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Abstract: The development of models for process outcome prediction using event logs has evolved
in the literature with a clear focus on performance improvement. In this paper, we take a different
perspective, focusing on obtaining interpretable predictive models for outcome prediction. We
propose to use association rule-based classification, which results in inherently interpretable classifi-
cation models. Although association rule mining has been used with event logs for process model
approximation and anomaly detection in the past, its application to an outcome-based predictive
model is novel. Moreover, we propose two ways of visualising the rules obtained to increase the
interpretability of the model. First, the rules composing a model can be visualised globally. Second,
given a running case on which a prediction is made, the rules influencing the prediction for that
particular case can be visualised locally. The experimental results on real world event logs show that
in most cases the performance of the rule-based classifier (RIPPER) is close to the one of traditional
machine learning approaches. We also show the application of the global and local visualisation
methods to real world event logs.

Keywords: business process; event log; predictive monitoring; explainability; rule-based classification

1. Introduction

Predictive monitoring of business processes [1,2] has emerged in the last 10 years as
a discipline of process mining [3] that focuses on creating predictive models of aspects of
interest in business processes. Predictive models exploit information available in so-called
event logs, i.e., logs of systems supporting the execution of business processes. Event logs
contain events, each belonging to a different execution instance (or case) of a process. Events
record information, such as the time of recording, a label describing the activity that was
executed, an id of the (human) resource in charge of execution and possibly other domain
specific attributes.

In addition to the prediction of the next event in a running case [4] or time-based
aspects [5], prediction of the outcome of a running process case [6] is one of the main
use cases of business process predictive monitoring. In outcome prediction, an event log
contains a categorical label, usually binary, specifying the outcome of cases. This label could
be given or reconstructed from other information in an event log. For instance, several
publicly available event logs contain labels capturing whether process cases satisfy a given
declarative constraint predicated on the order and occurrence of certain activities in a case.
The objective is then to use event logs to train a predictive model that accurately predicts
the outcome of incomplete (running) process cases. As such, outcome prediction is solved
using classification techniques.
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One of the current main challenges of machine learning predictive models is related
to their interpretability, that is ([7], p. 1) “the lack of transparency behind their behaviours,
which leaves users with little understanding of how particular decisions are made by these
models”. This concern is obviously relevant also in process predictive monitoring, where
the output of predictive models may be used by process owners to take important decisions
about specific cases, or even to take decisions about process execution automatically.

There are fundamentally two ways to approach interpretability of machine learning
models [7], i.e., interpretable model extraction and post-hoc explanation. The former
implies to generate models that are inherently interpretable, such as rule-based models
and, to a lesser extent, decision trees. The latter aims at explaining what type of knowledge
has been acquired by models during the training, e.g., explaining the values obtained for
weights and biases in a neural network in a human-interpretable way [8].

In this paper, we explore the suitability of association rule mining [9] for supporting
outcome-based predictive process monitoring. In particular, first we propose a way to
pre-process data to make them suitable for the application of rule-based classifiers. Then,
to support the model interpretability, we propose different ways to visualise the rules that
constitute a rule-based outcome predictive monitoring model. Specifically, we propose two
types of visualisations: (i) a way to globally visualise the features and their values generally
determining the value of the outcome label, and (ii) a way to visualise the rules that are
activated to determine the outcome predicted for a particular case in an event log.

More specifically, from an evaluation standpoint we address the following two problems:

• To compare the performance of a rule-based classifier against traditional classifiers,
such as random forests and gradient boosting machines, commonly used in outcome-
based predictive process monitoring. The aim in this case is to assess whether the level
of performance achievable by the former can be comparable to the one of the latter.

• Exploiting the intrinsic interpretability of rule-based classifiers, to propose visualisa-
tions that foster the interpretability of outcome-based process predictive models at
the global level, i.e., generally regarding all the traces in an event log, and at the local
level, i.e., specifically for a particular trace in an event log.

The proposed framework is evaluated on publicly available event logs. The exper-
imental results show that the performance of a rule-based classifier in outcome-based
predictive monitoring is aligned with or only slightly lower than the one of other tradi-
tional classification techniques commonly adopted by the literature in most cases. Most
importantly, in our evaluation we show how the proposed visualisations can be applied
to support the interpretation of the behaviour of an outcome-based predictive model on
real-world event logs.

The paper is organised as follows. Section 2 reviews the related work. Section 3
provides some required preliminary notation, while Section 4 formalises the problem of
outcome prediction and discusses the proposed approach in detail. Experimental results
on real world event logs and examples of visualisations are presented in Section 5 and
conclusions are finally drawn in Section 6.

2. Related Work

The related work can be classified in the following four areas: (i) outcome-oriented
predictive monitoring in process mining, (ii) interpretable (explainable) predictive models
in process mining, (iii) association rule mining in process mining, and (iv) interpretable (or
explainable) classification with association rule mining.

Regarding outcome-oriented predictive monitoring, Teinemaa et al. [10] provide a
general framework for outcome-based process monitoring and an insightful benchmark
comparing the performance of different approaches from the perspective of sequence
encoding, trace bucketing, and classification algorithms.

