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for dispersive operators. In order for this implication we consider a Littlewood-
Paley type square function estimate for dispersive operators in a time variable and 
a generalization of Tao’s epsilon removal lemma in mixed norms. By applying this 
implication to the fractional Schrödinger equation in R2+1 we obtain the sharp 
global space-time estimates with optimal regularity from the previous known local 
ones.
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1. Introduction

Let us consider a Cauchy problem of a dispersive equation in Rn+1

{
i∂tu + Φ(D)u = 0,

u(0) = f,
(1.1)

where Φ(D) is the corresponding Fourier multiplier to the function Φ. We assume that Φ ∈ C∞(Rn \ {0})
is a real-valued function satisfying the following conditions:

Condition 1.1.

• |∇Φ(ξ)| �= 0 for all ξ �= 0.
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• There is a constant μ ≥ 1 such that μ−1 ≤ |Φ(ξ)| ≤ μ for any ξ with |ξ| = 1.
• There is a constant m ≥ 1 such that Φ(λξ) = λmΦ(ξ) for all λ > 0 and all ξ �= 0.
• The Hessian HΦ(ξ) of Φ has rank at least 1 for all ξ �= 0.

The solution u to (1.1) becomes the Schrödinger operator e−itΔf if Φ(ξ) = |ξ|2 and the wave operator 
eit

√
−Δf if Φ(ξ) = |ξ|. When Φ(ξ) = |ξ|m for m > 1, the solution is called the fractional Schrödinger 

operator eit(
√
−Δ)m/2

f .
Let eitΦ(D)f denote the solution to (1.1). Our interest is to find suitable pairs (q, r) which satisfy the 

global space-time estimate

‖eitΦ(D)f‖Lq
x(Rn;Lr

t (R)) ≤ C‖f‖Ḣs(Rn), (1.2)

where Ḣs(Rn) denotes the homogeneous L2 Sobolev space of order s. By scaling invariance the regularity 
s = s(r, q) should be defined as

s = n(1
2 − 1

q
) − m

r
. (1.3)

This problem for μ = 1 has been studied by many researchers. For the Schrödinger operator, Planchon 
[15] conjectured that the estimate (1.2) is valid if and only if r ≥ 2 and n+1

q + 1
r ≤ n

2 . Kenig–Ponce–Vega 
[11] showed the conjecture is true for n = 1. In higher dimensions n ≥ 2 it was proven by Vega [22] that 
(1.2) holds for q ≥ 2(n+2)

n and n+1
q + 1

r ≤ n
2 . When n = 2 Rogers [16] showed it for 2 ≤ r < ∞, q > 16

5
and 3

q + 1
r < 1, and later the excluded endline 3

q + 1
r = 1 was obtained by Lee–Rogers–Vargas [12]. When 

n ≥ 3, Lee–Rogers–Vargas [12] improved the previous known result to r ≥ 2, q > 2(n+3)
n+1 and n+1

q + 1
r = n

2 . 
Recently it is shown by Du–Kim–Wang–Zhang [6] that the estimate (1.2) with r = ∞, that is, the maximal 
estimate fails for n ≥ 3. For a case of the wave operator it is known that (1.2) holds for (r, q) pairs such 
that 2 ≤ r ≤ q, q �= ∞ and 1

r + n−1
2q ≤ n−1

4 (see [9,10,14,19]) or such that q = ∞ and 2 ≤ r < ∞ (see 
[7, Proposition 4]). Particularly, when r = ∞, Rogers–Villarroya [17] showed that (1.2) with regularity 
s > n(1

2 − 1
q ) − 1

r is valid for q ≥ 2(n+1)
n−1 . For the fractional Schrödinger operator the known range of (r, q)

for which the estimates hold is that 2 ≤ r ≤ q, q �= ∞ and n
2q + 1

r ≤ n
4 (see [1,2,4,13,21]).

The case of μ > 1 has an interesting in its own right. The solution u is formally written as

u(t, x) = eitΦ(D)f(x) := 1
(2π)n

∫
Rn

ei(x·ξ+tΦ(ξ))f̂(ξ)dξ.

