prin-14

cipal eigenvector attains the best local optimal point. To this15

end, we propose generalized power iteration based algorithm.16

To optimize precoding power for given precoding direction,17

we adopt a gradient descent algorithm for the EE maximization.18

Alternating these two methods, our algorithm identifies a joint19

solution of the active antenna set, the precoding direction, and20

allocated power. In simulations, the proposed methods provide21

considerable performance gains. Our results suggest that a22

few-bit DACs are sufficient for achieving high EE in massive23

MIMO systems.24

Index Terms— Low-resolution analog-to-digital converter25

(ADC)/digital-to-analog converter (DAC), energy efficiency (EE),26

precoding, antenna selection, massive multiple-input multiple-27

output (MIMO), eigenvalue problem.28

I. INTRODUCTION29

MASSIVE multiple-input multiple-output (MIMO) [1] is30

a key enabler for future cellular systems because it31

can provide substantial gains in both spectral efficiency (SE)32

and coverage by employing large-scale antenna arrays at a33
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base station (BS). In principle, massive MIMO increases the 34

SE gain by scaling antennas at the BS under ideal condi- 35

tions. Unfortunately, in practice, the use of very large-antenna 36

elements makes the BS hardware and radio frequency (RF) 37

circuit architectures intricate and also gives rise to excessive 38

energy consumption in the BS. Since the energy consump- 39

tion of quantizers (digital-to-analog converters (DACs) and 40

analog-to-digital converters (ADCs)) exponentially increases 41

with its resolution bits, using low-resolution quantizers can 42

alleviate the excessive energy consumption in massive MIMO 43

systems [2]. Motivated by this, implementing massive MIMO 44

with low-resolution DACs and ADCs are rapidly gaining 45

momentum [3]–[5]. 46

The use of the low-resolution quantizers in transmission and 47

reception causes severe quantization error. For example, in the 48

downlink MIMO transmission using low-resolution DACs, the 49

transmitted signals are distorted by the low-resolution DACs, 50

and the quantization error incurs a significant amount of 51

inter-user interference. This fundamentally limits the SE gains 52

in massive MIMO. As a result, it is crucial to incorporate 53

the quantization effects in designing a downlink transmission 54

strategy to maximize communication performance such as SE 55

and energy efficiency (EE) in the massive MIMO using low- 56

resolution quantizers. In particular, design for energy efficient 57

communications is critical in realizing massive MIMO sys- 58

tems. However, finding a precoding solution for maximizing 59

the EE under low-resolution quantizers constraints is highly 60

challenging. The challenge involves the non-convexity of the 61

EE function, defined as the sum SE normalized by the total 62

transmission power. Further, since the total transmission power 63

is a function of an active antenna set, it entails a non-smooth 64

function. This non-smooth part makes the optimization prob- 65

lem more difficult to solve. In this paper, we make progress 66

toward finding a sub-optimal solution that jointly identifies a 67

set of active antenna elements and the corresponding linear 68

precoding vectors to maximize EE in downlink quantized 69

massive MIMO systems. 70

A. Prior Works 71

In the literature, linear precoding methods for maximizing 72

EE have been widely studied in high-resolution quantizer 73

setups. This includes a study of the EE of massive MIMO 74

uplink systems with traditional linear receive beamforming 75

such as zero-forcing (ZF) and minimum mean-square-error 76

(MMSE) [6], the capacity limit in massive MIMO with 77

non-ideal hardware impacts [7], joint antenna selection and 78
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precoding design using semidefinite programming (SDP) with79

successive convex approximation (SCA) [8]. A comprehensive80

survey on energy-efficient design is found in [9].81

Despite the abundant previous studies, the aforementioned82

prior work is not applicable when low-resolution quantizers83

are used. This is because low-resolution quantizers induce84

non-negligible non-linear quantization distortion, which may85

render the performance characterization totally different from86

a conventional high-resolution system. Motivated by this, there87

exist several prior works that performed performance analysis88

for low-resolution quantizers. Especially, thanks to the analyti-89

cal tractability of 1-bit quantizers, there have been rich studies90

regarding design and analysis of 1-bit quantizers. In [10]–[12],91

the achievable rate of 1-bit ADCs was studied. In [13], it was92

revealed that higher-rank transmit covariance matrices can93

improve the sum spectral efficiency even with 1-bit quantizer.94

In [14], [15], a MIMO system with one-bit Sigma-Delta95

(ΣΔ) quantizers is presented. In [16], [17], constant-envelope96

precoding methods were developed by harnessing the fact that97

a 1-bit quantizer only can extract the signal phase information.98

More relevant to this work, several prior works studied99

precoding methods in downlink systems with low-resolution100

quantizers. A main obstacle in developing such precoders is101

that non-linear quantization distortion is not tractable. To han-102

dle this in a tractable way, in [18], the non-linearity of the103

quantization distortion was resolved by adopting Bussgang104

theorem [19], then by using the linearization, a closed-form105

expression of a MMSE precoder was derived. In [4], a linear106

precoder for 3 to 4-bit DACs and a non-linear precoder for107

1-bit DACs were proposed. Especially, in designing the linear108

precoder, it adopted a conventional linear precoder such as109

MMSE or ZF, and quantized the adopted linear precoder110

to use with low-resolution DACs. A key finding of [4] is111

that using 3 to 4-bit DACs offers comparable performance112

with high-resolution DACs, provided that proper design of113

precoding is used. This finding is supported by the SE and114

bit-error-rate (BER) analyses in [5]. A similar approach was115

also used in [20], where conventional ZF precoding is applied,116

thereafter 1-bit quantization is conducted to the precoded117

signal. The approach used in [4] was further improved by118

using alternating minimization in [21]. For precoding design119

in more general bits quantizers, an additive quantization noise120

model (AQNM) was also used in several works [22]–[25], pro-121

viding a linear approximation of a quantized signal. Employing122

the AQNM, [22] considered hybrid precoding architecture123

with low-resolution DACs in a point-to-point MIMO channel124

and performed extensive performance evaluation by using a125

conventional precoder. In [24], [25], an algorithm that selects126

an active antenna set was proposed for a given precoder.127

Without linear modeling, the alternating direction method of128

multipliers (ADMM) was used to solve an inter-user inter-129

ference minimization problem in [26]. Based on this result,130

a general precoder was designed.131

As explained above, abounding studies provided crucial132

insights on low-resolution quantizer systems. The existing133

precoding methods, however, are mostly limited to variants134

of traditional linear precoding methods such as ZF or MMSE.135

Specifically, the traditional linear precoders are firstly adopted,136

then quantization distortion effects are reflected. Neverthe- 137

less, the traditional precoders have limited SE performance 138

due to the quantization distortion, and do not care to save 139

energy consumption. These two features lead to mediocre EE 140

performance. 141

Beyond traditional linear precoders, prior work such as [25] 142

developed an antenna selection strategy to maximize the EE. 143

Nonetheless, the approach in [25] is limited in that only 144

antenna selection is carefully designed while fixing precoders. 145

Since precoder design significantly affects the energy con- 146

sumption of the BS, it is inefficient compared to the joint 147

design of antenna selection and precoders. Besides downlink, 148

the prior works [22], [27] tackled EE maximization in point-to- 149

point massive MIMO systems. Notwithstanding, their design 150

principles are mostly based on singular-value decomposition 151

(SVD); therefore, this cannot be extended to downlink MIMO 152

systems. In summary, no prior work rigorously investigated a 153

joint design approach of antenna selection and precoders for 154

maximizing the EE in downlink quantized massive MIMO, 155

which motivates to develop a novel precoding method with 156

joint antenna selection. 157

B. Contributions 158

We investigate a EE maximization problem with regard 159

to precoders in a downlink multiuser massive MIMO sys- 160

tem, where low-resolution DACs and low-resolution ADCs 161

are employed at the BS and users, respectively. Our main 162

contributions are summarized as follows: 163

• In the first phase of this paper, we put forth a pre- 164

coding strategy for maximizing the EE in quantized 165

massive MIMO systems by reformulating the problem. 166

To accomplish the precoding optimization, by adopting 167

the AQNM [28], which is a linear approximation tech- 168

nique of the non-linear quantizer function with additional 169

quantization noise, we define the EE of the quantized 170

massive MIMO system. The EE function is the sum SE 171

function normalized by the total transmit power, a frac- 172

tional programming form. Therefore, it is critical to find 173

an optimal transmit power level while maximizing the 174

SE. Unfortunately, the EE maximization problem in the 175

downlink quantized massive MIMO system is NP-hard, 176

similar to the case using infinite-resolution DACs and 177

ADCs. Therefore, finding a global optimum solution is 178

infeasible using polynomial-time complexity algorithms. 179

To overcome this challenge, we take the Dinkelbach 180

method [29] to relax a fractional programming, then we 181

decompose the optimization variables, i.e., the precoding 182

vectors, into two parts: 1) scaling and 2) directional 183

components. 184

• Leveraging this decomposition, we propose an alternating 185

optimization framework for the EE maximization called 186

Q-GPI-EEM. To be specific, for a fixed Dinkelbach 187

variable and a directional component, we obtain the 188

optimum power scaling component by using a gradient 189

descent method. Since this sub-optimization problem is 190

convex, gradient descent is sufficient to find the optimum 191

point. Subsequently, we find the directional component 192

with the obtained power scaling component; we derive 193
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the first-order optimality condition for the non-convex194