Notable approaches in this field are the ones presented by Di Francescomarino
et al. [11], which adopts trace clustering before predictive classification on running cases,
and Senderovich et al. [12], which adopts inter-case feature encoding to capture case inter-
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action scenarios while predicting the remaining time of patient treatments. More recently,
Wang et al. [13] have suggested an approach based on deep learning, i.e., bidirectional
LSTM with attention mechanism, that outscores other classification algorithm traditionally
adopted in this field, such as random forests and gradient boosting machines. Finally,
Ferilli et al. [14] have addressed the problem of process outcome prediction in different
contexts with a declarative approach that exploits the availability of a formal process model.
In summary, previous works in this field have mainly experimented with different classifi-
cation algorithms and feature encoding techniques to develop more accurate predictive
models, rather than focusing on model interpretability.

Regarding interpretable (explainable) predictive models in process mining, Brunk
et al. [15] propose a method to predict the next event in a trace based on dynamic bayesian
networks, which are an example of inherently interpretable classification techniques. Harl
et al. [16] propose to use gated graph neural networks to predict binary process outcomes
by transforming an event log into a graph adjacency matrix and feature maps. The trained
models in this case is interpretable because each event is scored for its similarity to others in
the training set. Therefore, events with higher score are intended to bear a stronger impact
on the outcome. Finally, Galanti et al. [17] adopt Shapley value theory to explain factor
influence on the outcome of traces predicted using an LSTM model.

Regarding the application of association rules in event log analysis, we highlight the
work by Djenouri et al. [18], which applies frequent item-set mining to extract frequent
item-sets in an event log that could approximate the relationship among activities normally
captured by a process model. Previously, Maggi et al. [19] have applied association rule
mining to extract rules that are then used to build process models. Böhmer and Rinderle-
Ma [20] propose a trace anomaly detection technique that exploits association rules mined
from an event log. The support of association rules, in particular, is used to discriminate
between normal and anomalous traces. Ferilli [21] has proposed a first-order logic-based
formalism that is more powerful than traditional process modelling techniques and can be
used to specify complex conditions (i.e., rules) regarding the process execution.

Association rule mining has already been adapted to create inherently interpretable
predictive model in other research field. Mencía et al. [22] propose general methods for
multi-label classification using association rule mining. They stress, in particular, that
association rules highlight common causal relations in the data, which cater for better
explainable predictions. In the health care field, Ji et al. [23] adopted fuzzy rule mining
combined with causality rank of infrequent adverse drug reaction to distinguish relation-
ship between target drug and adverse event response probability. In [24], next-day stock
price movement as a categorical outcome (e.g., up, down, or hold) has been predicted using
association rules extracted from historical stock movements.

In summary, most approaches in the literature for outcome-based predictive process
mining are targeting performance improvement. Several recent papers address the in-
terpretability of process predictive models, but only from a post hoc perspective, mainly
developing an interpretative stage to explain a deep learning predictive model. In the
specific field of business process analysis using event logs, association rule mining has
been applied in process model approximation and anomaly detection, but not for obtaining
inherently interpretable predictive models, which is the focus of the method proposed in
this paper.

3. Preliminaries

An event log EL contains events. An event e is a tuple e = 〈c, {(di, vi)}i=1,...,D〉,
where c is the case id and (di, vi) are a set of D attributes and their values. We re-
fer to E as the universe of events, and to Vi as the domain of attribute di, which can
be discrete, Vi = {vi,j}j=1,...,J , or continuous, Vi = [vi,min, v1,max] ⊆ R. The case id,
activity, and timestamp attributes are normally present in all event log. We refer to
them using the letters c, a, and t, respectively, and use a dotted notation to reference
them when needed, e.g., e.c to refer to the case id of event e. For instance, the event
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e = (45, assess, 2020.1.2, Alice, amount = 1000, type = deep) captures the fact that, in a pro-
cess case associated with loan request number 45 (e.c), the resource Alice has executed a
deep assessment (e.a) of a loan request of USD 1000 on January 2nd, 2020 (e.t).

Any continuous domain Vi can be mapped into a discrete domain V̂i = {v̂i,j} if
necessary. For instance, the loan amount in the example above can be mapped into three
discrete levels (high, medium, low) according to the amount requested. We, therefore,
introduce an attribute-specific discretisation function disci : Vi −→ V̂i, with disc(vi) = v̂i,j.

The sequence of events generated in a given case form a trace σ = [e1, . . . , en], where
∀i ∈ [1, n], ei ∈ E , ∀i, j ∈ [1, n], ei.c = ej.c, i.e., all events belong to the same case, and
∀i ∈ [1, n − 1], ei.t < ei+1.t, i.e., events in a trace are ordered in ascending order using
the timestamp attribute. The universe of all traces is denoted by S . Note that attributes
of events ei belonging to a trace σ may be the same ∀ei ∈ σ. We refer to these attributes
as case-level attributes. For instance, the amount requested in a loan request process is
a case-level attribute. In the remainder, we refer to DE and DC as the set of event- and
case-level attributes in an event log EL, respectively, and we assume that (i) all events in EL
may have a different value for the same event-level attributes DE and (ii) all events in EL
belonging to the same trace have the same values for the case-level attributes DC. Given
a trace σ and an integer l < n, the prefix function pr returns the first l events of σ, that is,
pr(σ, l) = [e1, . . . , el ].