From this form we see that the space-time Fourier transform of u is supported in the surface S = {(ξ, Φ(ξ))}. 
It is known that the operator u is related to the curvature of S such as the sign of Gaussian curvature and 
the number of nonvanishing principle curvature. The Schrödinger operator corresponds to a paraboloid 
which has a positive Gaussian curvature, and the wave operator corresponds to a cone whose Gaussian 
curvature is zero. We are also interested in operators corresponding to a surface with negative Gaussian 
curvature. When μ > 1 there is a surface with negative Gaussian curvature. For instance, the surface 
{(ξ1, ξ2, ξ4

1 + 2ξ3
1ξ2 − 2ξ1ξ3

2 + ξ4
2)} has negative Gaussian curvature on a neighborhood of the point (1, 0, 1).

In this paper we will establish a local-to-global approach as follows.

Theorem 1.2. Let I = (0, 1) be a unit interval and B = B(0, 1) a unit ball in Rn. Let q0, r0 ∈ [2, ∞), s(r, q)
defined as (1.3) and Φ satisfy Condition 1.1. Suppose that the local estimate

‖eitΦ(D)f‖Lq0 (B;Lr0 (I)) ≤ Cε‖f‖Hs(r0,q0)+ε(Rn) (1.4)

x t
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holds for all ε > 0. Then for any q0 < q < ∞ and r0 < r < ∞, the global estimate

‖eitΦ(D)f‖Lq
x(Rn;Lr

t (R)) ≤ C‖f‖Ḣs(r,q)(Rn) (1.5)

holds, where Hs(Rn) denotes the inhomogeneous L2-Sobolev space of order s and Ḣs(Rn) denotes homoge-
neous one.

The maximal estimate, which is (1.4) with r0 = ∞, is related to pointwise convergence problems. When 
n = 2 it was proven that the maximal estimates with m > 1 and μ = 1 are valid for q0 = 3 and s > 1

3 (see 
[3,5]). By interpolating with a Strichartz estimate

‖eitΦ(D)f‖L4
x(B;L4

t (I)) ≤ ‖eitΦ(D)f‖L4
x(R2;L4

t (R))

≤ ‖eitΦ(D)f‖L4
t (R;L4

x(R2))

≤ C‖f‖
Ḣ

2−m
4 (R2)

≤ C‖f‖
H

2−m
4 (R2)

,

we have (1.5) for the line 3
q + 1

r = 1 with r ≥ 4. The case of 2 ≤ r < 4 follows from [22] (see also [12]). By 
Theorem 1.2, we can obtain the following global space-time estimates which is the Planchon conjecture for 
n = 2 except the endline.

Corollary 1.3. Let m > 1 and μ = 1. For 2 ≤ r < ∞ and 3
q + 1

r < 1, the global estimate

‖eitΦ(D)f‖Lq
x(R2;Lr

t (R)) ≤ C‖f‖
Ḣ

1− 2
q
−m

r (R2)
.

Notation. Throughout this paper let C > 0 denote various constants that vary from line to line, which 
possibly depend on n, q, r, m and μ. We use A � B to denote A ≤ CB, and if A � B and B � A we denote 
by A ∼ B.

2. Proof of Theorem 1.2

In this section we prove Theorem 1.2 by using two propositions. In subsection 2.1 we consider a 
Littlewood–Paley type inequality by which the initial data f can be assumed to be Fourier supported 
in {1/2 ≤ |ξ| ≤ 2}. In subsection 2.2 we prove a mixed norm version of Tao’s ε-removable lemma by which 
the global estimates with a compact Fourier support are reduced to local ones. In subsection 2.3 we show 
the two propositions imply Theorem 1.2.

2.1. A Littlewood-Paley type inequality

We discuss a Littlewood-Paley type inequality for the operator eitΦ(D) in a time variable.
Let a cut-off function φ ∈ C∞

0
(
[ 12 , 2]

)
satisfy 

∑
k∈Z φ(2−kx) = 1 for x �= 0. We define Littlewood-Paley 

projection operators Pk and P̃k by

P̂kf(ξ) = φ(2−k|ξ|)f̂(ξ) and ̂̃
Pkg(τ) = φ(2−mk|τ |)ĝ(τ)

for ξ ∈ Rn and τ ∈ R, respectively.
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Lemma 2.1. Suppose that Φ satisfies Condition 1.1. Then for 1 < r < ∞,

∥∥eitΦ(D)f(x)
∥∥
Lr

t (R) ≤ Cm,μ

∥∥∥( ∑
j,k∈Z:

|k−j|≤ log2 μ
m +2

|P̃je
itΦ(D)Pkf(x)|2

)1/2∥∥∥
Lr

t (R)

for all Schwartz functions f ∈ S(Rn) and all x ∈ Rn \ {0}.

