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ANALYTIC RANKS OF ELLIPTIC CURVES

OVER NUMBER FIELDS
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(Communicated by Amanda Folsom)

Abstract. Let E be an elliptic curve over Q. Then, we show that the average
analytic rank of E over cyclic extensions of degree l over Q with l a prime not
equal to 2, is at most 2+rQ(E), where rQ(E) is the analytic rank of the elliptic
curve E over Q. This bound is independent of the degree l. Using a recent
result of Bhargava, Taniguchi and Thorne [Improved error estimates for the
Davenport–Heilbronn theorems, arxiv.org/abs/2107.12819, 2021], we obtain a

non-trivial upper bound on the average analytic rank of E over S3-fields.

1. Introduction

Let E be an elliptic curve defined over Q with conductor QE . For a number field
F , let E(F ) be the group of F -rational points of the elliptic curve E. Let LF (s, E)
be the normalized L-function of E over the field F so that its central point is 1

2 .
We omit the subscript F from LF (s, E) when F is the field of rational numbers.
We are interested in the behavior of the analytic ranks of the L-functions LF (s, E)
when F varies over cyclic extensions of prime degree l over Q. For a prime l ≥ 2,
we denote the family of all cyclic extensions F of degree l over Q by Cl. Then, for
a number field F in Cl we have

LF (s, E) = L(s, E)
∏
χ

L(s, E × χ),(1.1)

where χ runs over the (l−1) primitive l-th order Dirichlet characters corresponding
to the field F .

For quadratic fields F , the average analytic rank of L(s, E × χ) is expected to
be 1

2 regardless of the analytic rank rQ(E) of L(s, E) by Goldfeld’s conjecture. So
we have the following statement equivalent to Goldfeld’s conjecture [7].

Conjecture 1.1 (Goldfeld’s conjecture). Let E be an elliptic curve over Q. Then,
the average analytic rank of E over quadratic fields F is 1

2 + rQ(E).

Goldfeld’s conjecture says that a half of the twisted L-functions L(s, E × χ)
do not vanish at the central point and the other half of them vanish to order 1
at the central point. However, the story seems different for cyclic extensions of
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prime degree l ≥ 3. David, Fearnley and Kisilevsky [6] conjectured that for a fixed
elliptic curve E and a fixed prime l ≥ 7, there are only finitely many primitive
Dirichlet characters χ of order l for which L(s, E×χ) vanishes at the central point
s = 1/2. Also, they conjectured that only a small number of twisted L-functions
L(s, E × χ) vanish for l = 3 and 5. As a direct consequence of the conjecture, we
have Conjecture 1.2.

Conjecture 1.2. Let l ≥ 3 be a prime and E an elliptic curve over Q. Then, the
average analytic rank of E(F ) over the family Cl is rQ(E).

We can relate this conjecture with Diophantine Stability introduced by Mazur
and Rubin [11] recently. Let K be a number field. Suppose V is an irreducible
algebraic variety over K. If L is a field containing K, we say that V is diophantine-
stable for L/K if V (L) = V (K). For a given elliptic curve E over Q, if rF (E) =
rQ(E) for a number field F , then under the Birch and Swinnerton-Dyer conjecture,

the algebraic rank ralgF (E) of E(F ) is equal to the algebraic rank ralgQ (E) of E(Q).

By Merel’s uniform bound [14, Theorem 7.5.1] on the size of E(F )tor, we can see
that there are only finitely many number fields F of degree l for which E(F )tor >

E(Q)tor. Even if ralgF (E) = ralgQ (E) and E(F )tor = E(Q)tor, there could be a F -

rational point not belonging to E(Q) unfortunately.1 However, these results still
give strong conjectural evidence that an elliptic curve E overQ is diophantine-stable
for L/Q for most cyclic fields L of prime degree l ≥ 3.

We can understand these two seemingly different phenomena through Katz and
Sarnak’s n-level density conjecture for families of L-functions. Their philosophy is
that the distribution of low-lying zeros of L-functions in a natural family is governed
by one of the five classical matrix groups O,SO(even), SO(odd), USp, and U , which
we call the symmetry type of the family. We refer to [13] for the introduction of
the conjecture.