4. Framework

For applying rule-based classification, we assume that all attributes of events in EL
are discrete, that is, continuous attributes in an event log have been discretised if needed.
For each attribute di, we define the attribute itemizer function ita

i : D −→ {0, 1}J , which
maps an attribute di into a sequence of J binary items, obtained by one-hot encoding the
value of an attribute within its domain, that is ita

i (di) = {dummyj}j=1,...,J , with:

dummyj =

{
1 if di = vi,j

0 if di 6= vi,j

The event itemizer ite : E −→ {0, 1}n maps an event into the set of items derived from
its event-level attributes: ite(e) =

⋃
di∈e ita(di), with di ∈ DE.

The trace itemizer itt : S −→ {0, 1}n maps a trace, possibly incomplete, into the set of
items derived from its events and from case-level attributes:

itt(σ) = ita(d1), . . . , ita(dC), ite(e1), . . . , ite(en),

where C is the number of case-level attributes in EL.
Given a prefix length L, we define an item matrix TL containing, in each row, the items

generated by a prefix in an event log:

TL =

 itt(pr(σ1, L))
...

itt(pr(σN , L))


where N in the number of traces in EL.

Let us refer to the columns of TL as X1, . . . ,XP. Let us also define a labeling function
y : S −→ Y mapping a trace σ ∈ S to its class label y(σ) ∈ Y , with Y being the domain
of the class labels. For outcome predictions, Y is a finite set of categorical outcomes.
Consistently with the literature [10], we consider binary outcomes, i.e., Y = {0, 1}. Note
that all prefixes generated from a trace σ have the same class label.

An outcome classifier oc : X1 × . . .×XP −→ Y is a function mapping the items of a
(possibly incomplete) trace into its class label, that is, oc(itt(σ)) = y.

A machine learning-based (ML-based) classifier (mlbc) is an oc developed using ma-
chine learning classification techniques, such as a decision tree or an artificial neural
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network. In other words, an ML-based classifier uses the items Xp as features to train a
model that predicts the outcome label of traces. The literature typically has focused on this
type of techniques to solve the outcome prediction task in predictive monitoring [25].

An association rule mining-based (ARM-based) classifier (armb) is an oc developed
using association rule mining techniques, such as RIPPER [26].

In this paper, we tackle the following two problems:

• To compare the performance of ML-based classifiers and an ARM-based classifier, in
order to assess whether the level of performance achievable in outcome-based process
predictive monitoring by rule-based classification is at least comparable with the one
achieved by other techniques in the literature;

• Exploiting the intrinsic interpretability of rule-based classifiers, to propose visualisa-
tions that foster the interpretability of outcome-based process predictive models at
the global level, i.e., generally regarding all the traces in an event log, and at the local
level, i.e., specifically for a particular trace in an event log.

To tackle the first objective, it is necessary to pre-process an event log into a discrete
set of items, as discussed above.

A first data preparation step, therefore, concerns the discretisation of the continuous
attributes in an event log. The values of attributes with continuous domains are clustered
into three groups, usually labelled ‘small’, ‘medium’, and ‘large’, using the 33% and 66%
percentiles as thresholds, e.g., a value is mapped to the categorical value ‘medium’ if it falls
in a percentile comprised between the 33% and 66%.

Next, to train and test ML-based predictive models, an event log is pre-processed using
prefix-length bucketing and index-based encoding [27]. That is, we create a different model
for each prefix length, trained/tested using prefixes pre-processed to obtain a fixed-length
features vector. All attributes of an event log are pre-processed using one-hot encoding.

Figure 1 shows an example of pre-processing an event log where the continuous
attributes are first discretised and then attributes are one-hot encoded to obtain an item
matrix. The figure shows that the categorical attributes, such as activity labels, are one-hot
encoded index-based, i.e., for each position in a trace, an item is generated for all possible
activities in the event log, and only the item corresponding to the activity that was executed
is set to 1. The encoding of the numerical attributes (attributes C2 and timestamps in the
example) occurs through the discretisation described above. Finally, all the items obtained
are integrated into the item matrix that is used for the classification task.

