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Simple Summary: The cervix region segmentation significantly affects the accuracy of diagnosis
when analyzing colposcopy. Detecting the cervix region requires manual, intensive, and time-
consuming labor from a trained gynecologist. In this paper, we propose a deep learning-based
automatic cervix region segmentation method that enables the extraction of the region of interest from
colposcopy images in an unsupervised manner. The segmentation performance with a Dice coefficient
improved from 0.612 to 0.710 by applying the proposed loss function and encoder-weighted learning
scheme and showed the best performance among all the compared methods. The automatically
detected cervix region can improve the performance of image-based interpretation and diagnosis by
suggesting where the clinicians should focus during colposcopy analysis.

Abstract: Cervical cancer can be prevented and treated better if it is diagnosed early. Colposcopy,
a way of clinically looking at the cervix region, is an efficient method for cervical cancer screening
and its early detection. The cervix region segmentation significantly affects the performance of
computer-aided diagnostics using a colposcopy, particularly cervical intraepithelial neoplasia (CIN)
classification. However, there are few studies of cervix segmentation in colposcopy, and no studies of
fully unsupervised cervix region detection without image pre- and post-processing. In this study,
we propose a deep learning-based unsupervised method to identify cervix regions without pre-
and post-processing. A new loss function and a novel scheduling scheme for the baseline W-Net
are proposed for fully unsupervised cervix region segmentation in colposcopy. The experimental
results showed that the proposed method achieved the best performance in the cervix segmentation
with a Dice coefficient of 0.71 with less computational cost. The proposed method produced cervix
segmentation masks with more reduction in outliers and can be applied before CIN detection or other
diagnoses to improve diagnostic performance. Our results demonstrate that the proposed method
not only assists medical specialists in diagnosis in practical situations but also shows the potential of
an unsupervised segmentation approach in colposcopy.

Keywords: unsupervised learning; unsupervised segmentation; colposcopy; cervical cancer screen-
ing; W-Net

1. Introduction

Cervical cancer, the fourth most common cancer in women, is strongly associated
with human papillomavirus (HPV) infection [1]. Because cervical cancer can be cured if
diagnosed early and treated quickly, its incidence and mortality rates have decreased over
the past few decades [2]. Most cervical cancer cases and deaths currently occur in low- and
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middle-income countries (LMICs), due to a shortage of experienced clinicians, medical
facilities for screening, and supplies such as preventive vaccines [3].

Papanicolaou (Pap) smears and colposcopy are generally used to screen for cervical
cancer. A potentially precancerous transformation of cervical cells is called cervical dyspla-
sia. The Pap smear is a test that identifies the presence of abnormal cells by examining cells
under a microscope. Colposcopy is a procedure that looks for cancerous or abnormal cells
by looking at the cervix region through a special magnifying device called a colposcope,
with a green filter often used to see blood vessels more clearly. Colposcopy has generally
been found to have higher sensitivity and specificity than Pap smears [4–6]. If abnormal
cells are found during colposcopy, a clinician collects a small amount of tissue for biopsy.
However, due to the subjective nature of colposcopy, its accuracy is highly dependent on
the clinician’s experience and capacity. Therefore, there is a limit to the use of colposcopy
as a screening method, especially in LMICs, due to the lack of specialists experienced
in colposcopy.

