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1 Introduction

While 2d N = (0, 2) theories have only two supercharges, their dynamics is under con-

siderable control due to chirality, holomorphy and anomalies. In recent years, we have

witnessed remarkable developments in our understanding of these theories. They include:

c-extremization [1, 2], exact CFT description of the low energy limit of SQCD-like theo-

ries [3], detailed studies of renormalization group (RG) flows [4], connections to 4d N = 1
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theories via dimensional reduction [5, 6] and to 6d (2, 0) theories by compactification on

4-manifolds [7]. In addition, it has been discovered that 2d (0, 2) theories exhibit IR du-

alities [8] similar to Seiberg duality in 4d N = 1 gauge theories [9]. This low energy

equivalence is called triality, since it is only after three of these transformations acting on

the same gauge group that we return to the original theory.

Embedding quantum field theories in string or M-theory provides a powerful grip on

their dynamics. This approach has been particularly helpful for understanding, and in some

cases uncovering, quantum field theory dualities in various dimensions and with different

amounts of supersymmetry. This program has been recently extended to 2d (0, 2) gauge

theories, following the pioneering work in [10]. In [11], a systematic procedure for deriving

the 2d (0, 2) gauge theories on the worldvolume of D1-branes probing generic singular toric

Calabi-Yau (CY) 4-folds was developed.1 The general structure of this infinite class of the-

ories was then studied in detail. The brane engineering of these gauge theories was taken a

further step forward in [15], which introduced a new type of Type IIA brane configurations,

denoted brane brick models, which are related to the D1-branes over toric CY4 singularities

by T-duality. Brane brick models fully encode the gauge theories on the worldvolume of

the D1-branes and extremely simplify the connection to the probed geometries.

The previous discussion leads to a natural question: is there a brane realization of 2d

(0, 2) triality? This is the central topic we set to explore in this article, in which we will

explain how triality is nicely realized in the context of brane brick models.

In this article we will see that, in general, brane brick models associate a class of 2d

(0, 2) quiver gauge theories to every toric CY4 singularity. The multiple gauge theories

within a class can be constructed using several methods developed in [11, 15]. They turn

out to be related by triality, which is realized as a local transformation of the brane brick

models.2 The simplest example of this transformation is a cube move. The probed CY4

corresponds to the mesonic moduli space of the gauge theories and it is thus common to

all brane brick models related by triality. As shown in [3, 4], 2d (0, 2) SQCD theories

with different ranks of the three flavor groups exhibit triality as an exact IR equivalence

even when the classical mesonic moduli spaces are different. Our brane brick models are,

however, similar to the case of SQCD with equal ranks of the flavor groups, for which the

three phases share the same moduli space.

This paper is organized as follows. Section 2 reviews the basic concepts of the brane

brick models introduced in [15]. Section 3 reviews the original proposal of [8] for triality

for 2d (0, 2) supersymmetric QCD and certain quiver generalizations. Section 4 explains

how triality is implemented in terms of brane brick models. Section 5 presents explicit

examples, for which we construct part of their triality networks [8]. In section 6, we show

in examples that triality preserves the classical mesonic moduli space and sketch a general

1Other interesting recent approaches for constructing 2d (0, 2) theories include: stacks of D5-branes

wrapped over 4-cycles of resolved/deformed conifolds fibered over a 2-torus [12], compactifications on Rie-

mann surfaces of 4d N = 1 quiver gauge theories on D3-branes over CY3 singularities [13] and F-theory

compactifications on singular, elliptically fibered CY 5-folds [14].
2In a sense, the situation is reminiscent of the early investigations of toric duality [16, 17]. Several 4d

N = 1 gauge theories were constructed for a given toric CY3 singularity. It was later realized that the

transformation relating different theories associated to the same CY3 was precisely Seiberg duality [18, 19].
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0 1 2 3 4 5 6 7 8 9

D4 × × × · × · × · · ·
NS5 × × ———– Σ ———— · ·

Table 1. Brane brick models are Type IIA configurations with D4-branes suspended from an

NS5-brane that wraps a holomorphic surface Σ.

proof of its invariance for general brane brick models. In section 7, we examine triality

from the perspective of phase boundaries, which bridge CY4 singularities and brane brick

models. Section 8 offers conclusions and directions for future work. In the two appendices,

we collect detailed data for the explicit examples used in the main text.