From a work of Rubinstein [13], when χ is quadratic, we can see that the symme-
try type for the family of L-functions L(s, E × χ) is O and the average of analytic
ranks rF (E) is at most 2.5 = 2 + 0.5. Heath-Brown [8] lowered the bound to 1.5.
If Katz and Sarnak’s one-level conjecture is true for a test function with arbitrarily
large compact support, the average analytic rank would be 1/2, which is Goldfeld’s
conjecture.

In [5], the author and Park computed the one-level density for families of L-
functions L(s, π×χ) for a cuspidal representation π of GLM (AQ). From it, when χ
is a primitive character of prime degree l > 2, we can determine that the symmetry
type for the family of L(s, E × χ) is U . Under the one-level density conjecture for
the symmetry type U , the average analytic rank becomes rQ(E).

In this article, we make partial progress toward Conjecture 1.2. Let E be an
elliptic curve defined over Q, and F a field in Cl. By (1.1), we have

rF (E) = rQ(E) +
∑
χ

ords=1/2L(s, E × χ).

1For example, consider an elliptic curve E which is given by the Weierstrass equation y2 =
x3+9. Then E(Q) ∼= Z×Z/3Z. Let K be the field by adjoining a root α of x4 +8x3−72x+72 to

Q. Then E(K) ∼= Z× Z/3Z and E(K) contains a new point P = (α,− 1
2
α3 − 3α2 + 9) of infinite

order such that 2P = (−2, 1).
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Hence the average of rF (E) is given by

rQ(E) + the average of ords=1/2L(s, E × χ),

where the average is taken over some subfamily of Cl which we describe now. We
consider primitive characters χ with conductor qχ coprime to QE . The condition
(qχ, QE) = 1 determines the (not analytic but ordinary) conductor q(E × χ) of
L(s, E×χ) completely, which is q2χQE by a work of Barthel and Ramakrishnan [1].

Define

Cl,QE
= {F ∈ Cl|(qF , QE) = 1},

where qF is the conductor of the field F . Now let ω be a non-negative Schwartz
class function. We define

Cl,QE
(X) =

∑
F∈Cl,QE

ω
(qF
X

)
.

We show that the average analytic rank has a nice uniform upper bound inde-
pendent of the degree l.

Theorem 1.3. Assume GRH.2 Let E be an elliptic curve over Q, l be a prime
≥ 3. Then,

lim
X→∞

∑
F∈Cl,QE

(X) rF (E)ω
(
qF
X

)
Cl,QE

(X)
≤ 2 + rQ(E).

In Section 5, we also give an upper bound on the average analytic rank over some
non-abelian fields. A number field F of degree d is an Sd-field if its normal closure

F̂ over Q is an Sd Galois extension. For example, quadratic fields are S2-fields.
For an Sd-field F we have

LF (s, E) = L(s, E)L(s, E × ρ),

where ρ is the (d− 1)-dimensional standard representation of the symmetry group
Sd.

Let Sd,QE
be the family of Sd-fields F with discriminant DF coprime to QE and

Sd be the family of Sd-fields with no restriction on discriminant. For a positive
number X, let

Sd,QE
(X) = {F ∈ Sd,QE

||DF | ≤ X},
where DF is the discriminant of the field F . In [10], Lemke Oliver and Thorne
showed that there is a constant cd > 0 such that in Sd(X), for any ε > 0, there are
�E,ε X

cd−ε Sd-fields F with rF (E) > rQ(E).
For S3-fields, using a recent result of Bhargava, Taniguchi and Thorne [2] we

have our second main result.

Theorem 1.4. Assume GRH.3 Let E be an elliptic curve E over Q. The average
analytic rank rF (E) over S3,QE

is bounded by 7.5 + rQ(E).