Deep learning has received significant attention due to its ability to automatically
learn and extract meaningful features from input data [7] and has been used to improve
performance in various medical fields [8,9]. Deep learning also shows considerable poten-
tial in computer-aided diagnosis (CAD). For these reasons, some studies have utilized deep
learning methods to assist clinicians in colposcopy. Most studies have focused on cervical
intraepithelial neoplasia (CIN) classification [10–18], and almost all studies include a pre-
processing step to first remove non-cervix regions such as the speculum and vaginal walls,
in order to extract only the cervix region, which is the region of interest (ROI) in colposcopy.
The performance of cervix segmentation significantly affects the accuracy of diagnosis
when analyzing colposcopy and is an essential step in training deep learning-based models.
Previous studies utilized segmentation and object detection models to extract the ROI in a
supervised manner [19,20]. Supervised learning can achieve high performance, but anno-
tating the cervix region for every colposcopy image is not only a subjective judgment but is
also burdensome for doctors. For these reasons, some studies have attempted to extract the
ROI without annotation masks, in an unsupervised manner, based on hand-crafted features,
such as geometrical curvature characteristics or color information [21–23]. A study [24]
has attempted unsupervised cervical ROI segmentation consisting of complex steps in the
consideration of the characteristics of colposcopy but still requires image pre-processing.

In this paper, we introduce a fully unsupervised method for the cervix region seg-
mentation in colposcopy using an adaptation of W-Net [25], a deep learning model for
unsupervised image segmentation. We propose to substitute the graphcut-based loss with a
combination of cross-entropy and total-variation loss, reducing the computational overhead
and time for model training. To improve the cervical ROI segmentation performance, an
encoder-weighted learning approach in shallow network architecture is proposed. The
proposed method improves the segmentation performance with a Dice coefficient from
0.6120 to 0.7100 compared to baseline W-Net and produces enhanced segmentation masks
without pre- and post-processing. In addition, the training time required for optimal per-
formance is reduced from 10.6 h to 3.4 h. Experimental results demonstrate the potential
of an end-to-end unsupervised approach in colposcopy segmentation. In summary, the
contributions of this study are as follows:

- An end-to-end unsupervised method is proposed to efficiently segment cervical ROI
using the adaptation of W-Net in colposcopy. To the best of our knowledge, this is the
first study to resolve fully unsupervised cervix region segmentation without pre- and
post-processing.

- CT-loss (a combination of cross-entropy loss and total-variation loss) is proposed to
reduce the computational overhead and time for model training compared to baseline
W-Net, and experimental results confirmed that the proposed method reduced the
training time from 10.6 h to 4 h while improving the segmentation performance with
a Dice coefficient from 0.6120 to 0.6870.
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- An encoder-weighted learning approach in shallow network architecture is proposed
to improve the cervical ROI segmentation performance. Experimental results showed
the best segmentation performance with a Dice coefficient of 0.7100.

2. Materials and Methods
2.1. Datasets

In this study, we use the Intel and MobileODT Cervical Cancer screening database
(https://www.kaggle.com/competitions/intel-mobileodt-cervical-cancer-screening ac-
cessed on 8 March 2021). There are three different cervix types (types 1, 2, and 3), and
the purpose of this challenge is to develop an accurate algorithm for identifying cervix
types using colposcopy images. For experiments, we select type 1 data consisting of about
1500 images. Since the original data contain many duplicates and low-quality images, such
as being excessively shaky and out-of-focus, these poor-quality images were excluded.
Excessively enlarged images where all regions were cervix regions, and green-filtered
images, were excluded as well. Consequently, the proposed model is trained and evaluated
using approximately 270 colposcopy images, including before and after aceto-whitening
and after iodine staining. For evaluation, the authors annotate the cervix region as an
ROI of colposcopy, and these annotations are confirmed by an experienced gynecologist.
Annotations are never used for model training but only for evaluating the performance of
cervix region segmentation.

2.2. Deep Learning Model for Unsupervised Segmentation

We discuss two studies related to our method, involving novel convolutional neural
networks (CNN)-based approaches to unsupervised image segmentation.

