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Abstract—The use of low-resolution digital-to-analog and
analog-to-digital converters (DACs and ADCs) significantly ben-
efits energy efficiency (EE) at the cost of high quantization noise
for massive multiple-input multiple-output (MIMQO) systems.
This paper considers a precoding optimization problem for
maximizing EE in quantized downlink massive MIMO systems.
To this end, we jointly optimize an active antenna set, precoding
vectors, and allocated power; yet acquiring such joint optimal
solution is challenging. To resolve this challenge, we decompose
the problem into precoding direction and power optimization
problems. For precoding direction, we characterize the first-order
optimality condition, which entails the effects of quantization
distortion and antenna selection. We cast the derived condition
as a functional eigenvalue problem, wherein finding the prin-
cipal eigenvector attains the best local optimal point. To this
end, we propose generalized power iteration based algorithm.
To optimize precoding power for given precoding direction,
we adopt a gradient descent algorithm for the EE maximization.
Alternating these two methods, our algorithm identifies a joint
solution of the active antenna set, the precoding direction, and
allocated power. In simulations, the proposed methods provide
considerable performance gains. Our results suggest that a
few-bit DACs are sufficient for achieving high EE in massive
MIMO systems.

Index Terms—Low-resolution analog-to-digital converter
(ADC)/digital-to-analog converter (DAC), energy efficiency (EE),
precoding, antenna selection, massive multiple-input multiple-
output (MIMO), eigenvalue problem.

I. INTRODUCTION
ASSIVE multiple-input multiple-output (MIMO) [1] is
a key enabler for future cellular systems because it
can provide substantial gains in both spectral efficiency (SE)
and coverage by employing large-scale antenna arrays at a
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base station (BS). In principle, massive MIMO increases the
SE gain by scaling antennas at the BS under ideal condi-
tions. Unfortunately, in practice, the use of very large-antenna
elements makes the BS hardware and radio frequency (RF)
circuit architectures intricate and also gives rise to excessive
energy consumption in the BS. Since the energy consump-
tion of quantizers (digital-to-analog converters (DACs) and
analog-to-digital converters (ADCs)) exponentially increases
with its resolution bits, using low-resolution quantizers can
alleviate the excessive energy consumption in massive MIMO
systems [2]. Motivated by this, implementing massive MIMO
with low-resolution DACs and ADCs are rapidly gaining
momentum [3]-[5].

The use of the low-resolution quantizers in transmission and
reception causes severe quantization error. For example, in the
downlink MIMO transmission using low-resolution DACs, the
transmitted signals are distorted by the low-resolution DACs,
and the quantization error incurs a significant amount of
inter-user interference. This fundamentally limits the SE gains
in massive MIMO. As a result, it is crucial to incorporate
the quantization effects in designing a downlink transmission
strategy to maximize communication performance such as SE
and energy efficiency (EE) in the massive MIMO using low-
resolution quantizers. In particular, design for energy efficient
communications is critical in realizing massive MIMO sys-
tems. However, finding a precoding solution for maximizing
the EE under low-resolution quantizers constraints is highly
challenging. The challenge involves the non-convexity of the
EE function, defined as the sum SE normalized by the total
transmission power. Further, since the total transmission power
is a function of an active antenna set, it entails a non-smooth
function. This non-smooth part makes the optimization prob-
lem more difficult to solve. In this paper, we make progress
toward finding a sub-optimal solution that jointly identifies a
set of active antenna elements and the corresponding linear
precoding vectors to maximize EE in downlink quantized
massive MIMO systems.

A. Prior Works

In the literature, linear precoding methods for maximizing
EE have been widely studied in high-resolution quantizer
setups. This includes a study of the EE of massive MIMO
uplink systems with traditional linear receive beamforming
such as zero-forcing (ZF) and minimum mean-square-error
(MMSE) [6], the capacity limit in massive MIMO with
non-ideal hardware impacts [7], joint antenna selection and
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precoding design using semidefinite programming (SDP) with
successive convex approximation (SCA) [8]. A comprehensive
survey on energy-efficient design is found in [9].

Despite the abundant previous studies, the aforementioned
prior work is not applicable when low-resolution quantizers
are used. This is because low-resolution quantizers induce
non-negligible non-linear quantization distortion, which may
render the performance characterization totally different from
a conventional high-resolution system. Motivated by this, there
exist several prior works that performed performance analysis
for low-resolution quantizers. Especially, thanks to the analyti-
cal tractability of 1-bit quantizers, there have been rich studies
regarding design and analysis of 1-bit quantizers. In [10]-[12],
the achievable rate of 1-bit ADCs was studied. In [13], it was
revealed that higher-rank transmit covariance matrices can
improve the sum spectral efficiency even with 1-bit quantizer.
In [14], [15], a MIMO system with one-bit Sigma-Delta
(32 A) quantizers is presented. In [16], [17], constant-envelope
precoding methods were developed by harnessing the fact that
a 1-bit quantizer only can extract the signal phase information.

More relevant to this work, several prior works studied
precoding methods in downlink systems with low-resolution
quantizers. A main obstacle in developing such precoders is
that non-linear quantization distortion is not tractable. To han-
dle this in a tractable way, in [18], the non-linearity of the
quantization distortion was resolved by adopting Bussgang
theorem [19], then by using the linearization, a closed-form
expression of a MMSE precoder was derived. In [4], a linear
precoder for 3 to 4-bit DACs and a non-linear precoder for
1-bit DACs were proposed. Especially, in designing the linear
precoder, it adopted a conventional linear precoder such as
MMSE or ZF, and quantized the adopted linear precoder
to use with low-resolution DACs. A key finding of [4] is
that using 3 to 4-bit DACs offers comparable performance
with high-resolution DACs, provided that proper design of
precoding is used. This finding is supported by the SE and
bit-error-rate (BER) analyses in [5]. A similar approach was
also used in [20], where conventional ZF precoding is applied,
thereafter 1-bit quantization is conducted to the precoded
signal. The approach used in [4] was further improved by
using alternating minimization in [21]. For precoding design
in more general bits quantizers, an additive quantization noise
model (AQNM) was also used in several works [22]-[25], pro-
viding a linear approximation of a quantized signal. Employing
the AQNM, [22] considered hybrid precoding architecture
with low-resolution DACs in a point-to-point MIMO channel
and performed extensive performance evaluation by using a
conventional precoder. In [24], [25], an algorithm that selects
an active antenna set was proposed for a given precoder.
Without linear modeling, the alternating direction method of
multipliers (ADMM) was used to solve an inter-user inter-
ference minimization problem in [26]. Based on this result,
a general precoder was designed.

As explained above, abounding studies provided crucial
insights on low-resolution quantizer systems. The existing
precoding methods, however, are mostly limited to variants
of traditional linear precoding methods such as ZF or MMSE.
Specifically, the traditional linear precoders are firstly adopted,
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then quantization distortion effects are reflected. Neverthe-
less, the traditional precoders have limited SE performance
due to the quantization distortion, and do not care to save
energy consumption. These two features lead to mediocre EE
performance.

Beyond traditional linear precoders, prior work such as [25]
developed an antenna selection strategy to maximize the EE.
Nonetheless, the approach in [25] is limited in that only
antenna selection is carefully designed while fixing precoders.
Since precoder design significantly affects the energy con-
sumption of the BS, it is inefficient compared to the joint
design of antenna selection and precoders. Besides downlink,
the prior works [22], [27] tackled EE maximization in point-to-
point massive MIMO systems. Notwithstanding, their design
principles are mostly based on singular-value decomposition
(SVD); therefore, this cannot be extended to downlink MIMO
systems. In summary, no prior work rigorously investigated a
joint design approach of antenna selection and precoders for
maximizing the EE in downlink quantized massive MIMO,
which motivates to develop a novel precoding method with
joint antenna selection.

B. Contributions

We investigate a EE maximization problem with regard
to precoders in a downlink multiuser massive MIMO sys-
tem, where low-resolution DACs and low-resolution ADCs
are employed at the BS and users, respectively. Our main
contributions are summarized as follows:

o In the first phase of this paper, we put forth a pre-
coding strategy for maximizing the EE in quantized
massive MIMO systems by reformulating the problem.
To accomplish the precoding optimization, by adopting
the AQNM [28], which is a linear approximation tech-
nique of the non-linear quantizer function with additional
quantization noise, we define the EE of the quantized
massive MIMO system. The EE function is the sum SE
function normalized by the total transmit power, a frac-
tional programming form. Therefore, it is critical to find
an optimal transmit power level while maximizing the
SE. Unfortunately, the EE maximization problem in the
downlink quantized massive MIMO system is NP-hard,
similar to the case using infinite-resolution DACs and
ADCs. Therefore, finding a global optimum solution is
infeasible using polynomial-time complexity algorithms.
To overcome this challenge, we take the Dinkelbach
method [29] to relax a fractional programming, then we
decompose the optimization variables, i.e., the precoding
vectors, into two parts: 1) scaling and 2) directional
components.

o Leveraging this decomposition, we propose an alternating
optimization framework for the EE maximization called
Q-GPI-EEM. To be specific, for a fixed Dinkelbach
variable and a directional component, we obtain the
optimum power scaling component by using a gradient
descent method. Since this sub-optimization problem is
convex, gradient descent is sufficient to find the optimum
point. Subsequently, we find the directional component
with the obtained power scaling component; we derive
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the first-order optimality condition for the non-convex
precoding direction optimization problem. The derived
condition is cast as a functional eigenvalue problem, and
it insinuates that a local optimal point that has zero
gradient is obtained by finding the principal eigenvector
of the functional eigenvalue problem. To this end, modi-
fying the algorithm in [30], we present a precoding algo-
rithm called quantized generalized power iteration-based
algorithm for direction optimization (Q-GPI-DO) that
iteratively identifies the principal eigenvector with a few
numbers of iterations. The algorithm iterates by updat-
ing the Dinkelbach variable until it converges. Unlike
other existing algorithms for the EE maximization in the
quantized massive MIMO systems, the most prominent
feature of Q-GPI-EEM is to jointly identify a set of active
antennas and the corresponding precoding direction by
considering the effect of RF circuit power consumption
for the active transmit antennas.