For ARM-based models, the objective of pre-processing is to obtain an extended item
matrix from which rules can be extracted. Similarly to the case of ML-based models, we
consider prefix-length bucketing and index-based encoding, that is, we create different
item matrices for each prefix length.
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Case ID Activity Timestamp C1 C2 E1 E2 Label

1 A
2010-10-12

07:00:00
G 84 Empty 10 1

1 B
2010-10-12

18:57:34
G 84 False 1

2 A
2010-10-12

18:57:58
O 1698 Empty 15 0

2 C
2010-10-12

19:00:23
O 1698 Empty 0

3 E
2010-10-28 
18:29:56

G 126 False 1

3 B
2010-10-28 

18:30:03
G 126 Empty 1

<Original event log>

Case 
ID

C1_G C1_O
C2_
small

C2_
medium

C2_
large

Activity1
_A

Activity1
_E

Activity2
_B

Activity2
_C

T1_
small

T1_
medium

T1_
long

T2_
small

T2_
medium

T2_
long

E1_1_
Empty

E1_1_
False

E1_2_
Empty

E1_2_
False

E2_1_
small

E2_1_
medium

E2_1_
large

Label_1 Label_0

1 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 0 1 1 0 0 1 0

2 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1

3 1 0 0 1 0 0 1 1 0 0 0 1 0 1 0 0 1 1 0 0 0 0 1 0

<Merged pre-processed event log>

Case ID
Activity1

_A
Activity1

_E
Activity2

_B
Activity2

_C
E1_1

_Empty
E1_1

_False
E1_2

_Empty
E1_2

_False
E2_1

_small
E2_1

_medium
E2_1

_large
Label

1 1 0 1 0 1 0 0 1 1 0 0 1

2 1 0 0 1 1 0 1 0 0 1 0 0

3 0 1 1 0 0 1 1 0 0 0 0 1

Case ID T1_small T1_medium T1_long T2_small T2_medium T2_long Label

1 0 1 0 1 0 0 1

2 1 0 0 1 0 0 0

3 0 0 1 0 1 0 1

Case ID C1_G C1_0 C2_small C2_medium C2_large Label

1 1 0 1 0 0 1

2 0 1 0 0 1 0

3 1 0 0 1 0 1

<Event attributes categorization>

<Timestamp categorization>

<Case attributes categorization>

Figure 1. Example of pre-processing an event log.

4.1. Outcome Prediction

As ML-based models, we consider gradient boosting machines (XGB) and random
forests (RF). Both classifiers have shown to perform well in event log predictive monitoring
use cases [12].

As ARM-based model, we consider the Repeated Incremental Pruning to Produce
Error Reduction (RIPPER), which has been originally proposed to improve the performance
of the IREP model [28]. RIPPER generates a classification rule by (i) splitting the samples
randomly into two disjoint subsets, i.e., a growing set and a pruning set, and (ii) generating
classification rules using an information gain-based algorithm. Once a rule is generated,
it is immediately pruned by repealing any final sequence of conditions. RIPPER is based
on the principle that classification rules can be grown until a positive information gain is
achieved. As an ARM-based classifier, RIPPER is generally considered better performing
than other rule-based classifiers deriving the classification rules from a trained decision
tree. The details about the hyper-parametrisation of the ML- and ARM-based models are
given later before introducing the experimental results.
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4.2. Visualisations to Support Model Interpretability

The last part of the proposed framework is an approach for visualising the rules
used for outcome prediction in a more interpretable way. Although association rules are
inherently interpretable and a basic interpretation of rules can be operated domain experts
by skimming through a printed list of rules, having a means to visualise effectively the
rules can dramatically increase their interpretability by human decision makers [29].

The rules defining an outcome-based process predictive monitoring model can be
visualised at two levels:

• Global level. At the global level, the objective is to give to decision makers an idea
of which features of the data define the behaviour of a predictive model. Therefore,
at the global level we aim at providing an interpretable way to quickly understand
the components of the rules of the predictive model, i.e., the features involved in the
antecedents and consequents of the rules.

• Local level. In explainable outcome-based predictive monitoring, the local level refers
to interpreting the behaviour of a predictive model for an individual process trace [17].
Hence, we propose a way to visualize, for a single trace at a given prefix, the rules
that are activated to obtain a prediction and the features of the trace that trigger the
activation.

Global level visualisation.

At the global level, the visualisation of rules that we propose is based on the following
principles:

• A network graph is built for one event log at a given prefix length for each label, i.e.,
considering the rules generated by the model trained with the prefixes at that prefix
length and for which the prediction evaluated to that particular label (0 or 1);

• Owing to the fact that each graph represents all the rules for a given label, each graph
is built only with information related to the antecedents of the rules; in particular, each
node in the graph is an item (that is, a feature associated with a possibly discretised
value) that appears in at least one rule and edges connect two items (nodes) that
appear together in the antecedent of a rule;

• The thickness of nodes represents the frequency of appearance of an item in the rules
relative to the total number of items in the antecedents of the rules;

• To facilitate the interpretation and the identification of items, four types of items are
identified and different colours are assigned to the corresponding nodes in a graph:
items derived from an activity label of an event, from timestamps, from other case-level
attributes, or from other event-level attributes;

• The thickness of the edges in the graph represents the relative frequency at which the
two nodes linked by an edge appear together in one rule, relative to the total number
of rules.

Local level visualisation.

At the local level, the objective is to understand the rules that have been activated
to obtain the value of the predicted label, emphasising in particular the attributes that
triggered the activation of the rules.