precoding direction optimization problem. The derived195

condition is cast as a functional eigenvalue problem, and196

it insinuates that a local optimal point that has zero197

gradient is obtained by finding the principal eigenvector198

of the functional eigenvalue problem. To this end, modi-199

fying the algorithm in [30], we present a precoding algo-200

rithm called quantized generalized power iteration-based201

algorithm for direction optimization (Q-GPI-DO) that202

iteratively identifies the principal eigenvector with a few203

numbers of iterations. The algorithm iterates by updat-204

ing the Dinkelbach variable until it converges. Unlike205

other existing algorithms for the EE maximization in the206

quantized massive MIMO systems, the most prominent207

feature of Q-GPI-EEM is to jointly identify a set of active208

antennas and the corresponding precoding direction by209

considering the effect of RF circuit power consumption210

for the active transmit antennas.211

• In the second phase of the paper, as a byproduct, we also212

present a precoding method for maximizing the SE in213

quantized massive MIMO systems, called Q-GPI-SEM.214

We show that the SE maximization method is a spe-215

cial case of the EE maximization method, reduced by216

simplifying some parameters of the EE maximization217

setups. Q-GPI-SEM ensures to find a local optimal point218

of the SE maximization for any important system para-219

meters, including the number of antennas, the number220

of downlink users, and the number of DAC and ADS221

resolution bits. Besides, our algorithm generalizes, and222

the prior GPI-based algorithm [30] by incorporating the223

quantization error effects caused by DACs and ADCs.224

• Simulation results demonstrate that the proposed algo-225

rithms, Q-GPI-EEM and Q-GPI-SEM considerably out-226

perform conventional algorithms in both EE and SE.227

Our EE maximization algorithm provides robustness to228

the maximum transmit power constraint in terms of EE.229

For example, the EE performances of the other methods230

eventually degrade as the transmit power increases, while231

our algorithm offers the monotonically increasing EE232

by adjusting the actual transmit power in the algorithm.233

In terms of SE, the SE is saturated as the transmit234

power increases because of the quantization distortion235

effects of low-resolution quantizers. Using the proposed236

algorithm, we can pull up this saturation level more than237

2× compared to the conventional methods.238

• In addition to the SE and EE improvement, we also239

elucidate a system design guideline for quantized massive240

MIMO systems. Exploiting the proposed joint method,241

we observe that using large-scale antenna elements,242

each with low-resolution quantizers, provides consider-243

able benefits in both the SE and EE. We note that244

this was also found in several prior works (e.g., [4]245

or [25]), yet our finding is obtained by exploiting the246

joint design of antenna selection and precoders. Thanks247

to this, our method achieves higher EE compared to248

the baseline methods at the same number of antennas.249

More detailed system design insights are provided as250

follows: (i) Regarding the EE, there exists the optimal251

number of the DAC bits that maximize the EE. For 252

instance, using 4-bit DACs achieves the maximum EE 253

if the BS has 8 antennas, while 3-bit DACs achieves the 254

maximum EE if the BS has 32 antennas. (ii) Regarding 255

the SE, our method is highly efficient if the number of 256

antennas is enough. In particular, the proposed method 257

achieves a similar level of SE of the high-resolution 258

DACs, e.g., 9 ∼ 11 bits even with low-resolution DACs, 259

e.g., 3 ∼ 5 bits. (iii) Under the constraint of the total 260

number of DAC bits, using the homogeneous DACs at 261

the BS is beneficial for the SE and the EE. In addition, 262

the proposed algorithm shows higher robustness for DAC 263

configuration, and thus, it can provide more flexibility 264

in the system design. Overall, the proposed algorithm 265

provides high SE and EE performance in the massive 266

MIMO regime, allowing the BS to employ low-resolution 267

DACs and offering high system design flexibility. 268

Notation: A is a matrix and a is a column vector. Super- 269

scripts (·)∗, (·)T, (·)H, and (·)−1 denote conjugate, transpose, 270

Hermitian, and matrix inversion, respectively. IN is an identity 271

matrix of size N × N and 0M×N is a zero matrix of size 272

M × N . CN(μ, σ2) is a complex Gaussian distribution with 273

mean μ and variance σ2. Unif[a, b] denotes a discrete uniform 274

distribution from a to b. A diagonal matrix diag(A) has 275

the diagonal entries of A at its diagonal entries. Assuming 276

that A1, . . . ,AN ∈ CK×K , blkdiag (A1, . . . ,AN ) is a block 277

diagonal matrix of size KN ×KN whose nth block diagonal 278

entry is An. ‖A‖ represents L2 norm, ‖A‖F represents 279

Frobenius norm, E[·] represents an expectation operator, tr(·) 280

denotes a trace operator, vec(·) indicates a vectorization oper- 281

ator, and ⊗ is Kroncker product. 282

II. SYSTEM MODEL 283

We consider a downlink multiuser massive MIMO system 284

where the base station (BS) is equipped with N � 1 antennas 285

and each user is equipped with a single antenna, and there are 286

K users to be served. We further assume that the BS employs 287

low-resolution DACs and the users employ low-resolution 288

ADCs. We also consider a general case for low-resolution 289

quantizers where each DAC and ADC can have any bit 290

configuration. We remark that such an assumption covers the 291

case of high-resolution quantizers as well as low-resolution 292

quantizers.1 At the BS, a precoded digital baseband transmit 293

signal vector x ∈ C
N is expressed as 294

x =
√

PWs, (1) 295

where s ∼ CN(0K×1, IK) is a symbol vector, W ∈ C
N×K

296

represents a precoding matrix, and P is the maximum transmit 297

power. 298

The digital baseband signal x in (1) is further quantized at 299

the DACs prior to transmission. To characterize the quantized 300

signal, we adopt the AQNM [28], that approximates the quan- 301

tization process in a linear form. Then, the analog baseband 302

transmit signal after quantization becomes 303

Q(x) ≈ xq =
√

PΦΦΦαbs
Ws + qbs, 304

1An example of a low-resolution quantizer at the users: in internet-of-things,
the users can be energy-hungry even with a single antenna, which requires to
use low-resolution ADCs.
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where Q(·) is an element-wise quantizer that applies for each305

