
Received March 5, 2022, accepted April 18, 2022, date of publication April 28, 2022, date of current version May 5, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3170916

Pivotal B+tree for Byte-Addressable
Persistent Memory
JONGHYEON YOO1,2, HOKEUN CHA3, WONBAE KIM4, WOOK-HEE KIM5,
SUNG-SOON PARK 6,7, AND BEOMSEOK NAM 1, (Member, IEEE)
1Department of Software, Sungkyunkwan University, Suwon 16419, South Korea
2Kakao Corporation, Jeju-do 63309, South Korea
3Department of Computer Sciences, University of Wisconsin –Madison, Madison, WI 53706, USA
4Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
5Department of Software, Konkuk University, Seoul 05029, South Korea
6Gluesys, Anyang 14028, South Korea
7Department of Computer Engineering, Anyang University, Anyang 14028, South Korea

Corresponding author: Beomseok Nam (bnam@skku.edu)

This work was supported in part by the Institute for Information & communication Technology Planning & evaluation (IITP) under Grant
2018-0-00549, Grant 2021-0-01817, and Grant 2021-0-00862; and in part by the Electronics and Telecommunications Research
Institute (ETRI) through the Korean Government under Grant 20ZS1310.

ABSTRACT Over the past few years, various indexes have been redesigned for byte-addressable persistent
memory. In this work, we design and implement PB+tree (Pivotal B+tree) that resolves the limitations of
state-of-the-art fully persistent B+trees. First, PB+tree reduces the number of expensive shift operations
by up to half by managing two sub-arrays separated by a pivot key. Second, PB+tree reads cachelines in
ascending order, which makes PB+tree benefit from hardware prefetchers and run faster than state-of-the-art
persistent B+trees that access cachelines in non-contiguous or descending order. Third, PB+tree employs an
optimistic lock-free search algorithm to avoid repeatedly visiting the same tree node. Although the optimistic
lock-free search algorithm involves a risk of visiting incorrect child nodes, PB+tree guarantees correct search
results using the lazy correction algorithm using doubly linked sibling pointers. Our performance study
shows that PB+tree outperforms the state-of-the-art fully persistent indexes by a large margin. A search
algorithm without optimistic locking risks visiting the wrong child node, but PB+tree uses a lazy correction
algorithm with doubly linked sibling pointers to ensure correct search results. Our performance studies show
that PB+trees outperform state-of-the-art fully persistent indexes.

INDEX TERMS Tree data structures, fault tolerance, database concurrency operations.

I. INTRODUCTION
Since Intel’s Optane DC Persistent Memory (DCPM) [1] has
broken the boundaries between memory and storage devices,
numerous efforts have been made to re-design various system
software [2]–[15]. Efficient indexing techniques are essential
in nearly all software domains, and byte-addressable PM
poses new challenges for them because byte-addressability,
failure-atomicity, memory coherence, and durability have not
been considered altogether in legacy data structure designs.

Data structures can be classified into two groups - ordered
indexes and unordered indexes. Unordered indexes such as
hash tables support only point queries, but their point query
performance is known to be superior to ordered indexes.

The associate editor coordinating the review of this manuscript and

approving it for publication was Gianmaria Silvello .

However, ordered indexes are still preferred in many appli-
cation domains including database systems because B+trees
can process more complex queries such as range queries.

In the past few years, various ordered indexes for persistent
memory have been designed, such as FAST and FAIR [16],
FPTree [17], NV-Tree [18], wB+-tree [19],WORT [20], [21],
DP-tree [22], and µ-Tree [23], just to name a few. How-
ever, these previous studies have overlooked the performance
impact of how cachelines are accessed and prefetched by
hardware. For example, WORT [20], a radix tree exten-
sion, stores data in multiple levels, which implies high read
and write amplification for small accesses because the 3D
XPoint access granularity is 256 Bytes [24]. wB+tree [19]
and FP-tree [17] are also sub-optimal since they limit the
tree node size. With a small tree node size, the performance
gains that can be obtained from the hardware prefetcher and

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 46725

https://orcid.org/0000-0002-7284-3520
https://orcid.org/0000-0001-5481-6070
https://orcid.org/0000-0003-4970-4554


J. Yoo et al.: Pivotal B+tree for Byte-Addressable Persistent Memory

memory level parallelism are limited [25]. FAST and FAIR
B+tree [16] does not limit the tree node size, thus it can
get a performance benefit from the hardware prefetcher and
memory level parallelism. However, FAST and FAIR B+tree
has to access a tree node in descending order if the node was
updated by a delete operation, which prevents it from getting
performance gain from hardware prefetchers. Besides, as it
performs a large number of shift operations, its performance
degrades sharply as we increase the node size.

In this work, we present Pivotal B+tree (PB+Tree) that
simplifies memory access patterns for a variety of queries.
The contributions of this work are as follows.
• PB+Tree employs a novel tree node format that uses
the pivot key, allowing it to double the node size
without increasing the number of shift operations. The
sorted array format is known to perform better than
append-only methods since it avoids a level of indirec-
tion [16]. However, sorted arrays require a large number
of expensive shift operations especially for insertion
workloads with descending keys. A pivot key allows
PB+tree to split a sorted array into two sub-arrays.
With the two separate sub-arrays, PB+tree reduces the
number of shift operations by up to half. As a result,
PB+tree better utilizes CPU caches and significantly
improves the range query performance, which is one
of the most important query types that make ordered
indexes more popular than hash-based indexes.

• PB+tree reads the cachelines of the tree node in ascend-
ing order to take advantage of hardware prefetchers.
Append-only methods that require a level of indirection
access cachelines in an irregular manner, which makes
hardware prefetchers fail to predict access patterns.
FAST and FAIR B+tree, the only persistent B+tree that
stores key-values in sorted arrays often reads cachelines
in descending order to enable lock-free search, which
we show perform slower than accessing cachelines in
ascending order. In contrast, PB+tree scans cachelines
in a tree node always in ascending order, which makes
memory access faster.

• PB+tree simplifies lock-free search algorithm with a
novel optimistic lock-free tree traversal algorithm with
the lazy correction method. The lazy correction method
corrects any transient inconsistent tree traversals, which
FAST and FAIR B+tree suffers from. Our experiments
show that the state-of-the-art lock-free search imple-
mentation of open source FAST and FAIR B+tree is far
from correct and fails to run complex TPC-C database
benchmarks. We show that our lazy correction method
for lock-free search does not have correctness issues and
achieves up to 10.5x higher throughput than FAST and
FAIRB+tree, whichwefixedwith the crabbing protocol
for correct query results.

The rest of this paper is organized as follows. In Section II,
we present the background and the challenges of the state-
of-the-art byte-addressable persistent B+trees. In Section III,
we present the design of our PB+tree. In Section IV, we

evaluate the performance of PB+tree against FAST and FAIR
B+tree and wB+tree. In Section V, we conclude the paper.