2 Brane brick models

This section contains a lightning review of brane brick models. Its primary goal is to

introduce the basic concepts and nomenclature. It is not intended to be complete, and we

encourage the reader to look at [11, 15] for in depth presentations.

Brane brick models were introduced in [15] as a powerful tool for studying the 2d

(0, 2) quiver gauge theories that arise on the worldvolume of D1-branes probing toric CY4

singularities. A brane brick model is a Type IIA brane configuration of D4-branes sus-

pended from an NS5-brane. The NS5-brane extends along the (01) directions and wraps

a holomorphic surface (i.e. four real dimensions) Σ embedded into the (234567) directions.

The directions (246) are periodically identified to form a T 3. The coordinates (23), (45)

and (67) are pairwise combined to form three complex variables x, y and z of which (246)

are the arguments. The surface Σ is given by the zero locus of the Newton polynomial

associated to the toric diagram of the CY4: P (x, y, z) = 0. Stacks of D4-branes extend

along (01) and are suspended inside the voids cut out by Σ on the T 3 given by the (246)

directions. The 2d (0, 2) gauge theory lives in the (01) directions, which are common to all

the branes. Table 1 summarizes the basic ingredients of a brane brick model.

Most of the non-trivial information concerning a brane brick model is captured by its

skeleton on the T 3. For brevity, we will refer to both the full brane configuration and this

simpler object as the brane brick model. Every brane brick model fully encodes a 2d (0, 2)

gauge theory according to the dictionary in table 2. Bricks correspond to U(N) gauge

groups.3 There are two types of faces. First, there are oriented faces, which correspond to

chiral fields. In addition, there are unoriented faces, each of which represents a Fermi field

Λ and its conjugate Λ̄. Fermi faces are always 4-sided. Finally, edges of the brane brick

model are associated to monomials in J- or E-terms. For detailed discussions of 2d (0, 2)

theories, including their supermultiplet structure and the construction of their Lagrangians

in (0, 2) superspace, we refer to [5, 8, 10, 20].

Brane brick models are in one-to-one correspondence with periodic quivers on T 3.

Periodic quivers also fully capture the gauge symmetry, matter content, and J- and E-

3All ranks are equal in the T-dual of a stack of regular D1-branes at the CY4. More generally, allowing

for fractional D1-branes can lead to brane brick models in which bricks have different numbers of D4-branes.
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Brane Brick Model Gauge Theory

Brick Gauge group

Oriented face between bricks Chiral field in the bifundamental representation

i and j of nodes i and j (adjoint for i = j)

Unoriented square face between Fermi field in the bifundamental representation

bricks i and j of nodes i and j (adjoint for i = j)

Edge Plaquette encoding a monomial in a

J- or E-term

Table 2. Dictionary between brane brick models and 2d gauge theories.

i Jji

Eij

j

i

j

i

j

i

j

i

j

J+ji

J−ji

E+
ij

E−
ij

Λij

Λij

Λij

Λij

Figure 1. The four plaquettes (Λij , J
±
ji ) and (Λij , E

±
ij ) associated to a Fermi field Λij . The J-

and E-terms are Jji = J+
ji − J−ji = 0 and Eij = E+

ij − E−ij = 0, respectively, where J±ji and E±ij are

holomorphic monomials in chiral fields.

terms of a 2d (0, 2) theory [11]. The latter correspond to minimal plaquettes. A plaquette

is a closed loop in the quiver consisting of an oriented path of chiral fields and a single

Fermi field. Every Fermi field in this class of theories is associated to two pairs of minimal

plaquettes as shown in figure 1, which translates into monomial relations from vanishing J-

and E-terms. This is known as the toric condition and is a general property of the gauge

theories on D1-branes over toric CY4 singularities [11].