real and imaginary part, ΦΦΦαbs
= diag(αbs,1, . . . , αbs,N) ∈306

R
N×N denotes a diagonal matrix of quantization loss, and307

qbs ∈ C
N is a quantization noise vector. The quantization loss308

of the nth DAC αbs,n ∈ (0, 1) is defined as αbs,n = 1−βbs,n,309

where βbs,n is a normalized mean squared quantization error310

with βbs,n = E[|x−Qn(x)|2]
E[|x|2] [28], [31]. The values of βbs,n are311

characterized depending on the number of quantization bits312

at the nth BS antenna bDAC,n. Specifically, for bDAC,n ≤ 5,313

βbs,n is quantified in Table 1 in [32]. For bDAC,n > 5, βbs,n314

can be approximated as βbs,n ≈ π
√

3
2 2−2bDAC,n [33]. The315

quantization noise qbs is uncorrelated with x and follows316

qbs ∼ CN(0N×1,Rqbsqbs
). The covariance Rqbsqbs

is com-317

puted as [28], [31]318

Rqbsqbs
= ΦΦΦαbs

ΦΦΦβbs
diag

(
E
[
xxH

])
319

= ΦΦΦαbs
ΦΦΦβbs

diag
(
PWWH

)
.320

The quantized signal xq is amplified by a power amplifier321

under a power constraint at the BS. Since the maximum322

transmit power is defined as P , we have the following power323

constraint [34]324

tr
(
E
[
xqxH

q

]) ≤ P.325

Now, we represent the received analog baseband signals at326

all the K users as327

y = HHxq + n, (2)328

where H ∈ C
N×K is a channel matrix and n ∼329

CN(0K×1, σ
2IK) indicates an K× 1 additive white Gaussian330

noise vector with zero mean and variance of σ2. Each column331

of the channel matrix hk represents the channel between332

user k and the BS. We assume a block fading model, where333

hk is invariant within one transmission block and changes334

independently over transmission blocks. We focus on a single335

transmission block and assume that the CSI is perfectly known336

at the BS.337

The received analog signals in (2) are quantized at the ADCs338

of the users. Accordingly, the received digital baseband signals339

are given as [28], [35]340

Q(y) ≈ yq = ΦΦΦαy + q341

= ΦΦΦαHHxq + ΦΦΦαn + q342

=
√

PΦΦΦαHHΦΦΦαbs
Ws + ΦΦΦαHHqbs + ΦΦΦαn + q,343

where ΦΦΦα = diag(α1, . . . , αK) ∈ R
K×K is a diagonal matrix344

of ADC quantization loss defined as αk = 1−βk, and q ∈ C
K

345

is a quantization noise vector, which is uncorrelated with y.346

Here, αk and βk are similarly defined as αbs,n and βbs,n,347

respectively. The quantization noise q has zero mean and348

follows a complex Gaussian distribution. Consequently, the349

digital baseband signal at user k is given as350

yq,k =
√

PαkhH
kΦΦΦαbs

wksk +
√

P
∑
� �=k

αkhH
kΦΦΦαbs

w�s�351

+αkhH
kqbs + αknk + qk, (3)352

where wk ∈ C
N denotes the kth column vector of W, and sk, 353

nk, and qk represent kth element of s, n, and q, respectively. 354

The variance of qk is computed as [28] 355

rqkqk
= αkβkE

[
ykyH

k

]
356

= αkβk

(
hH

k E
[
xqxH

q

]
hH

k + σ2
)

357

= αkβk

(
hH

k

(
PΦΦΦαbs

WWHΦΦΦH
αbs

+ Rqbsqbs

)
hk + σ2

)
. 358

(4) 359

The following sections formulate an EE maximization prob- 360

lem, propose an algorithm, and validate the performance via 361

simulations accordingly. 362

Remark 1 (Comparison Between AQNM and Bussgang 363

Decomposition): In the literature, two approaches are known 364

to model the non-linear quantization distortion effect: AQNM 365

and Bussgang decomposition. In some studies, these two 366

approaches were described as two different methods. AQNM 367

and Bussgang decomposition are actually equivalent. More 368

specifically, AQNM is a special case of Bussgang decomposi- 369

tion when MMSE tailors a quantization function. We refer [36] 370

for more details. 371

III. ENERGY EFFICIENCY MAXIMIZATION 372

PROBLEM FORMULATION 373

A. Performance Metric 374

We characterize the EE for the considered system as our 375

main performance metric. Using (3), we define the downlink 376

SINR of user k as 377

Γk 378

=
Pα2

k|hH
kΦΦΦαbs

wk|2
Pα2

k

∑
� �=k |hH

kΦΦΦαbs
w�|2+α2

kh
H
kRqbsqbs

hk+α2
kσ2+rqkqk

. 379

(5) 380

Unlike a perfect quantization system where the resolution of 381

DACs and ADCs is infinite, the SINR in (5) includes the 382

quantization noise power and the quantization loss induced 383

by both low-resolution DACs and ADCs. Accordingly, the SE 384

for user k is expressed as 385

Rk = log2 (1 + Γk) . (6) 386

Now, we define the EE based on (6). Let PLP, PM, PLO, PH, 387

PPA, PRF, PDAC, Pcir, and PBS denote the power consumption 388

of low-pass filter, mixer, local oscillator, 90◦ hybrid with 389

buffer, power amplifier (PA), radio frequency (RF) chain, 390

DAC, analog circuits, and BS, respectively. The DAC power 391

consumption PDAC (in Watt) is defined as [22], [37] 392

PDAC(bDAC, fs) = 1.5× 10−5 · 2bDAC + 9× 10−12 · fs · bDAC, 393

where fs is the sampling rate. If antenna n is active, then the 394

corresponding DAC pair and RF chain consume the circuit 395

power of 2 PDAC(bDAC,n, fs)+PRF where PRF = 2PLP+2PM+ 396

PH. On the contrary, if the antenna is inactive, no power is 397

consumed in the corresponding DAC and RF chain. Consid- 398

ering such behaviour, the circuit power consumption Pcir is 399

formulated as [22] 400

Pcir = PLO +
N∑

n=1

�{n∈A}
(
2 PDAC(bDAC,n, fs) + PRF

)
, (7) 401
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TABLE I

ABBREVIATION AND DEFINITION OF SYSTEM PARAMETERS

where �{a} is the indicator function which is �{a} = 1 only402

when a is true and �{a} = 0 otherwise, and A is an index403

set of active antennas. Then the BS power consumption PBS404

is given as [22]405

PBS(N,bDAC, fs,W) = Pcir + κ−1Ptx,406

where Ptx is the transmit power Ptx = tr(E[xqxH
q ]), κ407

is a PA efficiency, i.e., κ = Ptx/PPA, and bDAC =408

[bDAC,1, . . . , bDAC,N ]T. Finally, the EE of the considered sys-409

tem is defined as410

η =
Ω
∑K

k=1 Rk

PBS(N,bDAC, fs,W)
, (8)411

where Ω denotes transmission bandwidth. We summarize the412

used system parameters, their definitions, and values in Table I.413

B. Formulated Problem414

We now formulate an EE maximization problem with415

respect to a precoder. We first normalize the EE η in (8)416

by the bandwidth Ω since it is irrelevant to precoder design.417

Throughout the paper, we use the EE and normalized EE418

interchangeably as they do not change the problem. Then the419

EE maximization problem is formulated as420

maximize
W

∑K
k=1 Rk

PBS(N,bDAC, fs,W)
(9)421

subject to tr
(
E
[
xqxH

q

]) ≤ P, (10)422

We remark that the BS power consumption includes the circuit423

power consumption, which is a function of active antennas,424

and thus, the EE maximization problem needs to be solved425

by designing W with incorporating the impact of active and426

inactive antenna sets. In this regard, we propose an algorithm427

that jointly designs a precoder and performs an antenna428

selection in Section IV.429

IV. JOINT PRECODING AND ANTENNA430

SELECTION ALGORITHM431

A direct solution for the formulated problem in (9) is not432

available since it is non-smooth and non-convex. We first refor-433

mulate the problem and then propose an algorithm that pro-434

vides the best sub-optimal solution to resolve these challenges.435

A. Problem Reformulation 436

We reformulate (9) by using the Dinkelbach method [29] 437

as 438

maximize
W,μ

K∑
k=1

Rk − μPBS(N,bDAC, fs,W) (11) 439

subject to tr
(
E
[
xqxH

q

]) ≤ P (12) 440

μ > 0, (13) 441

where μ is an auxiliary variable. To cast the problem (11) into 442

a tractable form, we first rewrite the DAC quantization noise 443

covariance term coupled with a user channel in (5) as 444

hH
kRqbsqbs

hk = hH
kΦΦΦαbs

ΦΦΦβbs
diag

(
PWWH

)
hk 445

= P

N∑
n=1

|hn,k|2αbs,nβbs,n

K∑
�=1

|wn,�|2 446

= P

K∑
�=1

N∑
n=1

w∗
n,�αbs,nβbs,nhn,kh∗

n,kwn,� 447

= P

K∑
�=1

wH
� ΦΦΦαbs

ΦΦΦβbs
diag

(
hkhH

k

)
w�. (14) 448

We also rewrite the ADC quantization noise variance rqkqk
in 449

(4) as 450

rqkqk

(a)
= αkβk

(
PhH

kΦΦΦαbs
WWHΦΦΦH

αbs
hk 451

+P
K∑

�=1

wH
� ΦΦΦαbs

ΦΦΦβbs
diag

(
hkhH

k

)
w� + σ2

)
452

= αkβk

(
P

K∑
�=1

wH
� ΦΦΦH

αbs
hkhH

kΦΦΦαbs
w� 453

+P

K∑
�=1

wH
� ΦΦΦαbs

ΦΦΦβbs
diag

(
hkhH

k

)
w� + σ2

)
454

= Pαkβk

K∑
�=1

wH
� 455

×
(

ΦΦΦH
αbs

hkhH
kΦΦΦαbs

+ ΦΦΦαbs
ΦΦΦβbs

diag
(
hkhH

k

))
456

×w� + αkβkσ2, (15) 457
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where (a) comes from (14). Applying (14), (15), and βk =458