II. BACKGROUND
A. CHALLENGES IN PERSISTENT INDEX
One of the key challenges in designing a persistent data
structure is to ensure the order of memory writes because
dirty cachelines in CPU caches can be flushed to persistent
memory prematurely. Flushing partially updated dirty cache-
lines and reordering memory writes can make data struc-
tures inconsistent and such transient inconsistency becomes
durable and exposed to other transactions if a system crashes.
To resolve this problem, various works [17]–[19], [26]

proposed append-only update methods such that the consis-
tent part of data structures remains unmodified. However, the
append-only update methods give up storing keys in sorted
order and require a level of indirection that hurts memory
locality, making it difficult to utilize hardware prefetchers due
to irregular memory access patterns.
Another challenge for persistent B-trees is the failure-

atomicity of tree rebalancing operations, i.e., tree rebalancing
operations need failure-atomic updates to multiple cache-
lines. Since it is impossible to atomically update multiple
cachelines in current processor designs, previous works such
as NV-tree [18], FP-tree [19], DP-tree [22], and µ-Tree [23]
proposed selective persistence methods. I.e., internal tree
nodes are stored in volatile DRAM instead of persistent
memory. If internal nodes are stored in DRAM, we do not
need to make rebalancing operations failure-atomic because
they will be lost anyway if a system crashes.

Selective persistence not only helps avoid explicit logging
but also improves the write performance. However, although
the reconstruction of internal tree nodes is feasible for certain
applications, it is not always possible for database systems
to keep all the internal tree nodes in small DRAM if they
manage a large number of tables. If the working set of queries
exceeds the memory capacity, the database systems need to
discard volatile internal tree nodes, which should be recon-
structed later. Even if the selective persistence schemes have
a set of sorted records in their persistent leaf nodes, it is not
free to reconstruct the whole tree structure for each different
incoming query. Therefore, in this work, we only consider
fully persistent indexes that store all indexing components in
persistent memory.

B. FAST AND FAIR B+tree
FAST and FAIR B+tree [16] is a persistent B-link-tree that
leverages the hardware prefetchers. Hardware prefetching is
limited to sequential and stride access patterns in commer-
cial platforms [25]. Therefore, FAST (Failure-Atomic ShifT)
algorithm shifts sorted keys in a tree node in a data-dependent
way to leverage hardware prefetchers and also to reduce the
number of calls to memory barrier operations.

FAST: In a tree structure, pointers always have
unique memory addresses. Because of this property, read

46726 VOLUME 10, 2022



J. Yoo et al.: Pivotal B+tree for Byte-Addressable Persistent Memory

transactions can detect and ignore a transient inconsistent
state partially updated by a write transaction. When we insert
a new key-value record into a sorted array, we shift records
to make space for the new record. As a result, one pointer
in the array will be duplicated in the adjacent positions.
Since duplicate pointers are not normal in B+tree, subsequent
transactions can detect duplicate pointers and ignore the key
in between them. Based on this observation, FAST algorithm
shifts keys and pointers in tandem without using expensive
logging.

FAIR:As a fully persistent index, FAST and FAIR B+tree
stores all internal nodes in persistent memory, but it avoids
expensive logging for tree rebalancing operations by connect-
ing an overflow node and its new sibling node using a sibling
pointer as in B-link tree. That is, using the sibling pointer, two
sibling nodes are logically combined and exposed as a single
virtual node to other concurrent read transactions. During
rebalancing operations, redundant entries can be found in
the overflow node and its new sibling node. But, the FAIR
(failure-atomic in-place rebalancing) algorithm of FAST and
FAIR B+tree allows read transactions to detect and ignore
redundant entries, which ensures the correctness and invari-
ants of the index.

Lock-Free Search: If every store instruction in FAST and
FAIR algorithms guarantees that no read transaction will
ever access inconsistent tree nodes, it is guaranteed that read
transactions will always return the correct results. As such,
FAST and FAIR algorithms enable non-blocking lock-free
search.

C. LIMITATIONS OF FAST AND FAIR B+tree
Although FAST and FAIR B+tree is shown to outperform
other state-of-the-art persistent indexes [16], we find there
are still rooms for performance improvement. The major
limitations of FAST and FAIR B+tree that we find are three
folds.

First, the insertion performance of FAST and FAIR B+tree
degrades as we increase the tree node size. Although FAST
algorithm benefits from hardware prefetchers and memory
level parallelism of modern architectures, the number of shift
operations linearly increases as the size of the tree node
grows.

Second, the FAST algorithm uses the scan direction flag to
enable lock-free scans and guides the direction in which sub-
sequent read transactions should scan the tree node. In par-
ticular, if a sorted array is updated by a delete transaction,
the FAST algorithm shifts array elements in descending order
and subsequent read transactions have to read the array from
right to left. The scan direction flag not only increases the
code complexity of search functions but also memory access
latency [25].

Data Cache Unit (DCU) prefetcher (also known as the
streaming prefetcher) in Intel Xeon CPUs prefetches data
from persistent memory to L1 cache only if the data is sequen-
tially accessed in ascending order. I.e., if we read tree nodes
in descending order, it fails to leverage the DCU prefetcher.

FIGURE 1. Performance Effect of L2 Hardware Prefetcher.

Intel Xeon CPUs also use an L2 hardware prefetcher that
changes the prefetching direction, but it does so only after
it suffers from lots of cache misses. I.e., changing the scan
direction for each small tree node is not friendly to the current
CPU designs.

In our experiments shown in Figure 1, we observe hard-
ware prefetchers in Intel Xeon CPUs typically work best with
ascending access order. In the experiments, we measure the
performance of linear scanning with a microbenchmark on
a testbed machine that we will describe in Section IV. The
performance of linear scanning in ascending order, denoted
as LR is up to 14% faster than that of linear scanning in
descending order, denoted as RL.

Third, the lock-free search algorithm of FAST and FAIR
B+tree does not limit the number of accesses to the same
tree node. In the lock-free search algorithm, a read transaction
determines in which direction it scans the node, and it double
checks whether the flag remains unchanged after the scan.
If the flag is found to be different, the read query has to scan
the node once again so that it can read the updated array.
If a read transaction scans the array slowly, and concurrent
write transactions keep inserting and deleting the array, the
read transaction must repeat to scan the array an unbounded
number of times.

A more serious problem with the lock-free search algo-
rithm of FAST and FAIR B+tree is that it is vulnerable to
incorrect search results due to various causes. For exam-
ple, Hwang et al. [16] mentioned that gcc compiler with
-O3 option changes the order of machine instructions and
leads to incorrect search results. In our experiments, even
with lower optimization levels, we found FAST and FAIR
B+trees return incorrect search results occasionally.

III. PIVOTAL B+tree
Pivotal B+tree is a fully persistent B+tree that employs the
failure-atomic shift and in-place rebalancing algorithms, but
it resolves the limitations of FAST and FAIR B+tree.

Figure 2 shows the internal node structure of Pivotal
B+tree. The structure of the leaf node is almost the same
with the internal node except that values are stored instead of
child pointers. The header of PB+tree node contains meta-
data about each tree node, i.e., the node level, the split key
(the smallest key of the leftmost sub-tree), the leftmost child

VOLUME 10, 2022 46727



J. Yoo et al.: Pivotal B+tree for Byte-Addressable Persistent Memory

FIGURE 2. Node Structure of Pivotal B+tree.

pointer (right child of a split key), the pivot key that divides
records into left and right regions, the pivot’s right child
pointer, the left sibling pointer, the right sibling pointer, and
the front and rear offsets.
split key: In B+tree, the median key of an overfull node

is pushed to its parent node when an overfull internal node
splits. However, in PB+tree, the median key is not only
pushed to its parent node but also stored as the split key
in the new right sibling node. The split key is required for
the failure-atomic in-place rebalancing (FAIR) algorithm.
We note that the open source FAST and FAIR B+tree imple-
mentation does not store the median key in the right sibling
node, leading to correctness issues with concurrent insertions.
For example, if a query accesses an overfull node before we
push the median key into the parent node, the query may
visit an incorrect child node as it misses the median key.1