Proof. For simplicity,

F (t) := eitΦ(D)f(x) and Fk(t) := eitΦ(D)Pkf(x).

Since the projection operators are linear, we have an identity

F (t) =
∑
j∈Z

P̃jF (t) =
∑
j∈Z

∑
k∈Z

P̃jFk(t).

We claim that P̃jFk(t) = 0 if

|k − j| > log2 μ

m
+ 2. (2.1)

Indeed, the Fourier transform f̂ of a Schwartz function f may be written as

f̂(τ) = lim
R→∞

1
2π

∫
R

eitτψ
( t

R

)
f(t)dt,

where ψ ∈ C∞
0
(
[−2, 2]

)
with ψ = 1 in [−1, 1]. Using this equation we have

̂

P̃jFk(τ) = 1
(2π)n+1φ

( |τ |
2mj

)
lim

R→∞

∫
Rn

eix·ξ
(∫

R

eit(τ+Φ(ξ))ψ
( t

R

)
dt

)
φ
( |ξ|

2k
)
f̂(ξ)dξ.

In the right side of the above equation, we see that the range of (τ, ξ) is contained in

2m(j−1) ≤ |τ | ≤ 2m(j+1) and 2(k−1) ≤ |ξ| ≤ 2(k+1).

From Condition 1.1 we have a bound

μ−12m(k−1) ≤ |Φ(ξ)| ≤ μ2m(k+1).

Then it follows that for k and j satisfying (2.1),

|τ + Φ(ξ)| > 0.

By the integration by parts it implies that there exists a constant C0 > 0 such that∣∣∣ ∫
R

eitτeitΦ(ξ)ψ
( t

R

)
dt
∣∣∣ ≤ 1

C0R
.

From this estimate and the Lebesgue dominated convergence theorem we obtain ̂

P̃jFk = 0, which implies 
the claim.



C.-H. Cho et al. / J. Math. Anal. Appl. 514 (2022) 126255 5
By the claim, the Littlewood-Paley theory and the Cauchy-Schwarz inequality,

∥∥eitΦ(D)f(x)
∥∥
Lr

t (R) =
∥∥∥∑

j∈Z
P̃j

(∑
k∈Z

Fk(·, x)
)∥∥∥

Lr
t (R)

≤ C
∥∥∥(∑

j∈Z

∣∣∣ ∑
k∈Z:|k−j|≤ log2 μ

m +2

P̃jFk(·, x)
∣∣∣2)1/2∥∥∥

Lr
t (R)

≤ Cm,μ

∥∥∥(∑
j∈Z

∑
k∈Z:|k−j|≤ log2 μ

m +2

|P̃jFk(·, x)|2
)1/2∥∥∥

Lr
t (R)

.

This is the desired inequality. �
Using the above lemma we can have the following proposition.

Proposition 2.2. Let 2 ≤ q, r < ∞. Suppose that Φ satisfies Condition 1.1. If the estimate

‖eitΦ(D)f‖Lq
x(Rn;Lr

t (R)) ≤ C‖f‖L2(Rn) (2.2)

holds for all f with supp f̂ ⊂ {1/2 ≤ |ξ| ≤ 2}, then the estimate

‖eitΦ(D)f‖Lq
x(Rn;Lr

t (R)) ≤ Cm,μ‖f‖
Ḣ

n
2 −n

q
−m

r (Rn)

holds for all f .

Proof. The Minkowski inequality and Lemma 2.1 allow that

∥∥eitΦ(D)f
∥∥
Lq

x(Rn;Lr
t (R)) ≤ Cm,μ

∥∥∥∥( ∑
|k−j|≤ log2 μ

m +2

∥∥∥P̃j

(
eitΦ(D)Pkf

)∥∥∥2

Lr
t (R)

)1/2∥∥∥∥
Lq

x(Rn)
.

Since P̃j is bounded in Lp, it is bounded by

Cm,μ

∥∥∥∥(∑
k∈Z

∥∥eitΦ(D)Pkf
∥∥2
Lr

t (R)

)1/2∥∥∥∥
Lq

x(Rn)
.

By the Minkowski inequality we thus have

∥∥eitΦ(D)f
∥∥
Lq

x(Rn;Lr
t (R)) ≤ Cm,μ

(∑
k∈Z

∥∥eitΦ(D)Pkf
∥∥2
Lq

x(Rn;Lr
t (R))

)1/2

.