1 − αk to the SINR in (5), we re-organize the SINR term459

to represent the SINR in a more compact form as shown in460

(16), shown at the bottom of the page. Now, we simplify the461

transmit power constraint in (12) as462

tr
(
E
[
xqxH

q

])
463

= tr
(
PΦΦΦαbs

WWHΦΦΦH
αbs

+ PΦΦΦαbs
ΦΦΦβbs

diag
(
WWH

))
464

(a)
= tr

(
PΦΦΦαbs

WWH
) ≤ P, (17)465

where (a) comes from ΦΦΦβbs
= IN − ΦΦΦαbs

,466

tr
(
ΦΦΦαbs

WWHΦΦΦαbs

)
= tr

(
ΦΦΦ2

αbs
WWH

)
, and the definition of467

the trace operation.468

Regarding the SE point of view, using the maximum469

transmit power, i.e., Ptx = P , maximizes the SE for a470

given precoder. For the EE point of view, however, using the471

maximum transmit power may decrease the EE because it472

increases the SE with a logarithmic scale while it increases473

the power consumption with an (approximately) linear scale.474

For this reason, using the maximum power without adjusting475

a power level, the EE converges to zero eventually, as shown476

in [25]. To prevent this phenomenon, an optimal power scaling477

solution needs to be found to maximize the EE. To this end,478

we introduce a scalar weight τ : 0 < τ ≤ 1 in the power479

constraint as480

tr
(
E
[
xqxH

q

])
= τP. (18)481

Then applying (18) to (17), the power constraint reduces to482

tr
(
ΦΦΦαbs

WWH
)

= τ. (19)483

To incorporate the power scaling in the precoder, we define a484

weighted and normalized precoding matrix V = [v1, . . . ,vK ]485

where486

vk =
1√
τ
ΦΦΦ1/2

αbs
wk ∈ C

N . (20)487

Then, applying (20) to (16), the SE of user k is re-written as488

a function of τ and V, which is (21), shown at the bottom489

of the page. Using (19), (20), and (21), the problem in (11)490

becomes491

maximize
V,τ,μ

K∑
k=1

R̄k(V, τ) − μPBS(N,bDAC, fs,V, τ) (22)492

subject to tr
(
VVH

)
= 1 (23)493

0 < τ ≤ 1494

μ > 0.495

Note that the power constraint is equivalent to ‖v̄‖2 = 1 where 496

v̄ = vec(V), which is interpreted as a directional component 497

of the precoder. Consequently, the EE maximization problem 498

is now a problem of jointly finding an optimal power level τ 499

and precoding direction v̄. In this regard, we decompose (22) 500

into two subsequent problems: find V for given τ and find 501

τ for a given V. With the obtained τ and V, we iteratively 502

update the Dinkelbach variable μ. 503

B. Proposed Algorithm 504

1) Optimal Direction V�: We solve the problem in (22) 505

regarding V for given τ and μ. Again, this phase is mainly 506

related to designing an optimal direction of precoding since 507

the power constraint becomes ‖v̄‖2 = 1. Let Gk = 508

(ΦΦΦ1/2
αbs

)HhkhH
kΦΦΦ1/2

αbs
+ ΦΦΦβbs

diag
(
hkhH

k

)
. Then leveraging the 509

fact that ‖v̄‖2 = 1, we cast the SE R̄k in (21) into a Rayleigh 510

quotient form as 511

R̄k = log2

(
v̄HAkv̄
v̄HBkv̄

)
(24) 512

where 513

Ak = blkdiag
(
Gk, · · · ,Gk

)
+

σ2

τP
INK , 514

Bk = Ak 515

−blkdiag
(
0N×N, · · ·, αk(ΦΦΦ1/2

αbs
)HhkhH

kΦΦΦ1/2
αbs

, · · ·,0N×N

)
. 516

Consequently, we have the following problem for given τ 517

and μ: 518

maximize
v̄

K∑
k=1

log2

(
v̄HAkv̄
v̄HBkv̄

)
(25) 519

−μ

N∑
n=1

(
2 PDAC(bDAC,n, fs) + PRF

)
�{n∈A}. 520

Note that the constraint in (23) is ignored at this step. In the 521

proposed algorithm, however, v̄ will be normalized, which 522

indeed satisfies the constraint. 523

Now, the major challenge in solving the problem in (25) 524

is to handle the indicator function �{n∈A}. It is, however, 525

highly difficult due to the lack of smoothness. To resolve this 526

challenge, we transform the indicator function into a more 527

favorable form as follows: let w̃n be the nth row of the 528

precoder W. Then we clarify that antenna n is active if and 529

only if ‖w̃n‖2 > 0. Equivalently, we consider �{n∈A} = 530

�{‖ 1√
αbs,n

ṽn‖2>0} because W ∝ ΦΦΦ−1/2
αbs

V from the definition 531

in (20), where ṽn is the nth row vector of V. We remark that 532

Γk =
αk|hH

kΦΦΦαbs
wk|2∑K

�=1 |hH
kΦΦΦαbs

w�|2 − αk|hH
kΦΦΦαbs

wk|2 +
∑K

�=1 wH
� ΦΦΦαbs

ΦΦΦβbs
diag

(
hkhH

k

)
w� + σ2/P

. (16)

R̄k(V, τ) = log2

(
1 +

ταk|hH
kΦΦΦ1/2

αbs
vk|2

τ
∑K

�=1 |hH
kΦΦΦ1/2

αbs
v�|2 − ταk|hH

kΦΦΦ1/2
αbs

vk|2 + τ
∑K

�=1 vH
� ΦΦΦβbs

diag
(
hkhH

k

)
v� + σ2/P

)
. (21)
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we omit the effect of τ since it applies identically to all the533

antennas, but the quantization loss term is included so that the534

quantization effect can be applied differently across antennas.535

Subsequently, we approximate the indicator function by using536

the following approximation [38]:537

�{|x|2>0} ≈ log2(1 + |x|2/ρ)
log2(1 + 1/ρ)

, (26)538

where the approximation becomes tight as ρ→ 0. Using (26),539

the indicator function in (7) is represented as540

�{n∈A} = �{‖ṽn/
√

αbs,n‖2>0}541

≈ log2

(
1 + ρ−1

∥∥∥∥ 1√
αbs,n

ṽn

∥∥∥∥
2
)ωρ

, (27)542

where ωρ = 1/ log2(1 + ρ−1) and ρ > 0 is a small enough543

value. Further denoting that Pant,n = 2 PDAC(bDAC,n, fs) +544

PRF, we have545

N∑
n=1

(
2 PDAC(bDAC,n, fs) + PRF)�{n∈A}546

≈
N∑

n=1

log2

(
1 + ρ−1

∥∥∥∥ 1√
αbs,n

ṽn

∥∥∥∥
2
)ωρPant,n

. (28)547

We note that the approximation technique (27) makes it548

possible to incorporate the indicator function into the problem549

formulation without introducing explicit discrete variables.550

The next step is to express (28) in terms of the v̄. To this551

end, we let en be the N dimensional nth canonical basis vector552

with a single 1 at its nth coordinate and zeros elsewhere. Then553

we can write 1√
αbs,n

ṽn as ṽn = eH
nΦΦΦ−1/2

αbs
V. Subsequently,554

we rewrite ‖ 1√
αbs,n

ṽn‖2 as555

∥∥∥∥ 1√
αbs,n

ṽn

∥∥∥∥
2

= eH
nΦΦΦ−1/2

αbs
VVHΦΦΦ−1/2

αbs
en556

= vec(ẽH
nVVHẽn)557

(a)
=
((

ẽT
nV∗)⊗ ẽH

n

)
vec(V)558

(b)
=
(((

IK ⊗ ẽT
n

)
vec(V∗)