To resolve this problem, PB+tree stores the median key as
the split key in the right split node, and the split key is never
updated until the node is deleted. The split key has only the
right child pointer that points to the leftmost sub-tree of the
node. This is because the left child of the split key is
the rightmost child of its left sibling node.

pivot key: Another static element of the PB+tree node is
the pivot key. When a right sibling node is created, PB+tree
selects the median key of the right sibling node and stores it as
the pivot key. With the pivot key, migrated records are sepa-
rated into two sub-arrays and stored in different regions. I.e.,
larger keys than the pivot key are stored next to the header,
i.e., in the region denoted as right region in Figure 2(a), and
the keys smaller than the pivot key are stored at the end of the
tree node, in the region denoted as left region. The rationale
behind this design is to reduce the number of shift operations

1https://github.com/DICL/FAST_FAIR/pull/4

Algorithm 1 insert(node, key, ptr)
1: if node.isNotFull() then
2: if key < node.pivot then
3: – add new record into left region via RL shift
4: front ← node.hdr .front;
5: node.record[front-2].ptr ← node.record[front-1].ptr;
6: for i← front; i < max_offset; i++ do
7: if key > node.record[i].key then
8: – shift records in reverse order
9: node.record[i− 1].key← node.record[i].key;
10: node.record[i− 1].ptr ← node.record[i].ptr;
11: if (&node.record[i]− cacheline_size)
12: is at cacheline boundary then
13: clwb(&node.record[i]− cacheline_size);
14: else
15: node.record[i− 1].key← key;
16: node.record[i− 1].ptr ← ptr;
17: clwb(&node.record[i− 1]);
18: return
19: node.record[max_offset − 1].key← key;
20: node.record[max_offset − 1].ptr ← ptr;
21: clwb(&node.record[max_offset − 1]);
22: else
23: – add new record into right region via LR shift
24: – omitted due to symmetry and lack of space
25: else
26: split(node, key, ptr);

by half, i.e., we separate a large sorted array into two small
sub-arrays.

A. PIVOTAL FAILURE-ATOMIC ShifT
The insertion and deletion algorithms of PB+tree employ
the failure-atomic shift (FAST) algorithm of FAST and
FAIR B+tree, i.e., keys and pointers are shifted in tandem.
Algorithm 1 shows the insertion algorithm of PB+tree. If the
insertion key is greater than the pivot key, we update the right
region and shift elements greater than the insertion key from
left to right. If the insertion key is smaller than the pivot key,
we update the left region and shift elements smaller than the
insertion key from right to left.

To delete an element from the sorted array, the direction
of shift operations need to be reversed. Due to the symmetry
and lack of space, we omit the detailed discussion of the
deletion algorithm. The details of the FAST algorithm and
how it tolerates transient inconsistency are referred to [16].

When inserting a new record, the right region grows from
left to right but the left region, located at the end of the array,
grows towards the beginning of the node. In between the left
and right regions, there is a free space. Since the sizes of both
regions change dynamically, the header stores an offset for
the beginning of the left region (front) and another offset for
the end of the right region (rear).

We note that there is a trade-off in storing offsets in a tree
node. I.e., updating an offset and shifting existing records
cannot be performed atomically. Therefore, FAST and FAIR
B+tree uses sentinel pointers instead of offsets. However,
if we use offsets, the implementation of FB+tree becomes
greatly simplified as we can quickly access both ends of the
sorted array. Besides, read transactions can access not only

46728 VOLUME 10, 2022



J. Yoo et al.: Pivotal B+tree for Byte-Addressable Persistent Memory

the right region but also the left region in ascending order,
which helps improve the read performance as we describe
in Section II-C.

Since updating an offset and shifting a sorted array cannot
be performed atomically, as a compromise between consis-
tency and efficiency, PB+tree uses the front and rear offsets
as approximate hints. I.e., instead of accessing the entire
array, PB+tree reads the array from the front or rear offset to
find the actual boundary of the left or right region. As such,
PB+tree does not call clwb for the front and rear offsets.

B. LINEAR SCAN WITH PIVOT
When the size of an array is smaller than a few KBytes,
linear scanning performs faster than binary search because
the binary search often stalls due to poor cache locality and
branch prediction failures while linear scanning benefits from
hardware prefetchers and memory level parallelism [16].
Therefore, Pivotal B+tree also performs linear scanning as
in FAST and FAIR B+tree. But, the search algorithm of
PB+tree is slightly different from that of FAST and FAIR
B+tree in two aspects. The first difference is that PB+tree
compares a search key against the pivot key and accesses
either the left or right region, but not both. The other dif-
ference is that PB+tree reads arrays always in ascending
order because the performance of ascending memory access
is faster than descending memory access as we discussed
in Section II-C.
However, reading an array in ascending order is vulnerable

to transient inconsistency issues if a concurrent write transac-
tion is shifting the array in descending order. For example,
suppose a read transaction is suspended after reading the
first element but before reading the second element of the
array that has 10, 20, and 30. While the read transaction is
suspended, a delete transaction may shift 30 to the second
position and 20 to the first position. When the read trans-
action wakes up, it will miss 20. FAST and FAIR B+tree
resolves this inconsistency problem by employing a scan
direction flag making read transactions read the node in a
specified direction such that no key is missed, even if the read
transaction reads the same key multiple times. PB+tree does
not employ such a flag-based lock-free method because the
algorithm that shifts a sorted array while it is being accessed
by concurrent read transactions is so sophisticated that it often
returns incorrect results and fails in our experience.

Instead, PB+tree proposes an optimistic search algorithm
that corrects search paths in a lazy manner. I.e., regardless of
the shift direction of concurrent write transactions, PB+tree
reads tree nodes always in ascending order and improves the
node access performance. However, since read transactions
can miss some keys being shifted, PB+tree has to detect
and correct incorrect search paths in a lazy manner. We will
discuss the lazy correction method in Section III-D.

C. NODE SPLIT, MERGE, AND REBALANCING
The rebalancing algorithm of PB+tree is shown in
Algorithm 2. If the right region has more records than the left

Algorithm 2 split(node, key, ptr)
1: node.lock.acquire();
2: sibling← nv_malloc(sizeof (node));
3: if node.front < max_offsets/2 then
4: – more records are in the left region
5: sibling.pivot ← getThirdQuarter(node);
6: – create a copy node with a new pivot as a sibling
7: sibling← fullCopyWithNewPivot(node, sibling.pivot);
8: sibling.left_sibling_ptr ← node;
9: prev_rs← node.right_sibling;
10: sibling.right_sibling← prev_rs;
11: clwb(&sibling, sizeof (node));
12: sibling.lock.acquire();
13: – change the node’s sibling pointer
14: – this step will invalidate the overfull node
15: node.right_sibling← sibling;
16: clwb(&node.right_sibling);
17: prev_rs.left_sibling← sibling;
18: clwb(&prev_rs.left_sibling_ptr);
19: – right sibling is a back-up node, so we can update the node.
20: median← getMedian(sibling);
21: node.pivot ← getQuarter(sibling);
22: node← copyLowerHalfWithNewPivot(sibling, node.pivot);
23: clwb(&node, sizeof (node));
24: – validate the overfull node
25: sibling.split_key← sibling.record[median].key;
26: clwb(&sibling.split_key);
27: – put a sentinel to invalidate migrated keys in sibling
28: sibling.record[median].ptr ←−1;
29: clwb(&sibling.record[median]);
30: sibling.lock.release();
31: node.lock.release();
32: else
33: – omitted due to symmetry

region, we create a right sibling node and migrate a half of the
records of the overfull node from the right region. If the left
region hasmore records, wemigrate a half of the records from
the left region. A key challenge of the node split algorithm in
PB+tree is that we need to update the pivot key and rebalance
the left and right regions accordingly. Otherwise, tree nodes
will have skewed pivots and the size of regions will become
unbalanced. Since selecting a new pivot and shifting records
from one region to the other can not be done atomically,
PB+tree creates a copy of the overfull node as its sibling
node, which behaves as a back-up log node. But we note
that the sibling node does not need to have the exactly same
structure with the overfull node as long as its logical view is
the same. I.e., as described in Algorithm 2, we create a new
sibling node and redistribute all the records using a new pivot
in the sibling node such that the sibling node eventually has
the balanced left and right regions. Once we create a sibling
node as a back-up node, we invalidate the overfull node and
update it accordingly. Once the overfull node is invalidated,
concurrent read transactions will ignore the overfull node and
access the back-up sibling node instead. Hence, we can make
changes to the overfull node in a non-failure-atomic manner.

