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1 Introduction

The study of vortices has attracted much interest in the past since their first appearance
in theoretical physics [1, 2]. More recently, the work in [3] presented a brane construction
for a supersymmetric gauge theory with 4 supercharges describing k& U(N) vortices. For
simplicity, we will restrict to a 3d N/ = 4 theory in this work. The construction involves k
D1-branes in a N D3-brane and NS5-brane background. Of our interest is the worldvolume
theory of the D1-branes realized on the Higgs branch of the vortex theory. The D1-branes
play the role of vortices and their worldvolume theory is effectively a 1d theory which is
a dimensional reduction of a 2d N' = (2,2) supersymmetric gauge theory. The vacuum
moduli space of this theory is identified as the moduli space of k U(N) vortices on C. The
following work is interested in studying these moduli spaces using the construction in [3].

Vortex moduli spaces are complex projective spaces [3—13]. In this work, we express the
vortex moduli spaces as partial C* projections of vortex master spaces. These are spaces of
mesonic and baryonic chiral operators which are invariant under the non-Abelian part of
the gauge symmetry [14, 15].1 For the case of k U(N) vortices, this is the SU(k) part of the
U(k) gauge symmetry. Master spaces have been studied in various setups in string theory,
with a particular focus on 4d N' = 1 supersymmetric quiver gauge theories which can be
represented by brane tilings [16-18]. The C* projection of the vortex master space is along
the remaining U(1) gauge symmetry and leads in general to a partially weighted projective
space. This is precisely the full vortex moduli space we want to study in this work.

We take inspiration from the recent fruitful studies of moduli spaces of instantons on
C? [19-21]. The ADHM construction [22] for instanton moduli spaces arising from D3-
D7 brane constructions resembles remarkably the construction of vortex moduli spaces.
From this point of view, the vortex construction in [3] is often referred to as a %—ADHM
construction for vortices. As it has been used for the study of instanton moduli spaces,
we make use of Hilbert series [23-25] as a tool to analyze the algebraic structure of vortex
moduli spaces. The use of Hilbert series combined with the use of vortex master spaces
allows us to fully characterize the algebraic structure of vortex moduli spaces for up to 3
U(N) vortices on C.

Hilbert series have been very successfully used to study vacuum moduli spaces of
various supersymmetric gauge theories. They are partition functions of gauge invariant
chiral operators. Hilbert series have been used for instance to shed light on moduli spaces
of SQCD with classical gauge groups [26] and toric moduli spaces of brane tilings [27-29].

We first compute the Hilbert series of the vortex master space by taking gauge invari-
ance under the SU(k) non-Abelian part of the gauge symmetry. The Hilbert series allows
us to identify the full algebraic structure of the vortex master space, including information
about its generators and quadratic relations satisfied by the generators. In general, we
observe and verify that the & U(N) vortex master space is a non-compact singular Calabi-
Yau cone of complex dimension kN + 1. The algebraic variety of the vortex master space is

Strictly speaking, the master space is the space of invariants under the non-Abelian part of the gauge
symmetry and under the F-term constraints which are obtained by the superpotential of the theory. We
will later see that the vortex theory does not have relevant a superpotential.



weighted under the remaining U(1) symmetry. These weights are part of the C* projection
which lifts the vortex master space to the full now partially compact vortex moduli space
of complex dimension kN. This work for the first time uses Hilbert series to fully classify
the vortex moduli spaces up to 3 U(/N) vortices and presents the Hilbert series for 4 U(1)
and U(2) vortices.

The outline of the paper is as follows. Section 2 reviews the analysis of instanton
moduli spaces from the ADHM construction and summarizes the similarities to the vortex
construction in [3]. The section introduces the computation for the Hilbert series of the
vortex master space and explains its C* projection into the full vortex moduli space. Using
the techniques presented in section 2, sections 3 to 5 present the a classification of vortex
moduli spaces up to 3 vortices for any U(N). Section 6 illustrates with Hilbert series
for 4 U(1) and U(2) vortices that the classification scheme we introduce here with this
paper is generalizeable to any number of U(N) vortices. Finally, section 7 summarizes the
unrefined Hilbert series for our classification of vortices as well as uses a new compact form
of presenting character expansions of Hilbert series.

2 Background

In this section, we review the theoretical background on vortices based on [3]. An outline
is given for the brane construction of vortices and the corresponding quiver diagram of the
worldvolume theory. We are interested in the Higgs branch moduli space of the vortex
theory which we will describe as a C* projection of the master space. The Hilbert series is
obtained in order to characterize the master space, the C* projection and ultimately the
vortex moduli space itself.

The quiver theory for k U(N) vortices is strikingly similar to the ADHM construction
of k U(N) instantons. Given that the Higgs branch moduli space of k£ U(N) instantons has
been extensively studied with the help of Hilbert series [23-25], let us review the study of
instanton moduli spaces as a warm-up for vortices.

2.1 Vortices from instantons

k U(N) instantons revisited. The moduli space of instantons on C2 is the Higgs branch
of a N = 2 supersymmetric gauge theory in 3+ 1 dimensions. It is the worldvolume theory
of k D3-branes in a N D7-brane background. At the Higgs branch of the theory of k U(N)
instantons, the k D3-branes are on top of the N D7-branes, the position of the D3-branes
in the D7-branes being in C2.

The worldvolume theory is a 4d N' = 2 quiver gauge theory. Its quiver diagram consists
of a N' = 2 hypermultiplet and an N/ = 2 adjoint hypermultiplet. There is a U(k) vector
multiplet with a U(N) global symmetry. The U(1) of U(N) can be absorbed into the local
U(k) giving us a two noded quiver where one node corresponds to the local U(k) and the
other to the global SU(N).

The quiver and superpotential can be expressed in terms of A = 1 language by decom-
posing the N' = 2 hyper and vector multiplets into A/ = 1 chiral and vector multiplets. The
resulting quiver diagram is shown in figure 1. The fields carry the gauge and global charges



U(k) gauge U(N)global
SU(k)w U(1). | SU(N): |SU@2)c2 U1,
& |[1,0,...,0,1]p+1 0 [0,...,0], [0], 0
d1,02 | [1,0,...,0,1]u +1 0 [0,...,0], 1], 1
Q [1,0,...,0] +1 | [0,...,0,1, | 0], 1
Q [0,...,0,1]w ~1 | [1,0,...,0], | [0], 1

Table 1. Charges carried by the fields of the & U(NN) instanton quiver. The U(1) of the global
U(N) has been absorbed into the local U(k) for simplicity. The fugacity for the SU(2) g charge is ¢
and for the SU(2)c2-charge is q.

Q Q@
<>
U(k) U(N)

¢1
®2

Figure 1. N =1 quiver for the theory describing & U(NN) instantons in C2.

as shown in table 1.2 Spacetime is broken to R*! x C? x C where C? has an isometry of
U(2) = SU(2)¢2 x U(1), where the U(1), is the Cartan element of SU(2) . From the quiver
in figure 1, the superpotential can be written as follows,

W=Tr(Q ® Q+¢-D-¢o—y-P-1). (2.1)

For the Higgs branch, the k D3-branes are on top of the N D7-branes and hence we
have (®) = 0.

The ADHM data [22] is summarized by the quiver fields and the F-terms originating
from the superpotential. Following the construction, we analyze the Higgs branch of the
above supersymmetric quiver gauge theory as the moduli space of k& U(N) instantons.
The Hilbert series [23-25] is a generating function of gauge invariant operators and can
be used to characterise moduli spaces such as the instanton moduli space which we are
studying here. The Hilbert series encodes information about the generators and relations
formed among the generators. This information can be extracted from the Hilbert series

2 Notation: we use for the character of irreducible representations of SU(N) the notation [a1,...,an—1]z,
where the set of positive integers {a;} with 1 < ¢ < N —1 are the highest weight of the representation. The
corresponding Young diagram made of rows of length \; can be found using the identification a; = \j — Ai41.
The subscript « in [a1, . ,aN,ﬂz indicates which variable is used for the set of fugacities that count the
weights in the character. For example, the fundamental of SU(3) is written as [1,0] = =1 + 22 + %



through various techniques which we are outlining here with the example of the instanton
moduli space.

The generating function which counts all possible products of the quiver fields in table 1
is given by the following plethystic exponential® as first outlined in [19],

fi= PE[([I,O, 30, 1 + D[]t
FIL1,0,...,01wz2[0, ..., 0,1t +[0,...,0, 1]wz—1[1,0,...,0]xt} L (22)

The above generating function does not take into account redundancies under F-term
relations. The F-term takes the form

Fi=06W=0Q Q+d1-bs— b2~ 1. (2.3)

The F-term carries the U(1), charge of the superpotential and also transforms under the
adjoint representation of the gauge group. As such, the following generating function
counting contributions from from the F-terms should be added from from the generating
function in (2.2),

fo =PE| —([1,0,...,0,1], + 1)t*|. (2.4)

Overall, fifs is a generating function counting all gauge invariant and non-gauge in-
variant operators from quiver fields in table 1 subject to F-term constraints. The Hilbert
series of the k U(IV) instanton moduli space M5! can be calculated when one integrates

out the gauge charge dependence of the above plethystic exponentials,

9(@,q, t; M) = %dMSU(N)dNU(I) fife, (2.5)

where dugy(nvy and dpuy(p) are the Haar measures of SU(N) and U(1) respectively.

From the instanton to the vortex. It has been outlined in [3] and further evaluated
in [6, 7] and consecutive papers that the instanton theory is related to the theory of k
U(N) vortices. The worldvolume theory of the vortices is effectively a 1d theory which is
a dimensional reduction of a 2d N' = 2 superymmetric gauge theory. The construction of
the vortex moduli space from this quiver theory resembles the ADHM construction of the
instanton moduli space. In literature, the construction for vortices is also referred to as a
%—ADHM construction.

Considering the quiver for the ADHM construction of instantons, the construction
for the vortex moduli space precisely requires half of the quiver field content: a single
fundamental @ between U(k) and U(V), and a single adjoint ¢ = ¢;. The combination
of {¢,Q} precisely forms the field content of the vortex theory. Let us consider first the
brane construction for the & U(NN) vortex in the following section.

3For a multivariate function f(t1,...,t,), the plethystic exponential is defined as PE[f(t1,...,tn)] =
k k
exp [220:1 w] The PE acts as generator for symmetrisation of f(t1,...,t,). We refer to [30] for a

mathematical exposition of this property.



NS5 | x x X X X X
ND3 | x x x X
k D1 X

Table 2. k D1-branes and N D3-branes which are suspended between NS5-branes. The theory for
this brane construction has 4 supercharges. For simplicity we restrict to a 3d N' = 4 U(N) theory
in this work.

NS5-branes x>

N D3-branes

A

k D1-branes

Figure 2. Brane construction for k U(NN) vortices. It represents the Higgs branch of a 3d N/ = 4
U(N) Yang-Mills Higgs theory.

2.2 The brane construction and the vortex moduli space

Vortices in Type IIB string theory are realized by a construction of & D1-branes and N
D3-branes which are suspended between NS5-branes [3, 31]. The theory for this brane
construction is a theory with 4 supercharges. For simplicity, we take it here to be a 3d
N =4 U(N) Yang-Mills Higgs theory. Table 2 shows the brane picture in 9+1 dimensions.

The BPS vortices are represented by the £ D1-branes. We are interested in the Higgs
branch of the Yang-Mills Higgs theory where the FI parameter ( is non-zero. The mass and

1/2 The finite FI parameter

size of the vortices scale respectively as M, ~ ¢ and M, ~ ¢~
¢ relates to a decoupling of a NS5 brane from the rest of the construction. Between the

decoupled NS5-brane and N D3-branes are the k suspended D1-branes as shown in figure 2.

In order to describe the vortex moduli space, we consider the worldvolume theory of
the k& D1-branes. The worlvolume theory is effectively a 1d theory which is a dimensional
reduction of a 2d N' = (2, 2) supersymmetric gauge theory as mentioned in section 2.1. The
field content {¢, Q} of the theory consists of a complex scalar adjoint ¢ which parameterizes
the position of the & D1-branes in the x1-xzo plane. It also contains a fundamental @ in
the U(k) gauge group arising from D1-D3 strings. The vector multiplet contains the gauge
field and complex scalar fields parameterizing the degrees of freedom of the D1-branes in
the 23%% directions.
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U(k) U(N)

Figure 3. Quiver diagram of the k U(N) vortex theory.

The Higgs branch MY = Vv of the vortex theory is determined by a Kéahler

CkN+k2

quotient of parameterized by the k x k matrices ¢ and k x N matrices (). There

is no superpotential and therefore no F-terms. The D-terms are given by

where r is the finite non-zero FI parameter of the vortex theory for the Higgs branch Vj, .
The D-terms impose k? constraints and with the U(k) gauge group which results in a
further k2 reduction, the total real dimension of the Higgs branch reduces to

dimg (Vg ) = 2(k* + kN) — k* — k? = 2kN . (2.7)

The complex dimension is dim¢ = kN, and is precisely half the dimension of the k& U(NV)
instanton moduli space which we discussed in section 2.1.

We demand the D-term equations to be satisfied. For the vortex master space, gauge
invariance is only taken for the non-Abelian SU(k) part of the U(k) symmetry. The re-
maining U(1) has a Fl-term in the D-term equations, and as such for non-zero FI-terms
the D-term equations are set to be constant. This together with U(1) gauge invariance
amounts to complex rescaling of the SU(k) invariant baryonic operators along the U(1)
direction. This is the partial C* projection of the vortex master space in order to obtain
the full moduli space of the vortices. In the following section, we review the %—ADHM
construction similar to the construction of the instanton moduli space, and outline the
method of using Hilbert series to study partial projective spaces as moduli spaces of k
U(N) vortices.

2.3 The quiver and the Hilbert series

Vortex quiver. The field content of the vortex theory consisting of the adjoint scalar ¢
and the fundamental @ in the gauge group U(k) can be represented by a 2-noded quiver
diagram as shown in figure 3. The two nodes of the quiver diagram represent the gauge
group U(k) and the global symmetry group U(N). The transformation laws of the fields
are summarized in table 3.

There is no superpotential and hence no corresponding F-term equations. For gauge
invariance, we demand invariance under the non-Abelian SU(k) part of the U(k) gauge
symmetry. The remaining U(1) symmetry has a FI-term in the D-term equations. They are
set to be a constant due to the FI-term which combined with U(1) gauge invariance amounts



U (k) gauge U(N)global
SU(K)w U(l). | SUWV).  U)g | UQ), | U)s
¢ | [1,0,...,0,1],+1 0 [0,...,0], 0 1 1
Q' [0,...,0,1]y +1 | [1,0,...,0], —1 1 0

Table 3. Quiver fields of the vortex theory and their transformation properties.

to complex rescaling of the SU(k) invariant baryonic operators along the U(1) direction.
From the quiver in figure 3 we observe that only the fundamental @ transforms under the
U(1) parts of both the gauge U(k) and global U(N) symmetries. These transformations
under the two U(1)’s are not independent and as such we can absorb the U(1) of the local
symmetry U(k) into the U(1) of the global U(N) without any loss of generality.

Vortex moduli space. The vortex moduli space Vi for & U(NN) vortices is a partially
weighted projective space originating from a partial C* projection of the vortex master
space ]-",Z’ - We denote this relationship as follows,

Vin = WPy(qy [F;Z,N] . (2.8)

The projection of the master space F, Z y is along the U(1) part of the U(k) gauge symmetry.

The vortex master space .7-',27 n is a space of gauge invariant operators which are invari-
ant under the SU(k) part of the gauge symmetry. We make use of the Hilbert series to
identify the algebraic structure of the master space. By identifying the U(1) gauge charges
carried by the generators of .7-",27 N+ We can specify the projection into the full vortex moduli
space Vi n as a partially weighted projected space.

We make use of the following notation to describe the projection of ]-"27 ~ along the
U(1) gauge charges,

Vin = Fan/fon = Xy, .. an = Ao} (2.9)

where «; are the generators of }'z,N, w; are the U(1) gauge charges, and A is the C*
parameter. The master space is determined by the following symplectic quotient

Fi.n =C//SU(K), (2.10)

where ¢ is the dimension of the freely generated space of all quiver fields. Note that there
is no superpotential, and hence the master space here is determined without an ideal made
of F-term constraints.

The dimension of the master space ]-"Z’ y for the k U(N) vortex theory is

dimg Fp y = kN +1, (2.11)
which reduces via the C* projection to the dimension of the vortex moduli space
dimc Vi ny = kN . (2.12)

Figure 4 shows a graphical description of the vortex moduli space.



Vi.N x C = Vikn vortex moduli space

FP N X C P = ]—"‘Z N vortex master space
SU(k)

freely generated space

Figure 4. Vortex moduli space. The freely generated space of quiver fields is lifted to the vortex
master space ]-",Z’ ~ by quotienting out the SU(k) gauge charges. The full vortex master space ]—"Z’ N

contains the irreducible part of the master space ) y and the center of mass position factor C.
The C* projection leads to the vortex moduli space Vi n.

Vortex Hilbert series. For the Hilbert series computation, we have the following
plethystic exponentials that contribute to the Hilbert series. For the fundamental QY
we have the contribution

1
PE[[I,O,...,O]:C[O,...,O, o t} -

k—1 TN—1 T w;
| by Hj:l (1- ﬁwfuijl z t)

where g = zp = 1 and wy = wy = 1. The contribution from the adjoint ¢ is the plethystic

, (2.13)

exponential
1

— S

PE[([l,o,...,o, o + 1)3} = PE[[l,o,...,o, i s] . (2.14)

The Molien integral for the Hilbert series of the master space of k U(IV) vortices is
gr,un) (s, b, T; ]'-IE,N) = fdMSU(k)PE {[1, 0,...,0]2[0,...,0,1]y 2z t
+([1,0,...,0,1]y +1) s}
- 1:9fduSU(k)PE[[l,O,...,O]x[o,...,O, e 2 t

+[1,0,...,0, 1]y s} . (2.15)
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u(1) U(N)
Figure 5. Quiver diagram of the 1 U(N) vortex theory.

where djigy () is the Haar measure for SU(k). Note that the ﬁ prefactor corresponds to a
C factor of the vortex moduli space which parameterizes the centre of mass of the vortices.

3 1 U(N) vortex on C

As a pedagogical introduction, we go through the example of 1 U(N) vortices and re-
derive known results from [3] by making use of Hilbert series and the notion of vortex
master spaces. The quiver diagram of the 1 U(NN) vortex theory is shown in figure 5.

The moduli space. The Hilbert series of the 1 U(NN) vortex master space .7-"{ n does not
require a Molien integral. The U(1) gauge charges are kept in the Hilbert series in order
to identify the C* projection weights for the generators of the master space. Recall that
the generators of the master space x1, ..., x4 play the role of the projection coordinates,
where the C* projection is given by

(331,...71’61) >~ ()\wlxl,...,)\wd:cd). (31)
A is the C* parameter and wy,...,wy are the projection weights along the corresponding
projection coordinates x1,...,x4. These U(1) weights wi,...,wy are used to partially

project the master space .7-"{ n into the vortex moduli space Vi . The vortex moduli space
then takes the following form in analogy to the above projection,

ViN = .7:1b7N/{a?1 ~ Ny g~ ANy} (3.2)
where .7-"{ y 1s parameterized by its generators x1,...,z4.

The Molien integral and Hilbert series. The U(1) gauge charge is carried by the
fugacity ¢ corresponding to Q. Accordingly, in terms of the U(1) gauge and SU(N) global
symmetries of the vortex theory, the Hilbert series for the 1 U(V) vortex master space can
be written as,

glt, 5,2 F2 y) = PE[[I,O, o Olut 4 s} - %PE[[LO, . 70]3675] , (3.3)

— S

where [1,0,...,0]; is the fundamental representation of SU(N).

~10 -



Center of mass position. Note that the overall factor l—is in (3.3) corresponds to the

centre of mass position of the vortex in C. We can ignore the overall position of the vortex
and obtain the Hilbert series of the reduced master space F?; y excluding the centre of
mass position. The Hilbert series of the reduced master space is given by

g(t’sa'x;‘}_:l;LN):(lis)Xg(tvsax;Flb,N)' (34)

Note that the centre of mass is not involved in the projection of the master space into the
vortex moduli space because it is not charged under the U(1) gauge symmetry. . Accordingly,
we will later make use of this fact and project the reduced master space FbL N into the
reduced vortex moduli space Vi n = %7 ~ X C. In the following discussion, we, for simplicity,
refer interchangeably to 171, ~ and Vi y as the moduli space of the 1 U(NV) vortex on C.

Plethystic logarithm. The plethystic logarithm of the Hilbert series extracts informa-
tion about the generators of the moduli space and the relations formed by them. It is

defined for a multivariate function f(t¢1,...,t,) as
o~ (k)
— k k
PL{f(t,.. )] = Y 5 log [ £t ... th)] (3.5)

k=1

where (k) is the Mobius function. The plethystic logarithm is the inverse function of the
plethystic exponential. If the expansion of the plethystic logarithm of a Hilbert series is
finite with just positive terms, the corresponding moduli space is a freely generated space.
If the finite expansion contains both positive and negative terms, the moduli space is a
complete intersection generated by a finite number of generators subject to a finite number
of relations. If the expansion is infinite, the moduli space is a non-complete intersection.
The first positive terms of the expansion refer to generators of the moduli space. All
higher order terms refer to relations among generators and relations among relations called
syzygies. For a comprehensive review, the reader is referred to [14] and references therein.
In this work, we concentrate on the application of the plethystic logarithm in order to
study the structure of vortex moduli spaces.

3.1 1 U(N) vortex on C

The first few examples of the refined Hilbert series for the master space of the 1 U(V)
vortex theory are as follows,

-~ 1

g(t787$;Fbl,l) == mu
~ 1

t? 87 x; ‘Fb - M

g( 1) = A= 1y
—~ 1

g(t,s,x; FP13) = , (3.6)

(1—a1t)(1 — 224)(1 — -t)

- 11 -



The plethystic logarithms of the above Hilbert series are
PL |:g(t7 va;ﬁl,l)} = ta
oy 1
PL {g(t,s,x;f"lg)} =zt + —t,
x

g 1
PL [g(t, s,x;}""m)} = 1t + 244 ¢ (3.7)
I T2

We observe that the master spaces .7-"*1” y are freely generated spaces of dimension NV + 1,

F oy =CN+L (3.8)

)

As a character expansion in terms of characters of irreducible representations of the
global SU(N) symmetry, the Hilbert series is

o0

glt,s,x; FPin) = Y _[n,0,...,00:t", (3.9)
n=0
where the PE in (3.3) acts as a function generating symmetric products of the fundamental
representation of SU(NV).
The plethystic logarithm is the inverse function of the plethystic exponential. We recall
that the full master space ]-'1b7 Ny =CxF »1.v is generated via ¢ counted by s and Q counted
by ¢ in the vortex quiver diagram and the corresponding Hilbert series is

1
gt 5,25 5) = PE[[1,0,...,0],¢ + 5] = —PE[[L,0,.... 04 . (3.10)

— S

Since the plethystic logarithm is the inverse function of the plethystic exponential, we have
PL g(t,s,x;]—"lb’N)} — PL [g(t,&a:;fbl,]v) ts=1[1,0,...,00,t+s. (3.11)

In general, this analogy between the plethystic exponential and logarithm can be utilised
to identify the generators for more complicated moduli spaces.? For the simple case of
F bL ~ here, the generators can be summarised as follows,

[1,0,...,0],t — Q. (3.12)

We expect that the 1 U(N) vortex moduli space V; xy has complex dimension N.
The C* projection reduces the dimension of the master space .7-"'1’7 y by 1. According to
the Hilbert series in (3.11), the Q' are the only objects carrying a U(1) charge, which is
interpreted as w; = 1 for all Q'. Therefore, the C* projection of the reduced master space
F?1 N is given by

Vin = Fin/{Q = \Q'}, (3.13)
which implies that the 1 U(N) vortex moduli space is
Vin =CPN !, (3.14)

in other words, as the complex projective space of dimension N — 1. This result is known
for example from [3].