)T ⊗ ẽH
n

)
vec(V)559

(c)
= v̄H

(
IK ⊗ ẽn ⊗ ẽH

n

)
v̄, (29)560

where ẽn = ΦΦΦ−1/2
αbs

en, (a) and (b) follow from vec(ABC) =561

(CT ⊗A)vec(B), and (c) comes from (A ⊗ B)(C ⊗D) =562

(AC)⊗ (BD) and the definition of v̄ = vec(V). Using (28)563

and (29), the objective function in (25) can be represented as564

Lv(v̄) = log2 λv(v̄), (30)565

where566

λv(v̄) =
K∏

k=1

(
v̄HAkv̄
v̄HBkv̄

) N∏
n=1

(
v̄HEnv̄

)−μωρPant,n
567

and En = INK + ρ−1IK ⊗ ẽn ⊗ ẽH
n as ‖v̄‖2 = 1. With the568

reformulated objective function in (30), we derive a condition569

for a local-optimal stationary point and propose an algorithm570

to find such a local optimal point.571

Lemma 1: The first-order optimality condition of the opti- 572

mization problem (25) with the approximated objective func- 573

tion in (30) for given τ and μ is satisfied if the following 574

holds: 575

AKKT(v̄)v̄ = λv(v̄)BKKT(v̄)v̄, (31) 576

where 577

AKKT(v̄) =
K∑

k=1

Ak

v̄HAkv̄

K∏
�=1

(
v̄HA�v̄

)
, (32) 578

BKKT(v̄) =

(
K∑

k=1

Bk

v̄HBkv̄
+ μωρ

N∑
n=1

Pant,n
En

v̄HEnv̄

)
579

×
K∏

�=1

(
v̄HB�v̄

) N∏
m=1

(
v̄HEmv̄

)μωρPant,m
. (33) 580

Proof: We compute the first derivative of (30) as 581

∂Lv(v̄)
∂v̄H

=
1

λv(v̄) ln 2
∂λv(v̄)
∂v̄H

582

and subsequently, we derive ∂λv(v̄)/∂v̄H and set it to zero 583

∂λv(v̄)
∂v̄H

= 2λv(v̄)

(
K∑

k=1

(
Akv̄

v̄HAkv̄
− Bkv̄

v̄HBkv̄

)
584

−μωρ

N∑
n=1

Pant,n
Env̄

v̄HEnv̄

)
585

= 0. 586

Then, the first-order optimality condition can be derived as 587

K∑
k=1

Ak

v̄HAkv̄
λv,num(v̄)v̄ 588

= λv(v̄)

(
K∑

k=1

Bk

v̄HBkv̄
+ μωρ

N∑
n=1

Pant,n
En

v̄HEnv̄

)
589

λv,denom(v̄)v̄, 590

where λv,num(v̄) =
∏K

�=1

(
v̄HA�v̄

)
and λv,denom(v̄) = 591∏K

�=1

(
v̄HB�v̄

)∏N
m=1

(
v̄HEmv̄

)μωρPant,m . This completes 592

the proof. � 593

We interpret the derived condition (31) as a functional 594

eigenvalue problem. 595

Remark 2: The derived first-order optimality condition in 596

(31) can be transformed to a functional eigenvalue problem 597

regarding the matrix B−1
KKT(v̄)AKKT(v̄) as 598

B−1
KKT(v̄)AKKT(v̄)v̄ = λ(v̄)v̄. (34) 599

From Remark 2, the first-order optimality condition in (34) 600

is cast as a functional eigenvalue problem. More specifi- 601

cally, (34) is included in a class of nonlinear eigenvector 602

dependent eigenvalue problem (NEPv) [39], where the matrix 603

itself is a function of eigenvectors. Consequently, treating 604

v̄ as an eigenvector of B−1
KKT(v̄)AKKT(v̄), λ(v̄) is inter- 605

preted as a corresponding eigenvalue of B−1
KKT(v̄)AKKT(v̄). 606

In this regard, we need to find the principal eigenvector of 607

B−1
KKT(v̄)AKKT(v̄) that leads λ(v̄) to be a maximum eigen- 608

value of B−1
KKT(v̄)AKKT(v̄) and also satisfies the first-order 609
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Algorithm 1 Q-GPI-DO

1 initialize: v̄(0)

2 Set the iteration count t = 1
3 while

∥∥v̄(t) − v̄(t−1)
∥∥ > ε & t ≤ tmax do

4 Build matrix AKKT(v̄(t−1)) in (32)
5 Build matrix BKKT(v̄(t−1)) in (33)
6 Compute v̄(t) = B−1

KKT(v̄(t−1))AKKT(v̄(t−1))v̄(t−1)

7 Normalize v̄(t) = v̄(t)/
∥∥v̄(t)

∥∥
8 t← t + 1
9 v̄� ← v̄(t)

10 return v̄�.

optimality condition in (31). To find such v̄, we propose a610

quantization-aware generalized power iteration-based direction611

optimization algorithm (Q-GPI-DO).612

Algorithm 1 describes the proposed algorithm. The key idea613

used in Q-GPI-DO is to modify a power iteration method614

to be appliable for the corresponding functional eigenvalue615

problem (34). Specifically, Algorithm 1 first initializes the616

stacked precoding vector v̄(0). Then, the precoding vector v̄(0)
617

is updated iteratively: at iteration t, the matrices AKKT(v̄(t−1))618

and BKKT(v̄(t−1)) are computed according to (32) and (33).619

Subsequently, the precoder v̄(t) is re-computed as v̄(t) =620

B−1
KKT(v̄(t−1))AKKT(v̄(t−1))v̄(t−1) and normalized as v̄(t) =621

v̄(t)/
∥∥v̄(t)

∥∥. The iteration stops when one of the stopping622

criteria are met: either converges, i.e., ‖v̄(t) − v̄(t−1)‖ ≤ ε623

where ε > 0 denotes a tolerance level or reaches a maximum624

iteration count tmax which may differ depending on a system625

requirement.626

One remarkable benefit of the proposed Q-GPI-DO is627

that it is not required to exploit any off-the-shelf opti-628

mization solver such as CVX. Distinguished from other629

convex-relaxation based approaches, the only computational630

load of the proposed method is caused when calculating631

v̄(t) = B−1
KKT(v̄(t−1))AKKT(v̄(t−1))v̄(t−1). As implementing632

CVX in practical hardware is nearly infeasible due to the high633

complexity, Q-GPI-DO has a substantial advantage from an634

implementation perspective.635

2) Optimal Power Scaling τ�: the problem in (22) for given636

V and μ reduces to637

maximize
τ

K∑
k=1

R̄k − μP

κ
τ (35)638

subject to 0 < τ ≤ 1639

μ > 0.640

The objective function in (35) is now concave with respect641

to τ . In this regard, the optimal τ can be derived by using a642

gradient descent algorithm for given v̄ and μ. Let the objective643

function in (35) be Lτ (τ, v̄). Then the gradient update is given644

as645

τ (t+1) = τ (t) + δGD
∂Lτ (τ (t), v̄)