« In the second phase of the paper, as a byproduct, we also
present a precoding method for maximizing the SE in
quantized massive MIMO systems, called Q-GPI-SEM.
We show that the SE maximization method is a spe-
cial case of the EE maximization method, reduced by
simplifying some parameters of the EE maximization
setups. Q-GPI-SEM ensures to find a local optimal point
of the SE maximization for any important system para-
meters, including the number of antennas, the number
of downlink users, and the number of DAC and ADS
resolution bits. Besides, our algorithm generalizes, and
the prior GPI-based algorithm [30] by incorporating the
quantization error effects caused by DACs and ADCs.

o Simulation results demonstrate that the proposed algo-
rithms, Q-GPI-EEM and Q-GPI-SEM considerably out-
perform conventional algorithms in both EE and SE.
Our EE maximization algorithm provides robustness to
the maximum transmit power constraint in terms of EE.
For example, the EE performances of the other methods
eventually degrade as the transmit power increases, while
our algorithm offers the monotonically increasing EE
by adjusting the actual transmit power in the algorithm.
In terms of SE, the SE is saturated as the transmit
power increases because of the quantization distortion
effects of low-resolution quantizers. Using the proposed
algorithm, we can pull up this saturation level more than
2x compared to the conventional methods.

o In addition to the SE and EE improvement, we also
elucidate a system design guideline for quantized massive
MIMO systems. Exploiting the proposed joint method,
we observe that using large-scale antenna elements,
each with low-resolution quantizers, provides consider-
able benefits in both the SE and EE. We note that
this was also found in several prior works (e.g., [4]
or [25]), yet our finding is obtained by exploiting the
joint design of antenna selection and precoders. Thanks
to this, our method achieves higher EE compared to
the baseline methods at the same number of antennas.
More detailed system design insights are provided as
follows: (i) Regarding the EE, there exists the optimal
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number of the DAC bits that maximize the EE. For
instance, using 4-bit DACs achieves the maximum EE
if the BS has 8 antennas, while 3-bit DACs achieves the
maximum EE if the BS has 32 antennas. (ii) Regarding
the SE, our method is highly efficient if the number of
antennas is enough. In particular, the proposed method
achieves a similar level of SE of the high-resolution
DACs, e.g., 9 ~ 11 bits even with low-resolution DACs,
e.g., 3 ~ b bits. (¢i4) Under the constraint of the total
number of DAC bits, using the homogeneous DACs at
the BS is beneficial for the SE and the EE. In addition,
the proposed algorithm shows higher robustness for DAC
configuration, and thus, it can provide more flexibility
in the system design. Overall, the proposed algorithm
provides high SE and EE performance in the massive
MIMO regime, allowing the BS to employ low-resolution
DAC:s and offering high system design flexibility.
Notation: A is a matrix and a is a column vector. Super-
scripts (-)*, ()T, ()", and (-)~! denote conjugate, transpose,
Hermitian, and matrix inversion, respectively. I is an identity
matrix of size N x N and O/« n 1S a zero matrix of size
M x N. CN(u,0?) is a complex Gaussian distribution with
mean 4 and variance o2. Unif[a, b] denotes a discrete uniform
distribution from a to b. A diagonal matrix diag(A) has
the diagonal entries of A at its diagonal entries. Assuming
that Ay, ..., Ax € CE*E blkdiag (Ay,..., Ay) is a block
diagonal matrix of size K N x KN whose nth block diagonal
entry is A,. ||A| represents L2 norm, ||A|/r represents
Frobenius norm, E[-] represents an expectation operator, tr(-)
denotes a trace operator, vec(+) indicates a vectorization oper-
ator, and ® is Kroncker product.

II. SYSTEM MODEL

We consider a downlink multiuser massive MIMO system
where the base station (BS) is equipped with N > 1 antennas
and each user is equipped with a single antenna, and there are
K users to be served. We further assume that the BS employs
low-resolution DACs and the users employ low-resolution
ADCs. We also consider a general case for low-resolution
quantizers where each DAC and ADC can have any bit
configuration. We remark that such an assumption covers the
case of high-resolution quantizers as well as low-resolution
quantizers.! At the BS, a precoded digital baseband transmit
signal vector x € C" is expressed as

x = VPWs, (1

where s ~ CN(0xx1,Ix) is a symbol vector, W € CNxK

represents a precoding matrix, and P is the maximum transmit
power.

The digital baseband signal x in (1) is further quantized at
the DACs prior to transmission. To characterize the quantized
signal, we adopt the AQNM [28], that approximates the quan-
tization process in a linear form. Then, the analog baseband
transmit signal after quantization becomes

Q(x) = xq = \/ﬁ@abSWs + Qbs,

! An example of a low-resolution quantizer at the users: in internet-of-things,
the users can be energy-hungry even with a single antenna, which requires to
use low-resolution ADCs.
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where Q(+) is an element-wise quantizer that applies for each
real and imaginary part, ®,, = diag(aps1,...,Qps,N) €
RM*N denotes a diagonal matrix of quantization loss, and
s € CVisa quantization noise vector. The quantization loss
of the nth DAC aps, € (0,1) is defined as aps p, = 1 — Bos .
where fps,,, is a normalized mean squared quantization error

with Bps, = W%W [28], [31]. The values of [y, are

characterized depending on the number of quantization bits
at the nth BS antenna bpac,,. Specifically, for bpac.n < 5,
Bps,n is quantified in Table 1 in [32]. For bpac,n > 5, Bbs,n
can be approximated as [Bus, ~ %52_2”0/*0" [33]. The
quantization noise qps is uncorrelated with x and follows
dbs ~ CN(Onx1,Rqpq,. ). The covariance Rq,.q, is com-
puted as [28], [31]

Rclbsqbs = QO(bséﬁbsdiag (E [XXH])
= &, &4, diag (PWW").

The quantized signal x4 is amplified by a power amplifier
under a power constraint at the BS. Since the maximum
transmit power is defined as P, we have the following power
constraint [34]

tr (IE [qu;']) < P.

Now, we represent the received analog baseband signals at
all the K users as

y = H'%, +n, 2)

where H € CY*F is a channel matrix and n ~
CN(0x «1,0°Ik) indicates an K x 1 additive white Gaussian
noise vector with zero mean and variance of ¢2. Each column
of the channel matrix hj represents the channel between
user k and the BS. We assume a block fading model, where
h; is invariant within one transmission block and changes
independently over transmission blocks. We focus on a single
transmission block and assume that the CSI is perfectly known
at the BS.

The received analog signals in (2) are quantized at the ADCs
of the users. Accordingly, the received digital baseband signals
are given as [28], [35]

Qy) ®yq = @ay +4q
= 'I>QHqu +®,n+q
= VP&, H"®, Ws+ &,H"qp + ®,n + q,

where ®, = diag(ay,...,ax) € R®*F is a diagonal matrix
of ADC quantization loss defined as oy, = 1— 3y, and q € C¥
is a quantization noise vector, which is uncorrelated with y.
Here, o and ) are similarly defined as ows, and [psp,
respectively. The quantization noise q has zero mean and
follows a complex Gaussian distribution. Consequently, the
digital baseband signal at user k is given as

Yq,k = \/Fozkh:Qabswksk =+ \/]_Dzak’hlqu)abswésé
(+k

+arhfaps + agng + g, 3)
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where wj, € CV denotes the kth column vector of W, and sy,
ng, and g represent kth element of s, n, and q, respectively.
The variance of g;, is computed as [28]

= o BRE vy

auh (BIE [xgxt B! + o)

ak’ﬁk’ (h;)' (PQO(bsWWH(Dl(—'JLbS + RQbsqbs)hk’ + 0-2) .
(4)

The following sections formulate an EE maximization prob-
lem, propose an algorithm, and validate the performance via
simulations accordingly.