2.2.1. Baseline W-Net

W-Net [25] is implemented by concatenating two U-Net [26] architectures into a single
autoencoder [27]. The U-Net is a U-shaped network for biomedical image segmentation.
An autoencoder, which consists of an encoder and a decoder network, is a specific type
of neural network with the same input and output. The encoder maps the input to a
smaller-sized set of codes, and the decoder reconstructs the input from the codes. Through
iterative model training, the autoencoder learns to compress unlabeled data into more
efficient code sets. The W-Net encoder can yield an abstractive code set of the raw input
image by employing autoencoder architecture, and the coded values are segmented into K
classes before model training using a graph-based normalized cut method [28], called soft
N-cut loss. The W-Net decoder is trained to map the segmented image that is the output
of the W-Net encoder to the input image, by minimizing the reconstruction error between
the input image and the predicted output of the W-Net decoder. During training, soft
N-cut loss and reconstruction error are jointly minimized, and the encoded image is then
post-processed to generate the final segmentation result. One study [29] adopted W-Net
for the segmentation of confocal scanning laser ophthalmoscopy (cSLO) images. The main
difference between the W-Net proposed in [29] and the baseline W-Net is that a pooling
layer is added before calculating the soft N-cut loss, to reduce memory consumption.

2.2.2. CNN-Based Method

Kim et al. [30] proposed a CNN-based differentiable feature clustering method that
jointly optimizes the pixel labels and feature representations and produces segmentation
masks through iterative model training. First, a normalized response map is obtained
by passing the image through feature extraction and then response map normalization
components. This response map implies the probability that each pixel belongs to each
of the K classes, where K must also be set manually before training the model. Then, a
pseudo segmentation mask is obtained by selecting the maximum probability among the K
classes for each pixel. The network is trained by minimizing the sum of feature similarity
loss and spatial continuity loss using response maps and pseudo segmentation masks. The

https://www.kaggle.com/competitions/intel-mobileodt-cervical-cancer-screening
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feature similarity serves to assign the same label to pixels with similar characteristics, and
the spatial continuity facilitates cluster separation by favoring the assignment of cluster
labels to be the same as those of the adjacent pixels. Through iterative model training, a
segmentation result can be produced. We refer to this method as the CNN-based method
in the following sections.

2.3. Proposed Method
2.3.1. CT-Loss: Cross-Entropy and Total-Variation Loss

We adopted W-Net [25], which is a deep learning model for fully unsupervised image
segmentation. It is used to capture the cervix region as an ROI of colposcopy. The main
limitations of the baseline W-Net for colposcopy images are (1) the use of memory- and
time-consuming graphcut operations to calculate the soft N-cut loss; and (2) post-processing
due to over-segmented results from the input image. Because medical images are usually in
higher resolution than other types of images, most studies scale or tile the medical images
before training CNN models. To calculate the soft N-cut loss, we need to measure the
sum of all weights between the input image and the segmented mask for all of the pixels.
The larger the image, the higher the computational overhead. As a baseline model of
our work, we adopt the W-Net architecture with an additional pooling layer before soft
N-cut loss calculation [29]. The pooling layer reduces the output map size and therefore
can reduce memory requirement. However, soft N-cut loss requires huge memory and
computational overhead.

Figure 1 shows an overview of the proposed W-Net. To overcome the limitations of
the baseline W-Net, we replace the soft N-cut loss with a combination of cross-entropy and
total-variation loss (CT-loss) inspired by the CNN-based method [30], as follows:

Lenc = LCT = L cross−entropy + L total−variation,

L cross−entropy = L({r′n, cn}) = −
K
∑
i

ci log
(
r′i
)
,

L total−variation = L
({

r’
n
})

=
W−1

∑
ξ

H−1
∑
η
‖ r’

ξ+1,η − r’
ξ,η ‖1 + ‖ r’

ξ,η+1 − r’
ξ,η ‖1,

(1)

where {r′n} denotes denote the normalized segmentation map of the sample n, and {cn}
is the pseudo segmentation mask obtained by the index maximizing the value of the
normalized segmentation map {r′n}. W and H represent the width and height of an input
image, and r′ξ,η represents the pixel value at (ξ, η) in the normalized segmentation map
{r′n}. This CT-loss LCT reduces memory usage and training time. Moreover, due to the
nature of the total-variation loss, the segmentation mask can be more condensed than the
baseline method without post-processing. Each pixel in the segmentation map has the
probability of belonging to each of the K classes, and the number of classes K should be
determined manually. The pseudo segmentation mask can be obtained by choosing the
maximum probability from among the K classes. The average probability of each pseudo
segmentation mask is considered as the confidence score of each image, and this confidence
score was used as the criterion for CNN training.
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Figure 1. Overview of the proposed W-Net with CT-loss.