Apply (2.2) to the right side of the above estimate after rescaling. Then we obtain

‖eitΦ(D)f‖Lq
x(Rn;Lr

t (R)) ≤ Cm,μ

(∑
k∈Z

22k(n
2 −n

q −m
r )‖Pkf‖2

2

)1/2

= Cm,μ‖f‖ n−n−m . �

Ḣ 2 q r (Rn)
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2.2. Local-to-global arguments

We will show that the global estimate (2.2) is obtained from its local estimate. Adopting the arguments 
in [20], we consider the dual estimate of (2.2).

Let S = {(ξ, Φ(ξ)) ∈ Rn × R : 1/2 ≤ |ξ| ≤ 2} be a compact hypersurface with the induced (singular) 
Lebesgue measure dσ. We define the Fourier restriction operator R for a compact surface S by the restriction 
of f̂ to S, i.e.,

Rf = f̂
∣∣
S
.

Its adjoint operator R∗f = f̂dσ can be written as eitΦ(D)g with

ĝ(ξ) := f(ξ,Φ(ξ))JΦ(ξ),

where JΦ is the Jacobian determinant of Φ.
Let ρ > 0 be the decay of d̂σ, i.e.,

|d̂σ(x)| � (1 + |x|)−ρ, x ∈ Rn+1. (2.3)

It is known that ρ is determined by the number of nonzero principal curvatures of the surface S, which is 
equal to the rank of the Hessian HΦ. Specifically, if HΦ has rank at least k then

ρ = k/2,

see [18, subsection 5.8, VIII]. From Condition 1.1 we have k ≥ 1.
When a function f has a compact Fourier support, the f̂dσ decays away from the support of f̂ because 

of the decay of d̂σ. Thus if f and g are compactly Fourier supported and their supports are far away from 
each other then the interaction between f̂dσ and ĝdσ is negligible.

Definition 2.3. A finite collection {Q(zi, R)}Ni=1 of balls in Rn+1 with radius R > 0 is called (N, R)-sparse
if the centers {zi} are (NR)γ-separated where γ := n/ρ (≥ 2).

From the definition of (N, R)-sparse we have a kind of orthogonality as follows. Let φ be a radial Schwartz 
function such that φ > 0 on the ball B(0, δ−1), φ ≥ 1/2 on the unit ball B(0, 1), and the Fourier transform 
φ̂ is supported in the ball B(0, δ) where 0 < δ < 1 is a constant.

Lemma 2.4 ([20, in the proof of Lemma 3.2]). Let {Q(zi, R)}Ni=1 be a (N, R)-sparse collection for R > 1 and 
φi(z) = φ(R−1(z − zi)) for i = 1, · · · , N . Then there is a constant C independent of N such that

∥∥∥ N∑
i=1

fi ∗ φ̂i

∣∣
S

∥∥∥
2
≤ CR1/2

( N∑
i=1

‖fi‖2
2

)1/2
(2.4)

for all fi ∈ L2(Rn+1).

A proof of the above lemma is given in Appendix A.
Let IR = (0, R) denote an R-interval and BR the ball of radius R centered at the origin in Rn. Using 

Lemma 2.4 we have an intermediate result.
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Proposition 2.5. Let R > 1 and 1 < q, r ≤ 2. Suppose that there is a constant A(R) such that

‖R(χIR×BR
f)‖L2(dσ) ≤ A(R)‖f‖Lq

x(Rn;Lr
t (R)) (2.5)

for all f ∈ Lq
x(Rn; Lr

t (R)). Then for any (N, R)-sparse collection {Q(zi, R)}Ni=1 there is a constant C
independent of N such that

‖Rf‖L2(dσ) ≤ CA(R)‖f‖Lq
x(Rn;Lr

t (R)) (2.6)

for all f supported in ∪N
i=1Q(zi, R).

Proof. Let fi = fχQ(zi,R). Then,

Rfi = f̂i
∣∣
S

= f̂iφi

∣∣
S

= (f̂i ∗ φ̂i)
∣∣
S
,

where φi(z) is defined as in Lemma 2.4. Since φ̂i is supported on the ball B(0, 2
3R ), we may restrict the 

support of f̂i to a O(1/R)-neighborhood of the surface S and write

Rfi = (f̂i
∣∣
N1/R(S) ∗ φ̂i)

∣∣
S

where N1/R(S) is a O(1/R)-neighborhood of the surface S. Let R̃ be another restriction operator defined 
by R̃f = f̂

∣∣
N1/R(S). If f is supported in ∪N

i=1Q(zi, R), we write

Rf =
N∑
i=1

(R̃fi ∗ φ̂i)
∣∣
S
.