Remark 1 (Comparison Between AQNM and Bussgang
Decomposition): In the literature, two approaches are known
to model the non-linear quantization distortion effect: AQNM
and Bussgang decomposition. In some studies, these two
approaches were described as two different methods. AQNM
and Bussgang decomposition are actually equivalent. More
specifically, AQNM is a special case of Bussgang decomposi-
tion when MMSE tailors a quantization function. We refer [36]
for more details.

Tqrqk

III. ENERGY EFFICIENCY MAXIMIZATION
PROBLEM FORMULATION
A. Performance Metric
We characterize the EE for the considered system as our

main performance metric. Using (3), we define the downlink
SINR of user k as

I
_ Pai|h2‘1’abswk|2
PO&% Zé;ﬁk |hll;|q)abswf|2+ath:|RQbszshk’+ai02+r%%
(%)
Unlike a perfect quantization system where the resolution of
DACs and ADCs is infinite, the SINR in (5) includes the
quantization noise power and the quantization loss induced

by both low-resolution DACs and ADCs. Accordingly, the SE
for user k is expressed as

Ry =logy (1+T%). ©)

Now, we define the EE based on (6). Let P p, Pu, P.o, PH,
Prp, Prr, Poac, Peir, and Pgs denote the power consumption
of low-pass filter, mixer, local oscillator, 90° hybrid with
buffer, power amplifier (PA), radio frequency (RF) chain,
DAC, analog circuits, and BS, respectively. The DAC power
consumption Ppac (in Watt) is defined as [22], [37]

Poac(bpac, fs) = 1.5 x 1072 - 2% 1.9 % 10712 . f, - bpac,

where f; is the sampling rate. If antenna n is active, then the
corresponding DAC pair and RF chain consume the circuit
power of 2 Poac(bpac,n, fs)+Prr where Prp = 2P p+2Pu+
Py. On the contrary, if the antenna is inactive, no power is
consumed in the corresponding DAC and RF chain. Consid-
ering such behaviour, the circuit power consumption P, is
formulated as [22]
N
Peir = Plo + Z 1{neay (2 Poac(boac,n, fs) + Pre), (7)

n=1
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TABLE I
ABBREVIATION AND DEFINITION OF SYSTEM PARAMETERS

Abbreviation Definition Value

Pp power consumption of low-pass filter 14 mW
Pwu power consumption of mixer 0.3 mW
Po power consumption of local oscillator 22.5 mW
Py power consumption of 90° hybrid with buffer 3 mW
Ppa power consumption of power amplifier Pix/k
Prr power consumption of radio frequency chain 2P p 4+ 2Py + Py

Ppac power consumption of DAC 1.5 x 1075 - 2Ppac + 9 x 1012 £, - bpac
P, power consumption of analog circuits Po+ Egzl Tincay (2 Ppac(bpac,n, fs) + PRF)
Pgs power consumption of BS Py + K~ TPy
Py transmit power tr(E[qug])
K power amplifier efficiency P/ Ppp = 0.27

bpaC.n DAC resolution bit of the n-th antenna bbac,n € [2,12]
fs sampling rate 10% Hz

where 1y, is the indicator function which is 1;,, = 1 only
when a is true and 1, = O otherwise, and A is an index
set of active antennas. Then the BS power consumption Fgs
is given as [22]
Pas(N,bpac, fs, W) = Per + ' Py,
where P, is the transmit power P, = tr(E[qug]), K
is a PA efficiency, i.e., K = Pi/Ppa, and bpac =
[bbAC.1,- - -, boac,n| . Finally, the EE of the considered sys-
tem is defined as
n = Q Zszl Ry,
Pas(N,bpac, fs;, W)’

where ) denotes transmission bandwidth. We summarize the
used system parameters, their definitions, and values in Table 1.

®)

B. Formulated Problem

We now formulate an EE maximization problem with
respect to a precoder. We first normalize the EE 7 in (8)
by the bandwidth  since it is irrelevant to precoder design.
Throughout the paper, we use the EE and normalized EE
interchangeably as they do not change the problem. Then the
EE maximization problem is formulated as

25:1 Ry,
PBS(N; bDAC7 fSaW)
subject to tr (E[xqxf]) < P,

maximize

©)
(10)

We remark that the BS power consumption includes the circuit
power consumption, which is a function of active antennas,
and thus, the EE maximization problem needs to be solved
by designing W with incorporating the impact of active and
inactive antenna sets. In this regard, we propose an algorithm
that jointly designs a precoder and performs an antenna
selection in Section IV.

IV. JOINT PRECODING AND ANTENNA
SELECTION ALGORITHM

A direct solution for the formulated problem in (9) is not
available since it is non-smooth and non-convex. We first refor-
mulate the problem and then propose an algorithm that pro-
vides the best sub-optimal solution to resolve these challenges.

A. Problem Reformulation

We reformulate (9) by using the Dinkelbach method [29]
as

K
imi . — nPas(N . 11
maximize ];Rk uPss(N, bpac, fs, W) (11)
subject to tr (E[xqxf]) < P (12)
p >0, (13)

where p is an auxiliary variable. To cast the problem (11) into
a tractable form, we first rewrite the DAC quantization noise
covariance term coupled with a user channel in (5) as

h{/Rq,.q. b = hi}®,, &5, diag (PWW") hy,

N K
=P Z |hn,k|2abs,nﬁbs,n Z |wn,8|2
n=1 =1

K N
* *
:PE E wn,zabs,nﬂbs,nhn,khn,kwn,f

{=1n=1
K

= PZ wh®,, @4, diag (hyhl) we. (14)
=1

We also rewrite the ADC quantization noise variance 7, q, in
(4) as

@ .| PRi®, WWHE!

Olps

hy,

Tqrqk

K
+P Z wi®,, &5, diag (hkhg) wy + o2
=1
K
= apfy| P wj®; hyhjl®,, w,
=1

K
+P>  wi'®,, g, diag (hih)) we + o
=1

K

H

= Poyf Z Wy
=1

x [ @ hihl'®,, + ., ®p, diag (hih})

XWg-i-()ékﬂkO'Q, (15)
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where (a) comes from (14). Applying (14), (15), and 8 =
1 — oy, to the SINR in (5), we re-organize the SINR term
to represent the SINR in a more compact form as shown in
(16), shown at the bottom of the page. Now, we simplify the
transmit power constraint in (12) as

tr (E[xgxt])

— tr (Ptp%sww“@gbs + P&, & diag (WWH))
@ 1 (P®,, WWH) < P,

where (a) comes from ®g = Iy - o,,
tr(®a,, WWHS,, ) = tr(fpibSWWH), and the definition of
the trace operation.

Regarding the SE point of view, using the maximum
transmit power, i.e., P = P, maximizes the SE for a
given precoder. For the EE point of view, however, using the
maximum transmit power may decrease the EE because it
increases the SE with a logarithmic scale while it increases
the power consumption with an (approximately) linear scale.
For this reason, using the maximum power without adjusting
a power level, the EE converges to zero eventually, as shown
in [25]. To prevent this phenomenon, an optimal power scaling
solution needs to be found to maximize the EE. To this end,
we introduce a scalar weight 7 : 0 < 7 < 1 in the power
constraint as

a7

tr (E[xqxf]) = 7P. (18)

Then applying (18) to (17), the power constraint reduces to

tr (Po,, WWH) = 1. (19)

To incorporate the power scaling in the precoder, we define a
weighted and normalized precoding matrix V = [vq,..., V]
where

&/ ?w, e CV.

1
T Qbs

Vi = (20)
Then, applying (20) to (16), the SE of user k is re-written as
a function of 7 and V, which is (21), shown at the bottom
of the page. Using (19), (20), and (21), the problem in (11)
becomes
K
maximize Z Ri(V,7) — uPgs(N, bpac, fs, V,7)(22)
k=1

V,m,u

subject to tr (VVH) =1 (23)
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Note that the power constraint is equivalent to ||v||> = 1 where
v = vec(V), which is interpreted as a directional component
of the precoder. Consequently, the EE maximization problem
is now a problem of jointly finding an optimal power level 7
and precoding direction v. In this regard, we decompose (22)
into two subsequent problems: find V for given 7 and find
7 for a given V. With the obtained 7 and V, we iteratively
update the Dinkelbach variable .

B. Proposed Algorithm

1) Optimal Direction V*: We solve the problem in (22)
regarding V for given 7 and p. Again, this phase is mainly
related to designing an optimal direction of precoding since
the power constraint becomes ||[v[|? = 1. Let Gj =
(Qiﬁf)“hkh;@éf + ®p, diag (hkl’};:) Then leveraging the
fact that ||v||? = 1, we cast the SE Ry, in (21) into a Rayleigh
quotient form as

_ vHA LV
=log, | ==~ 24
Ry, = log, <VHBW> 24)
where
. o?
A, = blkdlag(Gk, e ,Gk) + —PINK,
T
B. = A
~Dlikdiag O - ar(@42) "B hfI@L% -+, Oen)

Consequently, we have the following problem for given 7
and u:

K _ _

L ) vHA v
maximize E o _—
v — B2\ GH B.v

(25)

N
— 4 Z (2 Poac(boac,n, fs) + Pre) Line -
n=1
Note that the constraint in (23) is ignored at this step. In the
proposed algorithm, however, v will be normalized, which
indeed satisfies the constraint.