∂τ (t)
, (36)646

where δGD denotes a step size and the partial derivative 647

∂Lτ(τ (t), v̄)/∂τ (t) is computed as 648

∂Lτ(τ, v̄)
∂τ

649

=
1

ln 2

K∑
k=1

(
Ξk + Ψk

σ2/P +(Ξk + Ψk)τ
− Ψk

σ2/P + Ψkτ

)
−μP

κ
, 650

(37) 651

where 652

Ξk = αk|hH
kΦΦΦ1/2

αbs
vk|2, 653

Ψk =
K∑

�=1

|hH
kΦΦΦ1/2

αbs
v�|2 − αk|hH

kΦΦΦ1/2
αbs

vk|2 654

+
K∑

�=1

vH
� ΦΦΦβbs

diag
(
hkhH

k

)
v�. 655

To decide δGD, we use a backtracking line search method [40] 656

in simulations. 657

3) Thresholding of τ : Recall that we have the constraint of 658

0 < τ ≤ 1. From (36), however, it is not guaranteed to satisfy 659

the constraint. Accordingly, for each update, we perform 660

thresholding of τ ; if τ > 1, then set τ = 1, and if τ < 0, 661

then set τ = 0. 662

4) Dinkelbach Update μ: Once the precoder V and scaling 663

factor τ are derived, we update μ for the next outer iteration 664

as 665

μ =
∑K

k=1 R̄k (V, τ)
Papprox

, (38) 666

where 667

Papprox = PLO +
N∑

m=1

log2

(
1 + ρ−1

∥∥∥∥ 1√
αbs,m

ṽm

∥∥∥∥
2
)ωρ

668

×(2 PDAC(bDAC,m, fs) + PRF

)
+ τP/κ. 669

Algorithm 2 describes the proposed quantization-aware 670

GPI-based EE maximization algorithm (Q-GPI-EEM). With 671

initialization, the algorithm computes τ by using the gradient 672

descent method for given v̄ and μ and also finds v̄ by using 673

the Q-GPI-DO algorithm for given τ and μ. Then W is 674

computed from the derived τ and v̄. The algorithm repeats 675

these steps until W converges. Once converged, the outer loop 676

computes μ by using the derived W and repeats the previous 677

steps until μ converges. Once μ converged, we check whether 678

‖ 1√
αbs,n

ṽn‖2 ≥ εas to select antennas which have effective 679

gain where εas > 0 is a small enough value. This selection 680

approach is effective as the rows of V are jointly designed with 681

each other, and thus, the designed V incorporates relative gains 682

across the antennas. The norm of ṽn, however, highly depends 683

on the number of antennas because the norm of v̄ is limited 684

as ‖v̄‖ = 1. In this regard, the threshold ε may vary with 685

N . To avoid this issue, we normalize ṽn by maxi ‖ 1√
αbs,i

ṽi‖, 686

i.e., we perform 687

v̂n = ṽn/max
i

∥∥∥∥ 1√
αbs,i

ṽi

∥∥∥∥ 688
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Algorithm 2 Q-GPI-EEM

1 initialize: v̄(0), τ (0), and μ(0)

2 Set the iteration count n0 = 1
3 while |μ(t0) − μ(t0−1)|/|μ(t0)| > ε0 & t0 ≤ tmax do
4 Set the iteration count t1 = 1
5 while

∥∥W(t1) −W(t1−1)
∥∥

F
/
∥∥W(t1)

∥∥
F

> ε1 &
t1 ≤ tmax do

6 Set the iteration count n2 = 1
7 while |τ (t2) − τ (t2−1)|/|τ (t2)| > ε2 & t2 ≤ tmax do
8 Set ∂Lτ (τ (t2), v̄)/∂τ (t2) according to (37)
9 Update τ (t2) according to (36)

10 Thresholding τ
11 t2 ← t2 + 1
12 v̄ = Q-GPI-DO(AKKT(v̄, τ (t2)),BKKT(v̄, τ (t2)))
13 Compute W(t1) =

√
τ (t2)ΦΦΦ−1/2

αbs
[v1,v2, . . . ,vK ]

14 t1 ← t1 + 1
15 Update μ(t0) according to (38)
16 t0 ← t0 + 1
17 Set w̃(t1)

n = 01×K if ‖ 1√
αbs,n

v̂n‖2 < εas, n = 1, . . . , N

18 return W(t1)

and set w̃n = 01×K if ‖ 1√
αbs,n

v̂n‖2 < εas ∀n, where w̃n689

represents the nth row of W. Finally, the proposed method690

returns W.691

Remark 3 (Complexity): The computational complexity for692

each step in the proposed Q-GPI-EEM is analyzed as693

follows. In the Q-GPI-DO step, the main computational694

load is caused by calculating the inversion of BKKT(f̄).695

Since BKKT(f̄ ) is comprised of NK × NK block-diagonal696

matrices, the inversion can be obtained by calculating the697

inversion of each sub-matrix. This results in that the com-698

plexity of Q-GPI-DO with TGPI iterations is characterized as699

O(TGPIKN3). The backtracking iteration has the complexity700

of O(max(K2N, TBTK)), where TBT is the number of itera-701

tions of the backtracking algorithm. Considering the iterations702

of the gradient descent TGD, the complexity of the gradient703

descent with the backtracking algorithm is704

O(TGD ·max(K2N, TBTK)). (39)705

Note that there is some abuse of notation in (39): TBT denotes706

the number of the backtracking iteration per gradient descent707

step, which may not be the same for every step. But here,708

we consider TBT to be constant, assuming that TBT will be709

similar for every gradient descent step for ease of analysis.710

This complexity analysis will apply a similar assumption,711

which does not change the final result. In addition to this,712

we have the following outer loops for both the gradient descent713

and Q-GPI-DO: W optimization loop TW , and μ optimization714

loop Tμ. Therefore the overall complexity of Algorithm 2 is715

given as716

O(TμTW ·max
(
TGPIKN3, TGD ·max(K2N, TBTK)

))
.717

(40)718

Then, in the massive MIMO regime, it is reasonable to 719

consider KN > TBT and TGPIKN3 > TGDK2N . Therefore, 720

considering T as the total iteration count of the GPI method, 721

i.e., T = TGPITW Tμ, the overall complexity in (40) 722

becomes O(TKN3). 723

Remark 4 (Convergence): It is challenging to prove the 724

convergence of the proposed method rigorously. The main 725

obstacle is Q-GPI-DO. As explained above, through the lens of 726

a functional eigenvalue problem, Q-GPI-DO is interpreted as 727

a power iteration type algorithm to find the principal eigen- 728

vector of the NEPv (31). Conventionally, the self-consistent 729

field iteration (SCF) can be used to solve the NEPv [39], 730

whose main idea is to perform the eigenvector decomposi- 731

tion iteratively based on the previously obtained eigenvec- 732

tors. Extending this to the power iteration type algorithm 733

is a key for the convergence proof of Q-GPI-DO. We shall 734

leave this as future work. In the later section, we empir- 735

ically show that μ converges very well in general system 736

environments. 737

V. SPECIAL CASE: SUM SPECTRAL 738

EFFICIENCY MAXIMIZATION 739

We can show that a sum SE maximization problem in 740

the considered massive MIMO system with low-resolution 741

DACs and ADCs is regarded as a special case of the EE 742

maximization. Accordingly, we provide a brief description of 743

finding precoders that maximize the sum SE by exploiting the 744

results derived in the EE. The sum SE maximization problem 745

is formulated by setting μ in (11) to zero as 746

maximize
W

K∑
k=1

Rk (41) 747

subject to tr
(
E
[
xqxH

q

]) ≤ P. (42) 748

Since the SINR in (16) increases with the transmit power, the 749

SE is maximized when we meet 750

tr
(
ΦΦΦαbs

WWH
)

= 1, (43) 751

i.e., the BS transmits signals use the maximum transmit power 752

tr
(
E
[
xqxH

q

])
= P . Since this is equivalent to having τ = 1, 753

the results derived in the EE problem can be directly used 754

by setting τ = 1 and μ = 0. Now let us define a weighted 755

precoding vector as 756

fk = ΦΦΦ1/2
αbs

wk (44) 757

which is equivalent to vk in (20) with τ = 1. Then we have 758

the following optimality condition: 759

Lemma 2: The first-order optimality condition of the opti- 760

mization problem (41) is satisfied if the following holds: 761

CKKT(̄f )̄f = λ(̄f )DKKT(̄f )̄f , (45) 762

where 763

CKKT(f̄ ) =
K∑

k=1

Ck

f̄HCk f̄

K∏
�=1

(
f̄HC�f̄

)
, (46) 764
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Fig. 1. The energy efficiency versus maximum transmit power constraint P results for (a) N = 16 BS antennas, K = 4 users, bDAC,n ∼ Unif[2, 5], and
bADC,k ∼ Unif[2, 5], and (b) N = 32 BS antennas, K = 8 users, bDAC,n ∼ Unif[2, 12], and bADC,k ∼ Unif[2, 6].