The brane brick model can be regarded as a tropical limit of the coamoeba projection

of Σ onto (arg(x), arg(y), arg(z)).4 The alternative projection of Σ onto (|x|, |y|, |z|) is

called the amoeba projection. The amoeba approaches infinity along “legs” that are in one-

to-one correspondence with edges of the toric diagram. Along each of these asymptotic

legs, the coamoeba simplifies and reduces to a 2d-plane in T 3 that is orthogonal to the

corresponding edge of the toric diagram. We refer to these planes as phase boundaries. We

point the reader to [15] for the details of this construction.5

4For this reason, in the restricted context of orbifolds of C4, this object has been referred to as a tropical

coamoeba [21].
5More generally, phase boundaries are 2d surfaces, not necessarily planes, whose homology on T 3 is

determined by the corresponding edge in the toric diagram [15].
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chiral

Fermi

Figure 2. Phase boundaries are in one-to-one correspondence with edges of the toric diagram of

the Calabi-Yau 4-fold. Certain point intersections of phase boundaries give rise to chiral or Fermi

fields, depending on whether they are oriented or alternating.

Brane brick models can be reconstructed from phase boundaries. This procedure is

called the fast inverse algorithm and makes it possible to go from toric diagrams to brane

brick models [15]. Chiral and Fermi fields arise at point intersections between them. Phase

boundaries divide the neighborhood of every intersection point into a collection of cones.

In [15], we introduced a prescription for assigning an orientation to every phase boundary.

The distinction between chiral and Fermi fields depends on the orientation properties of the

cones at the corresponding intersection. Chiral field are associated to oriented intersections,

which are defined as those containing two opposite oriented cones. An oriented cone is one

for which all phase boundaries on its boundary, which might be a subset of all the ones

participating in the intersection, are oriented towards the intersection or away from it. On

the other hand, Fermi fields correspond to alternating intersections, which are those that

contain a pair of alternating cones. Alternating cones are cones in which the orientations

of the line intersections between consecutive pairs of phase boundaries alternate between

going into and away from the intersection. The chiral and Fermi fields in the periodic quiver

associated to the two types of intersections are aligned with the corresponding oriented and

alternating cones, respectively. Figure 2 presents two examples of this construction. It is

possible for a point intersection of phase boundaries to be neither oriented nor alternating.

In this case, it does not correspond to any field in the gauge theory.

Remarkably, brane brick models not only encapsulate the entire 2d (0, 2) gauge theory

data, but also substantially simplify the connection to the probed CY4 geometry. We have

already seen glimpses of this beautiful relation in our discussion of the interplay between

toric diagrams, phase boundaries and brane brick models. The connection to geometry

becomes even more tantalizing in terms of a new type of combinatorial objects denoted

brick matchings. A brick matching is defined as a collection of chiral, Fermi and conjugate

Fermi fields that contribute exactly once to every plaquette in the theory, while satisfying
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SU(2)

SU(Nb) SU(Nf )

SU(2Nc − Nb + Nf )

Φ Ψ P Γ Ω

U(Nc) ⇤ ⇤ ⇤ · det
SU(Nf ) · ⇤ · · ·
SU(Nb) ⇤ · · ⇤ ·

SU(2Nc + Nf − Nb) · · ⇤ ⇤ ·
SU(2) · · · · ⇤

U(Nc)

Φ Ψ

P
Γ

Ω

Figure 3. The quiver diagram for 2d (0, 2) SQCD (original theory D). Square nodes indicate flavor

symmetry groups.

some additional simple rules (see section 6.1 for the complete definition). Brick matchings

are in one-to-one correspondence with the GLSM fields describing the classical mesonic

moduli space of the gauge theory, namely the CY4 singularity. They are the key ingredients

of the fast forward algorithm, a powerful method for obtaining the probed geometry [15],

which we review in section 6.1.

3 2d (0, 2) SQCD and triality

In this section, we review triality for 2d (0, 2) theories. This is a low energy equivalence

between gauge theories originally introduced in [8].