Now, the major challenge in solving the problem in (25)
is to handle the indicator function ]l{ne 4y It is, however,
highly difficult due to the lack of smoothness. To resolve this
challenge, we transform the indicator function into a more
favorable form as follows: let w,, be the nth row of the
precoder W. Then we clarify that antenna n is active if and
only if |[wy[?> > 0. Equivalently, we consider Lj,ca; =

Lj—=—«,|]>>0y because W <I>;b15/2V from the definition

0<7r<1 b, n

w>0. in (20), where v,, is the nth row vector of V. We remark that
ht®,, 2

r, v | @, Wi (16)

S hH®,, w2 — ap bl wil2 + S8, whe,, 84, diag (hyh!) w, + 02/ P

Ri(V, ) = logy

Tak|h2'¢>(11{)52vk|2

Qbs

1+
< T3 Rl ?v[2 — roy bl

C@D
(I>¢1:¢{,52Vk|2 + TZf:l vii® g, diag (hyhf!) ve + 02/P>

Authorized licensed use limited to: UNIST. Downloaded on September 27,2022 at 05:00:31 UTC from IEEE Xplore. Restrictions apply.



CHOI et al.: ENERGY EFFICIENCY MAXIMIZATION PRECODING FOR QUANTIZED MASSIVE MIMO SYSTEMS

we omit the effect of 7 since it applies identically to all the
antennas, but the quantization loss term is included so that the
quantization effect can be applied differently across antennas.
Subsequently, we approximate the indicator function by using
the following approximation [38]:

log, (1 + [2[*/p)
logy(1+1/p)
where the approximation becomes tight as p — 0. Using (26),
the indicator function in (7) is represented as
1 2\
;o @N
v/ Obs,n

where w, = 1/log,(1 + p~') and p > 0 is a small enough
value. Further denoting that P, = 2 Ppac(bpacn, fs) +
Prg, we have

L2201 = (26)

Lneay = 5./ yam=lz>0}

log, <1 +p

Vn

Q

N
Z (2 Poac(boac,ns fs) + Pre)Linec.ay

n=1
2 WpPant,n
Vi ) . (28)

Vi

1
1/ Obs,n

We note that the approximation technique (27) makes it
possible to incorporate the indicator function into the problem
formulation without introducing explicit discrete variables.
The next step is to express (28) in terms of the v. To this
end, we let e,, be the /N dimensional nth canonical basis vector
with a single 1 at its nth coordinate and zeros elsewhere. Then
we can write =V, aS Vy = eHd /2y, Subsequently,

n=1

N
~ ) log, <1 +pt

ap M ™ Qps
we rewrite || ﬁvnHQ as
1 2
H nl|| = e:,"I);l/QVVH'I) 1/2en
g bs
v @bs,n

vec(elvvhte,)
((eaV") ®&y) vee(V)
(((IK ®e)) vec(V”‘))T ® ét:) vec(V)

—~
s
~

—~
o
=

—
o
~

W (Ix @ &, @ &) ¥,

(29)

where &, = ®_, 1/Qen, (a) and (b) follow from vec(ABC) =
(CT® A)vec( ), and (c) comes from (A ® B)(C ® D) =
(AC) ® (BD) and the definition of v = vec(V). Using (28)
and (29), the objective function in (25) can be represented as

Ly(v) = logy Au(V), (30)

where

_ s vHALv N “Hpy =\ HwWpPant,n
k=1 n=1
and E,, = Ing + p 'Ix ® &, ® & as ||v]|? = 1. With the
reformulated objective function in (30), we derive a condition
for a local-optimal stationary point and propose an algorithm
to find such a local optimal point.
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Lemma 1: The first-order optimality condition of the opti-
mization problem (25) with the approximated objective func-
tion in (30) for given T and p is satisfied if the following
holds:

AKKT(\_/')\_/' =\ (\_/)BKKT(\_/)\_/, (31)
where
K o A K
Axr(v) = D o= [[ (WAw). (32)
k=1 Y =1
K N
Bk ET
Bikr(v) = | By > Pantn = V)
k=1 n=1
K N -
<[] #"Bew) [[ HEnv)" " (33)
/=1 m=1

Proof: We compute the first derivative of (30) as

OL,(v) 1 9A()
ovi A, (v)In2 ovH

and subsequently, we derive O\, (v)/0vH and set it to zero

K
B _ Av Byv
=20 (Z <vHAkv - vHBkv>

k=1

_wazpantn HE )

O (V)
ovH

= 0.
Then, the first-order optimality condition can be derived as

K
Z Ay

7)\1) num V)V
— vHA, v (Vv

_ k n
= >\'u (V) < E \_IHBk\_f + Hwp E Pant,n \_fHEn\_/'>
k=1 n=1

Av,denom (V)V,

where Ay pum(V) = He 1 (’HAg\’/) and Ay genom (V) =

He=1 (ViBw) HZ:l (VHEm\’/)W”Pa"“”. This completes
the proof. |
We interpret the derived condition (31) as a functional
eigenvalue problem.
Remark 2: The derived first-order optimality condition in
(31) can be transformed to a functional eigenvalue problem
regarding the matrix By 1 (V) AkkT(V) as

B (V) AT (V)V = A(V)V.

From Remark 2, the first-order optimality condition in (34)
is cast as a functional eigenvalue problem. More specifi-
cally, (34) is included in a class of nonlinear eigenvector
dependent eigenvalue problem (NEPv) [39], where the matrix
itself is a function of eigenvectors. Consequently, treating
v as an eigenvector of Bygr(V)AkkT(¥), A(V) is inter-
preted as a corresponding eigenvalue of BR&T(\‘/)AKKT(V).
In this regard, we need to find the principal eigenvector of
Bk (V)AkkT(V) that leads A\(¥) to be a maximum eigen-
value of By (V)Akkr(V) and also satisfies the first-order

(34)
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Algorithm 1 Q-GPI-DO
0)

1 initialize: v
2 Set the iteration count ¢t = 1

3 while [|[v(") — v~V > € & t < tinax do

4 | Build matrix Axkr(v(*=1) in (32)

5 | Build matrix Bkt (v*=Y) in (33)

6 | Compute v(!) = Bt (vI™D) Agpr (v D)wt=D
7 | Normalize v(*) = v/ [|¥®||

8 | t—t+1

9 v* — v

10 return v*.

optimality condition in (31). To find such v, we propose a
quantization-aware generalized power iteration-based direction
optimization algorithm (Q-GPI-DO).

Algorithm 1 describes the proposed algorithm. The key idea
used in Q-GPI-DO is to modify a power iteration method
to be appliable for the corresponding functional eigenvalue
problem (34). Specifically, Algorithm 1 first initializes the
stacked precoding vector v(?). Then, the precoding vector v(©)
is updated iteratively: at iteration ¢, the matrices AkxT(V (= 1))
and Bykr(v(t=1) are computed according to (32) and (33).
Subsequently, the precoder v() is re-computed as v(/) =
Bkt (VED) At (v 1)v= and normalized as v(*) =
v /|[v®]|. The iteration stops when one of the stopping

criteria are met: either converges, i.e., |[v(Y) — v(=D|| < ¢
where € > 0 denotes a tolerance level or reaches a maximum
iteration count ¢,,,x Which may differ depending on a system
requirement.

One remarkable benefit of the proposed Q-GPI-DO is
that it is not required to exploit any off-the-shelf opti-
mization solver such as CVX. Distinguished from other
convex-relaxation based approaches, the only computational
load of the proposed method is caused when calculating
v = Byt (V) Apr (v D) v As implementing
CVX in practical hardware is nearly infeasible due to the high
complexity, Q-GPI-DO has a substantial advantage from an
implementation perspective.

2) Optimal Power Scaling 7*: the problem in (22) for given
V and p reduces to

K P
imi R, — 54— 35
maximize ]; BT (35)
subjectto 0 <7 <1
w> 0.

The objective function in (35) is now concave with respect
to 7. In this regard, the optimal 7 can be derived by using a
gradient descent algorithm for given v and p. Let the objective
function in (35) be L, (7, V). Then the gradient update is given
as

T(t+1) o aLT (’T(t), \7)
N ar® 7

7 + 66 (36)
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where dgp denotes a step size and the partial derivative
OL, (7™M, %) /07" is computed as

OL(1,V)
or
K =
S Eew o\ P
N In2 & 02/P+(E, + U)T  02/P+ Uyt K’
(37

where

[1]
£
Il

Oék|hH¢1/2Vk|2

K
U, = Z |hH(I>1/2Vg|2 Oék|hH(I>1/2V |2

K
+> V', diag (hihy) v
(=1

To decide dgp, we use a backtracking line search method [40]
in simulations.

3) Thresholding of T: Recall that we have the constraint of
0 < 7 < 1. From (36), however, it is not guaranteed to satisfy
the constraint. Accordingly, for each update, we perform
thresholding of 7; if 7 > 1, then set 7 = 1, and if 7 < 0,
then set 7 = 0.