2.3.2. EW Learning: Encoder-Weighted Learning for W-Net

For the proposed W-Net, the initial pseudo segmentation mask affects the segmen-
tation performance. In other words, the initial pseudo segmentation mask is important
for model convergence. The training procedure for the baseline W-Net is to update the
encoder U-Net first and then update the entire W-Net (both the encoder U-Net and decoder
U-Net). In this procedure, the pseudo segmentation mask is initially changed a little at
every iteration, so if the initial value is not appropriate, the model will not be optimized.

To reduce the dependency on the initial pseudo mask, encoder-weighted (EW) learning
is proposed. The encoder U-Net is first trained using Lenc during i epochs, which is the
number of epochs to train the encoder U-Net. Once the encoder U-Net becomes stable to
some extent, the entire W-Net is trained using Lentire as follows:

Lentire = L reconstruction = L MSE =
1
N

N

∑
i

(
xi, x′i

)
. (2)

Figure 2 illustrates the proposed learning scheme. The encoder U-Net learning step
is repeated i epochs with a learning rate ηenc. Then, a single learning step of the entire
encoder and decoder U-Nets is performed. The different learning rate ηentire is used for the
decoder U-Net. With EW learning, the encoder U-Net trains more epochs than the decoder
U-Net, but balanced learning of the encoder and decoder is important. Therefore, we set
relatively small learning later for encoder U-Net (ηenc) than for decoder U-Net (ηentire) to
avoid bias to the encoder U-Net.
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The proposed EW learning increases the model training time due to pre-training on
the encoder U-Net. To efficiently apply the proposed EW scheme, we decrease the model
depth of the baseline W-Net architecture. The number of convolutional filters in each layer
for the encoder and decoder U-Net of the baseline W-Net architecture is (64, 128, 256, and
512) with a depth of 4. In the proposed shallow architecture for encoder weighted learning,
the number of convolutional filters in each layer is (64, 128, and 256) with a depth of 3.

3. Results
3.1. Implementation Details

All images were resized and normalized so that the pixel values were in the range (0, 1)
for efficient CNN training. Various data-augmentation techniques such as flipping and
blurring were used to augment the training dataset for model training. We set K = 2, the
number of segmentation classes, and set i = 7, the number of epochs for training encoder
U-Net. The hyperparameters for model training were chosen using early stopping, namely,
we selected the epoch that gave the best average confidence score for all inputs. We utilized
an NVIDIA RTX 2080 Ti GPU with CUDA 11.0 and cuDNN 8.0.5 for our experiments. We
implemented these networks using PyTorch [31] following the descriptions found in each
paper and their GitHub repositories. To train the proposed W-Net, we used a combination
of cross-entropy and total-variation loss (CT-loss) for the encoder and mean squared error
(MSE) loss for the reconstruction error for the entire W-Net (both encoder and decoder).
We also used the Adam optimizer with a learning rate of 7 × 10−5 for the encoder and
1 × 10−3 for the decoder and set the maximum number of epochs to 500.

3.2. Qualitative and Quantitative Results

The segmentation performance was evaluated by the Dice similarity coefficient [32],
which measures the similarity between the two samples.

Dice coe f f icient =
2|X ∩ Y|
|X|+ |Y| =

2 ∗ TP
(TP + FP) + (TP + FN)

. (3)

Since the model size of the CNN-based method depends on the number of convolu-
tional components (M) for feature extraction, we adjusted the M value for a fair comparison
with the proposed shallow method, so that both models had a similar number of train-
able parameters.