DKKT(f̄) =
K∑

k=1

Dk

f̄HDk f̄

K∏
�=1

(
f̄HD�f̄

)
, (47)765

Ck = blkdiag
(
Gk, · · · ,Gk

)
+

σ2

P
INK ,766

Dk = Ck767

−blkdiag
(
0N×N, · · ·, αk(ΦΦΦ1/2

αbs
)HhkhH

kΦΦΦ1/2
αbs

, · · ·,0N×N

)
,768

λ(f̄ ) =
K∏

k=1

(
f̄HCk f̄
f̄HDk f̄

)
.769

Proof: We derive the results by setting μ = 0 and τ = 1770

from Lemma 1. �771

We note that we can solve (45) by leveraging Algorithm 1772

with μ = 0 and τ = 1; replacing (32), (33), and vk with773

(46), (47), and fk, respectively and computing W based on774

(44). The algorithm provides the best precoder that maximizes775

the sum SE among all the stationary points. We call the776

quantization-aware GPI-based SE maximization algorithm as777

Q-GPI-SEM.778

VI. NUMERICAL RESULTS779

This section evaluates the proposed algorithms to validate780

the performance and draw key system design insights. We also781

evaluate benchmark algorithms for comparison. The following782

cases are included in the simulations: (1) the proposed algo-783

rithms, (2) quantization-ignorant conventional GPI-based SE784

maximization (GPI-SEM) [30], (3) quantization-aware linear785

precoders such as regularized zero-forcing (Q-RZF), zero-786

forcing (Q-ZF), and maximum ratio transmission (Q-MRT),787

and (4) conventional linear precoders such as RZF, ZF, and788

MRT. The quantization-aware linear precoders are derived789

based on the AQNM system model.790

A. Simulation Environments791

We adopt a one-ring model [41] to generate the channel792

vector hk =
√

ρkgk. To generate pathloss ρk, we adopt793

the log-distance pathloss model in [42]; cell radius is 1 km,794

the minimum distance between the BS and users is 100 m, 795

pathloss exponent is 4, and 2.4 GHz carrier frequency with 796

100 MHz bandwidth (passband), 8.7 dB lognormal shadowing 797

variance, and 5 dB noise figure are considered. 798

For the BS power consumption, we set PLP = 14 mW, 799

PM = 0.3 mW, PLO = 22.5 mW, PH = 3 mW, and 800

κ = 0.27 [22]. For the parameters used in the proposed 801

algorithms, we set tmax = 10, ρ = 10−8, εas = 0.05 802

ε0 = 0.001, and εgpi, ε1, ε2 to be 0.1 unless mentioned 803

otherwise, and set δGD = 1 for an initial step size which 804

will be updated according to the backtracking line search 805

algorithm [40]. We also initialize W(0) = H, τ (0) = 1, 806

and μ(0) = 0. Accordingly, based on the definition, v̄(0) is 807

initialized as v̄(0) = vec( 1√
τ (0)

ΦΦΦ1/2
αbs

W(0)) = vec(ΦΦΦ1/2
αbs

H). 808

B. Evaluation 809

1) EE Comparison: We compare the proposed algorithm 810

and other baselines in terms of the EE performance. We depict 811

the comparison results in Fig. 1, wherein Fig. 1(a) assumes 812

N = 16 and Fig. 1(b) assumes N = 32. The caption of 813

Fig. 1 includes the detailed simulation setups. Particularly, 814

in Fig. 1(a), we compare our method and the SDP based 815

on SCA (SDP-SCA) proposed in [8], where we adjust the 816

assumptions in [8] to fit our setup. Over the considered max- 817

imum transmit power constraint, the proposed Q-GPI-EEM 818

algorithm achieves the highest EE performance while main- 819

taining the highest EE once it attains the highest EE. This is 820

because the Q-GPI-EEM suitably optimizes antenna selection 821

and precoders to maximize the EE, by incorporating the 822

quantization distortion effects of low-resolution quantizers. 823

We note that although the SDP-SCA provides the second-best 824

EE in Fig. 1(a), it is hard to use the SDP-SCA in massive 825

MIMO systems due to its enormous computational complexity. 826

We also note that the proposed Q-GPI-EEM is shown to be 827

robust to the maximum transmit power constraint by main- 828

taining its highest EE and thus, provides high EE performance 829

regardless of the power constraint. This is because we identify 830

the actual transmit power level τ (0 < τ ≤ 1) to maximize 831
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Fig. 2. The energy efficiency versus DAC resolutions bDAC for N ∈
{8, 32, 64} BS antennas, K = 8 users, P = 30 dBm maximum transmit
power constraint, and bADC,k = 10 ADC bits.

the EE in the proposed method (the optimal power scaling τ�
832

step).833

2) EE by DAC Bits: The EE with respect to the number of834

DAC bits of the proposed Q-GPI-EEM is evaluated for N ∈835

{8, 32, 64}BS antennas, K = 8 users, P = 30 dBm maximum836

transmit power constraint, and bADC,k = 10 ADC bits in Fig. 2.837

In this case, the resolution of all DACs is the same, and the838

selection threshold is relaxed to εas = 0.2 when N = 64.839

We note that the EEs of all the cases can be maximized when 3840

to 4 bits are used per DAC. In addition, the optimal number841

of bits tends to become smaller, and the EE increases with the842

number of antennas. In this regard, using more antennas with843

the proposed algorithm provides gains in both the SE and EE,844

and also it allows the BS to use coarser quantizers, thereby845

saving more power and simplifying each RF chain.846

3) Antenna Selection Ratio by DAC Bits: Now, we present847

the DAC selection ratios for a different number of bits. In the848

simulation, we set N = 42 BS antennas, K = 8 users,849

bADC,k ∼ Unif[2, 6], and P = 30 dBm maximum transmit850

power constraint. Each DAC resolution is assigned to three851

BS antennas. Accordingly, the selection ratio indicates the852

ratio of selected antennas within each resolution on average.853

For example, the selection ratio is about 36% for 13 bits,854

which means that only one antenna out of the three antennas855

with 13 bits is selected at each transmission on average.856

It is shown in Fig. 3(a) that about 90% of the antennas are857

selected for the low-to-medium resolution DACs. However,858

the selection ratio rapidly decreases with the number of859

DAC bits in the high-resolution regime since such antennas860

with high-resolution DACs consume unnecessarily high power,861

which corresponds to our intuition. Consequently, less than862

one antenna out of the three antennas with 14 bits is selected863

at each transmission on average, and no antenna with 15 bits864

is selected in most cases.865

4) Number of Selected Antennas: In Fig. 3(b), we simulate866

the number of selected antennas over different parameters such867

as the maximum transmit power constraint, the number of868

DAC bits, and the number of users. For the case of the number869

of DAC bits, we use a homogeneous DAC bit distribution, i.e.,870

all DACs have 3 bits. For the case of the number of users,871

Fig. 3. (a) Selection ratio of each DAC resolution for N = 42 BS antennas,
K = 8 users, bADC,k ∼ Unif[2, 6], and P = 30 dBm maximum transmit
power. Each DAC resolution is assigned to three BS antennas. (b) The number
of selected antennas versus the power constraint P , number of DAC bits bDAC,
and number of users K for N = 32 BS antennas, 3 bits for DACs and ADCs,
and P = 20 dBm power constraint unless mentioned otherwise.

we force the pathloss of all users to be −100 dB for a fair 872

comparison. The trends of the antenna selection correspond to 873

the general intuition: 1) when the power constraint becomes 874

larger, the BS can use transmit power more effectively, thereby 875

turning off more antennas to save RF power. 2) When the 876

number of DAC bits increases, more antennas tend to be turned 877

off to save RF power. 3) When the number of users increases, 878

using more antennas can bring greater SE improvement, 879

leading to higher EE, thereby selecting more BS antennas. 880

We note that the proposed EE method does not increase the 881

transmit power once it reaches the highest EE. Accordingly, 882

the number of selected antennas remains the same beyond a 883

certain P . 884

5) Convergence: To exam the convergence of the pro- 885

posed Q-GPI-EEM algorithm, we provide the numerical 886

convergence μ. In Fig. 4, we verify the convergence of μ 887

under the assumptions that N = 32 BS antennas, K = 8 888

Authorized licensed use limited to: UNIST. Downloaded on September 27,2022 at 05:00:31 UTC from IEEE Xplore.  Restrictions apply. 



6814 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 21, NO. 9, SEPTEMBER 2022

Fig. 4. Convergence of µ for N = 32 BS antennas, K = 8 users, bDAC,n ∼
Unif[2, 12], bADC,k ∼ Unif[2, 6], and P ∈ {−20, 0, 20, 40} dBm maxi-
mum transmit power constraint.