Figure 3 illustrates each step of the node split algorithm
of PB+tree. Suppose a query tries to insert a key 50 into the
tree shown in Figure 3(a). Since Node A is full, it has to split.
In the first step, we create a right sibling back-up node. As in
the FAIR algorithm [16], we consider the right sibling and the
overfull node as a virtual single node. We note that the new

VOLUME 10, 2022 46729



J. Yoo et al.: Pivotal B+tree for Byte-Addressable Persistent Memory

FIGURE 3. Failure-Atomic In-place Rebalancing in PB+tree.

sibling node is a copy of the overfull node but it has a different
pivot key. The pivot key of the right sibling node should be
the third quarter key of the overfull node since the smaller half
of the sibling node will be deleted when the split completes.
In the example shown in Figure 3(b), we select 40 as the pivot
of the right sibling node. Although the pivot is different, its
logical view is no different from the overfull Node A.

In the next step, as shown in Figure 3(c), we invalidate the
overfull node and delete a larger half of the records. This step
shifts records and changes the pivot key of the overfull node,
which cannot be done in a failure-atomic way. However, such
inconsistency is acceptable since we have invalidated the
overfull node and concurrent read transactions visit its back-
up sibling node. However, we note that the invalidation of the
overfull node is not a flawless solution for concurrent read
transactions because there exist various subtle corner cases in
concurrent workloads. For example, a read transaction finds
the overfull node is valid, but it goes sleep while the node is
being split and the pivot is changed, then it wakes up and visits

the incorrect child node. To address the consistency issues,
the optimistic tree traversal algorithm, which we describe in
Section III-D, becomes necessary.
In the next step shown in Figure 3(d), we update the split

key of the right sibling node, which will behave as a commit
mark of split operations. I.e., once we update the split key,
the update of the right sibling node is complete and any query
that searches for keys small than the split key will not scan the
right sibling node. Then, we put a sentinel pointer and update
the front or rear offset in the overfull node to delete migrated
records.

In the final step shown in Figure 3(e), we add the split key
of the right sibling node into its parent node or create a new
root node using the split key. Then, the split is complete.

D. LOCK-FREE SEARCH WITH LAZY CORRECTION
The failure-atomicity of data structures for byte-addressable
persistent memory is difficult to achieve because of the
instruction reordering and unexpected cacheline flushes.
If lock-freedom is considered together, the challenge
becomes even harder. Lee et al. [21] proposed to trans-
form well-stabilized DRAM-based lock-free indexes into
PM-based indexes using a systematic approach called
RECIPE. However, RECIPE neglected that lock-free data
structures for DRAM, such as Bw-tree [27], cannot be simply
converted into persistent index unless CPUs support memory
persistency [28], [29]. Without memory persistency, we need
to call clwb and mfence for every memory access. So, the
authors of RECIPE revised the paper in [30] and proposed to
call clwb and mfence for every store and load instruction,
as was proposed in durable linearizability [31]. Without a
doubt, calling clwb and mfence for every store and load
instruction causes unacceptably high overhead.

Alternatively, FAST and FAIR B+tree makes read trans-
actions be aware of the order of write operations such that
they can tolerate transient inconsistency. However, FAST and
FAIR B+tree is very sensitive to the reordering of memory
accesses, and we observe that its open source implementation
often fails to return correct results. Another lock-free index,
BzTree [32] employsMicrosoft’sPMwCAS library that atom-
ically changes multiple 8-byte words in a lock-free manner.
However, it has been shown that the overhead of PMwCAS is
not negligible, i.e., PMwCAS library adds up to 12% higher
overhead than hardware transactional memory [33].

The insertion and search algorithms for PB+treemake read
transactions vulnerable to transient inconsistency caused by a
concurrent write transaction. Consider an example shown in
Figure 4. A read transaction looking for 65 is scanning a node
in ascending order. After it reads key 50 but before reading
key 60, it is suspended. In the next step, a write transaction
deletes <50, P5> by shifting the array elements to left. When
the read transaction wakes up, it reads the second to last
element and finds the key is 70. Thus, it visits P7 instead
of P6. To prevent this error, we may employ a node version
counter and make all transactions double-check whether the
version remains unchanged while queries scan the node.

46730 VOLUME 10, 2022



J. Yoo et al.: Pivotal B+tree for Byte-Addressable Persistent Memory

Algorithm 3 LockFreeSearch(node, key)
1: while true do
2: if pivot.ptr == NULL then return node.leftmost_ptr;
3: if key >= pivot.key then
4: i← pivot_idx + 1
5: while record[i].ptr 6= NULL do
6: if key < record[i].key then
7: if record[i].ptr 6= (t ← record[i− 1].ptr) then
8: if t == NULL then
9: break;
10: else return t;
11: i++
12: if (t ← node.right_sibling) 6= NULL then
13: if key >= sibling.split_key then return t;
14: t ← record[i− 1].ptr ;
15: if t == NULL then
16: continue;
17: else return t;
18: else
19: if key < record[node.front].key then
20: if (t ← node.left_sibling) 6= NULL then
21: if key < node.split_key then return t;
22: t ← node.leftmost_ptr ;
23: if t == NULL then
24: continue;
25: else return t;
26: for i← node.front + 1; i < pivot_idx; i++ do
27: – omitted due to symmetry and lack of space

FIGURE 4. Scan in ascending order leads to inconsistency.

We note that this is a common strategy used for various lock-
free data structures [34]–[37]. Although such version-based
lock-free tree traversal algorithms are theoretically sound and
complete, it requires to scan the same tree node repeatedly.

The complexity of lock-free algorithms leads to various
subtle implementation bugs. Besides, we note that bugs can
be introduced by compile optimizations. Memory access
reordering can be made not only by CPUs during run-time
but also by a compiler at compile time. Although the cardinal
rule of memory reordering followed by compiler develop-
ers is to keep the behavior of a single-threaded program,
there have been several memory reordering bugs in gcc .2

As such, FAST and FAIR B+tree disabled compiler

2gcc 4.9.2 has a bug (GCC Bugzilla – Bug 59448) in memory_
order_consume.

FIGURE 5. Optimistic Lock-Free Search with Lazy Correction.

FIGURE 6. Failure-Atomic Updates to Doubly Linked List.

optimization options when they evaluate the performance of
multi-threaded indexing.

1) OPTIMISTIC LOCK-FREE SEARCH AND LAZY CORRECTION
To mitigate the memory access reordering problem and
remove burdens from programmers, we propose an optimistic
tree traversal method that corrects incorrect node visits using
doubly linked lists.