4For a complete review of techniques used here, the reader is referred to [14] and references therein.
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Figure 6. Quiver diagram of the 2 U(N) vortex theory.

4 2 U(N) vortices on C

We proceed here to the case of 2 U(N) vortices on C by generalizing the previous analysis
on 1 U(N) vortices with Hilbert series and vortex master spaces. The quiver diagram of
the 2 U(N) vortex theory is shown in figure 6.

The moduli space. We recall that the 2 U(N) vortex moduli space Vs y is a partial
C* projection of the corresponding master space .7:57 ~- The generators z1,...,24 of .7:57 N
are projection coordinates with corresponding projection weights wi,...,wg. Under the
C* projection, one has

(1,0 mq) = (N2, .., A 2g) (4.1)

where A is the C* parameter. Analogously, the master space is C* projected as follows to
give the vortex moduli space

Von = .7:571\[/{:1:1 ~ Ny, g = ANy}, (4.2)
where the generators x1, ...,y parameterize the master space ]-"5. N-

The Molien integral and Hilbert series. The computation for the Hilbert series of
the 2 U(N) vortex master space .7-"57 N Tequires an integral over the SU(2) gauge charges of
the vortex theory. The Molien integral is

g(t7 S, &3 VQ,N) = %dHSU(Q) PE |:[17 0,... ?O]x[l]wt + [2]1178 ) (43)

where dpugy(2) is the Haar measure of SU 2). The entries in the plethystic exponential
correspond to Q! transforming as [1,0...,0],[1]wt, and ¢ transforming in [2],s.

Center of mass position. Recall that the character for the adjoint representation of
SU(2) is [2], = w? + 1 +w™2. Accordingly, the integrand in (4.3) can be rewritten as

PE|[1,0,...,0];[1]wt + [ﬂws] 1 :

_SPE[[l,O,...,O]x[l]wt+ (w? +w2)s|.  (4.4)

The l—is factor above completely decouples from the Molien integral and corresponds to
the C factor of the master space and vortex moduli space. It relates to the center of mass

position of the 2 vortices and can be ignored in the following discussion of moduli spaces.
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We call the vortex master and moduli spaces reduced when we factor out the center of mass
position contribution and denote the spaces respectively by F bg, ~ and 92, ~- The partial
C* quotient of the master space does not involve the center of mass C factor. The Hilbert
series of the reduced moduli space 172, ~ is obtained therefore simply from the full moduli
space Va ny Hilbert series

g(t, 5,2 Vo n) = (1 —5) X g(t,s,2; Va.n) - (4.5)

The Hilbert series as a rational function. The first few examples of the refined
Hilbert series for the 2 U(N) vortex master spaces are

1
(1—s2)(1—st2)’
1— st
(=1~ B0 — B0 — )1 — %) (1.6

g(t7 S, x;be,l) -

g(tv S,T; Fb2,2) =

g(t,S,IL‘;]:blg) =
1+[0,1],st2 — [1,0],st* — s2t°
(1—82)(1—z7 2) (1 —a22st2) (1 —zyzy '12) (1 —29t?) (1 — 25 2st2) (1 — 2] a3st2)

Quiver fields and convention. SU(N), flavor indices are given by small i1,iy =

1,...,N and SU(k), color indices are given by a, = 1,2. The antisymmetric tensor

€ is used as a raising and lowering operator for gauge indices. The Casimir operators are

given by,

up = Tr(¢) =0

up = Tr(¢%) = 267, — 201162 (4.7)
4.1 2 U(1) vortices on C
The Hilbert series of the master space of 2 U(1) vortices is given by the following Molien

integral,

olt,5,:.75) = § dpsu PE[[Lut + [2s]. (4.8)

where dugu o) is the SU(2) Haar measure. The Hilbert series is
1

g(t, s,x;%g,l) = A=) (4.9)
The plethystic logarithm is
PL|g(t,s, x;.}:vbgyl)] = 5% +st?. (4.10)
We note that 3—"\;2,1 has dimension 2. The generators are
s2 — uy = Tr(¢?)
st? = A=en2RQ b5 Qp, . (4.11)

F91 is a freely generated space where the generators do not form any relations.
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Vortex moduli space. The C* projection of the master space gives
Vo1 = Fro1/{A~ XA} =C. (4.12)

For the general case of k U(1) vortices, the moduli space is simply

Vig = Fop/{A = \2A} =CF 1. (4.13)
The metric for the 2 U(1) vortex moduli space was studied in [8, 32].

4.2 2 U(2) vortices on C
The 2 U(2) vortex master space has the following Molien integral for the Hilbert series,

olt,5,2:755) = § dusuaPE (U1l + 21.5]. (4.14)

where [1]; is the character of the fundamental representation of SU(2). By removing the
contribution from the center of mass position of the 2 vortices, the Hilbert series is
1—s%tt

o0 7722) = (LB (L~ a1 )1~ 0 )

(4.15)

We observe that F?s 5 is a complete intersection of dimension 4. The character expansion

of the Hilbert series is
o

Z (2] s #2020 (4.16)

ng,n1=0

1

s, 23 Fra) =
g( 8, T 272) 1_ 2

The plethystic logarithm of the Hilbert series takes the form
PL|g(t, s,x;ﬁzz)} = 52 412 + [2]pst? — 5%t (4.17)
The generators of the master space are
§2 = uy = Tr(¢?)
2 M= 60‘10‘262-]-@21@{;2
[2],5t2 — AY = 60‘10‘26’8152le¢a251€2é2 , (4.18)
where we note that
A = AT (4.19)
Quadratic relations. Let us consider the symmetric product
Sym? [2]; = [4]; + [0]., (4.20)
and the term in the plethystic logarithm corresponding to the quadratic relation,
—s%tt, (4.21)
The quadratic relation can be constructed as follows,
—s%t" > R=det A — %u2M2 =0. (4.22)

Note that —s?t? is the corresponding contribution in the plethystic logarithm of the Hilbert
series shown in (4.17).
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Vortex moduli space. The C* projection of F b272 depends on the U(1) gauge charges
encoded in the @, fugacity ¢ in the Hilbert series. The vortex moduli space is

Voo = Fron/{M =~ N2M, Al = \241} (4.23)
where
Faz = Clug, M, AY]/{R = 0}. (4.24)
The dimension of 9272 is 3. This reproduces the result in [6, 7].
4.3 2 U(3) vortices on C

The Hilbert series for the 2 U(3) vortex master space is given by the Molien integral

ot 5,23 Fy) = j[ dpsu@ PE[[1u[1, 0l + [2us] (4.25)
When the contribution from the center of mass of the vortices is removed, the integral gives

g(t,s,x; FP3) =
1+[0, 1]st2—[1, 0] zst* — s2t0
(1—82)(1—z7 1 2) (1 —22st2) (1 —zy25 1 12) (1 —29t2) (1 — 5 2st2) (1 — 2 223 5t2)

. (4.26)

where we notice that F? 3 is a Calabi-Yau space of dimension 6.° The character expan-
sion is
oo

D [2n1,nglpsm R0 (4.27)

no,n1=0

1
1— 52

g(t, s,a:;]:bQ,g) =

The plethystic logarithm of the Hilbert series has the following expansion
PL|g(t, 5, 23 ﬁg,g)] = 52 1[0, at? + 2, 0]pst? — [1,0]pstt — [0, 20082t + ... (4.28)

The expansion is infinite and therefore we identify the master space as being a non-complete
intersection. The generators can be identified from the above plethystic logarithm as

5% — uy = Tr(¢?)
[0,1],8% — MY = eM2Ql, Q)

a1 vas
[2,0]u5t” — A7 = €12 M2Ql G4,5,Q (4.29)

where we have
MY = —MI* | AY = AT¢, (4.30)

SUnder a theorem by Stanley [33], when the numerator of the Hilbert series as rational function is
palindromic, the corresponding moduli space is Calabi-Yau.
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Quadratic relations. For the quadratic relations,® we consider the following products

of representations,

[0,1], x [2,0]; =
Sym? [2,0], = [4,0], + [0, 2] (4.31)

|
=
8
4
=

From the plethystic logarithm in (4.28), we identify the terms
—[1,0],st* — [0,2],5*t" (4.32)
as corresponding to the following quadratic relations respectively,
—[1,0]st* = R; = %ejklAiijl =0
—[0,2],5°t" — Sij = AuAj; — A + %ugMiiji =0. (4.33)
where
S = 0. (4.34)
Vortex moduli space. The vortex moduli space is
Vos = Froa/{My ~ N2My, AV ~ N2AiT} | (4.35)
where

52,3 = Clug, My, A¥]/{R; = 0,S;; = 0}. (4.36)

The dimension of the above reduced vortex moduli space is 5. The 2 U(2) vortex moduli
space has been studied in [5] in the context of cosmic U(2) strings.
4.4 2 U(4) vortices on C

The master space of the 2 U(4) vortex theory has the Molien integral for the Hilbert series,

gt 5,0 ) = f{ dpsue) PE[[11u[1,0,0,¢ + 2] (4.37)

where [1,0, 0], is the character for the fundamental representation of SU(4),.
The character expansion is
o0

> [2n1,n0, 0]ps 7m0 (4.38)

ng,n1=0

1

g(tasax;]:bQA) = 1_ 82

Relations among relations, also known as syzygies, are derived from the quadratic relations which we
present here. A simple example illustrating this is the Wess-Zumino model with 3 chiral multiplets X,
Y and Z and the superpotential W = XY Z. The reader is encouraged to review [24] for a pedagogical
introduction.
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The corresponding plethystic logarithm is given by
PL|g(t,s,2; Fo4)| = 5% +[0,1,0],¢% + [2,0,0],st> — t* — [1,0, 1] st
—[0,2,0],8%t + ... . (4.39)

The plethystic logarithm has an infinite expansion. Accordingly, the reduced master space
is a non-complete intersection Calabi-Yau space of dimension 8.
The generators are
5% — uy = Tr(¢?)

[0,1,0],¢* — MY = e1*Q!, Q’

a1 a2
[2,0,0],st> — AY = Q% ™' QI , (4.40)
where
M9 =M A = AT (4.41)

Quadratic relations. The terms in the plethystic logarithm in (4.39) corresponding to
the quadratic relations are

—t* —[1,0,1]st* — [0,2,0],5%". (4.42)
Let us consider the following products of SU(4) representations

Sym? [0,1,0], = [0,2,0], + [0,0,0],,
2,0,0], x [0,1,0], = [2,1,0], + [1,0,1],,
Sym? [2,0,0], = [4,0,0], + [0,2,0], . (4.43)

Using the representation products, we construct the quadratic relations as follows
1 ..
—t* - R= ge”klMiijl =0

. 1 .
—[1,0,1]pst" — ' = —e™™ A My, = 0

2
—[0,2,0],8%* — Tijm = AiAj — Ay + %uQMiijl =0. (4.44)
The relations exhibit the following properties,
S, =0
Tijir = ik, Tijir = —Tint » Tijrr = —Tijike - (4.45)

Vortex moduli space. We can express the vortex moduli space as the following C*
projection

Vaa = Froq/{MT o NEMW, AT ~ \2AU) (4.46)

where A is the C* parameter. The master space is given by

Fr24 = Clug, MY, AY]/{R = 0, 5"; = 0, Ty = 0} .
(4.47)

The dimension of the above reduced vortex moduli space is 7.
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4.5 2 U(5) vortices on C

Let us consider the master space of 2 U(5) vortices whose Hilbert series can be computed
via the following Molien integral,

g(t, s, Fp5) = j{duSU@)PE[mw[L 0,0,0]5 + [Z]ws} . (4.48)
The character expansion of the Hilbert series is
— 1 e
g(t, S,SL';]'—bg,g,) — 2 Z [2n1,n0, 0, 0]x8”1t2"0+2m ) (4.49)
no,n1=1

The plethystic logarithm of the Hilbert series is
PL g(t,s,x;}/blg)] — 2 4[0,1,0,0]5¢% + [2,0,0,0]pst2 — [0,0,0, 1],¢4
—[1,0,1,0],st* —[0,2,0,0],8%* + ... . (4.50)

The reduced master space is a non-complete intersection Calabi-Yau and has dimension 10.
The generators of the master space are

s% = uy = Tr(¢?)

0,1,0,0],t% — MY = 2@t QJ

[6%] a2
[2,0,0,0],st> — AY = QL Q7 , (4.51)
where we have
MY = —MIH | AT = AT (4.52)

Quadratic relations. The plethystic logarithm of the Hilbert series in (4.50) has the
following terms corresponding to the quadratic relations between generators,

—[0,0,0,1],t* = [1,0,1,0].st* — [0,2,0,0],5%*. (4.53)
Let us consider the following representation products

Sym?[0,1,0,0], = [0,2,0,0], + [0,0,0,1],,
2,0,0,0], x [0,1,0,0], = [2,1,0,0], + [1,0,1,0],,
Sym?[2,0,0,0], = [4,0,0,0], + [0,2,0,0],. (4.54)

Using the representation products, we construct the quadratic relations as follows,
1
—[0,0,0,1],t* - R = ge”’“““ijka =0

g 1 ..
—[1,0,1,0],st* — SV, = 5aﬂm’%kzMWm =0

1
—[O, 2,0, O]x82t4 — Tijkl = AikAjl — AilAjk + §UQMZ']‘MM =0, (455)
where the relations satisfy
Sikk - 07
Tijrr = Tia , Tijrr = —Tjint » Tijrr = —Tijig. - (4.56)
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Vortex moduli space. Given the generators and the quadratic relations of the master
space, we can express the vortex moduli space as the following C* projection,

Vs = Fos/{MU o NEMU | Al o \2A1} (4.57)
where A is the C* parameter. The master space is
Fos = Clug, M3, AT /{R' = 0,87, =0, Tyjy = 0} (4.58)
The dimension of 3-:"25 is 9.

4.6 2 U(NN) vortices on C
For the general case of 2 U(N) vortices, the Molien integral for the Hilbert series of the

master space is

g(t, s,x;}";N) = %duSU(g)PE[[l]w[l, 0,...,0]z + [2]ws] , (4.59)

where [1,0,...,0], is the character for the fundamental representation of SU(N),. When
unrefined by setting the fugacities for the SU(N), characters to z; = 1, the Hilbert series
for the first few values of IV are

—~ 1
t,8;F’21) = ,

95 70) = Ty )
— 1— 82t4
. Th _

g(t,s7}" 2,2) - (1 — 82)(1 — t2)(1 — 8t2)2 )
~ 1+ 3st2 — 3st* — s2t6
. TH _

g(t7 Saf 2,3) — (1 — 82)(1 _ t2)3(1 — 8t2)3 3
= 1+ 2 + 6st2 — 9st* + s2t* + st8 — 95216 + 65218 + 318 4 §3¢10

g(t,s; Fa4) =

(1—s2)(1— 2)5(1 — st2)2 !
1

T L) — 2 2 44 4
g(t,s; F25) = A=) (1= 27 (1= 52 x (14 3t* + 10st* +t* — 15st

+552t% — 5510 — 40525 + 40528 + 553% — 552410 4 1553410
410 _ 103412 _ 344412 _ s4t14) ’
1

g(t, 51 Frag) = 1= 21— 2P — 25 " (14 6t2 + 15st> 4 6t* — 155t
+155%t1 41 — 365t5 — 1205210 + 3% — 65t° + 1265%° 4 653¢°
+652t10 + 1265310 — 65410 4 5212 — 1205312 — 365412 4 57112
+1553t1 — 15541 + 6571 4 155416 + 657110 + $2¢18) |

ot 5 27) = (1-)(1- t12)11(1 — g7 < (14108 + 21527 + 200!

+355%t% 4+ 10t° — 112st% — 2805%5 + 7531% + 5 — 70st% 4 2245218
—355°t% — 7st10 4 2105210 4 6585310 — 21510 + 2152412 — 65853 ¢12
—210s* 12 + 75512 + 355314 — 224541 4 7055414 — Ot — 753416
+2805416 4+ 11255416 — 1059416 — 355418 — 205018 — 215°¢2°

—105%¢20 — s6¢22) (4.60)

where we have removed the contribution from the centre of mass position of the 2 vortices.
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We observe that the numerators in (4.60) are all palindromic. This indicates that the
vortex master space is a Calabi-Yau manifold. Refined and as a character expansion, the
Hilbert series for the reduced 2 U(N) vortex master space takes the following general form

. 1 [ee) o
gt 5,1 FaN) = 7= 373 201,10,0, ., 0]psm R0 (4.61)
no=0n1=0

The plethystic logarithm of the Hilbert series is
PL|g(t, 8,2?;}\-;271\7)} = 5+5°410,1,0,...,0],t> +[2,0,...,0],st
—[0,0,0,1,0,...,0],t* = [1,0,1,0,...,0].st*
—[0,2,0,...,0],8%t* + ... . (4.62)
The first positive terms of the plethystic logarithm correspond to the generators
52 = ug = Tr(¢?)
0,1,0,...,00,t> = MY = em2Q!, Q7
2,0,...,0]st> = AY = Q% ¢™1*2QJ, . (4.63)
The generators satisfy the following,
M = —MIt AT = AV (4.64)

Quadratic relations. The plethystic logarithm of the Hilbert series of the master space
exhibits the following terms corresponding quadratic relations between the generators of
the master space,

—[0,0,0,1,0,...,0],t* = [1,0,1,0...,0],st> — [0,2,0,...,0],s%t*. (4.65)
which respectively correspond to the following quadratic relations between generators,

o 1. . _
—[0,0,0,1,0,...,0],t* — Ri~iv-a = Zhin-aiklmpyr, pp o — 0

8
R 1. .
—[1,0,1,0,...,0]st* — SN0 = 5e“---ZN%’”‘?“”Ajlem -0

1
-10,2,0,..., 0]3382154 — Ty = AikAjl — AilAjlc + §U2Mi]’Mkl =0. (4.66)
The above relations satisfy
i1.. AN —3 o
S in_s =0,

Tijii = Tjak,  Tijrr = =Ty, Tijw = —Tijik - (4.67)

Vortex moduli space. The moduli space of 2 U(IV) vortices is expressed as the following
C* projection,

Van = Foon/{Mi o0 XM AT o N2 A0 (4.68)
where the master space is given by
Foon = Clug, MU, AlF] J{Rit-in-1 = SN = 0, Tyjpg = 0} . (4.69)

The dimension of the reduced 2 U(N) vortex moduli space is 2N — 1.
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Figure 7. Quiver diagram of the 3 U(N) vortex theory.

5 3 U(NN) vortices on C

The quiver diagram of the 3 U(N) vortex theory is shown in figure 7.

The moduli space. The moduli space of 3 U(IN) vortices V3 y can be expressed as a
C* projection of the master space Fg’ y of the vortex theory. Given the generators of the
master spaces, &1, ..., Iq, the C* projection acts as follows on the master space coordinates

(X1, .., 2q) =~ (A, ..., AYxy) . (5.1)

A is the C* parameter and wy,...,w, are the U(1) weights for the C* projection of the
master space. Following the coordinate identification in (5.1), the master space is C*
projected as follows,

V3N = ng/{a:l ~ ANy g 2 Ayt (5.2)

The Molien integral and Hilbert series. The Hilbert series of the master space of 3
U(N) vortices is given by the following Molien integral

glt,5,3.75) = § dusue) PE[IL0...., 010, Tt + [1, 1] (53)
where dpgy(s) is the Haar measure for SU(3). The entries of the plethystic exponen-
tial correspond as expected to Q°, transforming in [1,0,...,0].[0, 1],t and ¢ transforming
in [1,1]ys.

Center of mass position. The integrand in the Molien integral for the Hilbert series
of the vortex master space can be rewritten as follows,
1

— S

PE[[l,O,...,O]x[O, ut + 1, 1us| = 7==PB|[L,0,...,0L:[0, 1]t (5.4)

+ (wiws + wiwy '+ wiwi 4+ 1+ wiwy? + wiPwe + wflwgl)] :
where the character of the adjoint of SU(3) is given by
[1,1]y = wywy + w%w;l + w;lwg + 2+ wlwgz + wf2w2 + wflwgl . (5.5)

The prefactor 2 in (5.4) refers to the center of mass position of the 3 vortices. The center
of mass position contributes in the vortex master space .7-"57 ~ and moduli space V3 y with
a C factor. This contribution does not interact with the C* projection of the master space
and therefore can be safely taken out from the following discussion. The reduced vortex
master and moduli spaces are denoted respectively by 7?3 y and 173, N-
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Quiver fields and convention. The SU(N) flavor indices are given by i1,i2,i3 =
1,...,N and SU(k) color indices are given by «, = 1,2,3. The components for the
adjoint ¢np satisfy ¢33 = —¢p11 — ¢a2 such that

P =0. (5.6)

Note that for SU(3) we use o3 as a raising or lowering operator. Using the choice of
adjoint above, we obtain the following traces which we use in the discussion of vortex
moduli spaces,

up = Tr(¢) =0

up = Tr(¢?) = 207, + 2012021 + 2011022 + 2655 + 213031 + 2023032

uz = Tr(¢°) = 311012021 — 3071 d22 + 3P12021 22 — 3P11037 — 3P13¢22631 + 3d12623031
+3¢13921P32 — 3P11P23P32 - (5.7)

5.1 3 U(1) vortices on C

The Hilbert series of the 3 U(1) vortex master space is

—~ 1
t,s,x;FP31) = : 5.8
g( PR 3,1) (1— 82)(1 — 83)(1 — 83t3) ( )
The master space generators are
s2 = ug = Tr(¢?)
s3 — uz = Tr(¢?)
343 Ao — 210203 b1 B2 133 5.9
S — 012 € Qal d)oQQﬁl ¢a3¢52Q53 ) ( . )
and the vortex moduli space under the C* projection becomes
]7371 = fb371/{A012 ~ )\3A012} = (C2 . (5.10)

This agrees with the generalization for k& U(1) vortices.

5.2 3 U(2) vortices on C

The Hilbert series of the 3 U(2) vortex master space can be obtained by solving the following
Molien integral

ot 5,3 P22) = f o) P[0, Ut + (1. us] (5.11)

The solution to the integral is

1+[1],8%3 +[1] 833 +55¢0

T ) —
90t 823 7732) = G ) (103 99) (1 —st) (1 —a—15%) (1 —35309)

. (5.12)

F?39 is a non-complete intersection Calabi-Yau space of dimension 7.
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As a character expansion, the Hilbert series is

1

L) =
9(t:5, @ Fa2) = Ty =)

oo oo o0

X Z Z Z [nl + ng + 3713]x8n1+2"2+3”3t3n1+3n2+3n3

n1=0n9=0n3=0

+ [nl + nQ]x8n1+2n2+3n3+3t3n1+3n2+6n3+6 . (513)

The plethystic logarithm of the Hilbert series is

PL[g(t, 5,2 F30)] = s+ 8"+ 8° + [1pst® + 1557 + [3]05°°
— (2] 0 — [2]28°t° — [2]05%° + ... . (5.14)

The generators of the master space are identified from the plethystic logarithm as follows

s* = uz = Te(¢?)
s° = ug = Tr(¢”)
[]est® — Ajor = ﬁalawgﬁijngZzﬂﬁgéQﬁ
py [ Al = Q@ 00 O,
(s =4 3 Ay = €202 00, 00505, 0030,
— Aoz = —Adn

3,3 Ay = er0z03Ql, ¢ 3, ¢§§¢§§Qg3
[3]s°t” — Gisk _ giik o ajki L akij :
— Og12 = Agiz T Apr2 T Agra

The indices of the generators Ajy5" are symmetrized to obtain Séjl’;.