Fig. 5. The sum spectral efficiency versus maximum transmit power
constraint P results for N = 32 BS antennas, K = 8 users, bDAC,n ∼
Unif[2, 12], and bADC,k ∼ Unif[2, 6].

users, bDAC,n ∼ Unif[2, 12], bADC,k ∼ Unif[2, 6], and P ∈889

{−20, 0, 20, 40} dBm maximum transmit power constraint.890

As we observe in Fig. 4, μ converges fast for all the con-891

sidered cases. Although the convergence takes longer with892

higher P , the results in Fig. 4 still show that μ converges893

within 8 iterations, which can guarantee fast convergence of894

Q-GPI-EEM in the practical transmit power regime. We note895

that the convergence of μ means the convergence of the EE896

since we reformulate the fractional programming by using the897

Dinkelbach approach as in (11).898

6) SE Comparison: Fig. 5 shows the sum SE versus max-899

imum transmit power constraint P results for N = 32 BS900

antennas, K = 8 users, bDAC,n ∼ Unif[2, 12], and bADC,k ∼901

Unif[2, 6]. As shown in Fig. 5, Q-GPI-SEM achieves the902

highest sum SE over the most range of P . As the max-903

imum transmit power constraint increases, the SE is satu-904

rated because the quantization distortion also increases. The905

proposed algorithm can pull up this saturation level more906

than 2 times that of the conventional methods. We note that907

GPI-SEM provides a higher sum SE than the RZF, ZF, and908

MRT-based precoders. GPI-SEM, however, shows a huge gap909

Fig. 6. The sum spectral efficiency versus the number of DAC bits bDAC

for K = 8 users, bADC,k = 10 ADC bits for all k, P = 50 dBm maximum
transmit power constraint, and N ∈ {8, 32} BS antennas.

from Q-GPI-SEM as P increases, i.e., quantization noise 910

also increases. Moreover, its SE even decreases in the very 911

high transmit power regime because the interference from 912

the quantization error, which cannot be fully treated with 913

GPI-SEM dominates the SE performance in the regime. In the 914

Q-RZF/RZF, Q-ZF/ZF, and Q-MRT/MRT cases, the sum SE 915

performance is not comparable with that of Q-GPI-SEM 916

except in the very low transmit power regime where the 917

quantization error is buried in the thermal noise. Therefore, 918

Fig. 5 validates the sum SE performance of the proposed 919

method over the practical transmit power regime. 920

7) SE by DAC Bits: Fig. 6 shows the sum SE versus the 921

number of DAC bits bDAC for K = 8 users, bADC,k = 10 922

ADC bits for all k, P = 50 dBm maximum transmit power 923

constraint, and N ∈ {8, 32} BS antennas. In this case, the 924

entire DACs have the same resolution. We first note that 925

Q-GPI-SEM provides the highest sum SE, and the sum SE 926

of GPI-SEM converges to that of Q-GPI-SEM as the number 927

of DAC bits increases since both the DACs and ADCs have 928

high resolutions. More importantly, the performance variation 929

of Q-GPI-SEM over DAC resolutions becomes marginal in 930
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Fig. 7. The spectral efficiency versus the normalized energy efficiency results for N = 16 BS antennas, K = 4 users, bDAC,k = 3 DAC bits, and bADC,k = 3
ADC bits.

N = 32 case compared to N = 8 case, whereas the other931

algorithms still show high-performance variations. Therefore,932

in the massive MIMO, the proposed algorithm is highly robust933

to quantization noise at the BS by achieving the SE of934

high-resolution DACs with low-resolution DACs (2 ∼ 5 bits).935

Overall, the proposed Q-GPI-SEM algorithm outperforms936

the conventional precoding algorithms, and it is indeed an effi-937

cient method in the massive MIMO communication systems938

with low-resolution DACs or ADCs, showing robustness to939

quantization error.940

8) SE-EE Tradeoff: We also provide the SE-EE trade-off941

results with the proposed EE maximization method and SE942

maximization method, including other benchmarks. In Fig. 7,943

we plot the SE-EE tradeoffs over P = −20 dBm to944

P = 30 dBm maximum transmit power constraint. Fig. 7(a)945

shows the tradeoff result with the proposed EE maximization946

algorithm. In the beginning, both the EE and SE increase947

with P . Then the EE of the benchmarks decreases beyond948

certain P , whereas the EE of the proposed algorithm never949

decreases. Fig. 7(b) shows the tradeoff result with the pro-950

posed SE maximization algorithm. The EE of the proposed951

SE maximization method also decreases beyond certain P952

while providing the best SE-EE tradeoff among all. We note953

that the EE maximization algorithm achieves the highest EE954

performance with the limited SE performance by not fully955

using P . The achieved SE, in our algorithm, can be adjusted956

to a desirable level by introducing a control parameter ν > 0957

in the BS power consumption of the EE optimization problem958

as νPBS(N,bDAC, fs,W).959

9) Symbol Error Rate (SER): In Fig. 8, we present SER960

results. We use 4-QAM modulation with N = 16 BS antennas,961

K = 8 users, 3 bits for all DACs and ADCs, and MMSE962

scalar quantization. As shown in Fig. 8, the proposed method963

achieves the best SER, followed by GPI-SEM. Similar to the964

SE results presented in the manuscript, the GPI-SEM also965

shows the inverse trend in the high SNR regime due to the966

quantization effect. The Q-RZF shows the worst SER results967

with significant gaps from the others. Because the user channel968

Fig. 8. Symbol error rates of 4-QAM modulation with N = 16 BS antennas,
K = 12 users, 3 bits for all DACs and ADCs, and MMSE scalar quantization.

gains are highly heterogeneous, the Q-RZF that involves a 969

matrix inversion suffers in the high SNR and results in poor 970

SER for users with severe pathloss. 971

10) SE by DAC Configuration: Finally, to provide system 972

design insights, we compare various DAC configurations such 973

as (i) bDAC,n = 3, (ii) bDAC,n ∈ {1, 3, 7}, and (iii) bDAC,n ∈ 974

{1, 9} under the constraint of the total number of DAC 975

resolution bits (96 bits total) for K = 8, bADC,k = 10 976

for all k, and N = 32. Fig. 9 reveals that the homoge- 977

neous DAC configuration where all DACs have the same 978

resolution achieves the highest sum SE and EE. In particular, 979

the homogeneous DAC configuration provides a noticeable 980

improvement in the EE since medium- and high-resolution 981

DACs in the other configurations cause inefficiency in power 982

consumption. In addition, the proposed algorithm shows a 983

relatively small variation in the sum SE across different 984

DAC configurations, whereas the other algorithms reveal a 985

noticeable performance gap across configurations. Therefore, 986

the result demonstrates that the proposed algorithm is more 987
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Fig. 9. The spectral efficiency and energy efficiency versus maximum
transmit power constraint P for K = 8 users, bADC,k = 10 ADC bits for all
k, and N = 32 BS antennas with different DAC configurations.

robust to DAC configurations, providing more system design988

flexibility.989

VII. CONCLUSION990

In this paper, we solved a precoding problem for EE991

maximization in downlink multiuser massive MIMO systems992

with low-resolution DACs and ADCs. To take into account the993

effects of RF circuit power consumption, we incorporated an994

antenna selection feature into the EE maximization problem.995

Managing the quantization errors, we reformulated the SINR996

and adopted the Dinkelbach method. Subsequently, we decom-997

posed the problem into precoding direction and power scaling998

problems and proposed the joint precoding and antenna selec-999

tion algorithm. As a special case, we showed that the proposed1000

algorithm can reduce to the SE maximization algorithm by1001

leveraging the product of Rayleigh quotients form of the1002

reformulated SINR. The simulation results demonstrated that1003

the proposed algorithms improve both EE and SE compared1004

to conventional methods. In particular, the EE maximiza-1005

tion algorithm presented robustness to the maximum transmit1006

power constraint with fast convergence, while other methods1007

suffer from EE degradation as the maximum transmit power1008

increases. In addition, it was shown that the proposed methods 1009

achieve high enough EE and SE even with low-resolution 1010

DACs in the massive MIMO regime, which means that the 1011

performance degradation caused by low-resolution quantizers 1012

can be compensated by using our method with large-scale 1013

arrays. As a result, the proposed algorithms can provide 1014

considerable benefits in the future massive MIMO systems 1015

by offering high flexibility on quantizer configuration and 1016

improving the SE and EE performance. Considering wideband 1017

systems with low-resolution quantizers for maximizing the EE 1018

would be a desirable future research direction. 1019
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