In PB+tree, we use read/write locks for the root node
pointer. The read/write lock for the root node pointer is
required since the root node may split and the global root
pointer can be changed. Once we read the root node, the read
lock is immediately released so that subsequent transactions
can access the index.

We also use read/write locks for leaf nodes to prevent the
well-known phantom reads and dirty reads such that even
if a write transaction inserts multiple data into multiple leaf
nodes, concurrent read transactions can find all the inserted
data or none of them. I.e., we serialize concurrent transactions
in leaf level, which is sufficient because write transactions
commit only in leaf nodes.

For internal tree nodes, we enable optimistic lock-free
search, which is vulnerable to transient inconsistency prob-
lems as we described earlier. However, an incorrect internal
search path does not mean incorrect query results as long as
the multiple paths guide to the correct leaf node.

Consider an example shown in Figure 5. Suppose a read
transaction is looking for a key 145. It has to visit Node A,
but the query may visit Node B because of the conflict of con-
current threads, implementation bugs, or compiler bugs. This
will result in incorrect search results in traditional B+tree.
However, PB+tree will detect the search key is smaller than

VOLUME 10, 2022 46731



J. Yoo et al.: Pivotal B+tree for Byte-Addressable Persistent Memory

the split key of Node B, and the read transaction will be
steered to visit its left sibling node for the correct search path.
If the search key is greater than the largest key of the node,
the read transaction will compare the search key against the
split key of its right sibling node to correct the search path.
Similarly, even if the query visits an incorrect leaf node again,
L4 in the example, it will follow the left sibling pointer and
access the correct leaf node.

If a lot of concurrent transactions conflict, our optimistic
lock-free search algorithm may visit incorrect child nodes
many times. But, even if a query ends up arriving at a leaf
node very far from the correct leaf node, it is guaranteed that
the query will eventually visit the correct leaf node. The opti-
mistic lock-free search algorithm is shown in Algorithm 3.

E. FAILURE-ATOMIC DOUBLY LINKED LIST
To enable the optimistic lock-free search, tree nodes in the
same level need to bemanaged as a doubly linked list. Adding
or removing a node in a doubly linked list in a failure-atomic
manner is trivial. As shown in Figure 6 (a) and (b), we make
a new node point to its left and right sibling. Since the new
node is not accessible from the list, the new node will be
ignored if a system crashes. Therefore, it is failure-atomic.
In the next steps, shown in Figure 6 (c) and (d), we change
the next pointer of the left sibling and the previous pointer of
the right sibling one by one. Updating these two pointers is
not atomic. However, even if a system crashes after we update
only one pointer, a recovery process can easily detect and
correct it. We note that we may use the PMwCAS library to
update both pointers atomically. With the PMwCAS library,
the recovery process will not be even necessary.

IV. EXPERIMENTS
We evaluate the performance of PB+tree against the state-of-
the-art fully persistent B+trees - wB+-tree with slot+bitmap
nodes [19], FAST and FAIR B+tree [16], and BzTree [32].
All four implementations use Intel’s PMDK library and
we compiled our implementations using g++ 7.4 with
-O3 option unless stated otherwise. For failure-atomicity,
we carefully enforce the ordering of memory accesses by
calling PMDK APIs for memory barrier and cacheline flush
instructions.

We run experiments on a workstation that has two Intel
Xeon Gold 5215 processors (2.5 GHz, 20 vCPUs with hyper-
threading enabled, and 13.75 MB L3 cache) that guarantee
total store ordering (TSO). The workstation has 64 GB of
DDR4 DRAM and four 128 GB Optane DCPMM modules
evenly distributed across NUMA nodes. The two DCPMM
modules per NUMA node are configured in app-direct inter-
leaved mode and managed as a single region (i.e., pmem0
on NUMA node 0 and pmem1 on NUMA node 1). In our
experiments, we bind threads to NUMA nodes such that all
threads access the local PM region and avoid NUMA effect.

For each index, we allocate a directory-based poolset in a
single PM region. The directory-based poolset allows its size
to grow or shrink dynamically, which is suitable for dynamic

index. Although we do not present the performance of a
single static pool due to the lack of space, we find the perfor-
mance difference between a single pool and directory-based
poolset is negligible, i.e., less than 2% overhead is incurred
by directory-based poolset in our experiments.

Since all tree nodes are stored within a directory-based
poolset, PB+tree canmake use of atomic 8-byte store instruc-
tions. That is, even if we call pmemobj_alloc() for each
tree node, which returns a fixed 8-byte poolset ID and an
8-byte offset, only the 8-byte offset is used as a node pointer
in our implementation.

A. INSERTION PERFORMANCE
In the first set of experiments, we measure the insertion and
deletion performance of persistent indexes. For the work-
loads, we make use of three synthetically generated distri-
butions of 8-byte keys and 8-byte values. While B+tree is
known to be generally insensitive to key distributions, the
FAST algorithm is sensitive to sequential insertions and dele-
tions due to the number of shift operations and the direction
of memory accesses.

If we insert monotonically increasing keys, the FAST algo-
rithm does not shift any record but appends the largest key
to the rightmost leaf node. Unless a node splits, FAST and
FAIR B+tree and PB+tree flush only one cacheline, which
is optimal, while wB+tree flushes four cachelines. For this
workload, PB+tree does not use the left region but only the
right region. As such, PB+tree behaves similarly to FAST
and FAIR B+tree and shows similar insertion performance.
Due to the minimal number of cacheline flushes, the inser-
tion throughputs of all persistent B+trees are insensitive
to the index size as shown in Figure 7(a). For workloads
with increasing keys, a larger tree node size, i.e., 1024-byte
node size (denoted as PB(1024) and FF(1024)), reduces
the number of splits and results in higher throughputs than
512-byte node size.

Figure 7(b) shows the throughputs when we insert records
in descending order. This workload is the worst case for
FAST and FAIR B+tree because FAST and FAIR B+tree
has to shift all existing array elements from left to right so
that it can make a free slot at the beginning of the array.
As a result, FAST and FAIR B+tree is even outperformed
by wB+tree, which always appends a new record to the end
of an unsorted array regardless of whether keys are increasing
or decreasing. Unlike FAST and FAIR B+tree, PB+tree does
not perform any shift operation for descending key workload
because descending keys are appended to the front of the
left region. For example, if we insert key 15 to the PB+tree
node shown in Figure 2(b), it will be stored in the third to
last position without shifting any existing keys. As such, the
insertion throughput of descending key workload is similar to
that of ascending key workload in PB+tree. The small perfor-
mance difference between ascending key and descending key
workloads for PB+tree is because ascending key workload
benefits from hardware prefetchers that prefetches the right

46732 VOLUME 10, 2022



J. Yoo et al.: Pivotal B+tree for Byte-Addressable Persistent Memory

FIGURE 7. Insertion Performance: P5: PB(512), P1: PB(1024), F5: FF(512), F1: FF(1024), H5: HB(512), H1: HB(1024), W: wB+tree.

FIGURE 8. Deletion Performance.

regionwhile reading the header, but descending keyworkload
does not.