We compared the number of trainable parameters, the training time, and the average
Dice coefficient for the evaluation sets (Table 1). The substitution of graphcut soft N-cut
loss with a combination of cross-entropy loss and total-variation loss (CT-loss) reduced
the training time from 10.6 h to 4 h with the same number of trainable parameters. It also
improved the Dice coefficient from 0.6120 to 0.6870. The depth of the network architecture,
and the number of convolutional layers, affect the training time more than the number
of convolutional filters. The depth of the CNN-based network is deeper than that of the
W-Net architecture because it consists of iterative components with convolutional layers.
Therefore, although the number of trainable parameters for the CNN-based method (3.55 M)
is smaller than the baseline W-Net (12.3 M), it takes relatively longer to train. The proposed
method with CT-loss also achieves a slightly better Dice coefficient than the CNN-based
method. The proposed method 2 (CT-loss and EW learning in a shallow architecture)
achieves the best cervical ROI segmentation performance of 0.7100 (10% better than the
baseline W-Net) with a reduced model optimization time compared to the comparative
method. These results demonstrate the effectiveness of CT-loss and EW learning in the
shallow architecture of the proposed method.
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Table 1. Performance comparison results of cervical ROI segmentation.

Graphcut
W-Net [29]

CT-Loss W-Net
(Proposed 1)

CNN-Based
[30]

CT-Loss W-Net + EW
(Proposed 2)

Number of
parameters 12.3 M 12.3 M 3.55 M 3.27 M

Training time 10.6 h 4 h 4.4 h 3.4 h
Dice coefficient 0.6120 0.6870 0.6789 0.7100

The Wilcoxon signed-rank test [33] was performed to determine whether pairwise per-
formance differences are statistically significant with each other. Each p-value is computed
using the Dice coefficient between the cervical ROI segmentation mask and annotation
for the individual samples. The p-values for each null hypothesis are tabulated in Table 2.
The performance between the proposed method (both Proposed 1 and Proposed 2) and
the baseline W-Net (Graphcut W-Net) shows a statistically significant difference. The
proposed method 2 also shows a statistically significant performance improvement over
the CNN-based method. However, as shown in Table 1, the Dice coefficient of the proposed
1 is slightly better than the CNN-based method, and there is no statistically significant
difference between the two methods as a result of the significance test.

Table 2. Result of significance test between the different methods.

Compared Methods p-Value

Graphcut W-Net vs. Proposed 1 9.36 × 10−21

CNN-based vs. Proposed 1 0.86
Graphcut W-Net vs. Proposed 2 4.91 × 10−20

CNN-based vs. Proposed 2 5.60 × 10−6

The cervical ROI segmentation masks for each comparison method can be seen in
Figure 3. The baseline graphcut W-Net can capture colposcopy ROI well, and our method
shows a similar tendency to the baseline W-Net. However, the proposed method, CT-loss
W-Net with EW learning, yields more condensed masks without post-processing than
the baseline W-Net. As can be seen in Figure 3, the proposed method (CT-loss + EW
learning) has less tendency to include non-ROI regions and focuses more on the cervix
region compared to the CNN-based method (e.g., sample index: 15, 48, 116, and 144).

3.3. Ablation Study

Ablation studies were performed by varying the number of epochs, i, of the encoder U-
Net for EW learning. If i = 1, it is the same as the baseline W-Net training procedure: update
the encoder U-Net first, then update the entire W-Net. A large i allows the model to focus
on the encoder U-Net, allowing the encoder to produce a more consistent segmentation
mask. However, the decoder U-Net training is also an important component, and too many
epochs to encoder U-Net can break the entire W-Net training balance.