The local level visualisation consists of 4 visual elements:

1. Case information;
2. Case-level attribute information;
3. Trace-level attribute information;
4. Association rules.

The case information elements shows the case id, the predicted outcome, and the
actual outcome of a case to which the trace (prefix) for which a prediction has been obtained
belongs. The case- and trace-level attribute elements show the values assumed in the
trace by the features of the predictive model derived from the event log attributes. Finally,
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the last element shows the association rules of the model, highlighting (in blue) the ones
that have been activated to obtain the prediction, i.e., the ones for which the antecedents
evaluate to 1. Note that the attributes responsible for the activation of the rules are also
highlighted using the same colour.

In summary, the local-level visualisation gives an overview of the rules that have
been activated in the context of the prefix under scrutiny, highlighting also which event
attributes have contributed to the activation of the rules. This is intended to help decision
makers making sense of the behaviour of the predictive model, i.e., understanding which
feature values are responsible for a given prediction.

Concrete examples of both types of visualisations for predictions obtained on prefixes
of real world event logs are presented in the next section.

5. Evaluation

Section 5.1 presents the datasets used in our evaluation, along with the hyper-parameters
of ML-based classifiers and the parameter values used for the RIPPER (ARM-based) classi-
fier. The performance comparison between rule-based and traditional outcome predictive
models in presented in Section 5.2, while Section 5.3 presents and discusses examples of
global- and local-level visualisations applied to the real world event logs considered in the
experimental evaluation.

5.1. Datasets, Model Parameters, and Hyper-Parameters

We consider six event logs publicly available at https://data.4tu.nl/ (accessed on 27
April 2022) published by the Business Process Intelligence Challenge in 2011, 2015 (Note that
there are five different instances of this event log, with data from different municipalities.
We consider the instance numbered as 1, 2, and 3), 2012 and 2017. The BPIC 2011 event
log is about a diagnosis and treatment process in a Dutch academic hospital. The BPIC
2015 event logs are from a process of managing building permit requests at different Dutch
municipalities. The BPIC 2012 and BPIC 2017 event logs are from a process of managing
loan requests at a Dutch financial institution. These logs have been chosen because they
contain an outcome label and have been used by previous research on outcome-based
process predictive monitoring [10]. Table 1 shows the descriptive statistics of these event
logs. Note that event logs differ widely for number of activities, number of attributes, and
label class proportion.

Table 1. Descriptive statistics of event logs used for evaluation.

# Activities # Cases # Variants
# Categorical

Case
Attributes

# Continuous
Case

Attributes

# Categorical
Event

Attributes

# Continuous
Event

Attributes

# Outcome 0
Cases

# Outcome 1
Cases

BPIC 2011 677 1143 981 4 6 5 0 683 460
BPIC 2015_1 289 1199 1100 8 1 3 0 910 289
BPIC 2015_2 304 832 828 8 1 3 0 670 162
BPIC 2015_3 277 1409 1349 8 1 3 0 1122 287
BPIC 2012 36 13,087 4366 1 1 2 0 10,844 2243
BPIC 2017 26 31,509 4047 1 5 2 0 14,281 17,228

In the BPIC 2011 and BPIC 2015 event logs, given a linear temporal logic constraint
predicated on the order and occurrence of activities, the outcome label is set to 1 for cases
satisfying the constraint and to 0 for other cases. In the BPIC 2015 event logs, the constraint
is that activity ‘send confirmation receipt’ is eventually followed by the activity ‘retrieve
missing data’. In the BPIC11 event log, the constraint is that either the activity ‘ca-19.9
tumormarker’ or ‘ca-125 mbv meia’ occur in a trace. In the BPIC 2012 and BPIC 2017 event
logs, the outcome label captures whether a loan request is eventually accepted or not.

The value of hyper-parameters has a great influence on the performance of a model.
To improve the performance of the model, we tune the hyper-parameters with their range
using Bayesian Optimisaion. These hyper-parameters and search spaces are listed in Table 2.

https://data.4tu.nl/
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Table 2. Search space of hyper-parameters for the models used in the evaluation.

# Model # Parameter # Range

RF n estimators [100, 200, 300]
max features [‘auto’, ‘sqrt’]
max depth (10, 1000)

min samples split [2, 6, 10]
min samples leaf [1, 4, 7]

bootstrap [True, False]

XGB n estimators [100, 200, 300]
learning rate [0.1, 0.3, 0.5]
subsample [0.3, 0.5, 0.7]
max depth (10, 1000)

colsample bytree [0.5, 0.6, 0.7]
min child weight [1, 2, 3, 4]

RIPPER prune size [0.33, 0.5]
k [1, 2]

We consider prefixes between 5 and 40 with a gap of 5 for all event logs. For example,
if prefix length is equal to 5, then RF, XGB, and RIPPER are trained and tested on a dataset
containing all the prefixes of length 5 in the event log, that is, partial traces considering the
first 5 events of traces with at least 5 events. To cope with sampling bias, we consider five-
fold cross-validation. The proportion of train and test set sampling in every replication of
the experiment is 70% to 30%. The code to reproduce the experiments is publicly available
at https://github.com/eekfskgus/Rule_based_classification_for_interpretability (accessed
on 27 April 2022).