Quadratic relations. The plethystic logarithm of the Hilbert series of the vortex master
space encodes the quadratic relations formed by the generators. The following terms of the
plethystic logarithm correspond to the quadratic relations,

—[2]25*0 — [2]5°1°% — [2],5%5 . (5.15)
From the above discussion of generators, we recall that the generators are
ug ,ug , Ap2s | Giis (5.16)
Let us go through each of the relations separately as follows:

o —[2],55 relations. We note that

[1]96 X [3]96 = [4]96 + [2]06 (5‘17)
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Accordingly, the relations which transform in [2],5%° can be obtained via the follow-

ing products of generators which also transform in [2],s*5,

ii _ i J
T = U2A001Aoo1v
ij Al J

Tiun- = Avo2 4002 »

)ij = quAg()ngiJz . (5.18)

(I
Using the above product expressions, the relation at order [2],5%° can be identified as
—[2]es™% = RY = vy — 61" — 4rn =0. (5.19)
Note that the relation above is symmetric in its indices,
RY = RI*, (5.20)
—[2]8°t% relations. The products that could contribute to a relation at order [2], 5%t
are as follows,

p(I)ij = U3A601A6017
)U = “214601146027
= quAgozsgi]z‘ (5.21)

bur
P(IH)”

Given the above products, we are able to construct the following relation correspond-

ing to the order [2],s°5,

—[2125°t® = PY =2py"" — pan” — pan’’ — Apamn = 0. (5.22)
The above relation is symmetric in its indices,
P4 = pit, (5.23)
—[2],5%% relations. Let us first write down the products of generators that correspond
to order [2],55¢5 as follows,
g o 1 ,
o = uzAbo1 Ador »
on" = u2Ap024%02 ,
o(rrn” = u3Agor Agos
o) = epgAbo1So1%
] Pri gqsy

o) = epgersSe1aSHTs - (5.24)

From the above, the products O(])ij, O(][)ij, O([v)ij can be used to form the following
relation at order [2],s5¢5,

—[2]x86t6 — Oij = O(I)ij - GO(II)ij - 40(1‘/)” =0. (525)
The relation above is symmetric in its indices,

0" = 07", (5.26)
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Vortex moduli space. The vortex moduli space can be expressed as a partial C* pro-
jection of the vortex master space F?32. The projection is given as follows,

Vao = Fo30/{Acor® = X3 Aoo1’, Aon2’ = M Agoa’, So1a™* = MSo127%},  (5.27)

where A is the C* parameter. The vortex moduli space is as expected 5 dimensional. The
vortex master space is given by the following quotient

Fr39 = Clug,us, Aoo1’, Aooz’, So127¥]/{RY = 0, P¥ = 0,0% = 0} . (5.28)

5.3 3 U(3) vortices on C

For 3 U(3) vortices, the Hilbert series of the master space is given by the following Molien
integral

g(t,, 25 Fras) = f{ dpisusPE[[0, 1,0t + [1, 1us] (5.29)

The Hilbert series for .%vb?,,g is

1
X
(1—52)(1—s3)(1—3)(1 — st3)4(1 — s3t3)3
(14 4st® 4+ 85%% + 7533 + 5210 + 5535 + 10s4° 4 115°¢° 4 564
—sM9 —116%4° — 10s%4° — 557t — B9 — 757412 — 8sBt12 — 459412

—s10¢15) | (5.30)

g(t,s; F’33) =

where for simplicity we have set the global SU(3) fugacities to 1 = z3 = 1. F’33 is a
non-complete intersection Calabi-Yau space of dimension 9. The character expansion of
the Hilbert series is

1

-
9(7831'7]:3,3) (1—82)(1—83) X

(o S IENe CBNe o}

SDIDIDS

np=0n1=0n2=0n3=0

[nl + na + 377,3, ni + nz}xsnl+2n2+3n3t3n0+3n1+3n2+3n3

_|_[n1 + na, 1 + ng + 3n3 + 3]xSnl+2n2+3n3+3t3n0+3n1+3n2+6n3+6 ) (5‘31)

The plethystic logarithm is

PL|g(t,s,z; 3—"77373) = 52 4 53 13 4 [1,1)pst + [1,1],8%% + [3, 0] 533
(U (1, 1) — (14 2[1, 1], + 3,050
—(1+2[1,1]% + [2,2]2 +[3,0])s*° + ... . (5.32)
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The generators of .}-"vbg’g are as follows
$2 = ug = Tr(¢2)
s3 — uz = Tr(¢?)

t3 Bijk — 010203 ?‘11@&2@]&3
3 B = B123 +BQ31 +B312

3 Agor,) = em10203¢, 4 QR Q%CﬁggQ%
[1,1]st — ,
A .Z = 0
0014

Agoz;” = €123 1 QR QR o002 QY
2,3 j ' k k
[1,1as’t> = § Agu,” = 41029 ¢, 1, Q, 605 Q! $oc Q12
— Agoz;” = — Ao’
3,06 s | A2t = €m0 60,05, 0030, OF,
’ So127% = Ag127F + Ag1o?* + Ag1o*

The generators for [3,0],s%t* come only from the partition 012, giving Agg%. This in turn

is symmetrized to give Sgi5 "

Quadratic relations. The terms in the plethystic logarithm corresponding to quadratic

relations are

—5216 — [1,1],5%t0

—53t0 — 2[1,1],8%5 — [3, 0] .53t

—s46 — 2[1,1],5%5 — [2,2],5%5 — [3,0],5%5 (5.33)
—[1,1],8°t5 — [2,2],8°5 — [3,0],57t
—[2,2],5%5.

We recall, the generators are
ug,uz, B, Aoor,” , Aooz;” » Sor2"" . (5.34)

Let us go through each of the quadratic relations that are given by the terms in (5.33) in

the plethystic logarithm.

2,46
t

The first set of quadratic relations at orders of s°t° are as follows:

o —5t% relation. We see that this quadratic relation transforms as a singlet in SU(3),.

Considering the following symmetric product which contains the singlet [0, 0],
Sym? [1,1], = [2,2]; + [1, 1] +[0,0],, (5.35)

we identify the following generator products in order to construct the desired
quadratic relation,

ra, = BAooz,’

ran, = Aoo1;* Aoor,!
T = u3BB, (5.36)

—97 —



which all transform in —s%t®. Using the above products correctly, we construct the
relation

— 5%t R([) = 47’(1[[) — 9(7’(11)11 + 7‘(]1)22 + 7’(11)33) =0. (5.37)

e —[1,1],5%t% relations. Given that at this order the relations need to transform in
[1,1],5%t%, the following relations can be identified using the products in (5.36)
—[1,1]05°t® = Ry = 3rpy,) — 2r(p,” = 0. (5.38)

The next set of quadratic relations are at orders of st6. In order to construct the

quadratic relations, we consider the following representation products,

Sym?[1,1], = [2,2], + [1,1]. + [0,0], ,
(1,1], x [1,1], = [2,2]4 + [3,0]z + [0, 3], + 2[1, 1], + [0,0], . (5.39)

The quadratic relations are as follows:

o —s3t0 relation. For this order, we first consider the following generator products,
py;” = Avori® Aoy,
pur = usBB. (5.40)

The quadratic relation for this order is
Py = 4parn) — 9(19(1)11 +P(1)22 +p(1)33) =0. (5.41)

o —[1,1],5%°® relations. For the quadratic relations at this order, we have to consider
the following products of generators,

) s i _pqr
parn’; = Aootp Aoozg € €sri s
Pav)'; = Aoozp Aoorg € €sri - (5.42)

The above generator products transform in the correct representation of SU(4) for
this order, and satisfy the following quadratic relation,

P(H)ij = p(fn)ij +p(1v)ij =0. (5.43)
The above is the correct relation for this order of the plethystic logarithm.

The next set of quadratic relations are of the order st5. In order to construct the
quadratic relations at this order, we consider first the following SU(3) representation pro-
ducts,

[370]96 X [17 l]x = [4’ 1];t + [27 2]95 + [3a O]x + [17 1]96 y
Sme[l, 1]9@ = [27 2]:]0 + [17 1]36 + [Oa O]x s
(1,1]s % [1,1]e = [2, 2]z + [3,0]z + [0, 3]s + 2[1, 1]z + [0, 0], - (5.44)

We make use of the above information to construct the quadratic relations at this order as
follows:
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—5%t% relations. For the quadratic relations at this order, we need to consider the

following generator products,

uy = AOOQZ‘jAUO2ji7
() = (u2B)?, (5.45)

which transform as a singlet of SU(3). The above generator products form the fol-
lowing single unique quadratic relation,

2
U(I) = U(I) - §U([]) = 0, (546)

which is the relation we are looking for at this order.

—2[1,1],5*° relations. The quadratic relations at this order can be constructed from

the following generator products,

wirn, = Aoo2;* Aoz,
uvy,” = Aooz;” Aoozy”
U(V)ij = U3Aoo1iJ‘B,
U(V[)ij = UQAOOQiJB . (547)

All the above generator products transform in the adjoint of SU(3). They satisfy the
following quadratic relations,

2

U(U)z'j = u(fV)z'j - §U(V1)ij =0,
. 1 9 .
Uam,” = uain;’ = 3uvn’ = guw),” =0- (5.48)

The above are precisely the two quadratic relations expected for this order.

—[2,2],5%5 relations. For this order, the quadratic relation can be constructed by
considering the following generator product and its index symmetrisations and anti-
symmetrizations. The generator product to be considered is as follows,

uyrn M = Agor,)” So12™™" (5.49)

which we anti-symmetrize in its indices [kl] and [mn],

ijklmn __ ijklmn ijlkmn ijkinm ijlknm
/ = / —ueyry” —ueyrry” +uwn® . (5.50)

WV IIT) Ui

We further symmetries the above in the pair of indices [kl] and [mn] as follows,

U(Iv)ijklmn — u(VIII)ijklmn + U(VIII)ijmnkl _ 0’ (551)

which vanishes exactly. This is precisely the quadratic relations at this order.
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e —[3,0],5%° relations. The quadratic relation at this order can be obtained by con-
sidering the following product of generators and its symmetrisation of indices. The
generator product to consider is,

wirx) " = Ago1 28012 F e ey (5.52)

where we symmetrize on the indices ijk to obtain,

U(V)ijk = “(IX)ijk + “(IX)jki + “(IX)kij =0. (5.53)

The above vanishes exactly and corresponds precisely to the quadratic relation at
this order.

The following set of quadratic relations involves the order s°t5. In order to construct
the relations at this order, we consider the following SU(3) representation products,

[3,0]x x [1,1]s = [4,1] + [2,2]x + [3,0]x + [1, 1],
Sym?[1,1], = [2,2], + [1, 1]z + [0,0] ,
[1,1], x [1,1], = [2,2]z + [3,0]z + [0, 3], + 2[1, 1] + [0,0], . (5.54)

The above representation products help us in finding the following quadratic relations

between moduli space generators:

o —[1,1],s°t® relations. For the quadratic relation at this order, we consider first the
following generator products,

- ) .
vny;” = Aooz; So12" epgr

van,” = usAoor,” Aoory - (5.55)

The above products transform as desired in the adjoint of SU(3). Furthermore, the
products satisfy the following quadratic relation,

4 1 ,
Vi = v, + 5van’ =0, (5.56)

which is precisely the relation we are looking for at this order.

o —[2,2],5%t% relations. For the quadratic relation at this order, we have to con-
sider the following generator products with their index symmetrization and anti-
symmetrizations. The first generator product to consider is the following,

v M = Agi1,FSo1a ™ e (5.57)

which we anti-symmetrize in the indices [kl] and [mn] to get
ikl ikl i1k ikl Lk
’U(IV)” = U(IH)” m— U(HI)” m— U(HI)Z] 4 ’U(IU)” e (5.58)
We further anti-symmetrize the above in the pairs of indices [ij] and [mn] as follows
ijklmn

v — U(Iv)ijk:lmn . U(Iv)mnklij ) (559)

— 30 —



The second generator product to consider is as follows

ikl k
vn?""" = uzAoor, Aoot,” €pij€rim » (5.60)

which we anti-symmetrize in the indices [kl] and [mn] to get
_ U(Vl)ijlkmn _ U(Vl)ijklnm + U(Vl)ijlknm ) (561)

ijklmn ijklmn

Vv Ir) =Ywvr)
We symmetrize the above product in the pairs of indices [ij] and [kl] to obtain
,U(VIII)ijklmn — U(VII)ijklmn + U(V]I)klijmn ) (562)

The above two generator products form the following quadratic relation,
y y 1 y
Vv([[)z]klmn _ U(V)ljklmn + 6,U(VIII)lJmnlcl — 0? (563)
which is precisely the relation we are looking for at this order.

e —[3,0],5°t® relations. The quadratic relation at this order can be found by consider-
ing the following generator products. The products to consider are

virx) 7" = Aooz,” So27"
’U(X)ijk == UQSO]_Q ijk B. (564)
The above two products satisfy the following quadratic relation,
. e 2 i
Viarn % = vix) 7% - V() * =0, (5.65)

which is precisely the relation we are looking for at this order.

The final quadratic relation is at order s°¢5. We consider the following SU(3) repre-

sentation products for the construction of this relation,

Sym?[3, 0], = [6,0]s +(2,2], ,
3,0l x [L, 1] = [4, 1] +[2,2]c + [3, 0] + [1,1]
Sym®[1,1]s = [2,2]; + [1, 1z + [0,0], ,
[17 1]a: [17 1]96 = [27 2]1: [ ]x + [ ] + 2[17 1}9& + [07 O]x . (5‘66)

The above products help us in finding the correct generator product which leads to the
following final relation between generators:

o —[2,2],55t% relations. The final quadratic relations can be obtained by considering
the following generator product,

Z(I)ijklmn _ SOl2iij012lmn , (567)
which we anti-symmetrize in the indices [kl] and [mn] as follows

ijklmn ijklmn z(])ijlkmn _ Z(I)ijklnm + Z(I)ijlknm ] (568)

(1) = A1)

Another symmetrization of the pairs of indices [kl] and [mn] gives

zijklmn ijklmn + Z(Il)ijmnkl =0, (569)

= A1)

which vanishes exactly and represents precisely the quadratic relation at this order.
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Vortex moduli space. The vortex moduli space can be expressed as a C* projection of
the master space. The C* projection gives as the vortex moduli space the following,

_ — , o , o . e ae i
V33 =F33/{B; ~ X°B, Ago1;” ~ N> Aoo1;” , Aooz;” = N> Agoz;” , So12”7" = A Sp127"} .

(5.70)
The master space is expressed as follows,
F33 = Clug, u3, B, Aoouj, AOOQij’ So127%]/{
Ry = OvR(H)ij =0,
Pay=0,FPm'; =0,
Vi, =0, Vyp7Hm =0,vn* =0,

where the quotient is taken by all quadratic relations of the master space generators.

5.4 3 U(4) vortices on C

The Hilbert series for the 3 U(4) vortex master space is obtained from the following Molien
integral

g(t, 5,2, F34) = fduSU(g)PE[[o, w[1, 0,004t + [1, 1}ws] , (5.72)

where [1,0, 0], is the character of the fundamental representation of the global SU(4). The
integral gives the following Hilbert series

1
(1= 2)(1— s3)(1 — )31 — s3)(1 — s313)1

(1 + 14st® 4 2052t + 165°t> — 165t + 55210 + 46535 4- 905116

+605°t% 4 105%° 4 4517 — 44527 — 10453t — 1565%° — 1565°¢°
—605%t — 2457° + 215212 + 2553112 + 235%12 + 655712 — 7355412
—19557t12 — 20755412 — 815912 + 10412 4 sM 412 4 1453415

4345115+ 22551° 4 20655¢1° 4- 43857t1° 4- 4385541 4- 206517
+22510415 1 34511415 4 14512415 4 1418 4 5118 8155418 — 20757418
—1955%418 — 735711 4 65519418 + 2351418 4 25512418 4 21513418
—245%21 — 60572 — 15650121 — 156511421 — 104512421 — 4451342
—|—4514t21 + 1089t24 + 60810t24 + 90811t24 + 46812t24 + 5513t24

—165M12 4 165277 + 2053427 + 14511477 4 515¢30) | (5.73)

g(ta S ‘Fb3,4) =

where for simplicity we set the global SU(4) fugacities to z; = x93 = x3 = 1. Accordingly,
the master space of the vortex theory is a non-complete intersection Calabi-Yau space of
dimension 13.
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As a character expansion, the Hilbert series is
L X
(1—s2)(1—s?)

DI IS

no=0n1=0n2=0n3=0

g(t,s,x; F'54) =

[nl +ng + 3n3’ ny + na, no]xsnl+2n2+3n3t3n0+3n1+3n2+3n3

+ [n1 4+ na2,n1 + na + 3ns + 3, no]zsm+2”2+3"3+3t3”0+3"1+3"2+6”3+6 . (5.74)

The corresponding plethystic logarithm is
PL [g(t, s,z %V%,A)} — 24 34 [0,0,1]ut3 + [1,1, 000583 + [1, 1, 010523 + 3,0, 0,533

—([0,1,0], + [2,0,0],)st® — ([0,1,0], + 2[2,0, 0], + [0,0,2],
+[1,1,1],)s*% — ([0,1,0], + [0,0,2] + 2[2,0,0], +2[1,1,1],
+[3,0,1]5)s%% — ([2,0,0], + [0,0,2], + [1,1,1]5 + [2,2,0],
+13,0,1])sM5 + ... . (5.75)
The generators of the vortex master space are encoded in the Hilbert series above. They
are as follows,
5% — ug = Tr(¢?)
53 = uz = Tr(¢%)
[0,0,1]5t> — B; = €% ¢ 1,1, QL QP2 QR

3 Agor;F = emozsey QR Qﬁfﬁ&@g
[1,1,0]zst° — 4 E_p
001 =

AOOQU = 60610420436k1k:22]Qa1Q ¢ ¢gi@gz
34002 44" = —u2B;

k _ Nk 181 Hk1 B2 Hko
[1’ 170]:032753 N AOllij k— €a1a2a36k1k2lea1¢ocngl¢a3Q32
6A011;,° = u2B;
— Aoo2ijk = Aot ijk

Aoo2ikr = Aot ikk — su2B;
3,0,0],5%% — Aow?k = e Z‘lgbgl? .él¢g§¢gg.Q23 .
T So12"% = Ap12"% + Ag12?™ + Ag12*
Quadratic relations. The terms in the plethystic logarithm corresponding to the qua-
dratic relations between generators are as follows,
—[0,1,0],st% — [2,0,0],st°
_77$St_ 77338t_77$8t_77x8t
0,1,0],s%t% — 2[2,0,0],5*5 — [0,0,2],5%% — [1,1,1],5*t°
—[0,1,0],5%% — [0,0,2],5%% — 2[2,0,0],5%t5 — 2[1,1,1],55 — 3,0, 1],53t
_77x8t_77178t_77$8t_77w8t_77508t
2,0,0],s1% —[0,0,2],s%% — [1,1,1],5%5 — [2,2,0],s1° — [3,0, 1], s*°
—[1,1,1],s°% — [2,2,0],5°t% — [3,0,1],5°t5
—[2,2,0],5%°. (5.76)

— 33 —



From the discussion above regarding generators of the master space, we note that the
quadratic relations can only be formed by the following generators

k k ik
uz,uz, Bi, Aoor;;" 5 Aoozi;” 5 So12" (5.77)

Let us go through the quadratic relations corresponding to terms in (5.76) one by one.
The first relations to consider are at orders at st5. For these relations, we consider the
following product of SU(4) representations,

[1,1,0], % [0,0,1], = [1,1, 1], 4 [2,0,0] + [0, 1,0], . (5.78)

Using the above products of representations, we can easily construct the quadratic relations
at this order. These are as follows:

e —[0,1,0],5t% relations. The only non-trivial product of generators of the master space
corresponding to the order —[0, 1,0],st% is as follows,

Rp),; = Aoov;;" B =0, (5.79)
where it turns out that the products vanishes. Given that
R(I)ij - _R(I)ji’ (5.80)
this is the quadratic relation for —[0, 1, 0], st5.
e —[2,0,0],5t% relations. Another generator product which vanishes is
Aporyt Bj =0. (5.81)
This product can be symmetrised as follows
R(Il)ij = AOOlikk Bj + AOOljkk B, =0, (582)
such that
R(Il)ij = R(]I)ji’ (583)
and it corresponds to quadratic relations of the order —[2,0,0],st5.
26,

The second set of quadratic relations are at orders of s For these quadratic relations,

we consider the following products of SU(4) representations,

Sym?[1,1,0], = [2,2,0], + [1,1,1], +[2,0,0], + [0,0,2],,
Sym?[0,0,1], = [0,0,2].,
[1,1,0]; x [0,0,1], = [1,1,1], + [2,0,0], +[0,1,0], . (5.84)

The above product decompositions of SU(4) representations help us to construct the
quadratic relations at this order as follows:
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e —[0,1,0],5%t% relations. The only product of master space generators that can cor-

respond to order —[0, 1,0],s%t% is the following,

Oy, = Aoozii” Br =0, (5.85)

ij
which vanishes exactly. The above satisfies

O(I)ij = _O(I)ji’ (5.86)
such that this is the quadratic relation at order —[0, 1, 0], s¢S.

e —2[2,0,0],5%t5 relations. The following generator products relate to the o rder
_[270’0]152756’
oy, = Aoo2ir” Bj + Aoozi" Bi
(I)’L] 0025k 7 002]]{; 79
o(11);; = u2BiBj

O(I11);5 = Agori™ Aootjm » (5.87)

- we have symmetrized the product

where for o 1)

Aoz B; - (5.88)
We have

O(1) 45 = O(1) j; OUT)3; = O(II) ji » OULLD) 5 = O(IID) j; - (5.89)

From the above products, we can identify the following independent quadratic rela-

tions,

O(H)Z’j = 0()4 + 6O(IH)Z-]- =0
Oun;; = oun,;; — 9ourn,; =0, (5.90)
2t6

which correspond to the order —2[2, 0, 0],s5°t® of the plethystic logarithm.

e —[0,0,2],5%t% relations. The following generator products correspond to the order
- [07 07 2]§t6

— T S
OV pgijim = €parsA0015; Aoo1s

OV pgijim = epgrmAoo2;;" By - (5.91)

The above products satisfy the following the quadratic relation,

O(Iv)pqijlm = 30(Iv)pqijlm o O(V)pqijlm =0, (592)

which corresponds to the order —[0,0,2],5%5.
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o —[1,1,1],5%t% relations. The following generator product is the only one which cor-

responds to the order —[1,1,1],5%t% of the plethystic logarithm of the master space

Hilbert series,
O@%jﬁ:AmuﬁAmuJ“ZO. (5.93)

The third set of quadratic relation of generators at orders of s3t% involve the following

representation products,

Sym?[0,0, 1], = [0,0,2],,
[1,1,0]z x [1,1,0], = [2,2,0]x + [3,0,1]5 + [0,3,0], + [1,1,1], + [2,0,0].,
+10,0,2], +[0,1,0],,
[1,1,0], x [0,0,1], = [1,1,1], + [2,0,0], + [0,1,0],,
[3,0,0], x [0,0,1], = [3,0,1]; + [2,0,0], . (5.94)

The above SU(4) representation products are used to identify the quadratic relations at
this order as follows:

e —[0,1,0],5%5 relations. At this order, there is only the following generator product,
Py, = Agor;;” By =0, (5.95)
which exactly vanishes. The relation satisfies,

ji
such that the quadratic relation corresponds to the order —[0,1,0],53t°.

e —[0,0,2],5%% relations. For the quadratic relations at this order, we have to consider
the following generator products,

P(ry;; = Avorg," Aoozjy
The above products transform in [0, 0, 2], and satisfy the following quadratic relation

1

Plnyg; = Py = gPan; =0 (5.98)

which is precisely the relation we are looking for at this order.

e —2[2,0,0],5%5 relations. One of the generator products which corresponds to the
order —[2,0,0],5%t% is as follows,
P = So127* By =0, (5.99)
which vanishes exactly. The above satisfies
U= ) (5.100)

P Prr
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and is the first quadratic relation corresponding to —[2,0,0],s%t%. Another set of
generator products which correspond to this order is as follows,

P = Aoo2i™ Aot iy
p(lv)ij = U3BiBj . (5101)

These products satisfy the following quadratic relation,
Pavy;; = 9arin,;; —pavy,; =0, (5.102)
which is the second relation corresponding to the order —[2,0,0],s%5.