Let us consider 2d (0, 2) SQCD with U(Nc) gauge group. This theory has Nb chiral

fields Φ in the fundamental representation of U(Nc) and Nf Fermi fields Ψ in the antifun-

damental representation. The Φ contribute 1
2Nb, the Ψ contribute −1

2Nf and the vector

multiplet contributes −Nc to the SU(Nc)
2 anomaly. The resulting −1

2(2Nc + Nb − Nf )

anomaly can be cancelled by introducing 2Nc + Nb − Nf chiral multiplets P in the anti-

fundamental representation of U(Nc). These three types of fields give rise to an SU(Nb)×
SU(Nf )× SU(2Nc +Nb−Nf ) global symmetry. In addition, we introduce a Fermi field Γ,

which is a singlet of the gauge symmetry and transforms in the bifundamental representa-

tion of the global SU(Nb)×SU(2Nc +Nb−Nf ). Finally, in order to cancel the anomaly in

the U(1) part of U(Nc), we introduce two Fermi multiplets Ω in the determinant representa-

tion of U(Nc). The theory can be represented by the quiver diagram shown in figure 3.6 We

include a J-term for the Fermi field Γ: JΓ = ΦP . This term corresponds to the triangular

plaquette in the quiver and is also sometimes referred to as a ΦPΓ superpotential.

Triality turns the original theory into the one shown in figure 4. The new gauge group

is U(N ′c), with N ′c = Nb −Nc. The structure of the new theory is identical to the original

one up to a counterclockwise 120◦ rotation. This means that the fundamental chirals Φ,

antifundamental chirals P and fundamental Fermis Ψ are replaced by antifundamental

chirals P ′, fundamental Fermis Ψ′ and fundamental chirals Φ′, respectively. Borrowing the

6In this article we adopt the convention that the head and tail of the arrow associated to a chiral field

correspond to fundamental and antifundamental representations, respectively.
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Φ0 Ψ0 P 0 Γ0 Ω0

U(Nb − Nc) ⇤ ⇤ ⇤ · det
SU(Nf ) ⇤ · · ⇤ ·
SU(Nb) · · ⇤ ⇤ ·

SU(2Nc + Nf − Nb) · ⇤ · · ·
SU(2) · · · · ⇤

U(Nb − Nc)

SU(Nf )SU(Nb)

SU(2Nc + Nf − Nb)

Γ0

P 0 Φ0

Ψ0

Ω0
SU(2)

Figure 4. The quiver diagram for the dual of 2d (0, 2) SQCD (dual theory D′).

terminology of 4d Seiberg duality, these fields are the analogues of magnetic flavors. This

theory also requires a pair of Fermi fields Ω′ in the determinant representation of U(N ′c)

to cancel the U(1)2 anomaly. The new Fermi singlet Γ′ is a mesonic field that, in terms

of the electric flavors, is given by Γ′ = ΦΨ. The dual flavors and the Fermi meson are

coupled by a superpotential Φ′P ′Γ′. The disappearance of the original Fermi singlet Γ

can be understood as follows. The original chiral fields combine into a chiral field meson

M = ΦP in the dual theory, which transforms in the bifundamental representation of

SU(2Nc +Nb−Nf )×SU(Nb). The original superpotential becomes MΓ, giving a mass for

M and Γ, which can thus be integrated out and disappear at low energies.

Let us call the original theory in figure 3 theory D and the dual theory in figure 4

theory D′. Applying the triality transformation once more, we obtain a third theory D′′.

Its gauge group is U(N ′′c ), with N ′′c = N ′b − N ′c = Nf − Nb + Nc. As before, its quiver

diagram is obtained from the one for D′ by a counterclockwise 120◦ rotation. It is only

after a third dualization that we obtain N ′′′c = N ′′b −N ′′c = Nc and we return to the original

theory. The fact that this is an IR equivalence between three theories motivates calling it

a triality.

Relabeling the ranks of the flavor symmetry groups as N1 ≡ 2Nc −Nb +Nf , N2 ≡ Nb

and N3 ≡ Nf , the rank of the gauge group becomes
Ni+Nj−Nk

2 and the triality chain can be

thought of as a cyclic permutation of N1, N2 and N3. This is shown in figure 5. From now

on we omit the Fermi fields in the determinant representation of the gauge group. They

are absent if the gauge group is SU(Nc) instead of U(Nc), since they are not required for

anomaly cancellation. While the theories on D1-branes we will study have U(Nc) gauge

groups, such fields are not required because abelian anomalies are cancelled by a generalized

Green-Schwarz mechanism via interactions with bulk RR fields [22].