By Lemma 2.4,

‖Rf‖L2(dσ) ≤ CR1/2
( N∑

i=1
‖R̃fi‖2

L2(N1/R(S))

)1/2
.

Since the estimate (2.5) is translation invariant, by a slice argument we have

‖R̃fi‖L2(N1/R(S)) ≤ CR−1/2A(R)‖fi‖Lq
x(Rn;Lr

t (R)).

By combining the previous two estimates,

‖Rf‖L2(dσ) ≤ CA(R)
( N∑

i=1
‖fi‖2

Lq
x(Rn;Lr

t (R))

)1/2
.

If 1 ≤ r ≤ q ≤ 2 then by �r ⊂ �q ⊂ �2,

( N∑
i=1

‖fi‖2
Lq

x(Rn;Lr
t (R))

)1/2
≤

( N∑
i=1

‖fi‖qLq
x(Rn;Lr

t (R))

)1/q

=
( ∫ N∑

i=1
‖fi‖qLr

t (R)dx
)1/q
Rn
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≤
( ∫
Rn

( N∑
i=1

‖fi‖rLr
t (R)

)q/r

dx
)1/q

= ‖f‖Lq
x(Rn;Lr

t (R)).

If 1 ≤ q ≤ r ≤ 2 one can use the embedding �r ⊂ �2 and the Minkowski inequality to get

( N∑
i=1

‖fi‖2
Lq

x(Rn;Lr
t (R))

)1/2
≤

( N∑
i=1

‖fi‖rLq
x(Rn;Lr

t (R))

)1/r

≤
( ∫
Rn

( N∑
i=1

‖fi‖rLr
t (R)

)q/r

dx
)1/q

= ‖f‖Lq
x(Rn;Lr

t (R)).

Therefore we have (2.6). �
We now extend the (N, R)-sparse sets to the whole space. For this we need the following decomposition 

lemma.

Lemma 2.6 ([20]). Let E be a subset in Rn with |E| > 1. Suppose that E is a finite union of finitely 
overlapping cubes of side-length c ∼ 1. Then for each K ∈ N, there are subsets E1, E2, · · · , EK of E with

E =
K⋃

k=1

Ek

such that each Ek has O(|E|1/K) number of (O(|E|), |E|O(γk−1))-sparse collections

S1,S2, · · · ,SO(|E|1/K)

of which the union S1 ∪ S2 ∪ · · · ∪ SO(|E|1/K) is a covering of Ek.

This lemma is a precise version of Lemma 3.3 in [20]. A detailed proof can be found in Appendix A.
Using the above lemma we have the following proposition.

Proposition 2.7. Let 1 < q0, r0 < ∞. Suppose that for any ε > 0 and any (N, R)-sparse collection 
{Q(zi, R)}Ni=1 in Rn+1, the estimate

‖Rf‖L2(dσ) ≤ CεR
ε‖f‖Lq0

x (Rn;Lr0
t (R)) (2.7)

holds for all f supported in ∪N
i=1Q(zi, R). Then for any 1 ≤ q < q0 and 1 ≤ r < r0, the estimate

‖Rf‖L2(dσ) ≤ C‖f‖Lq
x(Rn;Lr

t (R))

holds for all f ∈ Lq
x(Rn; Lr

t (R)).

Proof. By interpolation (see [8]), it suffices to show that for 1 ≤ q < q0 and 1 ≤ r < r0, the restricted type 
estimate

‖RχE‖L2(dσ) ≤ C‖χE‖Lq(Rn;Lr(R)) (2.8)
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for all subset E in Rn+1. We may assume |E| > 1, otherwise the estimate is trivial. Indeed,

‖RχE‖L2(dσ) ≤ C‖RχE‖L∞(S) ≤ C|E| ≤ C.

Since the set S is compact, there is a bump function ϕ ∈ C∞
0 supported in a cube of sidelength 2c ∼ 1

and centered at the origin such that ϕ̂ is positive on a cube of sidelength (2c)−1 that contains S. By the 
Poisson summation formula we may assume that 

∑
k∈cZn+1 ϕ(· − k) = 1.