—2[1,1,1],53t° relations. The following generator products transform in—[1, 1, 1], 535,

I I
PV) j ¢ = U2A001jm Bi s

p(VI)jmli = Aoozjm Aoty
p(VII)jmli = Aoo1jm Aoozyi - (5.103)
They satisfy the following quadratic relations,

l

l l
PV im i = POV jm i~ PV 10
P(Vl)jmli = p(V)Jml,L - 6p(VII)jmli7 (5104)
which satisfy
P(V)jm i _P(V)jm i P(Vl)jm i = _P(Vl)jm i (5.105)

and hence correspond to the two quadratic relations at order —[1, 1, 1],s35.

—[3,0,1],5%t% relations. For the quadratic relation at this order, we consider the
following generator products. The first one to consider is,

P = Aoo1,g Aooz,d €7 (5.106)
which we symmetrize as follows,

p(IX)ijkm = p(VHI)ijkm + p(VIH)jkim + p(VIH)kij . (5.107)

m
The second product to consider is
k= Su12"* B 5.108
pxy",, 012 m - (5.108)
The above generator products satisfy the following quadratic relation
ijk ijk ijk
Py, =pax)”,, —px)”",, =0, (5.109)

which is the relation we are looking for at this order.
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The next set of quadratic relations at orders of s*% can be identified by considering

the following products of representations,

Sym?[1,1,0], = [2,2,0], + [1,1,1], + [2,0,0], + [0,0, 2],
Sym?[0,0, 1], = [0,0,2].,
[3,0,0]; x [1,1,0]; = [3,1,1], + [2,0,2]» + [2,1,0], + [1,0,1],,
[1,1,0]; x [0,0,1], = [1,1,1], + [2,0,0]; + [0,1,0] . (5.110)

We make use of the above products to construct the quadratic relations of this order as

follows:

e —[2,0,0],5%5 relations. For order —[2,0,0],5%*5, the following generator product
applies,

U(I)ij = qursAOOQPinO()?rsj =0, (5.111)
which vanishes exactly and satisfies,
Un =Ugy. (5.112)
This is exactly the quadratic relation corresponding to the order —[2,0, 0] 2540,

e —[0,0,2],5%5 relations. For the quadratic relation at this order, we need to first
consider the following products of generators,

un” = Aoz, Aoz,
win” = (u2)*BiB; . (5.113)

The above products satisfy the following quadratic relation of this order,

y o1 iy
Uun® =um” = guan” =0, (5.114)

which is the one we are looking for.

e —[1,1,1],5%5 relations. The following generator products correspond to this order
of the plethystic logarithm,

Wiy = Aoozi;" Aoozim”
U(Iv)ijkl = usAoory;" Br,
k k
u(v)ij l = UQAOOQij Bl . (5.115)

The above products satisfy the following quadratic relation,8

k _ k k k _
= uqrn; 1By —wy, =0, (5.116)

U(IH)z‘jl

which corresponds to the order —[1,1,1],s*.
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e —[2,2,0],5%5 relations. For this order, the quadratic relations can be constructed
by looking at generator products and their index symmetrizations and anti-symme-
trizations. We consider

gy Hm = @I Aoy RSyt (5.117)

which we anti-symmetrize in the indices [kl] and [mn] as follows,

u(VII)ijklmn _ U(VI)ijklmn _ U(VI)ijlkmn . U(VI)ijklnm + u(VI)ijlknm ) (5118)

We follow with a further symmetrization of the pairs of indices [kl] and [mn]

U( ijklmn __ ijklmn +

V) = u(vr) uyrn?"M =0, (5.119)

The above vanishes exactly and forms the required quadratic relation at this order.

e —[3,0,1],5%5 relations. For the quadratic relations at this order, we consider first
the following product of generators of the vortex master space,

wrrn™* = Aoo1dSo12" 7 € P epgrm - (5.120)
We symmetrize the above product as follows,

Uwny7* = U(VIH)ijkm + u(vnl)jkim +urn™ =0, (5.121)

m m

where we see that the symmetrization vanishes non-trivially. This is precisely the rela-
tion related to the order —[3,0, 1] »5*t5 of the plethystic logarithm of the Hilbert series.

Let us move on to the next set of quadratic relations at orders of s°t5. For these
relations, we consider the following products of SU(4) representations,

Sym?[1,1,0], =

Jo = | ]
Sym?[0,0,1], = [0,0,2].,
1,1,0], = [3,1,1],
Jo = [ ]
Jo = | ]

[3,0,0], x | +1[2,0,2]; +[2,1,0], + [1,0,1],,
[1,1,0], x [0,0,1], = [1,1,1] +[2,0,0]; + [0,1,0],
[1,1,0]; x [1,1,0]z = [2,2,0], + [3,0,1]; + [0, 3,0], + 2[1,1,1],
+[2,0,0] +[0,0,2], . (5.122)

We use the above products of representations in order to construct the quadratic relations
of generators at this order as follows:

o —[1,1,1],5%° relations. For the quadratic relations at this order, we need to consider
the following products of generators,

ko _ p rk
V(D)5 = A00245 S012 €pgrm. 5

U(U)Z»jkm = uzAoo1;;” Aoo1pm - (5.123)
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These transform in the correct SU(4) representation of this order. We find that they
satisfy the following quadratic relations,

1
k k k
‘/(I)ij m U(I)ij m + 5”([])2-]- m’ (5124)
This is precisely the relation of this order.

—[2,2,0],5%t% relations. The quadratic relation at this order is constructed by con-
sidering the following products of master space generators, with their index sym-
metrizations and anti-symmetrizations. The first generator product to consider is,

v = Agiayg So e (5.125)

which we anti-symmetrize on the indices [kl] and [mn] as follows,

,U(Iv)ijklmn — ,U(Ill)ijklmn _ U(Ill)ijlkmn _ U([[[)ijklnm + U([[[)ijlknm . (5126)

A further anti-symmetrization on the pair of indices [ij] and [mn] gives
ijklmn

v — U(Iv)ijklmn _ U(Iv)mnklij ) (5.127)

The second generator product to consider is as follows,
ijklmn

V(v 1) = u3 A1, Aoot,s €T (5.128)

We anti-symmetrize the above product in the indices [kl] and [mn],
ijklmn

U(VII) — U(VI)ijklmn _ U(Vl)ijlkmn . U(VI)ijklnm + U(Vl)ijlknm 7 (5129)

and further symmetrize the product in the pairs of indices [ij] and [kl] as follows
ijklmn ijklmn + U(v]l)klijmn . (5130)

V(vIIT) = VI

Using the above generator products, we identify the following quadratic relation,

ijklmn

y 1 g
‘/([[) _ ,U(V)ij:lmn + Z,U(VIII)ijnkl , (5131)
which is the relation we are looking for at this order.

—[3,0,1],5%t% relations. For the quadratic relations at this order, we have to consider
the following generator products with their symmetrizations of indices. The first
product to consider is as follows,

vix) 7" = Aoz o127 € Pepgrm (5.132)
which we symmetrize in the indices ¢jk such that
= vy g™ +oaxnt (5.133)

m m
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The second generator product to consider is
vixn?* = 250127 By, . (5.134)

With the first one, the above product satisfies the following quadratic relation,

» » 4 »

V™, = v ™, = Fouen™, =0, (5.135)
which is precisely the relation we are looking for at this order of the plethystic loga-
rithm.

For the final quadratic relation at the order of s5¢®, we construct candidates for which

the following products of SU(4) representations are useful,

Sym?[3,0,0], = [6,0,0], + [2,2,0],,
Sym?[1,1,0], = [2,2,0], + [1,1,1], +[2,0,0], + [0,0,2],,
(3,0,0], x [1,1,0], = [4, 1,0]w+ 2,2,0], + [3,0,1], + [1,1,1],,
[1,1,0]z x [1,1,0], = [2,2,0]; + [3,0,1]; + [0,3,0]x + [1,1,1]
+[2,0,0]; +[0,0,2], + [0,1,0]90. (5.136)

The above representation products can be used to identify the correct generator products
and to construct the following quadratic relation at this order:

e —[2,2,0],55% relations. The quadratic relation at this order can be obtained by
considering the following generator product,

2 7M™ = So127% Sp12" (5.137)

We first anti-symmetrize the indices [kl] and [mn] as follows,

ijklmn

(1) — Z(I)ijklmn _ Z(I)ijlkmn _ Z(I)ijklnm + Z(I)ijlknm, (5.138)

and then symmetrize the pairs of indices [kl] and [mn] to obtain

zijklmn _ Z(Il)ijklmn + Z([[)ijmnkl =0, (5139)

which vanishes non-trivially. As a result, we identify the above as the desired
quadratic relation at this order of the plethystic logarithm.

Vortex moduli space. The vortex moduli space for 3 U(4) vortices can be expressed as
a partial C* projection of the vortex master space. The projection is given as follows,

V34 = F34/{B;i = N*B;, Aoory;" = N Ao,

AOOQz‘jk = )‘3A002ijk7 So12"* ~ )\35012ijk} ) (5.140)
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where A is the C* parameter. The dimension of the partially projected space representing
the vortex moduli space is as expected 12. The master space is expressed as the following
quotient,

Fia = Clua, uz, Bi, Aoor ;" Aovny;", S012™*]/{
R(I)ij - O,R(I])ij =0,

O(I)z‘j - O’O(H)ij - O’O(UI)z'j - O’O(Iv)pqijlm - O’O(V)ijkl =0,

Py, =0, Pun; =0 P(II])ij =0, v),; =0 P(V)]m i =0
Py =0, P(VH) =0,

Uy = 0, Uiny = 0 U(m) — 0, Uy M = 0, U7 =0,
V(I)ijkm =0,V =0, V(IU) km =0,

Zikimn _ 1 (5.141)

5.5 3 U(5) vortices on C

The Hilbert series for the 3 U(5) reduced vortex master space is obtained from the following
Molien integral,

g(t, 8737;3__\;375) = j{d,uSU(g)PE[[O, 1]w[1,0,0,0]5t + [1, 1]ws| , (5.142)

where [1,0,0,0], is the character of the fundamental representation of the global SU(5).
The integral leads to the following character expansion of the Hilbert series

1
11—

oo o o oo
Z E Z § |:[’l7,1 + no + 377/3, ny + N2, No, 0]x8n1+2n2+3n3t3n0+3n1+3n2+3n3

no=0n1=0n2=0n3=0

+ [n1 + na2,n1 + na + 3ns + 3, ng, 0]18"1+2”2+3”3+3t3”0+3"1+3"2+6"3+6 , (5.143)

g(t, s, @3 F’35) =

where [my, ma, m3, myl, is a character of a SU(5) irreducible representation.
The plethystic logarithm of the Hilbert series is

PL [g(t,s,a:; ff/bg,s,)] =52 +5°410,0,1,0],t% 4 [1,1,0,0],st> + [1,1,0, 0] ,s*¢>
+[3,0,0,0],5%t> — [1,0,0,0],t° — ([2,0,0,1], + [0,1,0,1],
+11,0,0,0],)st® — ([1,1,1,0], + [0,0,2,0], + 2[2,0,0,1],
+[0,1,0,1], + [1,0,0,0],)s*% — ([0,3,0,0], + [3,0, 1, 0],
+2[1,1,1,0]; +[0,0,2,0], + 2[2,0,0,1], + [0, 1,0, 1],)s>°
—([2,2,0,0]5 +[3,0,1,0], +[0,0,2,0], + [2,0,0,1],
+2[1,1,1,0],)s*5 + ...

—([1,1,1,0]5 +[2,2,0,0], + [3,0,1,0],)s°t° 4 ...
—[2,2,0,0],5%% + ... . (5.144)
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The generators of the vortex moduli space are indicated by the above plethystic logarithm.
They are as follows,

§% = ug = Tr(¢?)

s3 — uz = Tr(¢?)

(0,0, 1,0]> — Byj = €192 e 1,100, Q0 Qi Q6

1400115]f == 6101110{2043 f)q ?342 ¢£€3 Qg
€ijkmnAoo1* = 0
Agoa 7 = etz o éz¢§§¢gi’@]§2 (5.145)
€ijkmnA002" % = tus By,

[1,1,0,0]55°¢% — { Agy 7% = ecaezas @b 621 QL ¢l2Q7,

[1,1,0,0],st> — {

- 1
EijkmnA()llU = *6U2an
— Ap02"* = Ao V* + FyugeFmn B,
ijk _ _oroasasz )i B B2 183 Nk
[3,0,0, 0], — Ag12"" = €M192UQG, Pay @, Doz dlg, U,
s Uy Uy Ul ik ke i L .
So12"% = Ap12"" 4+ Ap12?™ + Ap12"Y

Quadratic relations. The terms of the plethystic logarithm corresponding to quadratic
relations between master space generators are as follows,

—[1,0,0,0],t5
—[0,1,0,1],st% — [2,0,0,1],5t% —[1,0,0,0],st°
—[0,1,0,1],5%t® — 2[2,0,0,1],5%t5 — [0,0,2,0],5%°% — [1,1,1,0],5%*t° — [1,0,0, 0],5*t°
—1[0,1,0,1],5%° — 2[2,0,0,1],5%5 — [0,0,2,0],5%° — 2[1,1,1,0],5%t5 — [3,0,1,0],53°
—12,0,0,1],5%°% —[0,0,2,0],5*5 — 2[1,1,1,0],5*5 — [2,2,0,0],5*° — [3,0,1,0],5*
—[1,1,1,0],5%° — [2,2,0,0],5°t5 — [3,0, 1,0],55t°
-12,2,0,0],s%°. (5.146)
From (5.145), we remind ourselves about the generators of the master space which form

the quadratic relations corresponding to the negative terms of the plethystic logarithm
in (5.146) above,

uz,u3, Bij ;A1 A2, Sp12™ (5.147)

Let us go through the quadratic relations as follows, by first considering the relations
associated to the order t%. At this order, we have to consider the following symmetric
product of SU(5) representations,

Sym?[0,0,1,0], = [0,0,2,0], + [1,0,0,0],, (5.148)

which leads to the following relations:
e —[1,0,0,0],t% relations. The following generator product corresponds to this order,
H' = ¢Fmp, B, = 0. (5.149)

The product vanishes exactly and corresponds to the quadratic relation at this order.
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The next order of relations to consider is st%. For this order, we consider the following
representation product,

[1,1,0,0], x [0,0,1,0], = [1,1,1,0], + [2,0,0, 1], + [0,1,0, 1], + [1,0,0,0], . (5.150)

From the above product, we construct the following quadratic relations of generators for
orders of st5:

e —[0,1,0,1],5t% relations. The following product of generators transforms in
—10,1,0,1],st°,

Ry = A" Bk =0, (5.151)

which exactly vanishes. This is precisely the quadratic relations at this order of the
plethystic logarithm.

e —[2,0,0,1],5t% relations. For the quadratic relation at this order, we consider the
following generator product,

R, = Ao Byr =0, (5.152)

which exactly vanishes and accordingly corresponds to the quadratic relation at order
—[2,0,0,1],st°.

e —[1,0,0,0],5t5 relations. At this order, we have the following generator product,
Ry’ = Aot Byn = 0, (5.153)

which vanishes exactly. This is the quadratic relation which transforms in
—[1,0,0,0],st°.

The next order to consider is s%t%. For this order, we have to look at the following

SU(5) representation products,

Sym?[1,1,0,0], = [2,2,0,0], + [1,1,1,0], + [2,0,0,1], +[0,0,2,0].,
[1,1,0,0], x [0,0,1,0], = [1,1,0,0]; + [2,0,0,1], +[0,1,0,1], + [1,0,0,0],,
Sym?[0,0,1,0], = [0,0,2,0], + [1,0,0,0],. (5.154)

The above products lead to the following quadratic relations:

e —[0,1,0,1],5%t% relations. The following generator product corresponds to this order,
O, = Ao2”" B , (5.155)

and vanishes exactly. This is the quadratic relation corresponding to —[0, 1,0, 1],s%t5.
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e —2[2,0,0,1],5%5 relations. There are precisely two distinct generator products at
this order which are
O(H)ij p = Apo1™™ Ago1" €mnpg = 0,
Ourn®,, = A2 By, = 0, (5.156)

which individually exactly vanish. These are the two quadratic relations which trans-
form as —[2,0,0, 1],s%t5.

e —[0,0,2,0],5%% relations. The following generator products correspond to the order
-10,0,2,0],5%t°,

T mns
OD)ijp = €pasij€mnriiAoor™" Aoor™™

O(11)5 = U2BijBri (5.157)
which satisfy
OWijrr = 7O ikt Oy = ~OWsju > O Wi = O jark
O ik = ~OUD jip  OUD gy = ~OUD) gk OUD) 5 = OUD juk - (5.158)

The above generator products satisfy the following quadratic relation,

1
O(Iv)z‘jkl = OWijer ~ 36°UDijk T 0, (5.159)

which is the relations corresponding to —[0, 0, 2, 0], s%t5.

o —[1,1,1,0],5%% relations. At this order, we can consider the following generator
products,

ijk koA ijr
orn””, = Ao01™" Aoo1”" epgrmn »

oy ?* = Ag2"* B (5.160)
which satisfy the following quadratic relation,

3 ) 1
Ow’* . =oumn*  — §O(IV)”kmn =0. (5.161)

This is precisely the relations transforming in —[1,1,1,0],s%t°.
e —[1,0,0,0],5%t% relations. The following generator product vanishes exactly,

Own' = Aw2™" Bmn =0, (5.162)

which is the quadratic relation at the order —[1,0, 0, 0],st°.
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For the orders containing s3t%, we consider the following products of SU(5) represen-
tations,

[1,1,0,0], x [1,1,0,0], = [2,2,0,0], +[3,0,1,0], + [0,3,0,0], + 2[1,1,1,0],
+[2,0,0,1] + [0,0,2,0], +[0,1,0,1], ,
[3,0,0,0], x [0,0,1,0], = [3,0,1,0], + [2,0,0, 1],
[1,1,0,0], x [0,0,1,0], = [1,1,1,0], +[2,0,0, 1] + [0,1,0, 1] + [1,0,0,0],
Sym?[0,0,1,0], = [0,0,2,0], + [1,0,0,0], . (5.163)

The above products are used to construct the following quadratic relations corresponding

to order containing s3t%:

e —[0,1,0,1],5%% relations. At this order, we have the following generator product
Py, = Aon”" Aoo2” €mpgr = 0, (5.164)
which exactly vanishes. It corresponds to the quadratic relation for this order.

e —2[2,0,0,1],5%5 relations. The following two generator product correspond to this
order,

Pun”, = Aoor™™ A" emmpqr = 0, (5.165)
Puin”, = S012"" By = 0, (5.166)

and exactly vanish. These are precisely the quadratic relations at this order.

e —[0,0,2,0],5%% relations. At this order, we consider the following generator pro-
ducts,

p([)ijkl = AOOlpquOOQTsnqunijErsmkl7
Panj = wBijBi (5.167)

which satisfy the following quadratic relation,

1
Puvyjm = Pyiji — oPUD i = 0. (5.168)

The above is precisely the quadratic relation at the order —[0, 0,2, 0],s%t5

e —2[1,1,1,0],5%5 relations. The following generator products can be considered at
this order,

ik _ i rk

parn ", = A1 A" epgrmn ,
ijk _ ijp qrk

pavy?”, = Ao02”" Aoor " epgrmn
ik _ ijk

p)?", ., = u2A001”" Bmn

p(VI)ijkmn = uze*PIB, B, (5.169)
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which satisfy the following quadratic relations,

B ” _—
o = Pin™" =yt =0, (5.170)

mn

g 1 1 g
— k k _

o = Pant, L — 6P o — 108]9(1/1)” - .=0. (5.171)

Py

P(Vl)ijk ik

The above quadratic relations transform in the correct representation of this order,
and hence are the relations we are looking for.

e —[3,0,1,0],5%5 relations. For this order, we have to consider the following generator
products,

ijk ipj rk ipj rk ipj rk
pvin”” = (Aoo1™ Aoo2 ™" + Aoo1™ Aoo2”" + Aoo1™? Aoo2"") epgrmn »

p(vul)ijkmn = S012"* Bum (5.172)
where for the first product above we have symmetrized the product
Ago1 ™ Agoa™™* (5.173)
in the indices ijk. The products above satisfy the following quadratic relation,
. - 1 -
Pvin”*, =pwin*, + 3P ko =0. (5.174)

The above is precisely the quadratic relation at this order.

The next orders contain s*t5 for which we have to consider the following representation

products,
SymZ[l, 1,0,0], = [2,2,0,0], +[1,1,1,0], + [2,0,0,1], + [0,0,2,0],,
[1,1,0,0], x [3,0,0,0], = [4,1,0,0], + [2,2,0,0], + [3,0,1,0], + [1,1,1,0],,
1,1,0,0], x[0,0,1,0], = [1,1,1,0], + [2,0,0,1], + [0,1,0,1], + [1,0,0,0],,
Sme[0,0, 1,0] = [0,0,2,0], + [1,0,0,0], . (5.175)

The above representation products lead to the following quadratic relations of vortex mod-
uli space generators:

e —[2,0,0,1],5*5 relations. The following generator product corresponds to the order
—12,0,0,1],5%°,

Uy = Aoo2” 7 Ao02™"™ €pgmsk = 0, (5.176)
which vanishes exactly. This is exactly the quadratic relation at this order.
e —[0,0,2, 0]3534756 relations. This order refers to the following generator products,

T mns
W) = Ao02”" Aooa™ €pgsijemnrii »

U(rry iy = U2u2Bij B, (5.177)
which satisfy then following relation,
1
U(U)z'jkl = Uk — 18U D ijk1 T 0. (5.178)

This is precisely the quadratic relation corresponding to the order —[0, 0, 2, 0], s*t5.
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—2[1,1,1,0],5*% relations. At this order, we need to consider the following generator
products,

ijk ij rk
urn”?”, = Aoo2”" Aoo2 """ €pgrmn »

uy?® = AP So127 epgrmn
ijk _ ijp qrk
upny "= ugAoo1”P Aoor " epgrmn
uyn” = u3Aoo1”" Bmn . (5.179)

The above products satisfy the following quadratic relations,

Uarn™,,, = v, = 2uam ™, + guen™,,, =0,
g 3 1 g
U(IV)”kmn - U(IV)Z]kmn T EU(VI)Ukmn =0, <5180)

which are precisely the relations corresponding to the order —2[1, 1,1, 0],s*¢5.