4) Dinkelbach Update j1: Once the precoder V and scaling
factor 7 are derived, we update p for the next outer iteration
as

_ Zkl’il Rk (Vv 7—)
Papprox

where

; (38)
N 1 2\ Yp
Papprox = PLO + Z 10g2 (1 + p_l e )
x (2 PDAc(bDAc m, fs) + Pre) + 7P /K.

Algorithm 2 describes the proposed quantization-aware
GPI-based EE maximization algorithm (Q-GPI-EEM). With
initialization, the algorithm computes 7 by using the gradient
descent method for given v and p and also finds v by using
the Q-GPI-DO algorithm for given 7 and p. Then W is
computed from the derived 7 and v. The algorithm repeats
these steps until W converges. Once converged, the outer loop
computes y by using the derived W and repeats the previous
steps until ;1 converges. Once p converged, we check whether

| Z="nl? > €as to select antennas which have effective

gain where €,s > 0 is a small enough value. This selection
approach is effective as the rows of 'V are jointly designed with
each other, and thus, the designed V incorporates relative gains
across the antennas. The norm of v,,, however, highly depends
on the number of antennas because the norm of v is limited
as ||[v|]] = 1. In this regard, the threshold ¢ may vary with
N. To avoid this issue, we normalize v,, by max; || ——— \/7 vills
i.e., we perform

Vp, = V,/max
7

1
="
Qs
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Algorithm 2 Q-GPI-EEM

1 initialize: v(©), 7(©) and ()

2 Set the iteration count ng = 1

3 while |p(t0) — (=1 /|(0)| > ¢ & tg < tiax do
4

5

Set the iteration count ¢ = 1
while ||[W(t) — W(tl_l)HF/HW(“)HF >e &
tq < tmax do
6 Set the iteration count ny = 1
7 while [7(*2) — 7(t2=1)| /|7(t2)] > €y & t5 <ty do
8 Set 0L, (1), %)/0r(*2) according to (37)
9 Update 7(*2) according to (36)
10 Thresholding 7
1 to «—to+1
12 vV = Q—GPI—DO(AKKT(\_/', T(tQ)), BKKT(\_/'7 T(tQ)))
13 Compute W) = V7@ /2 [vy vy, ..., vg]
14 t1 —t1+1
15 | Update () according to (38)
16 | to—tog+1

17 Set Wit = 0y, if I

18 return W (t1)

\/_ Vol <éssn=1,...,N

vnH2 < €as Vn, where w,,
Flnally, the proposed method

and set W, = O1xx if |[[—=
represents the nth row of
returns W.

Remark 3 (Complexity): The computational complexity for
each step in the proposed Q-GPI-EEM is analyzed as
follows. In the Q-GPI-DO step, the main computational
load is caused by calculating the inversion of Byt (f).
Since Bykr(f) is comprised of NK x NK block-diagonal
matrices, the inversion can be obtained by calculating the
inversion of each sub-matrix. This results in that the com-
plexity of Q-GPI-DO with Tpy iterations is characterized as
O(Tap1 K N?). The backtracking iteration has the complexity
of O(max(K2N, TgrK)), where Tt is the number of itera-
tions of the backtracking algorithm. Considering the iterations
of the gradient descent Tgp, the complexity of the gradient
descent with the backtracking algorithm is

O(Tap - max(K2N, TprK)). (39)
Note that there is some abuse of notation in (39): Tt denotes
the number of the backtracking iteration per gradient descent
step, which may not be the same for every step. But here,
we consider Tt to be constant, assuming that Tt will be
similar for every gradient descent step for ease of analysis.
This complexity analysis will apply a similar assumption,
which does not change the final result. In addition to this,
we have the following outer loops for both the gradient descent
and Q-GPI-DO: W optimization loop 7yy, and p optimization
loop T),. Therefore the overall complexity of Algorithm 2 is
given as

O(TMTW - max (TGPIKN3, TGD . maX(KQN, TBTK)))
(40)
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Then, in the massive MIMO regime, it is reasonable to
consider KN > T and Tapi K N3 > TapK2N. Therefore,
considering T as the total iteration count of the GPI method,
ie., T = TgpiTwT,, the overall complexity in (40)
becomes O(TK N3).

Remark 4 (Convergence): It is challenging to prove the
convergence of the proposed method rigorously. The main
obstacle is Q-GPI-DO. As explained above, through the lens of
a functional eigenvalue problem, Q-GPI-DO is interpreted as
a power iteration type algorithm to find the principal eigen-
vector of the NEPv (31). Conventionally, the self-consistent
field iteration (SCF) can be used to solve the NEPv [39],
whose main idea is to perform the eigenvector decomposi-
tion iteratively based on the previously obtained eigenvec-
tors. Extending this to the power iteration type algorithm
is a key for the convergence proof of Q-GPI-DO. We shall
leave this as future work. In the later section, we empir-
ically show that p converges very well in general system
environments.

V. SPECIAL CASE: SUM SPECTRAL
EFFICIENCY MAXIMIZATION

We can show that a sum SE maximization problem in
the considered massive MIMO system with low-resolution
DACs and ADCs is regarded as a special case of the EE
maximization. Accordingly, we provide a brief description of
finding precoders that maximize the sum SE by exploiting the
results derived in the EE. The sum SE maximization problem
is formulated by setting p in (11) to zero as

K
maximize ;Rk, (41)
subject to tr (E[xqx]) < P. (42)

Since the SINR in (16) increases with the transmit power, the
SE is maximized when we meet

tr (2, WWH) =1, (43)

i.e., the BS transmits signals use the maximum transmit power
tr (IE [qum) = P. Since this is equivalent to having 7 = 1,
the results derived in the EE problem can be directly used
by setting 7 = 1 and p = 0. Now let us define a weighted
precoding vector as

fk =& 1/2 Wi

Qbs

(44)

which is equivalent to v in (20) with 7 = 1. Then we have
the following optimality condition:

Lemma 2: The first-order optimality condition of the opti-
mization problem (41) is satisfied if the following holds:

Ciit(B)f = M(f)Dyr(F)F, (45)

=
=

Cgf

(46)
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Fig. 1. The energy efficiency versus maximum transmit power constraint P results for (a) N = 16 BS antennas, K = 4 users, bpac,, ~ Unif([2,5], and

bapc,r ~ Unif[2, 5], and (b) N = 32 BS antennas, K = 8 users, bpac,», ~ Unif[2, 12], and bapc r ~ Unif[2, 6].

_ S § YR
Dyxr(f) = ) DT [] (t"D.f), (47)
k=1 /=1
0_2
Cj, = blkdiag(Gy, -+, Gy,) + FINK,

D, = Cy
—blkdiag@NxN, g (@) Hhy b

absa
K - -
~ e, f
ME) = H <fHDkf> .

k=1

) ONXJ\);

Proof: We derive the results by setting =0 and 7 = 1
from Lemma 1. u
We note that we can solve (45) by leveraging Algorithm 1
with 1 = 0 and 7 = 1; replacing (32), (33), and v; with
(46), (47), and f}, respectively and computing W based on
(44). The algorithm provides the best precoder that maximizes
the sum SE among all the stationary points. We call the
quantization-aware GPI-based SE maximization algorithm as
Q-GPI-SEM.

VI. NUMERICAL RESULTS

This section evaluates the proposed algorithms to validate
the performance and draw key system design insights. We also
evaluate benchmark algorithms for comparison. The following
cases are included in the simulations: (1) the proposed algo-
rithms, (2) quantization-ignorant conventional GPI-based SE
maximization (GPI-SEM) [30], (3) quantization-aware linear
precoders such as regularized zero-forcing (Q-RZF), zero-
forcing (Q-ZF), and maximum ratio transmission (Q-MRT),
and (4) conventional linear precoders such as RZF, ZF, and
MRT. The quantization-aware linear precoders are derived
based on the AQNM system model.

A. Simulation Environments

We adopt a one-ring model [41] to generate the channel
vector hy = ,/prgr. To generate pathloss pi, we adopt
the log-distance pathloss model in [42]; cell radius is 1 km,

the minimum distance between the BS and users is 100 m,
pathloss exponent is 4, and 2.4 GHz carrier frequency with
100 MHz bandwidth (passband), 8.7 dB lognormal shadowing
variance, and 5 dB noise figure are considered.

For the BS power consumption, we set P p = 14 mW,
Py = 03 mW, Po = 225 mW, P4 = 3 mW, and
k = 0.27 [22]. For the parameters used in the proposed
algorithms, we set tmax = 10, p = 1078, €5 = 0.05
€p = 0.001, and gy, €1, €2 to be 0.1 unless mentioned
otherwise, and set dgp = 1 for an initial step size which
will be updated according to the backtracking line search
algorithm [40]. We also initialize wO — H, 7O = 1,
and p(9) = 0. Accordingly, based on the definition, v() is
initialized as V(%) = vec( \/TITDCIJUQW(O)) = Vec(fb}yﬁH).