Let c-lattice cubes {Δk} cover the set E. We claim that if the estimate

‖R(
∑
k

χΔk
)‖L2(dσ) ≤ C

∥∥∥∑
k

χΔk

∥∥∥
Lq(Rn;Lr(R))

holds for any 1 ≤ q < q0 and 1 ≤ r < r0, then we have (2.8). By interpolation the above estimate implies 
that for any 1 ≤ q < q0 and 1 ≤ r < r0,

‖R(
∑
k

akχΔk
)‖L2(dσ) ≤ C

∥∥∥∑
k

akχΔk

∥∥∥
Lq(Rn;Lr(R))

,

for all real sequences {ak}. Let ϕk be a translation of ϕ which is supported in 2Δk. Since ϕk decays rapidly 
away from Δk, the above inequality implies

‖R(
∑
k

akϕk)‖L2(dσ) ≤ C
∥∥∥∑

k

akϕk

∥∥∥
Lq(Rn;Lr(R))

+ C−N (2.9)

where N ≥ 1 is a large number.
By replacing χE with 

∑
k χEϕk,

‖RχE‖L2(dσ) ≤ C
∥∥∥∑

k

χ̂E ∗ ϕ̂k

∣∣∣
S

∥∥∥
L2(dσ)

.

Using ‖f̂‖∞ ≤ C‖f‖1 we have

|χ̂E ∗ ϕ̂k(z)| ≤ C

∫
χEϕk.

Since 1
|Δk| ϕ̂k is a positive Schwartz function and 1

|Δk| ϕ̂k � 1 on S, we have that for any z ∈ S,

|χ̂E ∗ ϕ̂k(z)| ≤ Cakϕ̂k(z),

where

ak := 1
|Δk|

∫
χEϕk.

Thus,

‖RχE‖L2(dσ) ≤ C
∥∥∥∑

k

akϕ̂k

∣∣∣
S

∥∥∥
L2(dσ)

.

Apply (2.9). Then,

‖RχE‖L2(dσ) ≤ C
∥∥∥∑ akϕk

∥∥∥
Lq(Rn;Lr(R))

+ C−N . (2.10)

k
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Since the supports of ϕk are finitely overlapped, we have

∥∥∥∑
k

akϕk

∥∥∥
Lq(Rn;Lr(R))

≤ C
( ∫
Rn

(∑
k

‖akϕk(x)‖rLr(R)

)q/r

dx
)1/q

≤ C
(∑

k

aqk‖ϕk‖qLq(Rn;Lr(R))

)1/q
.

By Hölder’s inequality,

ak = 1
|Δk|

∫
χEϕk ≤ C

‖χEϕk‖Lq(Rn;Lr(R))‖ϕk‖Lq′ (Rn;Lr′ (R))

‖ϕk‖1
.

By calculation we can see ‖ϕk‖Lq′ (Rn;Lr′ (R))‖ϕk‖Lq(Rn;Lr(R)) ∼ ‖ϕk‖1, and

ak‖ϕk‖Lq(Rn;Lr(R)) ≤ C‖χEϕk‖Lq(Rn;Lr(R)).

By inserting this estimate,

∥∥∥∑
k

akϕk

∥∥∥
Lq(Rn;Lr(R))

≤ C
(∑

k

‖χEϕk‖qLq(Rn;Lr(R))

)1/q
.

Since the supports of ϕk are finitely overlapped, the above estimate is

≤ C
∥∥∥∑

k

χEϕk

∥∥∥
Lq(Rn;Lr(R))

= C‖χE‖Lq(Rn;Lr(R)).

By combining this estimate with (2.10) we obtain (2.8). The claim is proved.

By the claim, the set E in (2.8) can be considered as the union of c-cubes Δk. We denote by proj(E) the 
projection of E onto the x-plane. For each grid point x ∈ c Zn ∩ proj(E), we define Ex to be the union of 
c-cubes in E that intersect R × {x}. Let Ej be the union of Ex which satisfies

2j−1 < the number of c - cubes contained in Ex ≤ 2j+1

for j ∈ N, (see Fig. 1). Then,

E =
⋃
j≥1

Ej .