Substantial evidence for triality in 2d (0, 2) SQCD was presented in [8] by matching

the flavor symmetry anomalies, central charges, and the equivariant indices. Furthermore,

an exact CFT description of the low energy physics of SQCD was given in [3] and an exact

beta function for the Kähler modulus was determined in [4].

Triality for quiver gauge theories. In [8], triality was generalized to a special class

of quiver gauge theories with multiple gauge and flavor nodes. In this class of theories, all

chiral and Fermi fields are in bifundamental representations, aside from possible Ω Fermi

– 7 –
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N1 N1

N1

N2 N2

N2

N3 N3

N3

N1 + N2 − N3

2

N2 + N3 − N1

2

N3 + N1 − N2

2

P

P 0

P 00

Φ
Φ0

Φ00

Ψ

Ψ0

Ψ00

Γ

Γ0

Γ00

Figure 5. The triality loop for 2d (0, 2) SQCD.

multiplets in determinant representations for cancellation of U(1)2 anomalies. Further-

more, only J-terms are non-trivial. They are all quadratic, namely they come from cubic

plaquettes, and every chiral field participates in at least one of them.

The transformation of such a theory under triality can be summarized as follows.

Consider acting on gauge node k. All other nodes in the quiver remain unaltered, while

the rank of node k becomes

N ′k =
∑
j 6=k

nχjkNj −Nk , (3.1)

where nχjk is the number of chiral fields from node j to node k.

The field content around node k is modified according to the following rules:

(1) Replace each of (→ k), (← k), ( — k) by (← k), ( — k), (→ k), respectively.

(2) For each subquiver i→ k → j, add a new chiral field i→ j.

(3) For each subquiver i→ k — j, add a new Fermi field i — j.

(4) Remove all chiral-Fermi pairs generated in the previous steps.

(3.2)

The fields generated at steps 2 and 3 can be regarded as composites of those in the original

theory. We will thus often refer to them as mesonic fields.

Later in this paper we will extend triality to the class of theories associated to brane

brick models. In particular, such theories can have a richer structure of J- and E-terms.

– 8 –



J
H
E
P
0
5
(
2
0
1
6
)
0
2
0

Triality networks and triality loops. Acting with triality on all the gauge groups of a

quiver generates a family of IR equivalent gauge theories that can be neatly organized into

a triality network [8]. Triality networks can contain triality loops, namely closed sequences

of triality transformations that return to the original theory. The simplest example of a

triality loop, which is present in every theory, is the triangular loop associated to three

consecutive triality transformations on the same gauge group. Figure 5 shows the triality

loop for 2d (0, 2) SQCD.

Chiral conjugation. We define chiral conjugation as a global operation on a quiver that

reverses the directions of all chiral fields and exchanges J- and E-terms. Let us denote the

local triality at node k by τk and chiral conjugation by γ. Clearly, τ3
k = 1 and γ2 = 1.

Upon inspection of the transformation rule (3.2), we note that τk and γ satisfy

γτkγ = τ−1
k = τ2

k . (3.3)

As a result, the triality loop associated to three consecutive triality transformations on the

same gauge group of the chiral conjugate configuration is isomorphic to the original one,

except that the orientation of the loop is reversed.

4 Triality for brane brick models

The goal of this section is to introduce a triality proposal for brane brick models. We will

not consider triality transformations of arbitrary gauge groups. Instead, we will focus on

those such that the resulting gauge theories are also described by brane brick models. We

refer to such theories as toric phases. In order to shape our proposal, we will combine a

natural generalization of the basic triality transformation with various desired properties

for the resulting theories.

Ranks. Let us first consider the ranks of gauge groups. Toric phases associated to N

regular D1-branes on a toric CY 4-fold must have all ranks equal to N .7 What types of

nodes can in principle be dualized such that, the resulting rank remains equal to N? It is

reasonable to assume that the transformation rule for ranks of the basic triality continues

to apply for these more general theories. Specializing (3.1) to a node k in a toric phase,

we get

N ′k = nχk,inN −N . (4.1)

In order to obtain N ′k = N we need nχk,in = 2, i.e. nodes with only two ingoing chiral

field arrows.