We tested the effect of EW learning using 4 different i (3, 6, 7, and 10) and compared
the Dice coefficient on the evaluation sets (Table 2). The segmentation performance on
the evaluation sets improved as i increased to 3 and 6. The optimal epoch with the best
performance was i = 7, and when i = 10, the performance was rather decreased. The
Wilcoxon signed-rank test is also performed to validate the significance of the performance
improvement between different i. As shown in Table 3, there is a statistically significant
improvement in cervix segmentation performance when i = 7 compared to other i. These
results indicate that the proposed encoder-weighted learning can achieve performance
improvement by controlling the excessive change of the initial pseudo mask.
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Figure 3. Examples of cervical ROI segmentation comparison.

Table 3. Performance comparison for different i in encoder-weighted learning.

CT-Loss W-Net + EW

EW (i = 3) EW (i = 6) EW (i = 7) EW (i = 10)

Dice coefficient 0.6591 0.6823 0.7100 0.6908
p-value

(vs. EW(i = 7)) 4.28 × 10−14 3.08 × 10−8 - 1.00 × 10−4

4. Discussion

Colposcopy analysis usually consists of three steps: the detection of the cervix region,
the extraction of important features such as the transformation zone and the abnormal
vessel, and image-based interpretation and diagnosis. Our study focuses on the first step,
the detection of the cervix region. The purpose of the first step is to remove non-cervix
regions, allowing the clinician to focus on the important lesion and to help extract the



Cancers 2022, 14, 3400 9 of 11

important features needed for diagnosis. Consequently, the detection of the cervix region
can improve the performance of image-based interpretation and diagnosis. In other words,
the cervix segmentation affects the accuracy of diagnosis when analyzing colposcopy.

In this study, we introduce the fully unsupervised cervix region segmentation of
colposcopy using an adaptation of W-Net. The accuracy of colposcopy is highly dependent
on the clinician’s competence, and the segmentation of the cervix region is important for
the accuracy of the diagnosis. Most previous studies utilized segmentation and object
detection models to extract the ROI in a supervised manner, which led to a burdensome
and time-consuming annotation task for gynecologists. In addition, finding an appropriate
post-processing method is also subjective and is generally achieved using heuristics. It is
desirable to minimize post-processing as this strongly depends on the input characteristics
and the purpose of the task. The proposed method can segment the ROI of colposcopy in
an unsupervised manner, and no pre- and post-processing are required.

Although the proposed method produces a reasonable cervical ROI segmentation
mask, for some samples the predicted ROI representing the cervix region contains non-
cervix regions, such as the speculum, vaginal wall, or glaring area. Nevertheless, our
segmentation results could suggest a general ROI in colposcopy. In addition, our method
could produce a cervix segmentation mask with better quality than the comparative meth-
ods while reducing the computational overhead and time for model training. The proposed
method can assist the diagnosis by suggesting where the clinicians should focus when
analyzing colposcopy images. It can be used as a pre-processing method for automatic
CIN detection or other diagnoses to improve diagnostic performance. Moreover, the exper-
imental results demonstrate the potential of an unsupervised segmentation approach in
colposcopy. To the best of our knowledge, this is the first study to resolve fully unsupervised
cervix region segmentation end-to-end without any pre- and post-processing.

5. Conclusions

We propose an adaptation of W-Net, an end-to-end deep learning model for unsu-
pervised cervix segmentation. To reduce the computational overhead and time required
for model training, we propose the loss substitution with CT-loss (a combination of cross-
entropy and total-variation loss) in a graphcut loss function. We also propose an encoder-
weighted (EW) learning in shallow network architecture to improve cervix segmentation
performance. The proposed method was validated on the Kaggle dataset, and the ex-
perimental results show that our method can efficiently obtain consistent segmentation
masks for the ROI of colposcopy even with a small training dataset. The segmentation
performance with a Dice coefficient improved from 0.6120 to 0.7100 by applying the pro-
posed CT-loss and EW learning compared to the baseline graphcut W-Net and CNN-based
method. In addition, the time required to train the optimized model was reduced from
10.6 h to 3.4 h.
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