By using Lemma 2.6 with

K := log(1/ε)
2 log γ + 1,

the Ej is decomposed into Ej
k’s which are covered by O(|Ej|1/K) number of (O(|Ej |), |Ej |Cγk−1))-sparse 

collections. We apply (2.7) to these sparse collections and obtain

‖RχEj
k
‖L2(dσ) ≤ Cε|Ej |1/K(|Ej |Cγk−1

)ε‖χEj
k
‖Lq0

x (Rn;Lr0
t (R)).

Summing over k, we have
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Fig. 1. The sets E, projE, Ex and Ej in the proof of Proposition 2.7.

‖RχEj‖L2(dσ) ≤
K∑

k=1

‖RχEj
k
‖L2(dσ)

≤ Cε|Ej |1/K(|Ej |CγK−1
)ε‖χEj‖Lq0

x (Rn;Lr0
t (R))

where K is absorbed into Cε. Since |Ej | ≤ 2j+1|proj (Ej)|, we have

‖RχEj‖L2(dσ) ≤ Cε2j(
1
r0

+δ(ε))|proj(Ej)|
1
q0

+δ(ε),

where

δ(ε) := 1
K

+ CγK−1ε.

Since limε→0 δ(ε) = 0, we can take ε > 0 such that

0 < δ(ε) + ε ≤ min
(

1
q
− 1

q0
,
1
r
− 1

r0

)
.

Thus,

‖RχE‖L2(dσ) ≤
∑
j≥1

‖RχEj‖L2(dσ)

≤ Cε

∑
j≥1

2j(
1
r0

+δ(ε))|proj(Ej)|
1
q0

+δ(ε)

≤ C
∑
j≥1

2−εj2 1
r j |proj(Ej)| 1q

≤ C
∑
j≥1

2−εj‖χE‖Lq
x(Rn;Lr

t (R))

≤ C‖χE‖Lq
x(Rn;Lr

t (R)). �
Combining Proposition 2.5 and Proposition 2.7 we obtain an extension of Tao’s epsilon removal lemma 

as follows.
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Proposition 2.8. Let 1 < q0, r0 ≤ 2. Suppose that

‖R(χIR×BR
f)‖L2(dσ) ≤ CεR

ε‖f‖Lq0
x (Rn;Lr0

t (R))

for all ε > 0, R > 1 and all f ∈ Lq0
x (Rn; Lr0

t (R)). Then for any 1 ≤ q < q0 and 1 ≤ r < r0,

‖Rf‖L2(dσ) ≤ C‖f‖Lq
x(Rn;Lr

t (R))

for all f ∈ Lq
x(Rn; Lr

t (R)).

Now we are ready to prove Theorem 1.2. The theorem follows from Proposition 2.2 and Proposition 2.8
as follows.

2.3. Proof of Theorem 1.2

Let P0 be the Littlewood-Paley projection operator as in subsection 2.1. By rescaling x �→ 2−kx and 
t �→ 2−mkt, the estimate (1.4) implies

‖eitΦ(D)P0f‖Lq0
x (B2k ;Lr0

t (I2mk )) ≤ Cε2kε‖P0f‖L2(Rn)

for all k ≥ 1 and ε > 0. Since m ≥ 1, we have

‖eitΦ(D)P0f‖Lq0
x (B2k ;Lr0

t (I2k )) ≤ Cε2kε‖P0f‖L2(Rn).

By Proposition 2.8 and duality,

‖eitΦ(D)P0f‖Lq
x(Rn;Lr

t (R)) ≤ C‖P0f‖L2(Rn).

By Proposition 2.2, we obtain the desired estimate. �
Appendix A

A.1. Proof of Lemma 2.4

We divide the left side of (2.4) into two parts

‖
N∑
i=1

fi ∗ φ̂i|S‖2
2 =

∑
i

‖fi ∗ φ̂i|S‖2
2 +

∑
i	=j

∫
fi ∗ φ̂ifj ∗ φ̂jdσ.

We may assume that N ≥ 2 because if N = 1 then the estimate is trivial. By a basic restriction estimate 
we have ‖fi ∗ φ̂i|S‖2 � R1/2‖fi‖2 (for details see [20,23]). Thus,

N∑
i=1

‖fi ∗ φ̂i|S‖2
2 � R

N∑
i=1

‖fi‖2
2. (A.1)

By Parseval’s identity, ∫
fi ∗ φ̂ifj ∗ φ̂jdσ =

∫
f̌jφj((f̌iφi) ∗ d̂σ),
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where the ̌ denotes the inverse Fourier transform. It is bounded by(
sup
z,w

|φ1/2
j (z)φ1/2

i (w)d̂σ(z − w)|
)
‖f̌iφ1/2

i ‖1‖f̌jφ1/2
j ‖1.