The cancellation of non-abelian anomalies further constraints the dualized node. As

discussed in [11, 15], the cancellation of SU(Nk)
2 anomalies requires that∑

j 6=k
(nχjkNj + nχkjNj − nFkjNj) + 2(aχk − aFk )Nk = 2Nk . (4.2)

7Notice that dual phases with unequal ranks might exist, as we briefly mention in section 3. Such

theories, however, are not described by brane brick models.
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Figure 6. General configuration for a node in the periodic quiver whose dualization leads to

another toric phase. The example we show corresponds to nχk,out = nFk = 4.

When all gauge nodes have equal ranks, the relation simplifies to

nχk − nFk = 2 . (4.3)

Combining (4.2) with nχk,in = 2, we conclude that the dualized node must have

nχk,out = nFk . (4.4)

Summarizing what we have learnt so far: in order to remain within toric phases, we have

to dualize nodes with nχk,in = 2 and nχk,out = nFk ≥ 2. The lower bound follows from the

fact that, in order to avoid SUSY breaking in this class of theories, both nχk,in and nχk,out

must be greater or equal than 2.

The Quiver. Let us now consider the transformation of the quiver. We also assume that

the fields charged under the dualized node and the new mesons obey the rules in (3.2). In

order for the dual theory to correspond to a brane brick model, we should not generate

mesons that correspond to lines crossing over the dualized node or interlaced loops of fields

in the periodic quiver. A natural solution to this problem is given by a local configuration

of the general form shown in figure 6 for the case of nχk,out = nFk = 4

The orientations of chiral fields in this configuration are such that, as illustrated in

figure 7, the dual theory does not have mesons going over the dualized node or interlaced

loops. Furthermore, we chose the outgoing chiral fields and the Fermi fields to alternate

along an equatorial plane. This alternation facilitates the construction of plaquettes, and

hence it is a natural structure to arise in toric theories.8

Plaquettes. So far, we have only explained how the quiver transforms under a triality

transformation. A full definition of triality for toric phases also requires a rule for obtaining

the J- and E-terms in the dual theory. We propose the following prescription for doing

so: after performing the local transformation of the dualized node shown in figure 7, the

J- and E-terms are those that follow from the resulting periodic quiver. This prescription

will be illustrated in numerous examples in section 5, for which the J- and E-terms are

explicitly presented in the two appendices.

8It would be interesting to determine whether more general configurations are possible.
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Figure 7. Local transformation of the quiver under triality for a node with nχk,out = nFk = 4. The

initial configuration is such that the dual is also a toric phase, i.e. it continues to be well described

by a periodic quiver.

As reviewed in section 3, a triality prescription for a wide class of quiver theories was

introduced in [8]. Our proposal applies to a different class of quiver gauge theories, hence

considerably extending the range of applicability of triality. Our theories have more general

J-terms, non-trivial E-terms and are engineered in terms of branes.

Loops of toric phases and cubic nodes. Following our previous discussion, starting

from a toric phase and dualizing any node of the general form shown in figure 6 with

nχk,in = 2 and nχk,out = nFk ≥ 2, we obtain a new toric phase. According to the rules

in (3.2), nχ′k,in in the dual theory is equal to nFk of the original one. Hence, a second

dualization on the same node will result in a toric phase only if nFk = 2. This implies that

nodes with nχk,in = nχk,out = nFk = 2 are not just the simplest configurations that can be

dualized to obtain a toric phase. They are also special because it is only for them that the

triality loops of three consecutive dualizations on the same node exclusively involve toric

phases. The corresponding bricks in the brane brick models have six faces, as shown on

the left of figure 9. We thus refer to these nodes as cubic nodes.

For the aforementioned reasons, most of our discussion in coming sections will focus

on triality of cubic nodes. An explicit example of a toric phase obtained by a triality

transformation of a node with nχk,in > 2 will be discussed in section 5.1.

4.1 Triality and brane brick models

We now rephrase our previous discussion from the viewpoint of brane brick models, focusing

on triality transformations of cubic nodes.

A cubic node has six nearest neighbors. For simplicity, let us begin by assuming

that, before the triality move, there are no fields connecting the nearest neighbors among

themselves. The triality move on the cubic node is shown in figure 8.