Remark 1.5. We also have analogues of Theorem 1.4 for S4-fields and S5-fields,
which are mentioned at the end of Section 5. These poor bounds are due to the
poor error terms of the counting functions for S4-fields and S5-fields. See [4].

2We need GRH for the following L-functions: ζ(s), Dirichlet L-functions with χ mod 2l, Hecke
L-functions over K = Q(ζl) with characters of order l, ζK(s) and L(s, E×χ) for primitive Dirichlet
characters of order l.

3We need GRH for L(s, E × ρ), L(s, Sym2(E)) and L(s,Λ2(E)).
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In Section 2, we introduce an explicit formula we use which is one of the main
tools for one-level density. In Section 3, we recall some preliminaries on primitive
Dirichlet characters and lemmas for proof of Theorem 1.3. Sections 4 and 5 are
devoted to the proof of Theorems 1.3 and 1.4.

2. Explicit formula

Let L(s, f) be an entire L-function with conductor q(f) and gamma factor γ(f, s)
which satisfies the standard functional equation:

Λ(s, f) = q(f)
s
2 γ(f, s)L(s, f) = ωfΛ(1− s, f),

where ωf is the root number of modulus 1. Let Λf (n) = af (n)Λ(n) be the n-

th coefficient of the Dirichlet series −L′

L (s, f) =
∑∞

n=1
Λf (n)
ns . If the Euler factor

of L(s, f) at the place p is
∏d

i=1

(
1− αi(p)

ps

)−1

, then af (p
k) =

∑d
i=1 αi(p)

k and

Λf (p
k) = af (p

k) log p. By [9, Theorem 5.12], we have the following explicit formula.

Lemma 2.1. Let φ be an even Schwartz class function such that its Fourier trans-

form φ̂ is compactly supported. Let L(s, f) be an L-function as above. For a pa-
rameter L > 0, we have

∑
ρ= 1

2+iγ

φ

(
γ
logL

2π

)
= φ̂(0)

log q(f)

logL
− 1

logL

∑
n

(
Λf (n)√

n
+

Λf (n)√
n

)
φ̂

(
log n

logL

)

+
1

2π

∫ ∞

−∞

(
γ′

γ
(f,

1

2
+ it) +

γ′

γ
(f,

1

2
− it)

)
φ

(
t logL

2π

)
dt,

where the sum is over non-trivial zeros ρ = 1
2 + iγ of L(s, f) with multiplicity.

We can show using [12, Lemma 12.14] that

1

2π

∫ ∞

−∞

(
γ′

γ
(f,

1

2
+ it) +

γ′

γ
(f,

1

2
− it)

)
φ

(
t logL

2π

)
dt � 1

logL
.

We assume that f satisfies the Ramanujan-Petersson conjecture. This assumption
is true for the L-functions we consider. Then we have

1

logL

∑
n=pk,k≥3

(
Λf (n)√

n
+

Λf (n)√
n

)
φ̂

(
log n

logL

)
� 1

logL
,

by absolute convergence of the Dirichlet series. Therefore,

∑
γ

φ

(
γ
logL

2π

)
= φ̂(0)

log q(f)

logL
− 1

logL

∑
p

(
Λf (p)√

p
+

Λf (p)√
p

)
φ̂

(
log p

logL

)
(2.1)

− 1

logL

∑
p

(
Λf (p

2)

p
+

Λf (p
2)

2

)
φ̂

(
2 log p

logL

)
+O

(
1

logL

)
.

We will use (2.1) for our one-level density computation.
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3. Cyclic extensions of degree l

For a prime l ≥ 3, let F be a cyclic extension of degree l over Q. There is an
(l− 1)-to-1 correspondence between primitive Dirichlet characters χ of order l and
cyclic extensioms F of degree l over Q. Thus, counting cyclic extensions of degree
l over Q can be reduced to counting primitive Dirichlet characters.

In [5], the author and Park summarize the following well-known results for prim-
itive Dirichlet characters of prime order l.

Proposition 3.1. Assume that l is a prime.