By the Cauchy-Schwarz inequality and Plancherel’s theorem,

‖f̌iφ1/2
i ‖1 � R(n+1)/2‖fi‖2.

By (2.3),

sup
z,w

|φ1/2
j (z)φ1/2

i (w)d̂σ(z − w)| � |zi − zj − 2R|−ρ.

Since |zi − zj | ≥ (NR)γ , γ ≥ 2, N ≥ 2 and R > 1,

|zi − zj − 2R| ≥ |zi − zj | − 2R � |zi − zj |/2.

Thus,

sup
z,w

|φ1/2
j (z)φ1/2

i (w)d̂σ(z − w)| � |zi − zj |−ρ.

Combining these estimates we have

∑
i	=j

∫
fi ∗ φ̂ifj ∗ φ̂jdσ � Rn+1

N∑
i=1

∑
j∈{1,2,...,N},i 	=j

|zi − zj |−ρ‖fi‖2‖fj‖2

� Rn+1N max
i,j

|zi − zj |−ρ
N∑
i=1

‖fi‖2
2.

Since |zi − zj | ≥ (NR)γ ≥ N
1
ρR

n
ρ , it follows that

∑
i	=j

∫
fi ∗ φ̂ifj ∗ φ̂jdσ � R

N∑
i=1

‖fi‖2
2.

From the above estimate and (A.1) we obtain (2.4). �
A.2. Proof of Lemma 2.6

Fix K ∈ N. We define R0 = 1 and Rk for k = 1, 2, · · · , K recursively by

Rk = |E|γRγ
k−1. (A.2)

From this definition we have Rk = |E|
γk+1−γ

γ−1 . Let E0 = ∅. We define Ek for k = 1, 2, · · · , K to be the set 
of all x ∈ E \ ∪j=0,1,2,··· ,k−1Ej such that

|E ∩B(x,Rk)| ≤ |E|k/K . (A.3)

Then, E =
⋃K

Ek. From this construction it follows that for x ∈ Ek, k = 2, 3, · · · , K,
k=1
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|E ∩B(x,Rk−1)| > |E|(k−1)/K . (A.4)

We cover Ek with finitely overlapping Rk-balls CEk
:= {Bi = B(xi, Rk) : xi ∈ Ek}. Since E is a finite 

union of cubes of side-length c ∼ 1, it is obvious that #CEk
� |E|. For each Bi ∈ CEk

we cover Ek ∩ Bi

with finitely overlapping Rk−1-balls CEk∩Bi
:= {B′

ij = B′(yj , Rk−1) : yj ∈ Ek ∩Bi}, that is,

Ek ∩Bi =
⋃

B′
ij∈CEk∩Bi

Ek ∩B′
ij .

Since ((E \ Ek) ∩B′
ij) ⊂ ((E \ Ek) ∩Bi) for all j, we have

(Ek ∩Bi) ∪ ((E \ Ek) ∩Bi) ⊃
⋃

B′
ij∈CEk∩Bi

(Ek ∩B′
ij) ∪ ((E \ Ek) ∩B′

ij),

thus

E ∩Bi ⊃
⋃

B′
ij∈CEk∩Bi

E ∩B′
ij .

By finitely overlapping,

#CEk∩Bi
� max

B′
ij∈CEk∩Bi

|E ∩Bi|
|E ∩B′

ij |
.

By (A.3) and (A.4) the above is bounded by C|E|1/K , and we have #CEk∩Bi
≤ C|E|1/K for all i. Thus,

Ek ⊂
O(|E|)⋃
i=1

O(|E|1/K)⋃
j=1

B′
ij .

We choose O(Rk)-separated balls {B′
ij(i)}

O(|E|)
i=1 . Then it is a (O(|E|), Rk−1)-sparse collection because of 

(A.2). Since Rk−1 = |E|O(γk−1) and every Bi ∈ CEk
has the covering CEk∩Bi

of cardinality O(|E|1/K), 
there are O(|E|1/K) number of (O(|E|), |E|O(γk−1))-sparse collections S1, S2, · · · , SO(|E|1/K) such that

Ek ⊂
O(|E|1/K)⋃

j=1

⋃
B′∈Sj

B′. �
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