Translating figure 8 into a brane brick model by the usual graph dual method, we

arrive at figure 9. As explained in [15], it is convenient to keep track of the orientation of

brick faces by assigning orientations to their edges.

Recall that Fermi faces are always quadrilaterals. Chiral faces are less restricted. We

will not assume that the chiral faces of the cube before triality are necessarily simple
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Figure 8. Local triality action on a cubic node in the periodic quiver.

Figure 9. Local triality action on a cubic brick.

squares, by which we mean four sided. Instead, we will allow the common boundary

between two chiral faces to carry a sequence of oriented edges. Figure 9 shows examples

of composite boundaries containing three vertical edges.

Under these conditions, the local brick configuration after triality is determined

uniquely as shown on the right of figure 9. The original cube is replaced by a new, smaller,

cube consisting of chirals and Fermis determined by the triality rule. In addition, eight

new “diagonal” faces are produced, which connect a subset of the edges of the original

cube to edges in the new cube. The edges are oriented such that four of the diagonal faces

are Fermis and the other four are chirals. Note that, in order for the diagonal mesonic

chiral faces to have even number of edges, the number of edges constituting the composite

boundary in the initial cube should be odd.

Faces associated to fields that are neutral under the dualized gauge group may undergo

modifications. Consider the blue edges of the cubic brick shown in figure 9. Unlike the

other eight edges in the cube, they are not connected to new mesonic faces in the dual

theory. Faces outside of the cube that are initially attached to the blue edges remain

connected to them. In the process, each of them gains two new edges as shown in figure 9.

If a face glued to such an edge was a (2k)-gon before triality, it would become a (2k+2)-gon
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Figure 10. Integrating out a massive chiral-Fermi pair in a brane brick model.

afterwards. This is perfectly fine for a chiral face, but seems problematic for a Fermi face.

Interestingly, the apparent problem occurs if and only if the periodic quiver contains nested

plaquettes. Nested plaquettes refer to the case in which the chiral fields in a plaquette are

a subset of those in a larger plaquette (see [15] for a discussion). In the brane brick model

perspective, nested plaquettes arise when more than one Fermi faces share a common edge.

Establishing how to modify figure 9 in the presence of nested plaquettes would require a

more refined analysis. In all examples considered in this article, this phenomenon arises

only when we dualize a node that leads to a toric phase but that it is not cubic. Since we

will mainly focus on triality moves on cubes, we will not delve into the subtleties associated

to nested plaquettes.

Triality can also give rise to chiral-Fermi massive pairs. As explained in [15], such a

pair corresponds to a Fermi and a chiral faces connected by an edge to which no other

face is attached. Massive pairs can be integrated out at low energies, simplifying the brane

brick model. This process is illustrated in figure 10.

All the discussion in this section also applies if we relax our initial assumption on the

absence of fields running between the six nearest neighbors. Moreover, in all the explicit

examples considered in the next section, these pre-exiting fields form massive pairs with

mesonic fields and disappear at low energies.

4.2 Transformation of J- and E-terms

2d (0, 2) theories must satisfy the vanishing trace condition∑
a

tr (JaEa) = 0 . (4.5)

In [11], partial resolution was used to show that all brane brick models satisfy this condition.

Here we would like to take a complementary approach to this problem. We will show that,

for brane brick models, triality preserves the vanishing trace condition.

We find it convenient to introduce a formal object for bookkeeping J- and E-terms,

Ω =
∑
a

tr
(
ΛaJ

a + Λ̄aEa
)
. (4.6)

Using a formal inner product, (Λa)
i
j ·(Λ̄b)kl = δbaδ

i
lδ
k
j , where i, j, k, l are (anti)fundamental

indices at appropriate gauge nodes, we can rewrite the vanishing trace condition as

Ω · Ω =
∑
a

tr (JaEa) = 0 . (4.7)

– 13 –



J
H
E
P
0
5
(
2
0
1
6
)
0
2
0

4

2

0

5

3

6

1

4

2

0

5

3

6

1

Figure 11. Transformation of J- and E-terms. The curved grey arrows represent oriented chains

of chiral fields.

For simplicity, let us begin with the local triality move shown in figure 11. In the

figure, we included open chains of chiral fields connecting pairs of adjacent neighbors to

the cubic node. We denote them by Oij .