QAbs

B. Evaluation

1) EE Comparison: We compare the proposed algorithm
and other baselines in terms of the EE performance. We depict
the comparison results in Fig. 1, wherein Fig. 1(a) assumes
N = 16 and Fig. 1(b) assumes N = 32. The caption of
Fig. 1 includes the detailed simulation setups. Particularly,
in Fig. 1(a), we compare our method and the SDP based
on SCA (SDP-SCA) proposed in [8], where we adjust the
assumptions in [8] to fit our setup. Over the considered max-
imum transmit power constraint, the proposed Q-GPI-EEM
algorithm achieves the highest EE performance while main-
taining the highest EE once it attains the highest EE. This is
because the Q-GPI-EEM suitably optimizes antenna selection
and precoders to maximize the EE, by incorporating the
quantization distortion effects of low-resolution quantizers.
We note that although the SDP-SCA provides the second-best
EE in Fig. 1(a), it is hard to use the SDP-SCA in massive
MIMO systems due to its enormous computational complexity.
We also note that the proposed Q-GPI-EEM is shown to be
robust to the maximum transmit power constraint by main-
taining its highest EE and thus, provides high EE performance
regardless of the power constraint. This is because we identify
the actual transmit power level 7 (0 < 7 < 1) to maximize
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Fig. 2. The energy efficiency versus DAC resolutions bpac for N €
{8,32,64} BS antennas, K = 8 users, P = 30 dBm maximum transmit
power constraint, and bapc,x = 10 ADC bits.

the EE in the proposed method (the optimal power scaling 7*
step).

2) EE by DAC Bits: The EE with respect to the number of
DAC bits of the proposed Q-GPI-EEM is evaluated for N €
{8, 32,64} BS antennas, K = 8 users, P = 30 dBm maximum
transmit power constraint, and bapc i = 10 ADC bits in Fig. 2.
In this case, the resolution of all DACs is the same, and the
selection threshold is relaxed to e, = 0.2 when N = 64.
‘We note that the EEs of all the cases can be maximized when 3
to 4 bits are used per DAC. In addition, the optimal number
of bits tends to become smaller, and the EE increases with the
number of antennas. In this regard, using more antennas with
the proposed algorithm provides gains in both the SE and EE,
and also it allows the BS to use coarser quantizers, thereby
saving more power and simplifying each RF chain.

3) Antenna Selection Ratio by DAC Bits: Now, we present
the DAC selection ratios for a different number of bits. In the
simulation, we set N = 42 BS antennas, K = 8 users,
bapc,x ~ Unif[2,6], and P = 30 dBm maximum transmit
power constraint. Each DAC resolution is assigned to three
BS antennas. Accordingly, the selection ratio indicates the
ratio of selected antennas within each resolution on average.
For example, the selection ratio is about 36% for 13 bits,
which means that only one antenna out of the three antennas
with 13 bits is selected at each transmission on average.
It is shown in Fig. 3(a) that about 90% of the antennas are
selected for the low-to-medium resolution DACs. However,
the selection ratio rapidly decreases with the number of
DAC bits in the high-resolution regime since such antennas
with high-resolution DACs consume unnecessarily high power,
which corresponds to our intuition. Consequently, less than
one antenna out of the three antennas with 14 bits is selected
at each transmission on average, and no antenna with 15 bits
is selected in most cases.

4) Number of Selected Antennas: In Fig. 3(b), we simulate
the number of selected antennas over different parameters such
as the maximum transmit power constraint, the number of
DAC bits, and the number of users. For the case of the number
of DAC bits, we use a homogeneous DAC bit distribution, i.e.,
all DACs have 3 bits. For the case of the number of users,
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Fig. 3. (a) Selection ratio of each DAC resolution for N = 42 BS antennas,
K = 8 users, bapc,i ~ Unif[2,6], and P = 30 dBm maximum transmit
power. Each DAC resolution is assigned to three BS antennas. (b) The number
of selected antennas versus the power constraint 2, number of DAC bits bpac,
and number of users K for N = 32 BS antennas, 3 bits for DACs and ADCs,
and P = 20 dBm power constraint unless mentioned otherwise.

we force the pathloss of all users to be —100 dB for a fair
comparison. The trends of the antenna selection correspond to
the general intuition: 1) when the power constraint becomes
larger, the BS can use transmit power more effectively, thereby
turning off more antennas to save RF power. 2) When the
number of DAC bits increases, more antennas tend to be turned
off to save RF power. 3) When the number of users increases,
using more antennas can bring greater SE improvement,
leading to higher EE, thereby selecting more BS antennas.
We note that the proposed EE method does not increase the
transmit power once it reaches the highest EE. Accordingly,
the number of selected antennas remains the same beyond a
certain P.

5) Convergence: To exam the convergence of the pro-
posed Q-GPI-EEM algorithm, we provide the numerical
convergence p. In Fig. 4, we verify the convergence of u
under the assumptions that N = 32 BS antennas, K = 8
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Fig. 4. Convergence of p for N = 32 BS antennas, K = 8 users, bpac,n ~
Unif[2, 12], bapc,x ~ Unif([2,6], and P € {-20,0,20,40} dBm maxi-
mum transmit power constraint.
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Fig. 5. The sum spectral efficiency versus maximum transmit power
constraint P results for N = 32 BS antennas, KX = 8 users, bDAC,n ~
Unif[Q, 12}, and bADC,k ~ Unif[Q7 6].

users, bpac,, ~ Unif[2,12], bapc,x ~ Unif[2,6], and P €
{—20,0,20,40} dBm maximum transmit power constraint.
As we observe in Fig. 4, ;1 converges fast for all the con-
sidered cases. Although the convergence takes longer with
higher P, the results in Fig. 4 still show that ;1 converges
within 8 iterations, which can guarantee fast convergence of
Q-GPI-EEM in the practical transmit power regime. We note
that the convergence of ;1 means the convergence of the EE
since we reformulate the fractional programming by using the
Dinkelbach approach as in (11).

6) SE Comparison: Fig. 5 shows the sum SE versus max-
imum transmit power constraint P results for N = 32 BS
antennas, K = 8 users, bpac,, ~ Unif[2,12], and bapcx ~
Unif([2,6]. As shown in Fig. 5, Q-GPI-SEM achieves the
highest sum SE over the most range of P. As the max-
imum transmit power constraint increases, the SE is satu-
rated because the quantization distortion also increases. The
proposed algorithm can pull up this saturation level more
than 2 times that of the conventional methods. We note that
GPI-SEM provides a higher sum SE than the RZF, ZF, and
MRT-based precoders. GPI-SEM, however, shows a huge gap
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Fig. 6. The sum spectral efficiency versus the number of DAC bits bpac
for K = 8 users, bapc,, = 10 ADC bits for all k, P = 50 dBm maximum
transmit power constraint, and N € {8, 32} BS antennas.

from Q-GPI-SEM as P increases, i.e., quantization noise
also increases. Moreover, its SE even decreases in the very
high transmit power regime because the interference from
the quantization error, which cannot be fully treated with
GPI-SEM dominates the SE performance in the regime. In the
Q-RZF/RZF, Q-ZF/ZF, and Q-MRT/MRT cases, the sum SE
performance is not comparable with that of Q-GPI-SEM
except in the very low transmit power regime where the
quantization error is buried in the thermal noise. Therefore,
Fig. 5 validates the sum SE performance of the proposed
method over the practical transmit power regime.

7) SE by DAC Bits: Fig. 6 shows the sum SE versus the
number of DAC bits bpac for K = 8 users, bapc,rx = 10
ADC bits for all k£, P = 50 dBm maximum transmit power
constraint, and N € {8,32} BS antennas. In this case, the
entire DACs have the same resolution. We first note that
Q-GPI-SEM provides the highest sum SE, and the sum SE
of GPI-SEM converges to that of Q-GPI-SEM as the number
of DAC bits increases since both the DACs and ADCs have
high resolutions. More importantly, the performance variation
of Q-GPI-SEM over DAC resolutions becomes marginal in
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Fig. 7. The spectral efficiency versus the normalized energy efficiency results for N = 16 BS antennas, K = 4 users, bpac,x = 3 DAC bits, and bapc i = 3

ADC bits.

N = 32 case compared to N = 8 case, whereas the other
algorithms still show high-performance variations. Therefore,
in the massive MIMO, the proposed algorithm is highly robust
to quantization noise at the BS by achieving the SE of
high-resolution DACs with low-resolution DACs (2 ~ 5 bits).

Overall, the proposed Q-GPI-SEM algorithm outperforms
the conventional precoding algorithms, and it is indeed an effi-
cient method in the massive MIMO communication systems
with low-resolution DACs or ADCs, showing robustness to
quantization error.