5.2. Results and Discussion

The objective of the evaluation of the proposed approach is two-fold. First, our aim is
to appraise whether the performance of the ARM-based classifier is at least comparable with
the one of other ML-based approaches in outcome-based predictive process monitoring.
If that were not to be the case, in fact, it would not make sense to employ ARM-based
classifiers in this prediction task, even if the model obtained were intrinsically explainable.
Second, our aim is to demonstrate the applicability of the proposed local and global level
ARM-based model visualisation to real world event logs.

Regarding the first objective, the performance of the proposed ARM-based classifiers
compared against one of ML-based classifiers is shown in Figure 2. Note that the figure
shows the value of different performance measures commonly used for classification tasks
by prefix length.

First, we note that, when the AUC measure is considered, the performance of the
ARM- and ML-based classifier is comparable at all prefix lengths and for all datasets,
with the only exception of the BPIC 2011 event log at a higher prefix length. AUC is the
principal measure of performance normally considered by previous work in outcome-based
predictive monitoring [10]. As far as precision is concerned, RIPPER achieves, in general,
high precision on all event logs. In some cases (BPIC 2011 and BPIC 2012 event logs at
low prefix lengths), the precision achieved by RIPPER is higher than ML-based models.
This is also true for the BPIC 2017 event log. However, RIPPER achieves, at the same time,
consistently lower accuracy with this event log.

For some event logs (BPIC 2012, but most evidently BPIC 2017), the recall achieved
by RIPPER is low, which affects, also, the F-score performance. For the BPIC 2011 event
log, the performance of RIPPER is comparable with ML-based classifiers only at low prefix
lengths (up to 20). These peculiarities of the results may be due to intrinsic characteristic
of the datasets and/or the business process generating them. For instance, the BPIC 2012
and 2017 event logs are extracted from the execution of the same business process (loan
requests at a financial institution), but using two different information systems to support
the execution (this system has been upgraded before the BPIC 2017 event log was captured).

https://github.com/eekfskgus/Rule_based_classification_for_interpretability
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Figure 2. Predictive performance of RIPPER against ML-based models.

Based on the results shown in Figure 2, in particular the analysis of the AUC results,
we can claim that the ARM-based classifier RIPPER is not particularly worse than RF or
XGB for this classification task. Therefore, decision-makers may decide to choose using an
ARM-based classifier, since the model obtained is intrinsically explainable, as demonstrated
by the proposed visualisations discussed next.

5.3. Examples of Model Visualisations

Figure 3 shows an example of the global-level visualisations obtained for the BPIC2015
event log at prefix length 10. Several insights regarding the behaviour of the model trained
and tested using this event log can be drawn from this visualisation. A first quick compari-
son of the two graphs clearly reveals that the features determining the positive label (label 1)
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differ substantially from the ones determining the negative label (label 0). It appears that,
for the positive label, there are basically three groups of features determining the positive
outcome: (i) a first cluster involving the co-occurrence of the length of the eighth event to
be high (Time8=Long) and the activity label of the seventh event (Activity7) to be enter
send date retrieving missing data; (ii) a second cluster involving the occurrence of
specific values for the activity label of the seventh event and the case-level attribute parts;
and (iii) a third cluster involving a larger combination of values of several features. Re-
garding the latter, the occurrence of the activity enter send date acknowledgement in
the second position in a case appears to be a discriminant on the label: when this happens,
the outcome is in fact more likely to be positive. There is also a fourth cluster of rule an-
tecedents involving the features SUMleges and requestComplete, which are both features
derived from case-level attributes. The negative label global-level model visualisation
shows only one cluster involving a high number of features. Considering the number
of rules in which the features are involved, i.e., the size of the nodes in the graph, the
strongest predictors of the negative outcome appear to be the non-occurrence of the activity
enter send date acknowledgement as the second event in cases for which the case-level
attribute requestComplete evaluates to True.

Figure 4 shows an example of the global-level visualisations obtained for the BPIC
2017 event log. Given the nature of the prediction for this log, it should not surprise
that most features appearing in these visualisation derive from event-level attributes
(purple nodes). These in fact often capture the characteristics of the loan request, e.g.,
the loan amount requested (OfferedAmount) or the amount of the monthly instalments
(MonthlyCost). More in detail, for the negative label, it can be noted that there are two
clusters of rule antecedents: the first cluster (left hand side) involves requests rejected
characterised by a medium amount requested, while the second one (right hand side)
applies to loans for which the amount requested is high. For instance, high amount loan
requests appear to be rejected when the number of instalments (NumberofTerms) is medium
and the monthly instalments (MonthlyCost) are not large.