(1) When l = 2, qχ is the conductor of a primitive quadratic character χ if and
only if qχ = 2bm where m is an odd square-free integer and b = 0, 2 or 3.

(2) When l > 2, qχ is the conductor of a primitive character of order l if and
only if

qχ = lb
finite∏

q≡1 mod l

q, b=0 or 2.

(3) Let q be the conductor of a primitive character of order l with gcd(q, l) = 1.
Then, the number of primitive characters of order l with conductor q is
(l − 1)ω(q), where ω(n) is the number of distinct prime divisors of n.

Remark 3.2. Since there are (l − 1) primitive Dirichlet character of order l with
conductor l2, we can see that the number of primitive characters of order l with
conductor q is also (l − 1)ω(q).

Recall that E is an elliptic curve over Q with conductor QE . We want to count
the fields in Cl,QE

by considering the primitive Dirichlet characters χ of order l
with conductor qχ coprime to QE . This can be achived by the following generating
series: (

1 +
(l − 1)

l2s

)1−δl|QE ∏
p≡1 (mod l),p�QE

(
1 +

(l − 1)

ps

)
=

∞∑
q=1

a(q)

qs
,

where a(q) is the number of primitive Dirichlet characters χ of order l with con-
ductor q coprime to QE , which is (l − 1)ω(q). In [5], we showed that the Dirichlet

series
∏

p≡1 (mod l)

(
1 + (l−1)

ps

)
has meromorphic continuation for �(s) > 1/4 with

a simple pole at s = 1 and a pole of a finite order at s = 1/3. Since the term
ps

ps+(l−1) for a prime divisor p of QE congruent to 1 modulo l has poles on the line

�(s) = logp(l − 1) < 1, the Dirichlet series
∑∞

q=1 a(q)q
−s is meromorphic with a

simple pole at s = 1 for �(s) > HQE
for some constant HQE

with 1
3 < HQE

< 1.
We count the primitive characters with a weight. Let ω be a non-negative

Schwartz class function. Then, we define

WQE
(X) =

∗∑
χ

ω
(qχ
X

)
=

∑
q

ω
( q

X

)
a(q),

where the first sum is over all primitive characters of order l with conductors qχ
coprime to QE .

Lemma 3.3. Under GRH, for any ε > 0

WQE
(X) = Rω,l,QE

X +Oω,l,QE,ε(X
HQE

+ε) for some constant Rω,l,QE
.
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Proof. The proof is essentially the same as that of [5, Lemma 3.8]. �

Lemma 3.4. Under GRH,
∗∑
χ

ω
(qχ
X

)
log qχ = WQE

(X) logX +Oω,l,QE
(X).

Proof. The proof is essentially the same as that of [5, Lemma 3.5]. �

Lemma 3.5. Under GRH when n is not a l-th power,
∗∑
χ

ω
(qχ
X

)
χ(n) �ω,ε n

εX1/2+ε.

Proof. The proof is essentially the same with that of [5, Lemma 3.9]. �

4. Proof of Theorem 1.3

Let f be the modular form of weight 2 with level QE which corresponds to the
elliptic curve E and χ a primitive Dirichlet character of order l with conductor qχ
coprime to QE . Then, the conductor q(f × χ) of L(s, f × χ)(= L(s, E × χ)) is
exactly QEq

2
χ by a work of Barthel and Ramakrishnan [1].

The one-level density for an L-function L(s, f × χ) is defined to be

DX(f × χ, φ) =
∑
γf×χ

φ

(
γf×χ

logL

2π

)
,

where γf×χ denote the imaginary part of a generic non-trivial zero and L = X2

for a parameter X. Let φ be an even Schwartz class function such that its Fourier

transform φ̂ is compactly supported. Then, by Weil’s explicit formula (2.1), we
have

DX(f × χ, φ)

= φ̂(0)
log cf×χ

logL
− 1

logL

∑
p

log p

p1/2

(
af×χ(p)φ̂

(
log p

logL

)
+ af×χ(p)φ̂

(
log p

logL

))