—[2,2,0,0],5%° relations. For the quadratic relation at this order we have to
consider the following generator product and additional symmetrization and anti-
symmetrizations of its indices,

) TFT = Ao ¥ Sr"™ (5.181)

We anti-symmetrize first the indices [kl] and [mn] as follows,

ijklmn ijklmn ijlkmn

Uy ) = wy) — ugy) _ u(v)ijklnm + u(v)ijlkmm ’ (5182)

and symmetrize the pairs of indices [kl] and [mn] to give
U(v)ijklmn _ ijklmn

wvr +u MM =0. (5.183)

The above vanishes non-trivially, and given that the above quadratic relation trans-
forms in the correct representation we have found the quadratic relation at this order.

—[3,0,1,0] »510 relations. For this order, we consider the following generator product,

Uvn”" = (Aoo1""S012"7" + Ago1’"So12"™" + Aoo1™S012"™ ) €pgrmn = 0,

(5.184)

which exactly vanishes. This is precisely the quadratic relation at this order. We
have in above symmetrized the product

Ago1PSg12"7* (5.185)

in the indices ijk.
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The next set of quadratic relations refer to orders containing s°t5. For these relations,

we consider the following representation products,

3,0,0,0], x [1,1,0,0], = [4,1,0,0], +[2,2,0,0], + [3,0,1,0], + [1,1,1,0],,
[1,1,0,0], x [1,1,0,0], = [2,2,0,0], +[3,0,1,0], + [0,3,0,0], + 2[1,1,1,0],
+[2,0,0,1]; + [0,0,2,0], +[0,1,0,1],,
3,0,0,0], x [0,0,1,0], = [3,0,1,0], +[2,0,0,1],,
[1,1,0,0], x [0,0,1,0], = [1,1,1,0], + [2,0,0, 1], + [0,1,0,1], 4 [1,0,0,0],,
211,1,0,0], = [2,2,0,0], 4 [1,1,1,0], + [2,0,0,1], +[0,0,2,0],,
Sym?[0,0,1,0], = | Jz +[1,0,0,0], . (5.186)

Sym x T

0,0,2,0[

The above products are used to identify the following quadratic relations between moduli
space generators:

o —[1,1,1,0],5%t% relations. For the order —[1,1,1,0],s°t5, we consider the following
generator products,

ijk ij rk
o= A002""So127" €pgrmn »

van* = ug Ao 7P Ago1 ™ €pgramm - (5.187)

Together the above products satisfy the following quadratic relations

1 -

ijk - ij
+ 2’0([])

mn

V(I)ij’“mn = vy =0, (5.188)

which is precisely the relation we are looking for at order —[1,1,1,0],s°t

e —[2,2,0,0],5°t% relations. For the quadratic relation at this order, we have to consider
the following generator products and its symmetrization and anti-symmetrization of
indices. The first product to consider is the following,

~ 1
oM = (Ago27F — QUQB”k)5012lm"7 (5.189)

which we anti-symmetrize in the indices [kl] and [mn] to give

ijklmn

i7klmn
V(Iv) = U(1I1) J

— v T — v TR gy TR (5.190)

We further anti-symmetrize the above in the pairs of indices [ij] and [mn] to give
Oy TR = gy TRy gy TR (5.191)

The second generator product to consider is the following

ijklmn

V) = ugAoo1"* Apor ™™, (5.192)

which is anti-symmetrized in the indices [kl] and [mn] as follows

ijklmn ijklmn ijlkmn
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In addition, we symmetrize the pairs of indices [ij] and [kl] to give

U(VIII)ijk:lmn — U(VII)ijklmn + ,U(Vll)klijmn ) (5194)

The above generator products transform in the correct representation at this order
of the plethystic logarithm, and satisfy the following quadratic relation

ikl . .
Vv(zI]I) mn _ ,U(V)z]k:lmn + U(VIII)z]mnkl —0. (5195)
The above is the quadratic relation we are searching for at this order.

e —[3,0,1,0],5°t% relations. For this order, we have to consider,

U(IX)ijkmn = (Ao02™1S012"7* + Apo2?P1S012™ + Aoo2"™1S012" )€ pgrmn
vt = uaS0127" B
(5.196)
where above the generator product
Ag021S012 " pgrimn (5.197)

have been symmetrised in the indices ijk. The above satisfy the following quadratic
relation,

.y .y 1 .y
V(III) jkmn = Vux) kan o gU(X) kan = 0’ (5198)

which is the relation at order —[3,0, 1, 0],s°5.

The following order of s5¢¢ leads us to use the following SU(5) representation products,

Sym?[3,0,0,0], = [6,0,0,0], + [2,2,0,0],,

Sym?[1,1,0,0], = [2,2,0,0], + [1,1,0,0], + [2,0,0,1], +[0,0,2,0].,
[1,1,0,0], x [3,0,0,0], = [4,1,0,0]; + [2,2,0,0]; + [3,0,1,0], + [1,1,1,0],,
[1,1,0,0],; x [1,1,0,0], = [2,2,0,0]; + [3,0,1,0], + [0,3,0,0], + 2[1,1,1,0],

+12,0,0,1], + [0,0,2,0], +[0,1,0,1]. (5.199)

From the above representation products we select the appropriate one to identify the fol-
lowing quadratic relations between generators:

e —[2,2,0,0],5% relations. The quadratic relation at this order is constructed from
the following generator product

2y M = Sp19ME S (5.200)

which we first anti-symmetrize in the indices [kl] and [mn] as follows,

Z([[)ijklmn _ Z(I)ijk:lmn _ z(])ijlkmn _ z([)ijklnm + Z(I)ijlknm ) (5201)

Then, we symmetrize the pairs of indices [kl] and [mn] such that
Zijklmn — Z([[)ijklmn + Z([[)ijmnkl — 0’ (5202)

vanishes exactly and hence is the quadratic relation we are looking for at this order.
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Vortex moduli space. The C* projection of the vortex master space .7-":;5 gives the full
moduli space 17375 of the 3 U(5) vortex theory. The vortex moduli space is expressed as the
following C* projection,

93’5 = F35/{Bij ~ AgBijv Ago1™F ~ A3 AgorVF,
Ago2"* = N3 Agga*, Sp12"F = A3 5129} (5.203)

where A is the C* parameter. The master space is expressed as follows,

JA;"375 = Clug, us, Bij, Aoo1"*, Ago2*, So12%]/{
H =0,
Ry, =0,Rap?, =0, Ry’ =0,
O, =0.04n", =0,0u", =0,00v);, =0,
Owy’* =0,0w1 =0,
Py =0, Pyn”, =0, Py, =0, Py, =0,
P(v)ijkmn =0, P(VI)ijkmn =0, P(vu)ijkmn =0,
U\, =0.Uan, =0, Uum ™, = 0.Umn™, =0,
U(V)ijklmn =0 , U(V])Z]kmn — 0’
V(I)ijkmn =0, V(H)ijklmn =0, V(HI)ijk =0,

mn

ZUkmn — gy (5.204)

5.6 3 U(6) vortices on C

The Hilbert series for the 3 U(6) vortex master space is given by the Molien integral,
g(t, s, z; F36) = j{duSU@)PE[[O, 1]4[1,0,0,0,0]; + [1,1]ws] , (5.205)

where [1,0,0,0,0], is the fundamental representation of the global SU(6). The integral
leads to the following character expansion of the Hilbert series

1

T, ) —
g(ta'S?xaf 3,6) (1 —82)(1—83)X

oo 0 X

oo
Z Z Z Z [[n1+n2+3n3’n1+n2’no’07O]ISnl+2n2+3n3t3n0+3n1+3n2+3n3

no=0n1=0n2=0n3=0

+ [n1 + na,n1 + n2 + 3ns + 3,ng, 0, O]xsm+2”2+3"3+3t3"0+3”1+3"2+6"3+6] , (5.206)

where [my, ma, m3, myl, is a character of a SU(5) irreducible representation.
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The plethystic logarithm of the Hilbert series is

PL [g(t, s,x;}/b:s,fi)] = 52+ 53410,0,1,0,0],% + [1,1,0,0,0],st> + [1,1,0,0, 0] ,5%>
+13,0,0,0,0],5%> — [1,0,0,0,1],t5 — ([2,0,0,1,0],
+10,1,0,1,0], + [1,0,0,0,1],)st®* — ([1,1,1,0,0], + [0,0,2,0, 0],
+12,0,0,1,0], +[0,1,0,1,0], + [1,0,0,0,1],)s*t°
+([1,1,0,0,0], 4 [0,0,0,1,1],)t> — ([3,0,1,0, 0],
+2[1,1,1,0,0], + [0,0,2,0,0], + 2[2,0,0,1,0], +[0,1,0,1,0],
+[1,0,0,0,1],)s%5 +--- — ([0,0,2,0,0], + [1,1,1,0,0],
+[2,0,0,1,0], +[2,2,0,0,0], + [3,0,1,0,0],)s*° 4 ...
—([1,1,1,0,0], + [2,2,0,0,0], + [3,0,1,0,0],)st5 + ...
—[2,2,0,0,0],855 + ... . (5.207)

The generators of the vortex moduli space are indicated by the above plethystic logarithm.
They are as follows,

5% = uy = Tr(¢?)

s — uz = Tr(¢%)

[0,0,1,0,0],£° — B = eme203Ql QF, Q.
Agor* = €M2QL, Gy Q8
€ijkmnpAoo1 " =0
Agp"* = €200, Qhyds 05,05,
EijkmnpAOOQUk = _%u2€mnprsuBrsu
2,3 ij ; j

[1,1,0,0,0055%* — ¢ Agy 7% = exozasQk 6QLQL 622 Q,

TSU

[1,1,0,0,0],st> — {

i 1
6ijkmnpA0112] = gu2€mnprsuB
— Apo2"* = Ao + Luy BUF

Ap1p"" = e10293 31¢§12 Q1 1¢§23 ¢§; Qf,

3,0,0,0,0],s%3 — g N g -
| I { So129% = Ag12"F 4 Ag12?* + Ag1oFY

Quadratic relations. The terms of the plethystic logarithm corresponding to quadratic
relations between master space generators are as follows,

—[1,0,0,0,1],5
—[0,1,0,1,0],st® — [2,0,0,1,0],st% — [1,0,0,0, 1], 5t°

—[0,1,0,1,0],5%° — 2[2,0,0,1,0],5%t° — [0,0,2,0,0],5%t5
—[1,1,1,0,0],5%% — [1,0,0,0, 1] 5%t

—[0,1,0,1,0],5%° — 2[2,0,0,1,0],53% — [0,0,2,0,0],535
—2[1,1,1,0,0],5%% — [3,0,1,0,0],53t

—-[2,0,0,1,0],5*°% — [0,0,2,0,0],5*5 — 2[1,1,1,0,0],5*5
—[2,2,0,0,0],5%% —[3,0,1,0,0],5*°

—[1,1,1,0,0],5%t% — [2,2,0,0,0],s°t5 — [3,0,1,0,0],5°t°

-12,2,0,0,0],555 . (5.208)
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The quadratic relations are formed by the generators of the vortex master space which are
as discussed above as follows,

ug ,uz , BV Ago1”" , Ago™" , So12"" . (5.209)

Let us consider the first quadratic relation at order t® which requires consideration of the
following SU(6) representation product,

Sym? [0,0,1,0,0], =[0,0,2,0,0], + [1,0,0,0,1], . (5.210)
The above symmetric product allows us to construct the following quadratic relation:

e —[1,0,0,0,1],t% relations. The following product of generators exactly vanishes,

I’I‘7 = eiqusququsuj s (5211)

)

and given that it transforms in the adjoint of SU(6) is exactly the quadratic relation
at this order.

For the next set of quadratic relations containing the order st%, we consider the fol-
lowing representation products,

[1,1,0,0,0], x [0,0,1,0,0], = [1,1,1,0,0], + [2,0,0,1,0], + [0,1,0,1,0],
+[1,0,0,0,1],. (5.212)

The above tensor product allows us to construct the following quadratic relations:

e —[0,1,0,1,0],5t5 relations. At this order, we consider the following generator pro-
duct,

R(I)ijkl = AOOliijpqrempqul = 07 (5213)

which vanishes exactly. This transforms in the correct representation of SU(6) and
hence is the quadratic relation at this order.

e —[2,0,0,1,0],5t5 relations. The following generator product vanishes exactly,
Ran"

w1 = A001™ BP €parit = 0. (5.214)

It transforms in the correct representation and hence is the quadratic relation at this
order.

e —[1,0,0,0,1],5t5 relations. For this order, the following generator product is consid-
ered,

R(III)ij = Aoo1 ™" BMPe iy = 0. (5.215)

The above product exactly vanishes and since it is in the adjoint of SU(6) it is the
quadratic relation at this order.
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The next set of quadratic relations contains the order s%t®. For these relations, we
consider the following representation products of SU(6),

Sym?[1,1,0,0,0], =
[1,1,0,0,0], x [0,0,1,0,0], =

2,2,0,0,0], +[1,1,1,0,0], + [2,0,0,1,0], + [0,0,2,0,0], ,
1,1,1,0,0], +[2,0,0,1,0], + [0,1,0, 1,0,

+[1,0,0,0,1],,

Sym?2[0,0,1,0,0], = [0,0,2,0,0], + [1,0,0,0, 1], . (5.216)

—_— —

The following quadratic relations can be identified from the above representation products
as follows:

e —[0,1,0,1,0],5%t5 relations. For this order, we consider the following generator pro-
duct,

O([)ijkl = Aoogijqursepqrskl =0, (5.217)

which exactly vanishes. The above transforms in the correct representation and
therefore is precisely the quadratic relation for this order.

e —2[2,0,0,1,0],5%t% relations. For the quadratic relations at this order, we consider
the following generator products,
Oun" g = Aoo1™™ Ago1"Y €mnpgrt = 0,
Ourn,; = Ao02™ B emppgr = 0, (5.218)

where the products above both vanish exactly. Given that they transform in the
correct representation, we identify them as the 2 quadratic relations at this order.

e —[0,0,2,0,0],5%t% relations. The following generator products are helpful in con-
structing the quadratic relations at this order,

. - pqr Auvs
O([)ijklmn = €pqszgk€uvrlmnA001 Aot »

— pqs puvr ..
O(I])ijklmn = uB"°B €pgsijkCuvrlmn - (5219)

The above products transform in the representation of this order. They satisfy the
following quadratic relation,

1

Dijklmn — §O(Il)ijklmn’ (5220)

O(Iv)ijklmn =

which is precisely the relation at this order.

e —[1,1,1,0,0],5%t% relations. For this order, we consider the following generator pro-
ducts,

ik _ kAo igr
oarn””, = Aot Aoo1”" epgrimn »

oy *, = Ao B €pgrimn (5.221)
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which transform in the correct representation at this order. The above products
satisfy the following quadratic relation,

1 .
_ go(lv)wk =0, (5.222)

Ilmn

ijk
O(V) Ilmn = O(III) ’ Ilmn

which is precisely the relation at this order.
e —[1,0,0,0,1],5%5 relations. The following generator product vanishes exactly,
O(VI)"]. = A2’ B € pimn; = 0 . (5.223)

The above quadratic relations transform in the adjoint of SU(6) and hence are the
quadratic relations for this order.

For the next set of quadratic relations at orders containing s3t%, we first consider the
following SU(6) representation products,

[1,1,0,0,0], x [1,1,0,0,0], = [2,2,0,0,0], + [3,0,1,0,0], + [0,3,0,0,0],
+2[1,1,1,0,0], + [2,0,0,1,0], + [0,0,2,0,0],
+[0,1,0,1,0],,

3,0,0,0,0], x [0,0,1,0,0], = [3,0,1,0,0], + [2,0,0,1,0], ,

[1,1,0,0,0], x [0,0,1,0,0], = [1,1,1,0,0], + [2,0,0,1,0], + [0,1,0,1,0],
+(1,0,0,0,1],,

Sym?[0,0,1,0,0], = [0,0,2,0,0], + [1,0,0,0,1],. (5.224)

The above representation products help us in constructing the following quadratic relations

between master space generators at order 5316:

e —[0,1,0,1, O]xs?’t6 relations. The following generator product vanishes exactly,

P(I)ijkl = AOOliijOOQPqT€mpqu:l = 07 (5225)

and transforms in the representation of this order. Accordingly, it is exactly the
quadratic relation we are looking for this order.

e —2[2,0,0,1,0],5%% relations. The following generator products are relevant for the
quadratic relations at this order,

PinY,; = Aoor™" Ao €pnpgrr = 0,

P(III)ijkl = S012iijnpq€mnqul =0. (5226)

Both above vanish and satisfy the correct transformation property for this order.
They are precisely the two quadratic relations at this order.
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e —[0,0,2,0,0],5%5 relations. For this order, we consider the following generator pro-
ducts,

u rsv
= AOOlpq AOOQ EpquijkErsulmn »
U TSV
= uz3BM"B Epquijk€rsvimn » (5227)

P(n)

ijklmn
bPurn

ijklmn

which transform in the correct representation corresponding to this order. The above
products satisfy the following quadratic relation

P(Iv)ijklmn = p(I)ijklmn o §p(II)z‘jk:lmn’ (5228)

which is the relation for this order.

e —2[1,1,1,0,0],5%% relations. The following generator products are useful in con-
structing the quadratic relations for this order,

ijk - ] rk
pain””,, = Aoo1”" Aoo2™ " epgrimn ,
ijk ij rk
Pav) ! Imn Ago2""? Agor? Epgrimn »
ijk ij rk
P) i = w2 A001 7P B €pgrimn - (5.229)

The above products transform in the correct representation for this order. The
quadratic relations formed by the above are

T - _—_—
Py =pamnt”,, —ra)?,,, =0,
Ny N 1 Ny
P(VI)Z]klmn = p(lll)wklmn - §p(v)”klmn = 0’ (5230)

exactly corresponding to the two expected quadratic relations at this order.

e —[3,0,1,0,0],5%% relations. For this order, we consider the following generator pro-
ducts,

pvn", = (Aoo1™ Aoo2?™ + Aoo1”" Aoo2™" + Aoor " Aoo2?"? ) €pgrimn »

P(vn)ijklmn = S012"* BPT" €t » (5.231)

which transform in the correct representation for this order. The above products
satisfy the following quadratic relation

ij ij 1 ij
Py ]klmn =P Jklmn + 3P ik (5.232)

Ilmn

which is precisely the relation for this order.

We can now consider the next set of quadratic generator relations which are at or-
ders containing s%°. In order to construct the relations, we consider the following SU(6)
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representation products,

Sym?[1,1,0,0,0], = [2,2,0,0,0], + [1,1,1,0,0], + [2,0,0,1,0], + [0,0,2,0,0], ,
[1,1,0,0,0], x [3,0,0,0,0], = [4,1,0,0,0], + [2,2,0,0,0], + [3,0,1,0,0],

+[1,1,1,0,0],,
[1,1,0,0,0], x [0,0,1,0,0], = [1,1,1,0,0], + [2,0,0,1,0], +[0,1,0,1,0],
+[1,0,0,0,1],,
Sym?2[0,0,1,0,0], = [0,0,2,0,0], + [1,0,0,0, 1], . (5.233)

With the above representation products in mind, we construct the following quadratic
relations:

e —[2,0,0,1,0],5%5 relations. For this order, we consider the following generator pro-
duct,

U™, = A" Aoo2™™ epgmnii = 0, (5.234)
which vanishes exactly. This is precisely the quadratic relation at this order.

e —[0,0,2,0,0],5*5 relations. In order to construct the quadratic relation for this
order, we consider the following products,

_ pqr uvs B
U(I)ijklmn = A002 AOOZ €pgsijkCuvrlmn »

_ DYT PUVW B
U(H)ijklmn = ugua B"" B EpgrijkCuvwlmn - (5.235)

The above products transform in the correct SU(6) representation of this order. They
satisfy the following quadratic relation,

1

= u(I)ijklmn - gu(ll)ijklmn - 07 (5236)

U(If)ijklmn

which is precisely the relation we are looking for here.

e —2[1,1,1,0,0],5*5 relations. Corresponding to this order, there are two distinct
quadratic relations. In order to construct them, we consider the following generator

products,

ijk iq rk

urrn?, = Ao02"P Aoz " epgrimn »
ijk ij rk

uvy?", = Aoor " So12"" epgrimn »
ijk iik -

uey?", = uzAoo1”" Aoor™ €pgrimn »

ijk ijk r

wwn = usAoor”" BP epgrimn (5.237)

which transform in the representation of this order. The above products form the
following two quadratic relations,

U(III)”klmn = u(V)Uklmn B 2U(Ill)ljklmn + §U(VI)Z]klmn - 0’
.. .. 1 ..
U(IV)Uklmn = u(Iv)Uklmn + Eu(VI)ijlmn =0. (5238)

The two quadratic relations above are precisely corresponding to this order.
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e —[2,2,0,0,0],5*5 relations. The relation at this order requires us to have a look at
the following product of generators,

wyn 7 = Agor7* o1 (5.239)

where we antisymmetrize on the indices [kl] and [mn] as follows,

ijklmn ijklmn ijlkmn ijklnm ijlknm

WUV IIT) = Wi — Wi — Wi +Uuwrn

(5.240)
A further symmetrization on the two paired indices [k!] and [mn] leads to the following

U ijklmn ijklmn

V) = U(v1Ir) +ug ™ =0 (5.241)

which exactly vanishes. Given that the above expression is precisely of order
—[2,2,0,0,0],5%, this is the quadratic relation of generators we are looking for.

e —[3,0,1,0,0],5*5 relations. The quadratic relation at this order is formed by
Uvn* = (Ao ™S012"7" + Ao0r?P!So12™" + Ao01?" 012" ) epgrimn = 0, (5.242)
where the above contains the symmetrization of the generator product
Ao011S012"F €pgrimn (5.243)

in the indices ijk. The above quadratic relation satisfies precisely the transformation
properties for this order and is the relation we are looking for.