8) SE-EE Tradeoff: We also provide the SE-EE trade-off
results with the proposed EE maximization method and SE
maximization method, including other benchmarks. In Fig. 7,
we plot the SE-EE tradeoffs over P = —20 dBm to
P = 30 dBm maximum transmit power constraint. Fig. 7(a)
shows the tradeoff result with the proposed EE maximization
algorithm. In the beginning, both the EE and SE increase
with P. Then the EE of the benchmarks decreases beyond
certain P, whereas the EE of the proposed algorithm never
decreases. Fig. 7(b) shows the tradeoff result with the pro-
posed SE maximization algorithm. The EE of the proposed
SE maximization method also decreases beyond certain P
while providing the best SE-EE tradeoff among all. We note
that the EE maximization algorithm achieves the highest EE
performance with the limited SE performance by not fully
using P. The achieved SE, in our algorithm, can be adjusted
to a desirable level by introducing a control parameter v > 0
in the BS power consumption of the EE optimization problem
as Z/PBS (N, bDAC7 fs, W)

9) Symbol Error Rate (SER): In Fig. 8, we present SER
results. We use 4-QAM modulation with N = 16 BS antennas,
K = 8 users, 3 bits for all DACs and ADCs, and MMSE
scalar quantization. As shown in Fig. 8, the proposed method
achieves the best SER, followed by GPI-SEM. Similar to the
SE results presented in the manuscript, the GPI-SEM also
shows the inverse trend in the high SNR regime due to the
quantization effect. The Q-RZF shows the worst SER results
with significant gaps from the others. Because the user channel

—©—Q-GPI-SEM
—&—GPI-SEM
—*—Q-RZF

Symbol Error Rate (uncoded)
=)

1 072 L L L L L L L L |
0 5 10 15 20 25 30 35 40 45
Transmit Power Px (dBm)

Fig. 8. Symbol error rates of 4-QAM modulation with N = 16 BS antennas,
K = 12 users, 3 bits for all DACs and ADCs, and MMSE scalar quantization.

gains are highly heterogeneous, the Q-RZF that involves a
matrix inversion suffers in the high SNR and results in poor
SER for users with severe pathloss.

10) SE by DAC Configuration: Finally, to provide system
design insights, we compare various DAC configurations such
as (Z) bDAC,n =3, (Z’L) bDAC,n S {1,3,7}, and (Z’Ll) bDAC,n S
{1,9} under the constraint of the total number of DAC
resolution bits (96 bits total) for K = 8, bapcy = 10
for all k, and N = 32. Fig. 9 reveals that the homoge-
neous DAC configuration where all DACs have the same
resolution achieves the highest sum SE and EE. In particular,
the homogeneous DAC configuration provides a noticeable
improvement in the EE since medium- and high-resolution
DAC:s in the other configurations cause inefficiency in power
consumption. In addition, the proposed algorithm shows a
relatively small variation in the sum SE across different
DAC configurations, whereas the other algorithms reveal a
noticeable performance gap across configurations. Therefore,
the result demonstrates that the proposed algorithm is more
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Fig. 9.  The spectral efficiency and energy efficiency versus maximum

transmit power constraint P for K = 8 users, baopc,x = 10 ADC bits for all
k, and N = 32 BS antennas with different DAC configurations.

robust to DAC configurations, providing more system design
flexibility.

VII. CONCLUSION

In this paper, we solved a precoding problem for EE
maximization in downlink multiuser massive MIMO systems
with low-resolution DACs and ADCs. To take into account the
effects of RF circuit power consumption, we incorporated an
antenna selection feature into the EE maximization problem.
Managing the quantization errors, we reformulated the SINR
and adopted the Dinkelbach method. Subsequently, we decom-
posed the problem into precoding direction and power scaling
problems and proposed the joint precoding and antenna selec-
tion algorithm. As a special case, we showed that the proposed
algorithm can reduce to the SE maximization algorithm by
leveraging the product of Rayleigh quotients form of the
reformulated SINR. The simulation results demonstrated that
the proposed algorithms improve both EE and SE compared
to conventional methods. In particular, the EE maximiza-
tion algorithm presented robustness to the maximum transmit
power constraint with fast convergence, while other methods
suffer from EE degradation as the maximum transmit power

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 21, NO. 9, SEPTEMBER 2022

increases. In addition, it was shown that the proposed methods
achieve high enough EE and SE even with low-resolution
DACs in the massive MIMO regime, which means that the
performance degradation caused by low-resolution quantizers
can be compensated by using our method with large-scale
arrays. As a result, the proposed algorithms can provide
considerable benefits in the future massive MIMO systems
by offering high flexibility on quantizer configuration and
improving the SE and EE performance. Considering wideband
systems with low-resolution quantizers for maximizing the EE
would be a desirable future research direction.

REFERENCES

[1] T. L. Marzetta, “Noncooperative cellular wireless with unlimited num-
bers of base station antennas,” IEEE Trans. Wireless Commun., vol. 9,
no. 11, pp. 3590-3600, Nov. 2010.

[2] J. Zhang, L. Dai, X. Li, Y. Liu, and L. Hanzo, “On low-resolution
ADCs in practical 5G millimeter-wave massive MIMO systems,” /[EEE
Commun. Mag., vol. 56, no. 7, pp. 205-211, Jul. 2018.

[3] J. Choi, G. Lee, A. Alkhateeb, A. Gatherer, N. Al-Dhahir, and
B. L. Evans, “Advanced receiver architectures for millimeter-wave com-
munications with low-resolution ADCs,” IEEE Commun. Mag., vol. 58,
no. 8, pp. 42-48, Aug. 2020.

[4] S. Jacobsson, G. Durisi, M. Coldrey, T. Goldstein, and C. Studer,
“Quantized precoding for massive MU-MIMO,” IEEE Trans. Commun.,
vol. 65, no. 11, pp. 4670-4684, Nov. 2017.

[5] S. Jacobsson, G. Durisi, M. Coldrey, and C. Studer, “Linear precod-
ing with low-resolution DACs for massive MU-MIMO-OFDM down-
link,” IEEE Trans. Wireless Commun., vol. 18, no. 3, pp. 1595-1609,
Mar. 2019.

[6] H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “Energy and spectral effi-
ciency of very large multiuser MIMO systems,” IEEE Trans. Commun.,
vol. 61, no. 4, pp. 1436-1449, Apr. 2013.

[7]1 E. Bjornson, J. Hoydis, M. Kountouris, and M. Debbah, “Massive
MIMO systems with non-ideal hardware: Energy efficiency, estima-
tion, and capacity limits,” IEEE Trans. Inf. Theory, vol. 60, no. 11,
pp- 7112-7139, Nov. 2014.

[8] S. He, Y. Huang, J. Wang, L. Yang, and W. Hong, “Joint antenna selec-
tion and energy-efficient beamforming design,” IEEE Signal Process.
Lett., vol. 23, no. 9, pp. 1165-1169, Sep. 2016.

[91 K. N. R. S. V. Prasad, E. Hossain, and V. K. Bhargava, “Energy effi-

ciency in massive MIMO-based 5G networks: Opportunities and chal-

lenges,” IEEE Wireless Commun., vol. 24, no. 3, pp. 86-94, Jun. 2017.

J. Singh, O. Dabeer, and U. Madhow, “On the limits of communication

with low-precision analog-to-digital conversion at the receiver,” [EEE

Trans. Commun., vol. 57, no. 12, pp. 3629-3639, Dec. 2009.

A. Mezghani and J. A. Nossek, “Analysis of Rayleigh-fading channels

with 1-bit quantized output,” in Proc. IEEE Int. Symp. Inf. Theory,

Jul. 2008, pp. 260-264.

J. Mo and R. W. Heath, Jr., “Capacity analysis of one-bit quantized

MIMO systems with transmitter channel state information,” /EEE Trans.

Signal Process., vol. 63, no. 20, pp. 5498-5512, Oct. 2015.

O. De Candido, H. Jedda, A. Mezghani, A. L. Swindlehurst, and

J. A. Nossek, “Reconsidering linear transmit signal processing in 1-bit

quantized multi-user MISO systems,” IEEE Trans. Wireless Commun.,

vol. 18, no. 1, pp. 254-267, Jan. 2019.

H. Pirzadeh, G. Seco-Granados, S. Rao, and A. L. Swindlehurst,

“Spectral efficiency of one-bit sigma-delta massive MIMO,” IEEE J.

Sel. Areas Commun., vol. 38, no. 9, pp. 2215-2226, Sep. 2020.

M. Shao, W.-K. Ma, Q. Li, and A. L. Swindlehurst, “One-bit sigma-

delta MIMO precoding,” IEEE J. Sel. Topics Signal Process., vol. 13,

no. 5, pp. 1046-1061, Sep. 2019.

M. Shao, Q. Li, W.-K. Ma, and A. M.-C. So, “A framework for

one-bit and constant-envelope precoding over multiuser massive MISO

channels,” IEEE Trans. Signal Process., vol. 67, no. 20, pp. 5309-5324,

Oct. 2019.

H. Jedda, A. Mezghani, A. L. Swindlehurst, and J. A. Nossek, “Quan-

tized constant envelope precoding with PSK and QAM signaling,” /[EEE

Trans. Wireless Commun., vol. 17, no. 12, pp. 8022-8034, Dec. 2018.