− 1

logL

∑
p

log p

p

(
af×χ(p

2)φ̂

(
2 log p

logL

)
+af×χ(p

2)φ̂

(
2 log p

logL

))
+O

(
1

logL

)

= φ̂(0)
2 log qχ
logL

− 1

logL

∑
p

log p

p1/2

(
af×χ(p)φ̂

(
log p

logL

)
+ af×χ(p)φ̂

(
log p

logL

))

− 1

logL

∑
p

log p

p

(
af×χ(p

2)φ̂

(
2 log p

logL

)
+af×χ(p

2)φ̂

(
2 log p

logL

))
+O

(
1

logL

)
.

Note that af×χ(n) = af (n)× χ(n).
Hence, we have

1

WQE
(X)

∗∑
χ

DX(f × χ, φ)ω
(qχ
X

)
=

φ̂(0)

WQE
(X)

∗∑
χ

2ω(qχ/X) log qχ
logL

+ S1 + S2 +O

(
1

logL

)
,
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where

S1 = − 2

WQE
(X) logL

∑
p

log p

p1/2
af (p)φ̂

(
log p

L

)(
�

∗∑
χ

χ(p)ω
(qχ
X

))
,

S2 = − 2

WQE
(X) logL

∑
p

log p

p
af (p

2)φ̂

(
2 log p

L

)(
�

∗∑
χ

χ(p2)ω
(qχ
X

))
.

By Lemma 3.4, the first sum is φ̂(0) + O
(

1
logL

)
. Now we assume that φ̂ is

supported in (−1/2, 1/2). Then, by Lemma 3.5,

S1 � 1

X logX

∑
p<X1−2ε

pε log p

p1/2
X1/2+ε � 1

logX
,

S2 � 1

X logX

∑
p<X1/2−ε

pε log p

p
X1/2+ε � 1

logX
.

Theorem 4.1. Let φ be an even Schwartz class function such that its Fourier φ̂ is
supported in (−1/2, 1/2). Then,

lim
X→∞

1

WQE
(X)

∗∑
χ

ω
(qχ
X

)
DX(f × χ, φ) = φ̂(0).

Let rE,χ denote the analytic rank of L(s, f × χ). If φ is a non-negative valued
function with φ(0) > 0, by a trivial bound

rE,χφ(0) ≤
∑
γf×χ

φ

(
γf×χ

L

2π

)
,

we have

φ(0)

WQE
(X)

∗∑
χ

rE,χω
(qχ
X

)
≤ 1

WQE
(X)

∗∑
χ

DX(f × χ, φ)ω
(qχ
X

)
,

and it implies

lim
X→∞

1

WQE
(X)

∗∑
χ

rE,χω
(qχ
X

)
= lim

X→∞

∑
F∈Cl,QE

(X)(rF (E)− rQ(E))ω
(
qF
X

)
Cl,QE

(X)
≤ φ̂(0)

φ(0)
.

In particular, we take φ(x) =
sin2(2π 1

2σx)
(2πx)2 . Then,

φ̂(u) =
1

2

(
1

2
σ − 1

2
|u|

)
for |u| ≤ σ, φ(0) =

σ2

4
, and φ̂(0) =

σ

4
.

By choosing σ = 1/2, Theorem 1.3 follows.

5. Proof of Theorem 1.4

The main tool for the one-level density of the family of elliptic curve L-functions
over S3-fields is counting cubic number fields with a finite number of local condi-
tions. First, we introduce some notation and known results.

Let C denote a conjugacy class of the group S3. There are three conjugacy classes
[(1)], [(12)], and [(123)] in S3. We say that an S3-field F satisfies the local condition
Sp,C if p is unramified in F and the conjugacy class of Frobenius automorphism
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at p is C. There are two splitting types for a ramified prime in a S3-field, which
are partial ramification and total ramification and we denote them by r1 and r2
respectively. An S3-field F is said to satisfy the local condition Sp,ri if p is ramified
in F and its splitting type is ri.