Figure 5 and 6 show examples of the local-level visualisations obtained for traces
where the predicted outcome matched the actual one. In both examples, it is possible to
clearly identify the rules that have been activated to support the prediction of the positive
label. Specifically, Figure 6 shows a case in which the positive label is predicted. Based
on the global level explanation, this case has a predictive positive label because it has
the case-level features defining the fourth cluster discussed above, i.e., derived from case
attributes SUMLeges and requestComplete (which activate Rule 1). However, the local-
level explanation also shows many additional rules that are activated and that may help
explaining the positive label. An analysis of these rules can be used by a domain expert
decision-maker to better characterise the particular case at hand, deciding for instance
whether the positive level predicted should be trusted or not in a specific decision-making
context. For instance, for the trace of the event log BPIC 2015_1 depicted in Figure 6, we can
see that the short duration of the sixth event (Time6 in Rule 5), the identity of the resource
executing the ninth activity (Resource9 in Rule 7) or the activity executed at the ninth event
(Activity9 in Rule 8) are feature values important to determine a positive and correct
predicted outcome for this particular trace.
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(case)termname
!=Termijnbezwaarenberoep1

Activity2
=enter send date acknowledgement

(case)responsible
actor

=4901428.0

Resource6
=2670601 Time9

!=short

(case)SUMleges
!=Nan

(case)requestcomplete
!=True

Activity8
=enter send date retrieve missing data

Activity7
=enter send date retrieve missing data

Time8
=long

monitoringResource6
=560925

(case)termname
=None

Time9
!=mediummonitoringResource3

=560462

(case)parts
=BouwSloop

Activity7
=enter send date procedure confirmation

BPIC 2015_1 Label 1 Prefix 10

(case)requestcomplete
=True

Activity2
!=enter send date acknowledgement

Activity5
=send confirmation receipt

Time9
!=long

Resource8
!=3273854

Activity8
!=enter send date procedure confirmation

monitoringResource10
!=560872

Time5
!=long

Activity9
!=enter send date retrieve missing data

Activity9
!=forward to the competent authority

(case)parts
=Bouw

Time4
!=medium

Activity8
=forward to the competent authority

(case)termname
=Termijnbezwaarenberoep1

BPIC 2015_1 Label 0 Prefix 10

case activity time event

Figure 3. Example of global-level model visualisation (BPIC2015_1 event log at prefix 10).
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CreditScore!=Large

Time9=Long

Time4=Long

FirstWithdrawalAmount=Small
NumberOfTerms!=Medium

Activity2=W
Callafteroffers

MonthlyCost!=Medium

NumberOfTerms!=Small

FirstWithdrawalAmount!=Large

NumberOfTerms=Large

OfferedAmount=Small

Activity3=O
Sent(mailandonline)

Time4!=Medium
Activity2=O

Sent(mailandonline)

MonthlyCost=Large

Activity6!=A
Concept

BPIC 2017 Label 1 Prefix 10

Activity4=O
Sent(mailandonline)

NumberOfTerms=Large

MonthlyCost=Medium

FirstWithdrawalAmount=Large

Time4=Long Time7!=Long
FirstWithdrawalAmount=Medium

OfferedAmount=Large

Time6=Long

FirstWithdrawalAmount!=Large

MonthlyCost!=Large

Time3=Long

Activity4!=O
Sent(mailandonline)

NumberOfTerms=Medium
Time3!=ShortActivity5=O

Created

Time9!=Short

OfferedAmount=Medium

Resource1!=User
3

BPIC 2017 Label 0 Prefix 10

case activity time event

Figure 4. Example of global-level model visualisation (BPIC2017 event log at prefix 10).
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Activity Time Producer co
de Section Specialism 

code

event1 differentiele telling automatisch short HAEM Section 4 86

event2 alkalische fosfatase -kinetisch- short CHE 2.00 Section 4 86

event3 creatinine short CHE 2.00 Section 4 86

event4 hemoglobine foto-elektrisch short HAEM Section 4 86

event5 ureum short CHE 2.00 Section 4 86

event6 sgot - asat kinetisch short CHE 2.00 Section 4 86

event7 bilirubine - totaal short CHE 2.00 Section 4 86

event8 bilirubine -geconjugeerd short CHE 2.00 Section 4 86

event9 aanname laboratoriumonderzoek short CRLA Section 4 86

event10 aanname laboratoriumonderzoek CRLA Section 4 86

(case) Age 29

(case) Diagnosis code M16

(case) Diagnosis code:1 M16

(case) Treatment code 803

< Case level attributes >

< Event level attributes >

Case ID : 1139 Actual Outcome : 1 Predicted Outcome : 1

Contents Execution

Rule 1 { Specialismcode3 = ’86’ } & { (case)diagnosis code = ‘M16’ } Yes

Rule 2
{ Specialismcode1 = ’86’}  & { Producercode1 != ‘CRLA' } & { (case) Diagnosis code != ‘M11' } & 

{ (case) Diagnosis code != ‘M13’ } & { (case)specialismcode:1 != ‘7.0' } & { (case) Diagnosis 
code != ‘106’ } & { (case)treatmentcode:3 != ‘23.0' } & { (case) Diagnosis code != ‘M12' }