The next set of quadratic relation are at orders which contain s°t5. We consider the
following representation products in order to construct the relations,

3,0,0,0,0], x [1,1,0,0,0], = [4,1,0,0,0], + [2,2,0,0,0], + [3,0,1,0,0],
+[1,1,1,0,0],,

[1,1,0,0,0], x [1,1,0,0,0], = [2,2,0,0,0], + [3,0,1,0,0], + [0,3,0,0,0],
+2[1,1,1,0,0], + [2,0,0,1,0], + [0,0,2,0,0],
+[0,1,0,1,0],,

3,0,0,0,0], x [0,0,1,0,0], = [3,0,1,0,0], + [2,0,0,1,0],,

[1,1,0,0,0]; x [0,0,1,0,0], = [1,1,1,0,0], + [2,0,0,1,0], +[0,1,0,1,0],

+[1,0,0,0,1],,

Sym?[1,1,0,0,0], = [2,2,0,0,0], + [1,1,1,0,0], + [2,0,0,1,0],
+[0,0,2,0,0],,

Sym?[0,0,1,0,0], = [0,0,2,0,0], + [1,0,0,0,1], . (5.244)

The above products are used to construct the following quadratic relations of generators
for vortex master spaces:
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e —[1,1,1,0,0],5°t% relations. For the quadratic relation at this order, we consider the
following products of generators,

ijk ij rk
o, = Ao02”PSo12 €pgrimn

vin”", = usAoo1”" Aoor " epgrimn » (5.245)

which transform in the correct irreducible representation of this order. The above
products satisfy the following quadratic relation,

Vi i = 007 i+ 30Dy = 0 (5:246)

Imn Imn

The above precisely is the quadratic relation we are looking for at this order.

e —[2,2,0,0,0],5°t5 relations. For the quadratic relation at this order, we need
to consider several generator products with various symmetrizations and anti-
symmetrizations of indices. The first product to consider is the following,

. . 1 .
U(III)Uklmn = (AOOQl]k - ZUZBZ‘]k> Solglmn, (5247)

where we recall that Agj1” k= Agoe™ k_ %UQBij k. Above, we anti-symmetrize in the
indices [kl] and [mn] to give
U(Iv)ijklmn _ ,U(I[I)ijklmn _ ,U([II)ijlkmn _ ,U(III)ijk:lnm + U(III)ijlknmv (5248)

and further anti-symmetrize in the pairs of indices [ij] and [mn] to obtain,

v(v)ijklmn = U(Iv)ijklmn - ”(Iv)mnklij : (5.249)

The second generator product to consider is the following,
v ijklmn __ A ijkA Imn 5.950
(V1) = u3Ao01 001 (5.250)

which we anti-symmetrize in the indices [kl] and [mn] giving,

ijklmn _ ijklmn ijlkmn

vy — Wi — v+

U(VII) ,U(Vl)ijlknm . (5251)

A further symmetrization of the pair of indices [ij] and [kl] gives
ijklmn

U(VIII) — U(VII)ijklmn + ,U(VII)klijmn K (5252)

From the above generator products, which correctly transform at this order, we can
construct the following quadratic relation,

V(H)ijklmn - U(V)ijklm" + U(VUI)Umnkl =0. (5.253)

This is precisely we are looking for at this order.
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e —[3,0,1,0,0],5°t% relations. The following generator products are of importance in
order to construct the quadratic relation at this order. The first product is as follows

vax) 7, = A2 012"  epgrimn (5.254)

which we symmetrize in the indices ijk as follows,

U(X)Z] Ilmn U(IX)ZJ Ilmn + U(IX)] Zlmn + U(IX) Z]lmn : (5255)

The second generator product which we need to consider is the following,

U(Xl)ijklmn = u25012ijkquT6pqumn . (5256)

From the above products, we construct the following quadratic relation,

y » 1 »
Vi, = 00" — §”<Xf>”k =0. (5.257)

Ilmn Ilmn
This is precisely the relation we are looking for at this order of the plethystic loga-

rithm.

The next order of s5¢¢ leads us to the following products of SU(6) representations,

Sym?2[3,0,0,0,0], = [6,0,0,0,0], + [2,2,0,0,0],,
Sym?[1,1,0,0,0], = [2,2,0,0,0], + [1,1,1,0,0], + [2,0,0,1,0],
+[0,0,2,0,0],,
[1,1,0,0,0], x [3,0,0,0,0], = [4,1,0,0,0], + [2,2,0,0,0], + [3,0,1,0,0],
+[1,1,1,0,0],,
[1,1,0,0,0], x [1,1,0,0,0], = [2,2,0,0,0], + [3,0,1,0,0], + [0,3,0,0,0],
+2[1,1,1,0,0], +[2,0,0,1,0], + [0,0,2,0,0],
+[0,1,0,1,0], . (5.258)

From the above, we can construct candidate products of generators of the vortex master
space, in order to identify quadratic relations amongst them:

e —[2,2,0,0,0],5%5 relations. For the quadratic relations at this order, we consider
the following product of generators of the vortex master space,

Z(I)ijklmn — Souijksoulmn ] (5259)
We anti-symmetrize the above on the indices [kl] and [mn)]

Z(Il)ijklmn _ Z(I)ijklmn _ Z(I)z‘jlkmn _ Z(I)ijklnm + Z(I)iﬂk‘nm, (5.260)

and further symmetrize on the pairs of indices [kl] and [mn] to give
Zijklmn — Z([])ijklmn + Z([[)ijmnk:l =0. (5261)

The above quadratic relation vanishes non-trivially and by construction transforms
in the representation of this order of the plethystic logarithm. The above is the
quadratic relation corresponding to this order.
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Vortex moduli space. Given the above explicit computation of the quadratic relations
between generators, we can proceed in identifying the vortex moduli space for the 3 U(6)
vortex theory. The vortex moduli space can be expressed as a C* projection as follows,

17376 - ﬁi’),ﬁ/{Bijk ~ N3BUF | Agy T = A3 Aggy ¥,
Ago2" T =~ A3 Agg2 7, Sp12"% ~ N3Sp127FY . (5.262)

The master space of the vortex theory can be identified with the help of the quadratic
relations as follows,

Fr36 = Clug, us, B7*, Aoo1"*, A2, So12"7%] /{
Hij = 07

R(I)Ukl:O’R(U)”kl:OaR(IH) 0,

j p—
O, =0,0un",,=0,0umn",, =0,0qv)

ijklmn =

O(V)ijklmn =0, O(VI)ij =0,
” B ok B ok B
P(V),Z.j lmn 0, P(VI)Z] Imn 0, P(VII)W Imn 0,

=0,Uqin”* , =0, U(IV)ijklmn =0,

Ilm

Ui = 05U r0mn
U(V)ijk’lmn =0 7 U(Vf)ijklmn — O7

gk iklmn ik
Vin?", =0, Van?""" =0, Vi, =0,

Zukmn — (5.263)

5.7 3 U(7) vortices on C

The Hilbert series for the 3 U(7) vortex master space can be obtained by solving the
following Molien integral,

g(t,s,0;F37) = fduSU(g)PE[[o, 1]u[1,0,0,0,0,0], + [1, 1]ws} : (5.264)

where [1,0,0,0,0,0],, is the fundamental representation of the global SU(7). The integral
leads to the following character expansion of the Hilbert series

1
A—s5)(1—s%) |

o o oo o
Z Z Z Z |:[n1+n2+3n3,n1+n2,n0,070,O]x$n1+2n2+3n3t3n0+3n1+3n2+3n3

no=0mn1=0n2=0n3=0

+ [n1+n2,n1+n2+3n3+3, no, 0,0, 0]xsnl+2"2+3”3+3t3"0+3"1+3”2+6”3+6] . (5.265)

gt s,2; F37) =

where [my, ma, ms, my, ms, mgl, is a character of a SU(7) irreducible representation with
highest weights m1, ..., ms.
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The plethystic logarithm of the Hilbert series is

PL|g(t, s,x;ﬁw) = 5>+ 5% +10,0,1,0,0,0],t> + [1,1,0,0,0,0],st>
+[1,1,0,0,0,0].5%*> +[3,0,0,0,0,0],5°t>
—[1,0,0,0,1,0],t% — ([2,0,0,1,0,0], + [0,1,0,1,0,0],
+[1,0,0,0,1,0],)st® — ([1,1,1,0,0, 0], + [0,0,2,0,0, 0],
+12,0,0,1,0,0], + [0,1,0,1,0,0], + [1,0,0,0, 1,0],)s*°
+([1,1,0,0,0,0], +[0,0,0,1,1,0],)t° — ([3,0,1,0,0,0],
+2[1,1,1,0,0,0], + [0,0,2,0,0,0], 4+ 2[2,0,0,1,0,0],
+10,1,0,1,0,0,0], + [1,0,0,0,1,0,0],)s%° + ...
—([0,0,2,0,0,0], + [1,1,1,0,0, 0], + [2,0,0,1,0,0],
+[2,2,0,0,0,0], + [3,0,1,0,0,0],)s*® + ...
—([1,1,1,0,0], + [2,2,0,0,0], + [3,0,1,0,0],)st° + ...
—[2,2,0,0,0],855 + ... . (5.266)

The generators of the vortex master space are indicated by the above plethystic logarithm.
They are as follows,

s2 = uy = Tr(¢?)
§% — ug = Tr(¢%)
3 ijk arooas M) j k
[0,0,1,0,0,0)t> — BY* = e"*2%Qq, 4, Qay
ik _ i B Ak
Apo1”" = 19203 Q0 Qi Pas Q5
ik
eijkmnpoA()Ol” =0
ijk _ i I 481 B2~k
Apo2"" = €129 Q, QayPas Pl Q,
ijk 1
EijkmnpoA002ZJ = _§u26mnporsuBTsu
[1 1.0.0.0 O] 82t3 N A ijk _ _onasazk 481 i B2 A
y Ly Uy Uy Uy Ul 011 =€ Qa1¢a2Q51¢a3 Bo
ik 1
EijkmnpoAOHU = EUQEmnporsuBmu
— Ao % = Ag11 7% + Juy BUF
ijk _ 30)t AP I 4B2 B3k
Ag1p"" = e1a203 alﬁéaz 51¢a3¢52Q53
So12"" = Ag12”" + Ap12?™" + Ag12"™

[1,1,0,0,0,0],st> — {

3,0,0,0,0,0],53> — {
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Quadratic relations. The plethystic logarithm indicates the quadratic relations formed
amongst the generators,

—[1,0,0,0,1,0],t
-10,1,0,1,0,0],st% — [2,0,0,1,0,0],st® — [1,0,0,0,1,0],st°

—10,1,0,1,0,0],5%5 — 2[2,0,0,1,0,0],5%t° —[0,0,2,0,0,0],5*t°
—[1,1,1,0,0,0],5*% — [1,0,0,0,1,0],5%¢°

-[0,1,0,1,0,0],5%° — 2[2,0,0,1,0,0],5%°% — [0,0,2,0,0,0],53t
—2[1,1,1,0,0,0],s%5 — [3,0,1,0,0,0],53°

—[2,0,0,1,0,0],5*% —[0,0,2,0,0,0],5*% — 2[1,1,1,0,0,0],5*5
—12,2,0,0,0,0],5*5 — [3,0,1,0,0,0],5

—[1,1,1,0,0,0],5°t% — [2,2,0,0,0,0],s°t5 — [3,0,1,0,0,0],5°t5

—[2,2,0,0,0,0],555 . (5.267)

The quadratic relations are formed by the generators of the vortex master space which are:
uy ,ug, BY* Ago1 7", Aga 7", So127F . (5.268)

For the first quadratic relation at order 5 we consider the following SU(7) representation
product,

Sym?[0,0,1,0,0,0], = [0,0,2,0,0,0], +[1,0,0,0,1,0], . (5.269)
The above symmetric product allows us to construct the following quadratic relation:
e —[1,0,0,0,1,0],t° relations. We consider the following generator product,
Hi;* = €ijpgrsu BP"B™* =0, (5.270)
which vanishes exactly. It is exactly the quadratic relation at this order.

For the second set of quadratic relations containing the order st®, we consider the
following representation products,

[1,1,0,0,0,0], x [0,0,1,0,0,0], = [1,1,1,0,0,0], + [2,0,0,1,0,0],
+[0,1,0,1,0,0], + [1,0,0,0,1,0],.  (5.271)

The above tensor product guides us in constructing the following quadratic relations:

e —[0,1,0,1,0,0].5t% relations. We consider the following generator product for this
order,

R, = AotV BP empgriio = 0, (5.272)

J
klo

which vanishes exactly. This transforms in the correct representation of SU(7) and
is the quadratic relation at this order.
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e —[2,0,0,1,0,0],5t% relations. The following generator product vanishes exactly,

R(II)ijklo = AOOliijquempqulo =0. (5273)

It is in the correct representation and hence is the quadratic relation at this order.

e —[1,0,0,0,1,0],st® relations. For this order, the following generator product is con-
sidered,

R(Ill)ijo = AOOlimanlpfmnklpjo =0. (5274)

The above product exactly vanishes. It is the quadratic relation at this order.

The next set of quadratic relations contains the order s%t5. We consider the following

SU(7) representation products in order to construct the relations,

Sym?[1,1,0,0,0,0], = [2,2,0,0,0,0], +[1,1,1,0,0,0], + [2,0,0,1,0,0],

+[0,0,2,0,0,0],,
[1,1,0,0,0,0], x [0,0,1,0,0,0], = [1,1,1,0,0,0], + [2,0,0,1,0,0], + [0,1,0,1,0,0],
+[1,0,0,0,1,0], ,
Sym?2[0,0,1,0,0,0], = [0,0,2,0,0,0], + [1,0,0,0,1,0], . (5.275)

The above representation products guide us in constructing the following quadratic rela-

tions:

e —[0,1,0, 1,0,0]9652156 relations. We consider the following generator product for this
order,

Owy”

]klo = AOOQijqursquTsklo - 07 (5276)

which exactly vanishes. The above is precisely the quadratic relation for this order.

e —2[2,0,0,1,0,0],5%t% relations. We consider the following generator products for the
quadratic relation at this order,

Oun”,,, = Aoot™" Ago1" €mnpgkio = 0.,

Ourn” ;. = Avo2™ B™ emnpgrio = 0, (5.277)

where the products above both vanish exactly. The above are the two distinct
quadratic relations at this order.

e —[0,0,2,0,0,0],5%5 relations. The following generator products are helpful in con-
structing the quadratic relations at this order,

_ B PAT AUVS
O(I)ijklmnoloz = €pgsijkor 6uvrlmnozAAOOI A001 5

O(ID) ijkimnoros ug BP B €pqsijhoy €uvrtmno, - (5.278)
The above products satisfy the following quadratic relation,

1
Iv)ijk:lmnoloz = O(I)ijk:lmnmoz B §O(Il)ijklmn0102 ’

O (5.279)

which is precisely the relation at this order.
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e —[1,1,1,0,0,0],5%5 relations. We consider the following generator products for the
relation at this order,

i g
= Apo1""" A1 €pgrimno 5

-
= AOOQ’L] qurepqumno, (5280)

ijk
O(III) Imno

ijk
O(IV) Ilmno

which transform in the correct representation at this order. The above products
satisfy the following quadratic relation,

1

" ” ik B
Y Y Imno 50(1‘/)” =0, (5281)

O(V) Imno = O(III) Imno

which is precisely the relation at this order.
e —[1,0,0,0,1, O]xs2t6 relations. The following generator product vanishes exactly,

O(VI)ijo = A002pqulmn€pqlmnjo =0. (5282)

The above is the quadratic relations for this order.
3t6.

The next set of quadratic relations are at orders of s We first consider the following

SU(7) representation products,

[1,1,0,0,0,0], x [1,1,0,0,0,0], = [2,2,0,0,0,0], + [3,0,1,0,0,0],
+[0,3,0,0,0,0], + 2[1,1,1,0,0,0],
+[2,0,0,1,0,0], +[0,0,2,0,0,0],
+[0,1,0,1,0,0],,

3,0,1,0,0,0]; +[2,0,0,1,0,0],,

1,1,1,0,0,0], + [2,0,0,1,0,0],

+[0,1,0,1,0,0], + [1,0,0,0,1,0],,

Sym?[0,0,1,0,0,0], = [0,0,2,0,0,0], +[1,0,0,0,1,0], . (5.283)

[3,0,0,0,0,0], x [0,0,1,0,0,0],

= [
[1,1,0,0,0,0], x [0,0,1,0,0,0], = |

The above representation products lead us to the following quadratic relations:

e —[0,1,0,1,0,0],5%5 relations. The following generator product vanishes exactly,
Py . = Aot Aoo2” empgriio = 0., (5.284)

and transforms in the representation of this order. Accordingly, it is exactly the
quadratic relation we are looking for this order.

e —2[2,0,0,1,0,0],5%% relations. For this order, we consider the following generator
products,

B (U)Z:J:klo = AOOllrflonmp Y npakio =0,
P(II[)ZJklO - SOlZIJmBnpqunqulo - 0 . (5285)

Both above vanish and satisfy the correct transformation property for this order.
They are precisely the two quadratic relations at this order.
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e —[0,0,2,0,0, 0]3;33156 relations. We first consider the following generator products,

u rsv
= A1’ Aoz €pquijkor Ersulmnos >

u TSV
= u3BP"B €pquijkoy Ersvimnog » (5286)

P(1)

ijklmmnoi og

burn

ijklmmnoi oz
which transform in the correct representation corresponding to this order. The pro-
ducts satisfy the following quadratic relation

1

P(Iv)ijklmnol(JQ = p(I)ijklmn0102 - §p(11)ijklmn0102 ) (5287)

which is the relation for this order.

e —2[1,1,1,0,0,0],5%% relations. For the quadratic relation at this order, we need to
consider the following generator products,

ijk ij rk
parn e = Aoo1”P Aoo2 ! epgrimno
p(IV)Z] Imno AOOZZJPAOOI(F Epgrimno »
ijk _ ijp Rqrk
PO e = 20017 BT €pgrimno - (5.288)

The above products transform in the correct representation for this order. The
quadratic relations formed by the above are

- B ik ” B
P(V)Z] Ilmno p(II])” Imno _p(Iv)U Ilmno ~

k _ k k _
P(VI)U Ilmno p(II[)Z] Imno ip(v)w Ilmno 0, <5289)

exactly corresponding to the two expected quadratic relations at this order.

e —[3,0,1,0,0,0],5%5 relations. We consider the following generator products for the
quadratic relation at this order,

pvn” = (A1 Ago2”" + Ao01”"" Ago2 ™" + Aoo1™" o2 ) €pgrimno ;

N Ilmno -
p(VII)l]klmno = SOlQijqurepqumno, (5290)
which transform in the correct representation for this order. The above products

satisfy the following quadratic relation

. . 1 -
k k k
Pwin™ e = PN o+ 3P0IN e (5.291)

which is precisely the relation for this order.

The next set of quadratic relations are of orders s*t%. In order to construct the relations,
we consider the following SU(7) representation products,

Sym?[1,1,0,0,0,0], = [2,2,0,0,0,0], + [1,1,1,0,0,0],
+[2,0,0,1,0,0], + [0,0,2,0,0,0],
[1,1,0,0,0,0], x [3,0,0,0,0,0], = [4,1,0,0,0,0], + [2,2,0,0,0,0],
+[3,0,1,0,0,0], + [1,1,1,0,0,0],,
[1,1,0,0,0,0], x [0,0,1,0,0,0], = [1,1,1,0,0,0], + [2,0,0,1,0,0],
+10,1,0,1,0,0], + [1,0,0,0,1,0],,
Sym?[0,0,1,0,0,0], = [0,0,2,0,0,0], + [1,0,0,0,1,0], . (5.292)
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The above representation products help us in constructing the quadratic relations as fol-
lows:

e —[2,0,0,1,0,0],5*5 relations. We consider the following generator product for the
quadratic relation at this order,

U™, = A" Aoo2™™ epgmniio = 0, (5.293)

which vanishes exactly. This is precisely the quadratic relation at this order.

° —[0,0,2,0,0,0],;34156 relations. For this order, we consider the following generator
products for the quadratic relation,

T uvs
A002pq AOOZ €pgsijkor Cuvrlmnog »

r PUVW
= UQUQqu B €pgrijkor Cuvwlmnoy - (5294)

U(I)ijklmnolog

u(II)ijklmnolog

The above products transform in the correct SU(7) representation of this order. They
satisfy the following quadratic relation,

1
ijklmmnoi oz = U(I)ijklmnoloz B gu(II)ijklmnoloz = 0’

U (5.295)
which is precisely the relation we are looking for here.

e —2[1,1,1,0,0,0],5*% relations. There are two distinct quadratic relations at this
order. In order to construct them, we consider the following generator products,

wirn? = Ao Aoo2 "  epgrimmno
U(IV)ijklmno = AOOlijpS(Jqurkqurlmnov
un?*, = uz Aot " Aoot” epgrimno »
u@wn e = 43 A0017" BP €pgrimno (5.296)

which transform in the representation of this order. The above products form the
following two quadratic relations,

k _ k k k _
U(III)U Imno U(V)w Imno QU(II])Z] Ilmno + §U(VI)” Imno 0,
g y 1 g
k _ k k _
U(IV)U Imno U(IV)” Imno + EU(VI)U Ilmno 0. (5'297)

The above are the two quadratic relations at this order.

e —[2,2,0,0,0,0],5*5 relations. The following generator product with its symmetriza-
tion and anti-symmetrization of indices is required for the construction of the
quadratic relation at this order,

uyrn M = AgorV* Sora"™" (5.298)
where we antisymmetrize on the indices [kl] and [mn] as follows,

ijkl ijkl ijlk ijkl ijlk
U(VHI)” = U(VU)” — U(VH)” = U(VH)ZJ "t U(VH)” " (5.299)
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A further symmetrization on the two paired indices [kl] and [mn] leads to the following

ijkilmn
U = wyiIr

)z‘jklmn + u(V]II)ijmnkl — 0, (5300)

which exactly vanishes. This is precisely the quadratic relation at this order we are
looking for.

e —[3,0,1,0,0,0],5*5 relations. The quadratic relation at this order is formed by

Uy, =(Ao01™"So12"7* + Aoo1’P 012" + A001’" 012" ) epgrimno =0, (5.301)

where the above contains the symmetrization of the generator product
AOOlipqS(H?Tjkepqumno (5302)

in the indices ijk. The above quadratic relation satisfies precisely the transformation
properties for this order and is the relation we are looking for.

For the next set of quadratic relations at orders of s°t%, we consider the following

representation products in order to construct the relations,

3,0,0,0,0,0], x [1,1,0,0,0,0], = [4,1,0,0,0,0], + [2,2,0,0,0,0],
+[3,0,1,0,0,0], + [1,1,1,0,0,0],,

[1,1,0,0,0,0], x [1,1,0,0,0,0], = [2,2,0,0,0,0], + [3,0,1,0,0,0],
+[0,3,0,0,0,0], +2[1,1,1,0,0,0],

+[2,0,0,1,0,0], + [0,0,2,0,0,0],
+[0,1,0,1,0,0], ,
[3,0,0,0,0,0], x [0,0,1,0,0,0], = [3,0,1,0,0,0], + [2,0,0,1,0,0], ,
[1,1,0,0,0,0], x [0,0,1,0,0,0], = [1,1,1,0,0,0], + [2,0,0,1,0,0],

+[0,1,0,1,0,0], + [1,0,0,0,1,0], ,

Sym?[L,1,0,0,0,0], = [2,2,0,0,0,0], + [1,1,1,0,0,0],
+[2,0,0,1,0,0], +[0,0,2,0,0,0], ,

Sym?2[0,0,1,0,0,0], = [0,0,2,0,0,0], 4+ [1,0,0,0,1,0],.  (5.303)

The above products are used to construct the following quadratic relations of generators:

e —[1,1,1,0,0,0],5°t5 relations. We consider the following products of generators for
the quadratic relation at this order,

ijk ij rk
vn” = Ap02"""So127" " €pgrimneo »

Imno
ijk ij rk
oD, e = UsAo0017P Ao €pgrimno (5.304)
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which transform in the correct irreducible representation of this order. The above
products satisfy the following quadratic relation,

y ’ 1
VD ano = U0 o + 5000 o = 0 (5.305)

Imno Imno 2 Imno

The above precisely is the quadratic relation we are looking for at this order.