Figure 7(c) shows the throughput for random keys.We note
that PB+tree insertion performs worst when we keep insert-
ing keys close to pivot keys. Therefore, PB+tree performs
worse on the workloads with random key insertions than
the workloads with increasing or decreasing key insertions.
In random key workloads, the insertion throughput degrades
as we increase the tree node size. This is because larger
tree node sizes require a larger number of records to be
shifted. When we insert 10 million records, the insertion
throughput of FAST and FAIR B+tree with 1 KByte nodes is
10.5% lower than when the node size is 512 Bytes. PB+tree
also suffers from larger tree node sizes when the num-
ber of indexed records is smaller than 1 million. However,
PB+tree suffers less than FAST and FAIR B+tree because
of the regions separated by the pivot key. In particular,
when we insert more than 10 million records, PB(1024)
outperforms PB(512) because of less frequent node
splits.

In the experiments shown in Figure 7(d), we insert
100 million records in batches and breakdown the insertion
time into (1) Node Update time, (2) Node Traversal time, and
(3) cacheline flush time.

BzTree shows the worst performance due to the high over-
head of PMwCAS, which is a library that allows applications
to update multiple 8-byte words in a failure-atomic and lock-
free manner [33]. Besides this, BzTree suffers from expensive
CoW operations; BzTree replaces an existing internal node
via CoW when a new child node is inserted.

wB+tree suffers from expensive CoW splits, which
results in longer Node Update times. Besides this, wB+tree

suffers from a level of indirection, which makes search oper-
ations jump around cachelines. The cacheline flush time of
wB+tree is also about twice higher than the other persistent
indexes because of the metadata (slot array and bitmap)
updates.

For the workload with descending keys, FAST and FAIR
B+tree suffers from a large number of shift operations and
a large number of clwb calls. Note that the clwb overhead
increases as the node size increases. Interestingly, the node
traversal time of FAST and FAIR B+tree is much higher
than the other two indexes. This is because clwb instruc-
tion in our Intel Xeon Gold 5215 processor is just an alias
of clflushopt, which evicts dirty cachelines from CPU
caches. Therefore, the number of cache misses that occur
while traversing the tree structure is much higher than the
other indexes that call clwb less frequently.
With the workload with random keys, node splitting occurs

frequently and the node utilization decreases down to 66% on
average. With such a low node utilization and a large number
of cacheline flushes that evict cachelines from CPU caches,
the node traversal time and the insertion time become higher
than the other two workloads.

B. DELETION PERFORMANCE
Figure 8 shows the deletion performance. Again, FAST and
FAIR B+tree is sensitive to the order in which keys are
deleted. If keys are deleted in descending order, FAST and
FAIR B+tree does not shift any record, but if keys are deleted
in ascending order, it has to shift all records. Unlike FAST
and FAIR B+tree, PB+tree does not shift any record regard-
less of whether keys are deleted in ascending or descending

VOLUME 10, 2022 46733



J. Yoo et al.: Pivotal B+tree for Byte-Addressable Persistent Memory

FIGURE 9. Latency CDF for Point Queries.

FIGURE 10. Range Query Throughput Normalized to wB+tree.

order. As a result, the deletion performance of PB+tree is 3x
higher than FAST and FAIR B+tree if records are deleted
in ascending order. Even for random key deletions, PB+tree
shows superior throughput to FAST and FAIRB+tree. This is
because PB+tree allows an underfull node to borrow records
from its right sibling node whereas FAST and FAIR B+tree
does not. In FAST and FAIR B+tree, if an underfull node
borrows a record from its right sibling node, the sibling node
has to shift all the records to left. However, in PB+tree,
the redistribution between sibling nodes is rather easy to
implement because a borrowed record can be removed from
the sibling node and appended to underfull node without any
shift operation.

We note that the deletion throughput of BzTree is much
higher than that of wB+tree, which is different from the
results presented in Figure 7. This is because BzTree calls
PMwCAS twice for insertions, but once for deletions because
the invalidation of a single metadata is sufficient for a delete
operation.

C. SEARCH PERFORMANCE
Figure 9 shows the search performance of persistent indexes.
For the experiments shown in Figure 9(a), we insert 100 mil-
lion records, clear CPU caches, and submit 10,000 point
queries. Since this workload does not delete any record,
the scan direction of FAST and FAIR B+tree nodes is not
reversed, which is the optimal case for FAST and FAIR
B+tree. As a result, PB+tree and FAST and FAIR B+tree
show similar search performance. It is noteworthy that the use

of 1 KB tree node size is beneficial to the point queries that
have low latency. This is because of the CPU cache effect.
I.e., the queries that read tree nodes from CPU caches have
low latency and a larger tree node size benefits from more
cached data. However, a larger tree node size suffers from a
higher cache miss overhead. Hence, FAST and FAIR B+tree
with 1 KB node size (denoted as FF(1024)) have higher
tail latency. Since PB+tree reduces the number of cacheline
accesses using the pivot key, the tail latency of PB+tree with
1 KB node size is shorter than FF(1024).

In the experiments shown in Figure 9(b), we insert
100 million records, delete 10% of them, i.e., 10 million
records, clear CPU caches, and submit 10,000 point queries.
Due to the deletions, about 10% of leaf nodes have their
scan directions reversed in FAST and FAIR B+trees. The
reversed scan direction negatively affects the search perfor-
mance of FAST and FAIR B+trees. With a larger num-
ber of deletions, the performance gap between two indexes
widens.

In the experiments shown in Figure 9(c), we insert 100
million records, clear CPU caches, and submit 100 million
queries. Unlike the previous two workloads, most of the
queries in this workload benefit from CPU cache hits due
to a large number of read-only batch queries. Therefore,
the tail latencies are lower than 2.8 usec while those of
previous workloads are as high as 4.8 usec. Although this
workload does not reverse the scan direction of FAST and
FAIR B+tree, PB+tree outperforms FAST and FAIR B+tree
because PB+tree reduces the number of comparisons by
half using the pivot key. wB+tree and BzTree exhibit longer
latencies than other indexes because they employ a level of
indirection and store key-values in append-only manner. As a
result, they fail to leverage hardware prefetchers and memory
level parallelism.

Figure 10 shows the range query performance while we
vary the selection ratio, which is the percentage of records
selected out of 100 million indexed records. As we increase
the node size, the range query performance improves, i.e.,
1 KByte node size shows about 1.5x higher throughput
compared to 512 Byte node size. Without deletions, FAST
and FAIR B+tree slightly outperforms PB+tree because it
accesses cachelines in ascending order. But if 10% of records

46734 VOLUME 10, 2022



J. Yoo et al.: Pivotal B+tree for Byte-Addressable Persistent Memory

FIGURE 11. Throughput of Concurrent Mixed Workloads.

have been deleted, read transactions scan some of FAST and
FAIR B+tree nodes in the reverse direction. As such, FAST
and FAIR B+tree is outperformed by PB+tree.

D. MULTI-THREADED PERFORMANCE
In the experiments shown in Figure 11, we evaluate the
throughput and latency of multi-threaded FAST and FAIR
B+tree, BzTree, and PB+tree.We vary the number of threads
from 1 to 20 as we run experiments on a single NUMA
socket to avoid the NUMA effect. With two NUMA nodes,
we observed that all indexing structures suffer from the
NUMA effect and their overall throughputs degrade. We plan
to investigate the NUMA effect of persistent indexing struc-
tures as our future work.

For the experiments, we populated each persistent index
with 100 million records. Then, we run 100 million con-
current transactions mixed with writes and reads, i.e., 19%
inserts, 5% deletes, and 76% point queries. We compiled both
FAST and FAIR B+tree and PB+tree implementations with
the compiler optimization disabled because FAST and FAIR
B+tree returns incorrect results with concurrent workloads if
we turn on optimization flags. We note that, even if we use
the compile optimizations, PB+tree returns correct results
while beingmuch faster.We use numactl to bind all threads
to a single socket since the poolset is allocated in a single
DCPMM device.