Let S = (LC pi
)ki=1 be a finite set of local conditions. Define the density of the

set S by

|Sp,C | =
|C|

|S3|(1 + f(p))
, |Sp,ri | =

ci(p)

1 + f(p)
, |S| =

k∏
i=1

|LC pi
|,

where c1(p) =
1
p , c2(p) =

1
p2 , and f(p) = 1

p + 1
p2 .

Let

S3(X,S) = {F ∈ S3||DF | ≤ X,F satisfies S}.

By a recent work of Bhargava, Taniguchi and Thorne [2], we have

|S3(X,S)| = c3|S|X +O

(
X

5
6 + (

k∏
i=1

pi)
2
3X

2
3+ε

)
(5.1)

for some explicit constant c3.
We can compute the cardinality of S3,QE

(X) by forcing all the prime divisors p
of QE not to ramify. By (5.1), we have

|S3,QE
| = c3,QE

X +OQE

(
X

5
6 +X

2
3+ε

)
,(5.2)

where c3,QE
=

(∏
q|QE

1
1+f(p)

)
c3.

We define the one-level density for L(s, f × ρ) by

DX(f × ρ, φ) =
∑
γf×ρ

φ

(
γf×ρ

logL

2π

)
,

where γf×χ denote the imaginary part of a generic non-trivial zero and L = X2.

Once we show that for supp(φ̂) ⊂ [−σ, σ] with σ < 1
7

1

|S3,QE
(X)|

∑
F∈S3,QE

(X)

DX(f × ρ, φ) = φ̂(0) +
φ(0)

2
+O

(
1

logX

)
,(5.3)

we have

φ(0)

|S3,QE
(X)|

∑
F∈S3,QE

(X)

rE×ρ =
φ(0)

|S3,QE
(X)|

∑
F∈S3,QE

(X)

(rF (E)− rQ(E)) ≤ φ̂(0)

+
φ(0)

2
+O

(
1

logX

)
.

By taking

φ(x) =
sin2

(
2π 1

2σx
)

(2πx)2
, φ̂(u) =

1

2

(
1

2
σ − 1

2
|u|

)
for |u| ≤ σ

with σ = 1
7 , Theorem 1.4 follows.
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Remark 5.1. The one-level density in (5.3) is different from that of Theorem 4.1,
which means that the symmetry types for the two families are different. The sym-
metry type of the former one is U and the symmetry type of the latter one is
O.

Now, it is left to show (5.3). Since the conductor q(f × ρ) of L(s, f × ρ) is
|DF |2QE [1], by the explicit formula (2.1), we have

DX(f × ρ, φ) = φ̂(0)
2 log |DF |

logL
− 2

logL

∑
p

log p

p1/2
af×ρ(p)φ̂

(
log p

logL

)

− 2

logL

∑
p

log p

p
af×ρ(p

2)φ̂

(
2 log p

logL

)
+O

(
1

logL

)
.

Since

af×ρ(p) = af (p)aρ(p), af×ρ(p
2) = af (p

2)aρ(p
2),

we have

1

|S3,QE
(X)|

∑
F∈S3,QE

(X)

DX(f × ρ, φ) =
2φ̂(0)

|S3,QE
(X)| logL

∑
F∈S3,QE

(X)

log |DF |

(5.4)

+ S1 + S2 +O

(
1

logL

)
,(5.5)

where

S1 = − 2

|S3,QE
(X)| logL

∑
p

log p

p1/2
af (p)φ̂

(
log p

logL

)⎛⎝ ∑
F∈S3,QE

(X)

aρ(p)

⎞⎠ ,

S2 = − 2

|S3,QE
(X)| logL

∑
p

log p

p
af (p

2)φ̂

(
2 log p

logL

)⎛⎝ ∑
F∈S3,QE

(X)

aρ(p
2)

⎞⎠ .