—[2,2,0,0,0,0],5°t% relations. We need to consider several generator products with
various symmetrizations and anti-symmetrizations of indices in order to construct
the quadratic relation for this order. The first product to consider is the following,

g 1 g
v M = (Aoozmk - 2u23”k> Sor2"™™, (5.306)
where we recall that Agj1* = Agge™* — %UQBijk . Above, we anti-symmetrize in the
indices [kl] and [mn] to give
ijklnm

ijklmn ijklmn

V(Iv) = V(111) + U([[[)ijlknm s (5.307)

- 'U(Hl)ijlkmn — V(Irrn
and further anti-symmetrize in the pairs of indices [ij] and [mn] to obtain,

U(V)ijklmn _ v(lv)ijklmn _ ,U(Iv)mnklij ) (5308)

The second generator product to consider is the following,
L)) = U3A001 001 ) (5.309)

which we anti-symmetrize in the indices [kl] and [mn] giving,

U(Vll)ijklmn _ ,U(VI)ijklmn _ U(Vl)ijlkmn . ,U(Vl)ijklnm + ,U(Vl)ijlknm ) (5310)

A further symmetrization of the pair of indices [ij] and [kl] gives

,U(VII])ijklmn — ,U(VH_)Z'jklmn + U(VII)klijmn K (5311)

From the above generator products, which correctly transform at this order, we can
construct the following quadratic relation,

VirnPHm™ = vy TEm gy TR = . (5.312)

This is precisely we are looking for at this order.

—[3,0,1,0,0,0],5°t% relations. For the quadratic relation at this order, we need to
consider the following generators products,

vrx) = Ao02"1 012" Epgrimneo (5.313)

which we symmetrize in the indices ijk as follows,

U(X)w Imno U(IX)Z] Ilmno + U(IX)J 7Jlmno + Y(1x) Ulmno ' (5314)
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The second generator product which we need to consider is the following,

- o i
vxn'”, = u2A001™ A2 " €pgrimno » (5.315)

which we symmetrize in the indices ijk as follows,

ki

7
Imno

+vixn (5.316)

+ U(X])j Ilmno ”

ijk _ ijk
U(XII) Imno U(XI) Imno

From the above products, we construct the following quadratic relation,

g » 1 »
V™ e = 000 o = 30107y = 0 (5.317)

Imno Imno Imno

This is precisely the relation we are looking for at this order of the plethystic loga-

rithm.

The final quadratic relation is of order s%t5. It can be constructed by considering the

following SU(7) representation products

Sym?[3,0,0,0,0,0], = [6,0,0,0,0,0], + [2,2,0,0,0,0],,
Sym?[1,1,0,0,0,0], = [2,2,0,0,0,0], + [1,1,1,0,0,0],
+12,0,0,1,0,0], + [0,0,2,0,0,0],,
[1,1,0,0,0,0], x [3,0,0,0,0,0], = [4,1,0,0,0,0], + [2,2,0,0,0,0],
+[3,0,1,0,0,0], + [1,1,1,0,0,0],,
[1,1,0,0,0,0], x [1,1,0,0,0,0], = [2,2,0,0,0,0], + [3,0,1,0,0,0],
+[0,3,0,0,0,0], + 2[1,1,1,0,0,0],
+[2,0,0,1,0,0], + [0,0,2,0,0,0],
+10,1,0,1,0,0], . (5.318)

+

From the above, we can construct candidate products of generators of the vortex master

space, in order to identify quadratic relations amongst them:

e —[2,2,0,0,0,0],5%5 relations. The

final quadratic relation can be identified from

the following generator product and its symmetrization and anti-symmetrization of
indices,

Z(I)ijklmn — SOl2ijk‘5012lmn . (5319)

We anti-symmetrize the above on the indices [kl] and [mn]

Z([[)ijklmn — Z(I)ijk:lmn _ z(])ijlkmn _ z([)ijklnm + Z(I)ijlknm, (5320)

and further symmetrize on the pairs of indices [kl] and [mn] to give

ijklmn _ Z(H)ijklmn + Z(H)ijmnkl =0. (5.321)

The above quadratic relation vanishes non-trivially and by construction transforms
in the representation of this order of the plethystic logarithm. The above is the
quadratic relation corresponding to this order.
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Vortex moduli space. Given the above explicit computation of the quadratic relations
between generators, we can proceed in identifying the vortex moduli space for the 3 U(7)
vortex theory. The vortex moduli space can be expressed as a C* projection as follows,

ﬁ3:7 = ﬁi’),?/{Bi‘jk ~ N3BUK Ag019% ~ A3 Ago F,
Ago2" T =~ N3 Agoe 7, Sp12"% ~ N3Sp1579KY . (5.322)

The master space of the vortex theory can be identified with the help of the quadratic
relations as follows,

F?s7 = Clug,us, B7*, Ago1”", Aoo2”", So127"]/{

(2
jo ’

R, =0.Ran”,, =0, Ram

O 4o = 9:0un" 11, = 0:0u1n" 11, = 05 OUV) sitimnoros =

9

O(V) J Imno = 07O(VI) jo = 07

Py 1o =0, Pun” 1y, =0, Puin” y, = O’P(IV)ijkzmnOIOQ =0,
” B ok B ok B
P(V)Z] Ilmno 0 ? P(VI)” Imno 0 ’ P(VII)ZJ Imno ~ 7’

i _ _ i7k _ ijk _

U(I) ]klo =0 ’ U([I)ijklmnolog =0 ’ U(II[) ! Ilmno 0 ? U(IV) ! Imno ~
ijklmn ijk

U(V) ‘J =0 ’ U(VI) ‘J lmno 0 ’ N

‘/(I)Uklmno =0 ’ ‘/(II)Uklmn =0 ) ‘/(III)Uklmno = 0’

ZUkmn — (5.323)

5.8 3 U(N) vortices on C

In this section, we summarize the generalization of the 3 vortex moduli space beyond
U(7). We begin with the Hilbert series of the master space for 3 U(N) vortices. It can be
computed using the following Molien integral

g(t, S, x; 537]\[) = fdMSU(S)PE[[Ov 1]w[1, 0,... ,O]mt + [1, 1]w8 . (5.324)

The Hilbert series for the first few values of N are as follows

~ 1
tt; F31) = ;
g( 3,1) (1—t2)(1 —t3)(1 —t6)
~ 14 2% 4 216 4- 11
t,t; FP32) =
g(t,t; F’32) (1 —2)(1 —13)(1 — t4)2(1 — 16)2”
~ 1
t,t; FPy3) = 1+ t3 + 4t + 8¢5 + 8t°
g(t,t; F’33) (1—12)(1 —13)(1 — tH)4(1 — 16)3 X (117 + + +

+4t7 + 9% + 13¢9 4+ 14410 + 2081 + 14412 + 1313 + 91 4 4415 4 8¢16
+8t17 4 418 4 19 4 422
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1

g(t,t; Fray) = @)1 By AP oy x (1 + 14t* + 20¢°
+16t% — 167 + 5t + 46t + 94¢10 + 16t — 9412 — 15613 — 13514
—35t1° — 16 4 65617 — 59t — 16119 — 185120 + 1252 + 440122
+440t%3 + 125¢%* — 185¢%° — 161¢%0 — 59¢%7 + 65¢%° — 29 — 35t
—135t31 — 156132 — 94433 + 1634 + 94¢3° + 46130 + 5637 — 1638
+16¢3 + 20110 4 1444+ #19)

gltt; Frgs) = ! x (1 —t 4 9t3 4 23¢4

(1= &)1 =PRI = H)5(1 — )5
+81° + 30t% + 98¢7 + 200¢% + 232¢7 + 320410 + 482t + 677"
+806¢"% + 800" + 1052¢15 + 988¢16 + 485¢'7 + 18¢'® — 127¢1?
—440t%° — 970t — 172872 — 2074¢* — 1778t — 2074¢*° — 1728
97027 — 440t% — 127t 4+ 1830 + 485¢3 4 98832 4 1052¢%3
+800t3 + 806t%° + 6770 + 482t + 320¢%® + 23239 + 2004
+98t4 + 30t42 4 843 4 23t 4+ 9¢1° — 47 4 148y (5.325)
where for simplicity we have set all global SU(N) fugacities to x; = 1 and have set the
adjoint and fundamental fugacities to be the same s = t.

As a character expansion, the Hilbert series for the 3 U(/N) vortex master space is

1
(1—s2)(1-53) "

(o @] o0 (o] o0
E E E E {[nl +ng+3ngz,n1+ns, ng, 0, ..., O]xs"1+2"2+3"3t3"0+3”1+3"2+3"3

no=0n1=0n2=0n3=0

g(t, 5,25 Fog n) = (5.326)

+ [n14+n2,n1+n2+3n3+3, 10,0, ...

)

0] Snl+2n2+3n3+3t3n0+3n1+3n2+6n3+6}
bl X

where [my,...,my_1] represents the character of an irreducible representation of the
global SU(N).
The plethystic logarithm takes the following form,

PL g(t,s,x;f;]\,)} — 2155 4[0,0,1,0,...,00.¢° + [1,1,0,0,0,0],st>
+[1,1,0,0,...,0],5*t> 4 [3,0,0,0,...,0],s°t>
—[1,0,0,0,1,0,...,0],t° = ([2,0,0,1,0,...,0]; +[0,1,0,1,0,...,0],
+[1,0,0,0,1,0,...,0],)st’ — ([1,1,1,0,0,...,0]; +[0,0,2,0,0,...,0],
+[2,0,0,1,0,...,0], +[0,1,0,1,0,...,0], + [1,0,0,0,1,0,...,0],)s*t°
+([1,1,0,0,0,...,0], +[0,0,0,1,1,0,...,0],)t" — ([3,0,1,0,0,...,0],
+2[1,1,1,0,0,...,0], +[0,0,2,0,0,...,0], + 2[2,0,0,1,0,...,0],
+10,1,0,1,0,0,...,0], + [1,0,0,0,1,0,...,0],)s5 + ...
—([0,0,2,0,0,...,0], 4+ [1,1,1,0,0,...,0], + [2,0,0,1,0,...,0],
+12,2,0,0,0,...,0], +[3,0,1,0,0,...,0],)s*5 + ...

—([1,1,1,0,...,0], + [2,2,0,0,...,0]z +[3,0,1,0,...,0],)s°t* 4 ...
—[2,2,0,0,...,0],8%5 + ..., (5.327)
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where we identify that the generators of the master space as,

s2 = up = Tr(¢?)
s3 = uz = Tr(¢?)
0,0,1,0,0,...,0],t° — BUF = em2mQl Qi QF
AgorTF = eme203 Qi @, 0, Qb
€ijkmy...mu—s Aoo17F = 0
Agpa™F = ecreze3 Qi Q4 ¢§§¢g?QEQ

ijk 1
6ijk:ml..Am]\],314002 I = _§u26m1...mN737"suBrsu

[1,1,0,0,0,..., 00,5 — § Ao % = ex1o203Qk o2 Q% 62,
eijkml...mN,gA(]llijk = %UQEml...mN_grsuBrsu
— Ago2"* = Ap11 % + SuyBUF

Ag2k = o203 £1¢g§ %) ¢g23<75§2@f33
So12% = Ag12"% + Ag127* + Ag12™

[1,1,0,0,0,...,0],st3 — {

[3,0,0,0,0,...,0],s%t> — { (5.328)

Quadratic relations. The generalized quadratic relations amongst the generators of the
3 U(N) vortex master space are summarized in table 4 and table 5.

Vortex moduli space. Given the above summary of the quadratic relations between
generators, we can express the vortex moduli space for 3 U(NN) vortices as the following C*

projection,

17371\’ = ‘}:vbS,N/{Bijk ~ N3 BUE | Agg1 7% = A3 Agor ¥,
Ago2* = N3 Apga*, Sp129% ~ A3S0129F} . (5.329)

The master space of the vortex theory can be identified with the help of the quadratic

relations as follows,

F’s N = Clug, uz, B9, Agn ", Ago2”", So12"]/{

Hil.’.g.iNfs =0,

R(I)ijkl...k:N,4 =0,... ’R(Uf)iﬁ.--jzv—s =0,

O(I)ijk;l.../rm,3 =0,... ’O(Vf)ijl---jzv—s =0,

P(I)ijkl...kN_4 =0,... ’P(fo)ijkml---mN—if =0

U ks =05 Uy, =0,

V(I)z‘jkmlmmN_s =0,... ,WIII)ijkml...mN—s =0,
o (5.330)

The dimension of 9371\7 is SN — 1.
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Order t6 Quadratic Relation

—-[1,0,0,0,1,0,...,0]t° = €ijpgrsu BPT BSUF =0

i1 N5

Order st® Quadratic Relation

—[0.1,0,1,0,....0last® | RenYy, o, = Aoot”" B emparty 4 = 0

—[2,0,0,1,0,...,0]xst | Rp¥ = Aoo1™ BP €pirter kn_y = 0

ki..kn_4
—[1,0,0,0,1,0,...,0],st R(”f)ijlmms = Aot ™ B¢ kipiy . in_s = 0
Order s%t6 Quadratic Relation
-[0,1,0,1,0,...,0],s*5 | Op" ke = A02"P BT € pgrshy . by = 0
=2(2,0,0,1,0,.... 0[5 | O, = Aoot™™ Aot €mmpas ..y 5 = O
O(’U)i]‘kl...kag = AOOQiijnqumnqul.A.kN,;g =0

— 246 — _ 1
[0’ 0’ 2’ 0’ O’ B O]IS t O(Iv)ijkl'mnu1..,uN,G’Ul,N’UN,E; - O(I)’ijkl'nmul AUN UL UN—6 Qo(ll)ijk:lmnul CUN UL UN—6

_ . pgr Auvs
O(I)ijlclmnul.4.uN,5v|.4.v\v,6 = epqswkul..,uN_geuvrlmnvl...vN_GAOOl A()()l

O(Il>ijklmnu14.4uN,61)14./UN,6 = ua BPY¥ B €pqsijhuy..un—g Cuvrlmnoy ..oy g
*[17 1,1,0,0,..., O]zSQtG O(V)ijkmlmme3 = O(HI)ijkml...mN,g — %O(Iv)ijkml...m,v,g =0
O(I[I)ijkml___mN_S = Ago1"™* Aot " epgrmy..m s
O(IV)ijkml,.,mN—s — AOOQijkquTepq')ml“‘mN*i*
-[1,0,0,0,1,0,...,0],s%5 O(V,fjlmms = A2 B € ptmmy—in s =0
Order s3t6 Quadratic Relation
—[07 1, 07 1, 07 ey 0]183156 P(I>ijlc1...kN,4 = A001iij002pqr€mqukl___kN74 =0
72[2, 0, 0, 1, 0, ey O]ws3t6 P(Il)ijklmkN,/, = AoglmniAoogp(IjE"mqulmkN74 =0

P(III) ]k‘1~-~k‘N74 = So12 7 Bnpqemnqulmkjv,zl =0

_ 3,46 — _ 1
[0’ 0’ 2’ 07 07 T 0]18 t P(Iv)ijk’lmnol,.,oN,Gwl...wN,g - p(l)ijk’lmnol...oN,f,wl.,.wN,g, 9p(11)ijklmnol...oN,swl...wN,f,

J— rqu TsSv
Y405 = Ago1”"" Aoo2 €pquijkor...on —¢ Ersulmnwi .. wy ¢

ijklmnor...oNy _ew1..wWN—¢

P

_ DqU TSV .
ikImnoy...ON WL WN—§ uz BP" B €pquijkor...on ¢ Ersvimnwi .. wn g

—2[1,1,1,0,0,...,0],5%" P(V>ijkm1mmN,3 = p(IH)ijkml,umN% 7p(lv)ifkm1umv73 =
Pun oy =A™ P =0
p(IH)ijkml__.mM3 = AOOliijO()?quepqrml...mN_g
p(IV)ijkml___mN_S = A002iij001qu€pqrm1..,mN,g
p(V)ijkml...mN_g - UZAOOIUPBW]CEPQTWI<--WLAL;;

—-[3,0,1,0,0,..., 0]zs3t6 P(Vu)ijkml s p(VI)ijkml N + %p(vu)i‘jkml N

ijk _ inj k ik : kpi j
PV ey = (A001™ Aoz + Aot Agoa™" + Aoor ™ Aooa ™ ) epgrmy..mx s

P ijk _ ijk ppgr
bPwirn J mi.my_3 5012 B €pgrmi..my_3

Table 4. The quadratic relations for 3 U(N) vortices, for orders ¢ to s3° of the Hilbert series.
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Order t5 Quadratic Relation

=[2,0,0,1,0,...,0l:s"° | U, = Aoz’ Aoo2™™ €pgmnky...ey s = 0

7 446 _ _1
[07 0’ 27 O’ O" o ’0]7’8 t U(Il)ijklmnu] CUN UL UN—G U(I)ijklmnm UN_GULUN—6 3“’(11)ijklmnu1muN,6v1 LUN_6

_ pqr uvs ..
uU)ijklmnul“.uN,gle.mN,g - A002 AOOZ €pgsijkui...un_g Cuvrlmnuy..vn_g

_ pgr RQUVW »
u(ll)ijkl7nnul...uN_svl,..UN_G = ugua BP" B Epqrijkus ... un —¢ Cuvwlmno ..oy _g

=2[1,1,1,0,0,..., 0)s™® | Ugrn™*, = =uey?* =2 Sun =0
U™ oy = 0™ suwn™, =0
u(HI)ijkml...mN—B = A002iij002ququrml”‘mN’g
u(irv)ijk,,“mme3 = A0017" S0129™ €pgrm,y.m_s

ijk — . ijk pqr
Uw) mimN_g U/ZAOOI A()Ol €pgrmy..my_3

u(VI)ijkmlmmNi3 = u3AOOlijkquTepqrml...mN_g
_[2’ 2,0,0,0,... ,0]zs4t6 U(V)ijklmn _ u(VIH)ijklmn + u(VIII)ijmnkl =0
U(VII)ijklmn — Aomz‘jksmglmn
g rrn M = ue M — gy — gy TR 4 gy U

" - - . - , = . — -
—[3,0,1,0,0,...,0];5%° | Uy p? oy = (A001"1S012™7" + Ao0r”So12™" + Aoor”" 012" ) €pgrm .my 5 = 0

Order s°t5 Quadratic Relation

_ 546 ijk _ ijk 1 ijk —
[1’ L, 1,0,0,... ’O]I‘S t ‘/(1) mi.my_3 UU)Z] mi.my_3 + QU(U)” mi.my_3 0

ijk _ Jp qrk
V(1) mi..my_3 AOOQ So12 €pgrmy..mpy_3
ijk

— e ijp qrk
MmN uzAgo1? Agor €pgrmy..mpy_3

v

_[27 27 0’ 07 O, o ,0]185156 ‘/(u)i,jklmn — U<V)i]’klmn + ,U(VUI)ijmnkl =0
v([][)ijklmn _ (AU(JQijk _ %UQBU]C)S(HQZMH
,U(Iv)ijklmn — U(]Il)ijklmn _ U([][)ijlkmn _ ,U(]Il)ijklnm + ,U(I]I)ijlknm
,U(V)ijk:lmn — ,U(Iv)ijklmn _ ,UUV)mnklij
vy TR = g Aggy 9F Aoy ™™
,U(Vll)ijklmn — U(VI)ijk’lmn _ ,U(Vl)ijlkmn _ ,U(Vl)ijk'lnm + ’U(V])ijlk"m
Oy 1y T = vy ) IR gy R

7[37 0’ 17 O’ O" U 70]w'95t6 ‘/(Ill)ijkmln.mN,_g = U(X)ijkmlmmN,_g - %U(Xll)ijkmynmj\/,g =0
U(IX)ijkml___mN% = Ao02™1S012"  epgrmy ..m s
0 s = P00 gy O™ 000
oxy s = 42 A001™ Ao ™ epgrim m
vy s = oo™ o™ o) e

Order %8 Quadratic Relation
—[2,2,0,0,0,0],s%5 | Ziktmn — 5 piskimn g ) timnkl — o

Z([)ijklmn — SQQijkgngmn
z([[)ijklmn — Z(I)ijklmn _ Z(I)ijlkmn _ Z(I)ijklnm =+ z([)ijlknm

Table 5. The quadratic relations for 3 U(N) vortices, for orders st5 to s%% of the Hilbert series.
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u(4) U(N)

Figure 8. Quiver diagram of the 4 U(N) vortex theory.

6 4 U(IN) vortices on C

The quiver diagram of the 4 U(N) vortex theory is shown in figure 8.

The moduli space. The moduli space of 4 U(NV) vortices Vy y is a partial C* quotient of
the master space ]-'z ~- The generators x1,...,x4 of ]-'2 n can be considered as coordinates
for the C* projection which takes the form

($1,...,$d) =~ ()\wll‘l,...,)\wdl'd). (6.1)

Above, A is the C* parameter and wy,...,wy are respectively the U(1) weights for the
coordinates x1, ...,xq. Accordingly, the vortex master space is C* projected as follows,

Vi = Fi/{an = X a2 AV (6.2)

The Molien integral and Hilbert series. The Hilbert series of the 4 U(N) vortex
master space is given by the following Molien integral,

g(ta S, T3 J—.Z,N) = fdMSU(ZL) PE |:[07 07 1}1(1[17 07 SRR O]xt + [17 07 1]w5 ) (63)

where Q}, transforms in [0,0,1],[1,0, ..., 0]t and ¢ transforms in [1,0, 1]ys. dpgy) is the
SU(4) Haar measure.