The results show that PB+tree with 512 Bytes shows
the highest throughput and lowest latency. This is because
we use read/write locks for leaf nodes and the small leaf
nodes benefit from the fine-grained locks. Overall, PB+tree
shows a higher concurrency level than FAST and FAIR
B+tree since the optimistic lock-free search algorithm of
PB+tree ignores transient inconsistency and does not res-
can tree nodes. Figure 11(d) shows the probability of such
incorrect node visits. As we increase the number of concur-
rent threads, the probability increases, but from a very small
probability, i.e., only 0.00012% with 16 threads. FAST and
FAIR B+tree also allows read transactions to visit incorrect
child nodes due to its FAIR algorithm, which steers queries
to right sibling nodes. However, the probability of FAST
and FAIR B+tree visiting incorrect nodes is up to 11x less
than that of PB+tree at the cost of rescanning the same tree
nodes.

FIGURE 12. Performance with TPCC Benchmarks: W0(StockLevel: 4%,
Delivery: 4%, OrderStatus: 4%, Payment: 43%, NewOrder: 45%), W1(4%,
4%, 14%, 43%, 35%), W2(4%, 4%, 24%, 43%, 25%), W3(4%, 4%, 34%,
43%, 15%).

E. TPC-C RESULTS
In the final set of experiments shown in Figure 12, we evalu-
ate the performance using TPC-C benchmark. For the exper-
iments, we run 16 threads that submit 10 million transac-
tions. TPC-C benchmark consists of 5 types of transactions;
StockLevel, Delivery, OrderStatus, Payment, and NewOrder.
We generated four workloads with varying the percentage
of these queries so that the proportion of search queries
increases from workload W0 to W3. Unfortunately, even if
we disable the compile optimization flags, FAST and FAIR
B+tree fails to run concurrent TPC-C benchmarks. One of
the reasons for the incorrect results is that FAST and FAIR
B+tree does not store the split key in sibling nodes. To fix
the concurrency issues, we had to implement the crabbing
protocol [38] in FAST and FAIR B+tree for TPC-C bench-
mark. Due to the lock-contention coming from the crabbing
protocol, FAST and FAIR B+tree shows 3.7-11.5x lower
query processing throughput (TpmC) than PB+tree.

V. CONCLUSION
In this work, we designed and implemented Pivotal B+tree
(PB+tree) for byte-addressable persistent memory. PB+tree
employs the pivot key, which helps reduce the number of
expensive failure-atomic shift operations and makes PB+tree
insensitive to key access patterns. PB+tree also reduces the
complexity of lock-free tree traversal algorithm by proposing
the optimistic traversal with the lazy correction method. Our
performance study shows PB+tree outperforms FAST and
FAIR B+tree on various workloads.

VOLUME 10, 2022 46735



J. Yoo et al.: Pivotal B+tree for Byte-Addressable Persistent Memory

REFERENCES
[1] Intel. Intel and Micron Produce Breakthrough Memory Technology.

[Online]. Available: https://newsroom.intel.com/news-releases/intel-and-
micron-produce-breakthrough-memory-technology

[2] D. Bittman, P. Alvaro, and E. L. Miller, ‘‘A persistent problem: Managing
pointers in NVM,’’ in Proc. 10th Workshop Program. Lang. Operating
Syst. (PLOS), 2019, pp. 30–37.

[3] R. Fang, H.-I. Hsiao, B. He, C. Mohan, and Y. Wang, ‘‘High performance
database logging using storage class memory,’’ in Proc. IEEE 27th Int.
Conf. Data Eng., Apr. 2011, pp. 1221–1231.

[4] J. Izraelevitz, T. Kelly, and A. Kolli, ‘‘Failure-atomic persistent memory
updates via JUSTDO logging,’’ in Proc. 21st Int. Conf. Architectural
Support Program. Lang. Operating Syst., Mar. 2016, pp. 427–442.

[5] A. Kolli, S. Pelley, A. Saidi, P. M. Chen, and T. F. Wenisch, ‘‘High-
performance transactions for persistent memories,’’ in Proc. 21st Int.
Conf. Architectural Support Program. Lang. Operating Syst., Mar. 2016,
pp. 399–411.

[6] E. Lee, H. Bahn, and S. H. Noh, ‘‘Unioning of the buffer cache and
journaling layers with non-volatile memory,’’ in Proc. 11th USENIX Conf.
File Storage Technol. (FAST), 2013, pp. 73–80.

[7] G. Oh, S. Kim, S.-W. Lee, and B. Moon, ‘‘SQLite optimization with phase
change memory for mobile applications,’’ Proc. VLDB Endowment, vol. 8,
no. 12, pp. 1454–1465, Aug. 2015.

[8] J. Ou, J. Shu, and Y. Lu, ‘‘A high performance file system for non-volatile
main memory,’’ in Proc. 11th Eur. Conf. Comput. Syst., Apr. 2016, pp. 1–6.

[9] A. Rudoff, ‘‘Programming models for emerging non-volatile memory
technologies,’’ Login, vol. 38, no. 3, pp. 40–45, Jun. 2013.

[10] P. Sehgal, S. Basu, K. Srinivasan, and K. Voruganti, ‘‘An empirical study
of file systems on NVM,’’ in Proc. 31st Symp. Mass Storage Syst. Technol.
(MSST), May 2015, pp. 1–14.

[11] C. A. N. Soules, G. R. Goodson, J. D. Strunk, and G. R. Ganger, ‘‘Metadata
efficiency in versioning file systems,’’ in Proc. 2nd USENIX Conf. File
Storage Technol. (FAST), 2003, pp. 43–58.

[12] S. Venkataraman, N. Tolia, P. Ranganathan, and R. H. Campbell, ‘‘Consis-
tent and durable data structures for non-volatile byte-addressable mem-
ory,’’ in Proc. 9th USENIX Conf. File Storage Technol. (FAST), 2011,
pp. 1–15.

[13] J. Xu and S. Swanson, ‘‘NOVA: A log-structured file system for hybrid
volatile/non-volatile main memories,’’ in Proc. 14th USENIX Conf. File
Storage Technol. (FAST), 2016, pp. 323–338.

[14] Y. Zhang and S. Swanson, ‘‘A study of application performance with non-
volatile main memory,’’ in Proc. 31st Symp. Mass Storage Syst. Technol.
(MSST), May 2015, pp. 1–10.

[15] J. Zhao, S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi, ‘‘Kiln: Closing the
performance gap between systems with and without persistence support,’’
in Proc. 46th Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO),
Dec. 2013, pp. 421–432.

[16] D. Hwang, W.-H. Kim, Y. Won, and B. Nam, ‘‘Endurable transient incon-
sistency in byte-addressable persistent B+-tree,’’ in Proc. 11th USENIX
Conf. File Storage (FAST), 2018, pp. 187–200.

[17] I. Oukid, J. Lasperas, A. Nica, T. Willhalm, and W. Lehner, ‘‘FPTree:
A hybrid SCM-DRAM persistent and concurrent B-tree for storage class
memory,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data (SIGMOD),
2016, pp. 371–386.

[18] J. Yang, Q. Wei, C. Chen, C. Wang, and K. L. Yong, ‘‘NV-Tree:
Reducing consistency cost for NVM-based single level systems,’’
in Proc. 13th USENIX Conf. File Storage Technol. (FAST), 2015,
pp. 167–181.