Yes

Rule 3 { (case)specialismcode:1 != ‘7.0' } & { (case) Diagnosis code = ‘M14’ } & 
{ Specialismcode1 = ‘86' } No

Rule 4 { (case) Diagnosis code:1 = ‘M14’ } & { Producercode1 = ‘SGNA’ } No

Rule 5 { Specialismcode1 = ’86’ } & { (case) Diagnosis code = ‘M14’ } No

Rule 6 { (case) Diagnosis code:1 = ‘M16’ } & { Specialismcode8 = ’86 } Yes

Rule 7 { (case)specialismcode:1 != ‘7.0' } & { (case) Diagnosis code = ‘M14’ } & 
{ Producercode2 = ‘CHE2’ } No

Rule 8 { (case) Diagnosis code:1 = ‘M16’ } & { Section7 = ‘Section4’ } & { Time2 != ‘long' } Yes

Rule 9 { (case) Diagnosis code:1 = ‘M16’ } & { Producercode8 != ‘SGNA' } Yes

Label 1 Rules of RIPPER

Figure 5. Example of local-level model visualisation (a trace of the BPIC 2011 event log at prefix 10).
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Activity Time Resource Monitoring 
resource

event1 register submission date request short 560912 560912

event2 OLO messaging active long 560912 560912

event3 phase application received short 560912 560912

event4 send confirmation receipt short 560912 560912

event5 send confirmation receipt short 560912 560912

event6 forward to the competent authority short 560912 560912

event7 enter senddate acknowledgement medium 560912 560912

event8 term for supplying missing data long 11744364 2670601

event9 request complete short 11744364 2670601

event10 phased application 560912 2670601

(case) Responsible_actor 2670601.0

(case) SUMlegesxz 15663.024

(case) caseProcedure Uitgebreid

(case) caseStatus O

Contents Execution

Rule 1 { (case)requestComplete =  'False ' } & { (case)SUMleges !=  'Nan ' } Yes

Rule 2 { (case)requestComplete =  'False ' } Yes

Rule 3 { Time1 =  'short ' } & { Activity7 =  'enter senddate procedure confirmation ' } & 
{ (case) Responsible actor =  '4901428.0 ' } No

Rule 4 { (case) requestComplete =  'False '  } & { (case)responsible_actor =  '4901428.0 ' } No

Rule 5 { (case) requestComplete =  'False ' } & { Time6 !=  'long ' } Yes

Rule 6 { Time1 = short} & { monitoringResource3 = 560462 } No

Rule 7 { Resource9 != ‘3273854’ } & { (case)termname = ‘Termijn tot besluit’ } Yes

Rule 8 { (case) requestComplete = ’False’ } & { Activity9 != ‘send confirmation receipt’ } Yes

Rule 9 { Time1 = 'short ‘} & { (case)caseprocedure = ’Uitgebreid’ } Yes

Rule 10 { Activity8 = ‘no permit required for application’ } No

Label 1 Rules of RIPPER

< Case level attributes >

< Event level attributes >

Case ID : 12814085 Actual Outcome : 1 Predicted Outcome : 1

(case) last_phase Aanvraag ontvangen

(case) parts Bouw

(case) requestComplete FALSE

(case) termName Termijn tot besluit

Figure 6. Example of local-level model visualisation (a trace of the BPIC 2015 event log at prefix 10).

6. Conclusions

This paper has introduced a novel, interpretable approach to outcome-based predictive
process monitoring that uses association rule mining. The framework defines how to pre-
process an event log to obtain items and has proposed an effective way of visualising the
rules obtained using network graphs.

The proposed framework has been evaluated, all other conditions being equal, against
predictive models built that use extreme gradient boosting machine and random forest. The
performance obtained by the ARM-based classifier is in most cases comparable to the one
of the ML-based traditional classifiers. The proposed global- and local-level visualisation
help to interpret the features and their respective value that most influence a prediction
generally and specifically in a running trace, respectively.
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Future work will pursue multiple perspectives, in terms of both application and
extension. First, we plan to apply the proposed framework to the more general use case
of classification. That is, we intend to use our framework with data different than event
logs, studying, in particular, to what extent the type of phenomenon that the data represent
impacts the applicability and performance of our framework. Regarding extension, we
are planning to develop different visualisation techniques and evaluate them in respect
of usefulness and ease of use with pseudo-expert decision-makers, such as university
students of BPM subjects. To improve the performance of the framework, in particular
to being able to handle information loss during the categorisation process, we are also
planning to experiment with fuzzy association rules, which often have been demonstrated
to be more reliable than crisp rules for supporting decision making in complex scenarios.
Regarding the encoding, we will consider finer grained intervals for discretising continuous
attributes, which may affect the performance and the visualisations. The effects of finer
grained discretisation on the visualisations, however, can be appreciated only by users with
a deep knowledge of the domain where the process takes place. Therefore, this should be
evaluated with case studies involving domain experts.
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