A. Mezghani, R. Ghiat, and J. A. Nossek, “Transmit processing with

low resolution D/A-converters,” in Proc. 16th IEEE Int. Conf. Electron.,

Circuits Syst. (ICECS), Dec. 2009, pp. 683-686.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

Authorized licensed use limited to: UNIST. Downloaded on September 27,2022 at 05:00:31 UTC from IEEE Xplore. Restrictions apply.



CHOI et al.: ENERGY EFFICIENCY MAXIMIZATION PRECODING FOR QUANTIZED MASSIVE MIMO SYSTEMS 6817

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

J. J. Bussgang, “Crosscorrelation functions of amplitude-distorted
Gaussian signals,” Res. Lab. Electron., Massachusetts Inst. Technol.,
Cambridge, MA, USA, Tech. Rep. 216, 1952.

A. K. Saxena, I. Fijalkow, and A. L. Swindlehurst, “Analysis of one-bit
quantized precoding for the multiuser massive MIMO downlink,” IEEE
Trans. Signal Process., vol. 65, no. 17, pp. 4624-4634, Sep. 2017.
J.-C. Chen, “Alternating minimization algorithms for one-bit precoding
in massive multiuser MIMO systems,” [EEE Trans. Veh. Technol.,
vol. 67, no. 8, pp. 7394-7406, Aug. 2018.

L. N. Ribeiro, S. Schwarz, M. Rupp, and A. L. F. de Almeida, “Energy
efficiency of mmWave massive MIMO precoding with low-resolution
DACs,” IEEE J. Sel. Topics Signal Process., vol. 12, no. 2, pp. 298-312,
May 2018.

J. Dai, J. Liu, J. Wang, J. Zhao, C. Cheng, and J.-Y. Wang, “Achiev-
able rates for full-duplex massive MIMO systems with low-resolution
ADCs/DACs,” IEEE Access, vol. 7, pp. 24343-24353, 2019.

J. Choi, J. Sung, N. Prasad, X.-F. Qi, B. L. Evans, and A. Gatherer,
“Base station antenna selection for low-resolution ADC systems,” /[EEE
Trans. Commun., vol. 68, no. 3, pp. 1951-1965, Mar. 2020.

E. Vlachos and J. Thompson, “Energy-efficiency maximization of hybrid
massive MIMO precoding with random-resolution DACs via RF selec-
tion,” IEEE Trans. Wireless Commun., vol. 20, no. 2, pp. 1093-1104,
Feb. 2021.

C.-J. Wang, C.-K. Wen, S. Jin, and S.-H. Tsai, “Finite-alphabet precod-
ing for massive MU-MIMO with low-resolution DACs,” IEEE Trans.
Wireless Commun., vol. 17, no. 7, pp. 4706-4720, Jul. 2018.

Q. Ding, Y. Deng, and X. Gao, “Spectral and energy efficiency of
hybrid precoding for mmWave massive MIMO with low-resolution
ADCs/DACs,” IEEE Access, vol. 7, pp. 186529-186537, 2019.

A. K. Fletcher, S. Rangan, V. K. Goyal, and K. Ramchandran, “Robust
predictive quantization: Analysis and design via convex optimization,”
IEEE J. Sel. Topics Signal Process., vol. 1, no. 4, pp. 618-632,
Dec. 2007.

W. Dinkelbach, “On nonlinear fractional programming,” Manage. Sci.,
vol. 13, no. 7, pp. 492-498, Mar. 1967.

J. Choi, N. Lee, S.-N. Hong, and G. Caire, “Joint user selection, power
allocation, and precoding design with imperfect CSIT for multi-cell MU-
MIMO downlink systems,” IEEE Trans. Wireless Commun., vol. 19,
no. 1, pp. 162-176, Jan. 2020.

J. Zhang, L. Dai, Z. He, B. Ai, and O. A. Dobre, “Mixed-ADC/DAC
multipair massive MIMO relaying systems: Performance analysis and
power optimization,” /EEE Trans. Commun., vol. 67, no. 1, pp. 140-153,
Jan. 2019.

L. Fan, S. Jin, C. K. Wen, and H. Zhang, “Uplink achievable rate
for massive MIMO systems with low-resolution ADC,” IEEE Commun.
Lett., vol. 19, no. 12, pp. 21862189, Oct. 2015.

A. Gersho and R. M. Gray, Vector Quantization and Signal Compression,
vol. 159. Cham, Switzerland: Springer, 2012.

J. Choi, Y. Cho, and B. L. Evans, “Quantized massive MIMO systems
with multicell coordinated beamforming and power control,” [EEE
Trans. Commun., vol. 69, no. 2, pp. 946-961, Feb. 2021.

J. Choi, Y. Nam, and N. Lee, “Spatial lattice modulation for MIMO
systems,” IEEE Trans. Signal Process., vol. 66, no. 12, pp. 3185-3198,
Jun. 2018.

O. T. Demir and E. Bjornson, “The Bussgang decomposition of nonlin-
ear systems: Basic theory and MIMO extensions [lecture notes],” /[EEE
Signal Process. Mag., vol. 38, no. 1, pp. 131-136, Jan. 2021.

S. Cui, A. J. Goldsmith, and A. Bahai, “Energy-constrained modu-
lation optimization,” IEEE Trans. Wireless Commun., vol. 4, no. 5,
pp- 2349-2360, Sep. 2005.

B. K. Sriperumbudur, D. A. Torres, and G. R. G. Lanckriet,
“A majorization-minimization approach to the sparse generalized eigen-
value problem,” Mach. Learn., vol. 85, nos. 1-2, pp. 3-39, Oct. 2011.
Y. Cai, L.-H. Zhang, Z. Bai, and R.-C. Li, “On an eigenvector-dependent
nonlinear eigenvalue problem,” SIAM J. Matrix Anal. Appl., vol. 39,
no. 3, pp. 1360-1382, Jan. 2018.

L. Armiju, “Minimization of functions having Lipschitz continuous first
partial derivatives,” Pacific J. Math., vol. 16, no. 1, pp. 1-3, 1996.

A. Adhikary, J. Nam, J.-Y. Ahn, and G. Caire, “Joint spatial division and
multiplexing—The large-scale array regime,” IEEE Trans. Inf. Theory,
vol. 59, no. 10, pp. 6441-6463, Oct. 2013.

V. Erceg et al., “An empirically based path loss model for wireless
channels in suburban environments,” IEEE J. Sel. Areas Commun.,
vol. 17, no. 7, pp. 1205-1211, Jul. 1999.

Jinseok Choi (Member, IEEE) received the B.S.
degree from the Department of Electrical and
Electronic Engineering, Yonsei University, Seoul,
South Korea, in 2014, and the M.S. and Ph.D.
degrees in electrical and computer engineering from
The University of Texas at Austin, Austin, TX, USA,
in 2016 and 2019, respectively. He was a Student
Member of the Wireless Networking and Communi-
cations Group (WNCG) and the Embedded Signal
Processing Laboratory, under supervision of Prof.
Brian L. Evans. He was also a Senior System Engi-

neer at the Qualcomm Wireless Research and Development, San Diego, CA,
USA. He is currently an Assistant Professor at the Ulsan National Institute of
Science and Technology (UNIST). His primary research interest is to develop
and analyze future wireless communication systems and to develop algorithms
for intelligent devices that require ultra-high speed, high-reliability, and low-

latency communications.

Jeonghun Park (Member, IEEE) received the B.S.
and M.S. degrees in electrical and electronic engi-
neering from Yonsei University, Seoul, South Korea,
in 2010 and 2012, respectively, and the Ph.D. degree
in electrical and computer engineering from The
University of Texas at Austin, Austin, TX, USA,
in 2017. He is currently working as an Assistant
Professor with the School of Electronics Engineer-
ing, Kyungpook National University (KNU), Daegu,
South Korea. Prior to joining KNU, he worked
at Qualcomm Wireless Research and Development,

San Diego, CA, USA. His main research interests include developing and
analyzing future wireless communication systems using tools of optimization,
information theory, and machine learning.

Namyoon Lee (Senior Member, IEEE) received
the Ph.D. degree from The University of Texas
at Austin, Austin, TX, USA, in 2014. He was
with the Communications and Network Research
Group, Samsung Advanced Institute of Technol-
ogy, South Korea, from 2008 to 2011, and Wireless
Communications Research, Intel Labs, Santa Clara,
CA, USA, from 2015 to 2016. He is currently
an Associate Professor at Korea University. His
main research interests include communications,
sensing, and machine learning. He was a recipient

of the 2016 IEEE ComSoc Asia-Pacific Outstanding Young Researcher
Award, the 2020 IEEE Best YP Award (Outstanding Nominee), the 2021
IEEE-IEIE Joint Award for Young Engineer and Scientist, and the 2021
Heading Young Researcher Award. Since 2021, he has been an Associate
Editor of IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, IEEE
TRANSACTIONS ON COMMUNICATIONS, and IEEE TRANSACTIONS ON
VEHICULAR TECHNOLOGY.

Authorized licensed use limited to: UNIST. Downloaded on September 27,2022 at 05:00:31 UTC from IEEE Xplore. Restrictions apply.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