[19] S. Chen and Q. Jin, ‘‘Persistent B+-trees in non-volatile main mem-
ory,’’ Proc. VLDB Endowment (PVLDB), vol. 8, no. 7, pp. 786–797,
2015.

[20] S. K. Lee, K. H. Lim, H. Song, B. Nam, and S. H. Noh, ‘‘WORT: Write
optimal radix tree for persistent memory storage systems,’’ in Proc. 15th
USENIX Conf. File Storage Technol. (FAST), 2017, pp. 257–270.

[21] S. K. Lee, J. Mohan, S. Kashyap, T. Kim, and V. Chidambaram, ‘‘RECIPE:
Converting concurrent DRAM indexes to persistent-memory indexes,’’ in
Proc. 27th ACM Symp. Operating Syst. Princ. (SOSP), 2019, pp. 462–477.

[22] X. Zhou, L. Shou, K. Chen, W. Hu, and G. Chen, ‘‘DPTree: Differential
indexing for persistent memory,’’ Proc. VLDB Endowment, vol. 13, no. 4,
pp. 421–434, Dec. 2019.

[23] Y. Chen, Y. Lu, K. Fang, Q. Wang, and J. Shu, ‘‘µTree: A persistent
B+-tree with low tail latency,’’ Proc. VLDB Endowment, vol. 13, no. 12,
pp. 2634–2648, Jul. 2020.

[24] J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and S. Swanson, ‘‘An
empirical guide to the behavior and use of scalable persistent mem-
ory,’’ in Proc. 18th USENIX Conf. File Storage Technol. (FAST), 2020,
pp. 169–182.

[25] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt, ‘‘Feedback directed prefetch-
ing: Improving the performance and bandwidth-efficiency of hardware
prefetchers,’’ inProc. IEEE 13th Int. Symp. High Perform. Comput. Archit.,
Feb. 2007, pp. 63–74.

[26] J. Seo, W.-H. Kim, W. Baek, B. Nam, and S. H. Noh, ‘‘Failure-
atomic slotted paging for persistent memory,’’ in Proc. 22nd Int. Conf.
Architectural Support for Program. Lang. Operating Syst., Apr. 2017,
pp. 91–104.

[27] J. J. Levandoski, D. B. Lomet, and S. Sengupta, ‘‘The Bw-tree: AB-tree for
new hardware platforms,’’ in Proc. IEEE 29th Int. Conf. Data Eng. (ICDE),
Apr. 2013, pp. 302–313.

[28] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and
D. Coetzee, ‘‘Better I/O through byte-addressable, persistent memory,’’
in Proc. ACM SIGOPS 22nd Symp. Operating Syst. Princ. (SOSP), 2009,
pp. 133–146.

[29] S. Pelley, P. M. Chen, and T. F. Wenisch, ‘‘Memory persistency,’’ in
Proc. ACM/IEEE 41st Int. Symp. Comput. Archit. (ISCA), Jun. 2014,
pp. 265–276.

[30] S. Kwon Lee, J. Mohan, S. Kashyap, T. Kim, and V. Chidambaram,
‘‘RECIPE : Converting concurrent DRAM indexes to persistent-memory
indexes,’’ 2019, arXiv:1909.13670.

[31] J. Izraelevitz, H. Mendes, and M. L. Scott, ‘‘Linearizability of persistent
memory objects under a full-system-crash failure model,’’ in Proc. 30th
Int. Symp. Distrib. Comput. (DISC), 2016, pp. 313–327.

[32] J. Arulraj, J. Levandoski, U. F. Minhas, and P.-A. Larson, ‘‘Bztree: A high-
performance latch-free range index for non-volatile memory,’’ Proc. VLDB
Endowment, vol. 11, no. 5, pp. 553–565, 2018.

[33] T. Wang, J. Levandoski, and P.-A. Larson, ‘‘Easy lock-free indexing in
non-volatile memory,’’ in Proc. IEEE 34th Int. Conf. Data Eng. (ICDE),
Apr. 2018, pp. 461–472.

[34] A. Braginsky and E. Petrank, ‘‘A lock-free B+tree,’’ in Proc. 24th ACM
Symp. Parallelism Algorithms Archit. (SPAA), 2012, pp. 58–67.

[35] F. Ellen, P. Fatourou, E. Ruppert, and F. van Breugel, ‘‘Non-blocking
binary search trees,’’ in Proc. 29th ACM SIGACT-SIGOPS Symp. Princ.
Distrib. Comput. (PODC), 2010, pp. 131–140.

[36] M. Fomitchev and E. Ruppert, ‘‘Lock-free linked lists and skip lists,’’
in Proc. 23rd Annu. ACM Symp. Princ. Distrib. Comput. (PODC), 2004,
pp. 50–59.

[37] M. M. Michael, ‘‘High performance dynamic lock-free hash tables and
list-based sets,’’ in Proc. 14th Annu. ACM Symp. Parallel algorithms
Archit. (SPAA), 2002, pp. 73–82.

[38] A. Silberschatz, H. Korth, and S. Sudarshan, Database Systems Concepts.
New York, NY, USA: McGraw-Hill, 2005.

JONGHYEON YOO received the B.S. and M.S.
degrees from SungKyunKwan University, in
2020 and 2021, respectively. He is currently
a Software Engineer with Kakao Corporation.
His research interests include persistent mem-
ory, system software, data analytics, and machine
learning.

HOKEUN CHA received the B.S. and M.S.
degrees from SungKyunKwan University, in
2018 and 2020, respectively. He is currently pursu-
ing the Ph.D. degree in computer science with the
University of Wisconsin–Madison. His research
interests include database systems and storage
systems.

46736 VOLUME 10, 2022



J. Yoo et al.: Pivotal B+tree for Byte-Addressable Persistent Memory

WONBAE KIM received the B.S. degree in com-
puter science and engineering from the Ulsan
National Institute of Science and Technology
(UNIST), South Korea, in 2015, where he is
currently pursuing the Ph.D. degree with the
School of Electrical and Computer Engineering.
His research interests include big data processing
systems, machine learning platforms, key-value
stores, and persistent memory.

WOOK-HEE KIM received the B.S. and Ph.D.
degrees from the Ulsan National Institute of Sci-
ence and Technology, in 2013 and 2019, respec-
tively. He was a Postdoctoral Associate at Virginia
Tech and SungKyunKwan University. He is an
Assistant Professor with the Department of Com-
puter Science and Engineering, Konkuk Univer-
sity. His research interests include database sys-
tems, storage systems, and systems software for
persistent memory.

SUNG-SOON PARK received the B.S. degree
from Hongik University, in 1984, the M.S.
degree from Seoul National University, in 1987,
and the Ph.D. degree from Korea University,
in 1994. He was a Postdoctoral Researcher at
Northwestern University, from 1996 to 1998, and
a Visiting Researcher at the IBM T.J Watson
Research Center, NY, USA, in 1999. He is a
Professor with the Department of Computer Sci-
ence and Engineering, Anyang University, and the

Founder, the President, and the CEO of Gluesys Company Ltd.—which is a
leading NAS solution company in South Korea.

BEOMSEOK NAM (Member, IEEE) received
the B.S. and M.S. degrees from Seoul National
University, South Korea, and the Ph.D. degree
in computer science from the University of
Maryland, College Park, Maryland, in 2007.
He was an Assistant/Associate Professor at the
Ulsan National Institute of Science and Tech-
nology (UNIST), South Korea. He is an Asso-
ciate Professor with SungKyunKwan University,
South Korea. His research interests include data-

intensive computing, database systems, and embedded system software.

VOLUME 10, 2022 46737