Center of mass contribution. The integrand in (6.3) for the master space Hilbert
series can be rewritten as follows,

PE |:[07 Oa 1]10[17 07 R O]xt + [17 0, 1]w8:| =

1
- SPE[[O, 0,1],[1,0,...,0];t + (wws + wlwgwg_l + wflwgwg + w%w;l
+wy tw? + wilwiwgt + 2 4+ wiwy 2wy + wowy 2 4+ wi tws + wiwy twy!
+wy twy Tws + wflwgl)s} , (6.4)

where the character of the adjoint of SU(4) is given by

-1, -1 2 —1,. -1 .2, -1 92 _1
[1,0,1]y = wiwz+wiwows ~ +w]  wows+wiwy - +wy wy+w; wiws +3

+w1w2_2w3—|—w2w3_2+w1_2w2+w1w2_1w3_1+w1_1w2_1w3+w1_1w3_1 . (6.5)
The 1%3 prefactor in (6.5) does not interfere with the Molien integral and also is inde-

pendent of the C* projection of the vortex master space. It refers to the center of mass
position of the 4 vortices.
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6.1 4 U(1) vortices on C

The Hilbert series of the 4 U(1) vortex master space is

oy 1
t i FP41) = . 6.6
9l F240) = 5 YA = ) (1= 51 (1 = 506) (6.6)
The generalization of the master space Hilbert series for any k& U(1) vortices is
oy 1
t,s,x; F’ = . 6.7
o B P ) = e [T, ) 00
The vortex master space for & U(1) vortices is
Vs = CF L. (6.8)

6.2 4 U(2) vortices on C

The Hilbert series for the 4 SU(2) vortex moduli space is given by the following Molien
integral,

g(t, 5,25 Fra9) = 7{ sy PE[[0,0, (1]t + [1,0, 1]s] (6.9)

When solved, the above integral gives the Hilbert series

1
(1= s2)(1 — s3)(1 — s4)(1 — s2t4)(1 — s3¢4)2(1 — s614)2 -
(1 + 53 4 4sM" 4 355 4 35541 + 35848 + 35945 + 451048
pstl8 oy s14412) (6.10)

g(t, s, 3 F40) =

where we have set for simplicity the global SU(2) fugacity to x = 1. The base manifold is
a non-complete intersection of dimension 9. As a character expansion the Hilbert series is

~ 1
. Th _
90823 F002) = G B A 1 = s (1 = 20 (1 — 5409)
o0 o0
% Z Z [[2n3 i 4n6]x53n3+6n6t4n3+4n6
n3=0ng=0

+[2n3 4 4ng + 2], >3 HOno T pdnstine+4
+[2n3 + 4ng + 2] L5 tbnet5dnst+dne+4

+[2n3 4 4ng + 4], >3 oo TOpdnatdnet8) 5 171)
The plethystic logarithm of the Hilbert series is
PL [g(t, 8, 2; 77%,2)] = 5%+ 5%+ st 4 20,83 + 28ttt 4 (20050 4 [4] 5%
=% — [2]08*° — (2 + [2a + [4]2)s°° — (1 +2[2]0 + [4]0)s78°

—(1+ [2]e + 2[4]2)s™%t% = (2] + [4))s" 7
—(1+ [4]2)s"2% + ... . (6.12)
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7 Summary of Hilbert series for vortices

7.1 TUnrefined Hilbert series

We summarize in this section the Hilbert series of the vortex master spaces in unrefined
form. This means, we set the fugacities corresponding to the global symmetry SU(N)
to z; = 1. The only remaining fugacities are t, corresponding to the remaining U(1) R-
symmetry and the fugacity s corresponding to the U(1) residual gauge symmetry. The
unrefined Hilbert series take the following form:

1 Vortex:
gt 5 F11) = % (7.1)
g(t,5F12) = § _1t)2 (7.2)
gt 53 F13) = a _1t)3 (7.3)
2 Vortices:
g(t, 55 F31) = = 32)11 — ) (7.4)
g(t, S;ﬁm) = = 82)(111—:215)2(1 — ) (7.5)
01051 Faq) = [t s 0
gt 5 Fra4) = A== 12)5(1 — 2y (1+ ¢ + 55t — 10st* — 557t + st
— 30 4 5528 4+ 10535 — 5310 — 410 — s4412) (7.7)
g(t, s;ﬁm) = (=)= 12)7(1 sy X (14 3t% + 8st? + t* — 21st? — 14521

— 75t — 75240 1+ 51528 + 705318 + 5s*® — 552410 — 705310
— 51s%10 4 76412 4+ 755412 4 145M M 4 216581 — $O¢14

— 85910 — 356416 — 6418y (7.8)
3 Vortices:
~ 1
t,s; F? = 7.9
95 750) = T @y = ) (1 - 50) (79)
~ 1+ 2523 4 2533 + 526
t, 8 FP59) = 7.10
95 7%52) = G 3T = 9)(1 = B)(1 = sB)2(1 = 209 (7.10)
g(t 5'};’3 3) = ! x (14 45t + 8523
P B T T 2) (1= s3)(1— 13) (1 — st3)A(1 — s3¢3)°
+65°t3 + 25 + 55310 + 650 + 3595 — 65510 — s4t? — 12577
— 15557 — 15577 — 12582 — %t — 657¢12 + 358412 + 659¢12
4 5510t12 4 511t12 4 6810t15 4 8811t15 4 4812t15 4 813t18) (711)
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1
1= 59 (1= 91 = 6931 — 509501 — 5598 < {
+ 145343 — 1655 + 5525 + 4653t° + 62545 + 205°t5 — 2155¢°

+ 4st? — 44529 — 10453t° — 1245 — 1665°t° — 1525%¢°

—19057? — 10055 — 45717 + 215712 + 255312 + 1551412

+ 15357112 + 13555412 + 1015712 4+ 1105512 + 8557412

+ 13951912 + 61511412 4 105212 + 145315 + 34515 — 205°¢1°

+ 15655415 4 39657¢10 4 26455410 + 24859410 + 256510417

+ 292510 4 116512410 — 26513¢1° — 2514410 4 1418 4 55418

— 10955418 — 27557418 — 21858418 — 4605718 — 788510418

— 78851 — 4605121 — 21851318 — 275514418 — 109510418

+ 516418 4 17418 947421 — 9658421 + 116512 + 29251042

+ 256511421 + 248512421 4 2645132 + 396514421 + 1565512

— 2056121 + 3451742 + 14518421 4+ 1052424 4 61510424

+ 13951124 + 85512424 + 110513424 4 101514424 + 1355154

+ 15351642 + 15517424 4 25518124 1 2151924 — 4512427 — 100513477

— 190514427 — 152515427 — 16656127 — 124517427 — 104518477

o 44519t27 + 4820t27 o 21515t30 + 20816t30 + 62517t30 + 46818t30

+ 5519430 — 1652030 4 1451833 1 20519433 1 14520133 4 s21436) . (7.12)

g(t,s; F’34) = 1+ 14st3 + 20823

7.2 Highest weight Hilbert series

We have in the sections above computed the Hilbert series for vortex master spaces in order
to characterize their algebraic structure as well as to identify their generators for the C*
projection to the vortex moduli space. The Hilbert series were refined such that one had
the following collection of fugacities,

S — d)ag
t— Q.
[n1,...,nn—1]s — SU(N) global symmetry . (7.13)

Let us summarize the character expansions for the master space Hilbert series for 1,2, 3
U(N) vortices,

(e 9]

g(t, s, x; F'1 n) = Z [n0,0,...,0];t",

no=0
co oo

g(t787x;}/b2,N) = Z Z[in,no,O,.._,0]$3”1t2(n0+n1),

no=0n1=0

- 79 —



1
1—s)(1—5)

(o] o0 o [o.¢]
E E E g {[nl + ng + 3n3, 11 + 2,19, 0, . .., 0" T2 TIN5 SN0 F3NIH3N2+3ns

no=0n1=0n2=0n3=0

+[n1 + n2,n1 + ng + 3nz + 3,n0,0,. .. ,0]s"l+2”2+3”3+3t3”0+3"1+3"2+6”3+6] . (7.14)

g(t,s,:c;]:bg,N) =

Highest weight Hilbert series. We now use a more compact form of writing characters
of irreducible representations in a Hilbert series [34]. Given that characters of the form
[n1,...,n,] are written in terms of highest weight Dynkin labels, we introduce for each of
the r labels its own fugacity u; such that

ny, N2

T
[nl,ng,...,nr]gﬁHu?i = it s (7.15)
=1

for a group G of rank r. Effectively, the above map replaces a character with a product
of fugacities carrying as exponents the highest weight Dynkin labels of the irreducible
representation of the group G.

There are various motivations for introducing the above map. One of them is the
ability to write character expansions of Hilbert series given by infinite concatenated sums
as compact rational functions. For the character expansion in (7.14) corresponding to the
Hilbert series of 1,2,3 U(N) vortex master spaces, the highest weight forms are as follows

1
1—,[1,1157

g(t,s,x;%\/bl,]\/) —
1
(1= 52)(1 = p2t?) (1 — piist?)’
1+ papgs®t® + pip3s't®
(= D)1= )1 — 5t%) (1 — aajeast) (1 — js3) (1 — 13s79)

g(t, 5,25 Fa ) — (7.16)

g(t,s,z; F3 N) —

8 Conclusions

With this work, we have classified fully for the first time the moduli spaces for supersym-
metric gauge theories of up to 3 U(N) vortices. This was done by describing the vortex
moduli space as a partially weighted projective space coming from a C* projection of the
vortex master space. In our classification, we have given the full algebraic structure of the
vortex master spaces by identifying all of their generators and quadratic relations formed
amongst the generators. The information given by the residual U(1) gauge charges carried
by the generators allows us to describe the projection into the full vortex moduli space.

Our results for 2 vortices agree with previous results in [3, 7]. In view of our complete
analysis of moduli spaces for 3 vortices and the preliminary computations we have presented
here for 4 vortices, it would be interesting to generalize our results to higher number
of vortices. With our current methods and tools, this task seems to be a challenge at
this moment.

We have seen with the computation of the Hilbert series for vortex master spaces that
its expression as an infinite expansion in terms of characters of SU(NN) is an increasingly
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difficult problem to solve. The most evident example is the Hilbert series of the master
space for 4 U(2) vortices which for the purpose of our argument we present again as follows,

-~ 1
. b _
90823 F242) = B T [ = sN(1 = 20 (1 — 54)
(oo} o0
% Z Z |:[2n3+4n6]x83n3+6n6t4n3+4n6
n3=0ng=0

+[2n3 4 4ng + 2], 53 HOnoTApdnatine+4
+[2n3 4 4ng + 2,53 TOneTHAnaHine 4

+[2n3 + 4ng + 4]m33”3+6”6+9t4”3+4"6+8 . (8.1)

As discussed in section 7.2, we use highest weight fugacities. For the Hilbert series of
the master space of 4 U(2) vortices above, the new fugacity is pu for SU(2) such that the
representations are mapped to

], — p". (8.2)

The above map dramatically simplifies the expression in (8.1) to

1
(1—52)(1—s%)(1 —s%)(1 —s2t4)(1 — s*t)
1+ p2sttt + p2soth 4 ptst®
(1= p2s34) (1 — ptsbth)

g(t, s, x; FPa2) —

(8.3)

The expression becomes a rational function, which of great interest has a palindrome as
its numerator. This is not the actual Hilbert series itself. This can be seen by comparing
the so called highest weight Hilbert series in (8.3) with the actual unrefined Hilbert series

1
(1—52)(1—s3)(1 —s*)(1 —s2t4)(1 — s*4) (1 — s3t4)2(1 — s6¢4)2
x(1+ s34 4 35t 4+ 3551 + 3501 — T8 — B8 4 51018 1 51148

3412412 _ 313412 _ g 14,12 _ (15,12 518416) (8.4)

g(t,s;F°40) =

From here, it can be seen that the map in (8.2) transforms a palindromic Hilbert series
of a non-compact Calabi-Yau space to another different rational function with a palin-
dromic numerator. It is of great interest to explore the meaning of the function in (8.3) in
comparison to the original vortex Hilbert series in (8.4).

Acknowledgments

A H. and R.-K.S. gratefully acknowledge hospitality at the Simons Center for Geometry and
Physics, Stony Brook University where some of the research for this paper was performed.
We thank also Giuseppe Torri for input during the early stages of this work. R.-K.S. would
also like to thank Kazushi Ueda and Sungsoo Kim for useful discussions.

~ 81 —



Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] A.A. Abrikosov, The magnetic properties of superconducting alloys, J. Phys. Chem. Solid 2
(1957) 199.

[2] H.B. Nielsen and P. Olesen, Vorter Line Models for Dual Strings, Nucl. Phys. B 61 (1973)
45 [INSPIRE].

[3] A. Hanany and D. Tong, Vortices, instantons and branes, JHEP 07 (2003) 037
[hep-th/0306150] [INSPIRE].

[4] R. Auzzi, M. Shifman and A. Yung, Composite non-Abelian flux tubes in N = 2 SQCD, Phys.
Rev. D 73 (2006) 105012 [Erratum ibid. D 76 (2007) 109901 [hep-th/0511150] [INSPIRE].

[5] K. Hashimoto and D. Tong, Reconnection of non-Abelian cosmic strings, JCAP 09 (2005)
004 [hep-th/0506022] [INSPIRE].

[6] M. Eto et al., Non-Abelian Vortices of Higher Winding Numbers, Phys. Rev. D 74 (2006)
065021 [hep-th/0607070] [INSPIRE].

[7] M. Eto et al., Group Theory of Non-Abelian Vortices, JHEP 11 (2010) 042
[arXiv:1009.4794] [INSPIRE].

[8] A. Hanany and K. Hashimoto, Reconnection of colliding cosmic strings, JHEP 06 (2005) 021
[hep-th/0501031] [INSPIRE].

[9] A. Hanany and D. Tong, Vortez strings and four-dimensional gauge dynamics, JHEP 04
(2004) 066 [hep-th/0403158] [INSPIRE].

[10] M. Eto et al., On the moduli space of semilocal strings and lumps, Phys. Rev. D 76 (2007)
105002 [arXiv:0704.2218] [INSPIRE].

[11] R. Auzzi, S. Bolognesi, J. Evslin, K. Konishi and A. Yung, NonAbelian superconductors:
Vortices and confinement in N = 2 SQCD, Nucl. Phys. B 673 (2003) 187 [hep-th/0307287]
[INSPIRE].

[12] M. Eto, Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, Moduli space of non-Abelian vortices,
Phys. Rev. Lett. 96 (2006) 161601 [hep-th/0511088] [INSPIRE].

[13] M. Eto, Y. Isozumi, M. Nitta, K. Ohashi and N. Sakai, Solitons in the Higgs phase: The
moduli matriz approach, J. Phys. A 39 (2006) R315 [hep-th/0602170] [INSPIRE].

[14] A. Hanany and A. Zaffaroni, The master space of supersymmetric gauge theories, Adv. High
Energy Phys. 2010 (2010) 427891.

[15] D. Forcella, A. Hanany, Y.-H. He and A. Zaffaroni, The Master Space of N = 1 Gauge
Theories, JHEP 08 (2008) 012 [arXiv:0801.1585] INSPIRE].

[16] A. Zaffaroni, The master space of N =1 quiver gauge theories: Counting BPS operators,
prepared for 8th Workshop on Continuous Advances in QCD (CAQCD-08), Minneapolis,
Minnesota U.S.A., 15-18 May 2008.

[17] D. Forcella, Master Space and Hilbert Series for N = 1 Field Theories, arXiv:0902.2109

[INSPIRE].

~ 82 —


http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/0022-3697(57)90083-5
http://dx.doi.org/10.1016/0022-3697(57)90083-5
http://dx.doi.org/10.1016/0550-3213(73)90350-7
http://dx.doi.org/10.1016/0550-3213(73)90350-7
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B61,45
http://dx.doi.org/10.1088/1126-6708/2003/07/037
http://arxiv.org/abs/hep-th/0306150
http://inspirehep.net/search?p=find+EPRINT+hep-th/0306150
http://dx.doi.org/10.1103/PhysRevD.73.105012
http://dx.doi.org/10.1103/PhysRevD.73.105012
http://arxiv.org/abs/hep-th/0511150
http://inspirehep.net/search?p=find+EPRINT+hep-th/0511150
http://dx.doi.org/10.1088/1475-7516/2005/09/004
http://dx.doi.org/10.1088/1475-7516/2005/09/004
http://arxiv.org/abs/hep-th/0506022
http://inspirehep.net/search?p=find+EPRINT+hep-th/0506022
http://dx.doi.org/10.1103/PhysRevD.74.065021
http://dx.doi.org/10.1103/PhysRevD.74.065021
http://arxiv.org/abs/hep-th/0607070
http://inspirehep.net/search?p=find+EPRINT+hep-th/0607070
http://dx.doi.org/10.1007/JHEP11(2010)042
http://arxiv.org/abs/1009.4794
http://inspirehep.net/search?p=find+EPRINT+arXiv:1009.4794
http://dx.doi.org/10.1088/1126-6708/2005/06/021
http://arxiv.org/abs/hep-th/0501031
http://inspirehep.net/search?p=find+EPRINT+hep-th/0501031
http://dx.doi.org/10.1088/1126-6708/2004/04/066
http://dx.doi.org/10.1088/1126-6708/2004/04/066
http://arxiv.org/abs/hep-th/0403158
http://inspirehep.net/search?p=find+EPRINT+hep-th/0403158
http://dx.doi.org/10.1103/PhysRevD.76.105002
http://dx.doi.org/10.1103/PhysRevD.76.105002
http://arxiv.org/abs/0704.2218
http://inspirehep.net/search?p=find+EPRINT+arXiv:0704.2218
http://dx.doi.org/10.1016/j.nuclphysb.2003.09.029
http://arxiv.org/abs/hep-th/0307287
http://inspirehep.net/search?p=find+EPRINT+hep-th/0307287
http://dx.doi.org/10.1103/PhysRevLett.96.161601
http://arxiv.org/abs/hep-th/0511088
http://inspirehep.net/search?p=find+EPRINT+hep-th/0511088
http://dx.doi.org/10.1088/0305-4470/39/26/R01
http://arxiv.org/abs/hep-th/0602170
http://inspirehep.net/search?p=find+EPRINT+hep-th/0602170
http://dx.doi.org/10.1155/2010/427891
http://dx.doi.org/10.1155/2010/427891
http://dx.doi.org/10.1088/1126-6708/2008/08/012
http://arxiv.org/abs/0801.1585
http://inspirehep.net/search?p=find+EPRINT+arXiv:0801.1585
http://arxiv.org/abs/0902.2109
http://inspirehep.net/search?p=find+EPRINT+arXiv:0902.2109

[18]

[19]

[20]

[21]

22]

[23]

[24]

[32]

[33]

[34]

A. Butti, D. Forcella, A. Hanany, D. Vegh and A. Zaffaroni, Counting Chiral Operators in
Quiver Gauge Theories, JHEP 11 (2007) 092 [arXiv:0705.2771] InSPIRE].

S. Benvenuti, A. Hanany and N. Mekareeya, The Hilbert Series of the One Instanton Moduli
Space, JHEP 06 (2010) 100 [arXiv:1005.3026] [INSPIRE].

A. Hanany, N. Mekareeya and S.S. Razamat, Hilbert Series for Moduli Spaces of Two
Instantons, JHEP 01 (2013) 070 [arXiv:1205.4741] [INSPIRE].

A. Dey, A. Hanany, N. Mekareeya, D. Rodriguez-Gémez, and R.-K. Seong, Hilbert Series for
Moduli Spaces of Instantons on C?/Z,,, JHEP 01 (2014) 182 [arXiv:1309.0812] [INSPIRE].

M.F. Atiyah, N.J. Hitchin, V.G. Drinfeld and Y. Manin, Construction of Instantons, Phys.
Lett. A 65 (1978) 185 [INSPIRE].

S. Benvenuti, B. Feng, A. Hanany and Y.-H. He, Counting BPS Operators in Gauge
Theories: Quivers, Syzygies and Plethystics, JHEP 11 (2007) 050 [hep-th/0608050]
[INSPIRE].

A. Hanany and C. Romelsberger, Counting BPS operators in the chiral ring of N = 2
supersymmetric gauge theories or N = 2 braine surgery, Adv. Theor. Math. Phys. 11 (2007)
1091 [hep-th/0611346] [INSPIRE].

B. Feng, A. Hanany and Y.-H. He, Counting gauge invariants: The Plethystic program,
JHEP 03 (2007) 090 [hep-th/0701063] [INSPIRE].

A. Hanany, N. Mekareeya and G. Torri, The Hilbert Series of Adjoint SQCD, Nucl. Phys. B
825 (2010) 52 [arXiv:0812.2315] [INSPIRE].

A. Hanany and R.-K. Seong, Brane Tilings and Reflexive Polygons, Fortsch. Phys. 60 (2012)
695 [arXiv:1201.2614] [INSPIRE].

A. Hanany and R.-K. Seong, Brane Tilings and Specular Duality, JHEP 08 (2012) 107
[arXiv:1206.2386] [INSPIRE].

S. Cremonesi, A. Hanany and R.-K. Seong, Double Handled Brane Tilings, JHEP 10 (2013)
001 [arXiv:1305.3607] [INSPIRE].

E. Getzler and M.M. Kapranov, Modular operads, dg-ga/9408003.

A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional
gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].

C.-j. Kim, K.-M. Lee and S.-H. Yi, Tales of DO on D6-branes: Matrix mechanics of identical
particles, Phys. Lett. B 543 (2002) 107 [hep-th/0204109] [INSPIRE].

J.-P. Magnot, Ambrose-Singer theorem on diffeological bundles and complete integrability of
the KP equation, Int. J. Geom. Meth. Mod. Phys. 10 (2013) 1350043 [nSPIRE].

A. Hanany and R. Kalveks, in preparation.

— 83 —


http://dx.doi.org/10.1088/1126-6708/2007/11/092
http://arxiv.org/abs/0705.2771
http://inspirehep.net/search?p=find+EPRINT+arXiv:0705.2771
http://dx.doi.org/10.1007/JHEP06(2010)100
http://arxiv.org/abs/1005.3026
http://inspirehep.net/search?p=find+EPRINT+arXiv:1005.3026
http://dx.doi.org/10.1007/JHEP01(2013)070
http://arxiv.org/abs/1205.4741
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.4741
http://dx.doi.org/10.1007/JHEP01(2014)182
http://arxiv.org/abs/1309.0812
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.0812
http://dx.doi.org/10.1016/0375-9601(78)90141-X
http://dx.doi.org/10.1016/0375-9601(78)90141-X
http://inspirehep.net/search?p=find+J+Phys.Lett.,A65,185
http://dx.doi.org/10.1088/1126-6708/2007/11/050
http://arxiv.org/abs/hep-th/0608050
http://inspirehep.net/search?p=find+EPRINT+hep-th/0608050
http://dx.doi.org/10.4310/ATMP.2007.v11.n6.a4
http://dx.doi.org/10.4310/ATMP.2007.v11.n6.a4
http://arxiv.org/abs/hep-th/0611346
http://inspirehep.net/search?p=find+EPRINT+hep-th/0611346
http://dx.doi.org/10.1088/1126-6708/2007/03/090
http://arxiv.org/abs/hep-th/0701063
http://inspirehep.net/search?p=find+EPRINT+hep-th/0701063
http://dx.doi.org/10.1016/j.nuclphysb.2009.09.016
http://dx.doi.org/10.1016/j.nuclphysb.2009.09.016
http://arxiv.org/abs/0812.2315
http://inspirehep.net/search?p=find+EPRINT+arXiv:0812.2315
http://dx.doi.org/10.1002/prop.201200008
http://dx.doi.org/10.1002/prop.201200008
http://arxiv.org/abs/1201.2614
http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.2614
http://dx.doi.org/10.1007/JHEP08(2012)107
http://arxiv.org/abs/1206.2386
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.2386
http://dx.doi.org/10.1007/JHEP10(2013)001
http://dx.doi.org/10.1007/JHEP10(2013)001
http://arxiv.org/abs/1305.3607
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.3607
http://arxiv.org/abs/dg-ga/9408003
http://dx.doi.org/10.1016/S0550-3213(97)00157-0
http://arxiv.org/abs/hep-th/9611230
http://inspirehep.net/search?p=find+EPRINT+hep-th/9611230
http://dx.doi.org/10.1016/S0370-2693(02)02390-0
http://arxiv.org/abs/hep-th/0204109
http://inspirehep.net/search?p=find+EPRINT+hep-th/0204109
http://dx.doi.org/10.1142/S0219887813500436
http://inspirehep.net/search?p=find+Adv.Math.,28,57

	Introduction
	Background 
	Vortices from instantons 
	The brane construction and the vortex moduli space 
	The quiver and the Hilbert series

	1 U(N) vortex on C 
	1 U(N) vortex on C 

	2 U(N) vortices on C 
	2 U(1) vortices on C 
	2 U(2) vortices on C
	2 U(3) vortices on C 
	2 U(4) vortices on C 
	2 U(5) vortices on C 
	2 U(N) vortices on C 

	3 U(N) vortices on C 
	3 U(1) vortices on C 
	3 U(2) vortices on C 
	3 U(3) vortices on C 
	3 U(4) vortices on C 
	3 U(5) vortices on C 
	3 U(6) vortices on C 
	3 U(7) vortices on C 
	3 U(N) vortices on C 

	4 U(N) vortices on C 
	4 U(1) vortices on C 
	4 U(2) vortices on C 

	Summary of Hilbert series for vortices 
	Unrefined Hilbert series 
	Highest weight Hilbert series 

	Conclusions