We can determine aρ(p) and aρ(p
2) with the corresponding conjugacy class C

and it is summarized in the table below.
Conjugacy class aρ(p) aρ(p

2)
[(1)] 2 2
[(12)] 0 2
[(123)] -1 -1

Note that for af (p) = α(p) + α(p) = α+ α, we have the following relations:

af (p
2) = α2 + α2 = α2 + 1 + α2 − 1 = aSym2f (p)− aΛ2f (p)

af×f (p) = af (p)
2 = α2 + 2 + α2 = α2 + 1 + α2 + 1 = aSym2f (p) + aΛ2f (p).

Since f is self-dual, L(s, f × f) has a simple pole at s = 1 and L(s, f,Λ2) =∏
q|QE

(
1− 1

ps

)
ζ(s) also has a simple pole at s = 1, from the relations above,

L(s, Sym2f) is entire. Hence, under GRH we have

θf (x) =
∑
n≤x

af (p
2) log p = −x+O

(
x

1
2 (log x)(log(x3cf ))

)
(5.6)

for some constant cf > 0 [9, Theorem 5.15].
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By partial summation, we have

Lemma 5.2. ∑
F∈S3,QE

(X)

log |DF | = |S3,QE
(X)| logX +OQE

(X).

By Lemma 5.2, we can estimate the first sum in (5.4):

2φ̂(0)

|S3,QE
(X)| logL

∑
F∈S3,QE

(X)

log |DF | = φ̂(0) +O

(
1

logX

)
.

To control the sum S1, we need Lemma 5.3.

Lemma 5.3. ∑
F∈S3,QE

(X)

aρ(p) = OQE

(
X

5
6 + p

2
3X

2
3+ε

)
.(5.7)

Proof. By (5.1) and the table ,∑
F∈S3,QE

(X)

aρ(p) = c3X
∏
q|QE

1

1 + f(q)
·
[
1× 2 + 0× 3 + (−1)× 2

|S3|(1 + f(p))

]
+OQE

(
X

5
6 + p

2
3X

2
3+ε

)
,

= OQE

(
X

5
6 + p

2
3X

2
3+ε

)
.

�
Again by (5.1) and the table we can show that

Lemma 5.4. ∑
F∈S3,QE

(X)

aρ(p
2) = c3,QE

X +OQE

(
1

p
X +X

5
6 + p

2
3X

2
3+ε

)
.(5.8)

Assume that support of φ̂ ⊂ [−σ, σ] for some σ < 1
7 . By Lemma 5.3 and (5.2),

(5.9)

S1 � X
5
6

X logX

∑
p≤X2σ

log p

p
1
2

+
X

2
3+ε

X logX

∑
p≤X2σ

p
2
3−

1
2 log p

� X
5
6+σ

X logX
+

X
2
3+

7σ
3 +ε

X logX
� 1

logX
.

For S2, we have

S2 = − 2

|S3,QE
(X)| logL

∑
p

log p

p
af (p

2)φ̂

(
2 log p

logL

)
(
c3,QE

X +OQE

(
1

p
X +X

5
6 + p

2
3X

2
3+ε

))
= − c3,QE

X

|S3,QE
(X)|

∑
p

2af (p
2) log p

p logL
φ̂

(
2 log p

logL

)

+OQE

(
1

logX
+

X
5
6 log logX

X
+

X
2
3+

2σ
3 +ε

X logX

)
.
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By summation by parts we have∑
p

φ̂

(
2 log p

logL

)
2af (p

2) log p

p logL
=

∫ ∞

1

φ̂

(
2 log t

logL

)
2dθf (t)

t logL
.

Using (5.6), we can show that

S2 = − c3,QE
X

|S3,QE
(X)|

∑
p

φ̂

(
2 log p

logL

)
2af (p

2) log p

p logL
+OQE

(
1

logX

)
(5.10)

=
1

2
φ(0) +OQE

(
1

logX

)
.

By Lemma 5.2, (5.9) and (5.10), we establish the one-level density (5.3) for any
σ < 1

7 .
For S4-fields and S5-fields, using the same arguments, we can take that σ = 1/864

and 1/2400 respectively by a work of the author and Kim [3]. However, this gives
a poor bound.
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