Let us assume that the plaquettes near the cubic nodes are simply those we can rec-

ognize in figure 11. The formal sum Ω before the triality is

Ω = Ω0 + Λ13(X30X01 −O31) + Λ31(O15O53 −O16O63)

+ Λ14(X40X01 −O41)− Λ41(O15O54 −O16O64)

+ Λ23(X30X02 −O32)− Λ32(O25O53 −O26O63)

+ Λ24(X40X02 −O42) + Λ42(O25O54 −O26O64)

+ Λ05(O53X30 −O54X40)− Λ50(X01O15 −X02O25)

+ Λ06(O63X30 −O64X40) + Λ60(X01O16 −X02O26) .

(4.8)

Here, Ω0 collects the contributions from plaquettes whose Fermi fields are not shown in

the figure. We suppressed the “tr” symbol, but the cyclic ordering in a monomial should

be understood. We also suppressed the bar from Λ̄, with the identification Λji = Λ̄ij .

A simplifying feature of the local quiver in figure 11 is that the tr(EaJ
a) terms involving

the four chiral and six Fermi fields shown explicitly cancel among themselves, leaving

Ω · Ω = Ω0 · Ω0 − (O31O15O53) + (O25O53O32 +O41O15O54 +O63O31O16)

− (O16O64O41 +O32O26O63 +O54O42O25) +O42O26O64 .
(4.9)

For the theory to be consistent, this sum should vanish.

In the local quiver of figure 11, the triality acts as a cyclic permutation on node labels:

(123456)→ (345612). But, the OijOjkOkl terms in (4.9) are grouped in cyclically invariant

combinations. So, if Ω · Ω vanishes before triality, it should still vanish after the triality.

There are local quiver configurations that look more complicated than figure 11. For

example, at first sight, the left quiver in figure 8 does not seem to allow for an augmentation

by external chains of chiral fields Oij with obvious assignments of plaquettes. Fortunately,
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Figure 12. Massive chiral-Fermi pairs added to the initial configuration in figure 8 so that the

transformation rule of figure 11 can be applied directly.

by integrating in/out chiral-Fermi pairs, we can bring an arbitrary local quiver into the

simple form of figure 11. As an illustration, applying this idea to figure 8, we arrive at

figure 12.

5 Examples

In this section we investigate some explicit examples. As mentioned earlier, we primarily

focus on triality acting on cubic nodes. In order to do so, it is necessary to find toric CY

4-folds that give rise to brane brick models containing cubic bricks. Fortunately, a theory

of this type was already identified in earlier work [11, 15]. It corresponds to D1-branes

probing the cone over Q1,1,1. In order to generate an additional example with a richer

triality structure, we will simply consider the Q1,1,1/Z2 orbifold. Following the general

construction for orbifolds of toric geometries introduced in [11, 15], a brane brick model

for this orbifold is obtained by taking one for Q1,1,1 and appropriately doubling the size of

the unit cell. Figure 13 shows the toric diagrams for both geometries.

To keep our discussion succinct, we will mostly phrase it in terms of periodic quivers.

The brane brick models for all the theories studied in this section are presented in the

appendices, which collect additional detailed information about these theories, such as

explicit expressions for their J- and E-terms.

5.1 Triality network for Q1,1,1

Let us start from the periodic quiver shown in figure 14. This theory was introduced

in [11, 15], where it was shown that it corresponds to D1-branes probing the cone over

Q1,1,1. We will refer to it as the asymmetric phase (A), since it is not manifestly invariant

under the octahedral symmetry permuting the three axes. This is indeed a symmetry of

the underlying geometry, as it follows from the toric diagram.

The brane brick model for this theory is presented in appendix A. The periodic quiver

contains two types of nodes. Nodes 1 and 2 correspond to cubic bricks, while nodes 3 and

4, to octagonal cylinders.
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Figure 13. The toric diagrams for Q1,1,1 (left) and Q1,1,1/Z2 (right).
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Figure 14. Periodic quiver for phase A of Q1,1,1. Notice that the region represented has twice the

volume of the unit cell.

Let us consider the action of triality on a cubic node, say 1. The resulting theory is

identical to the original one up to a cyclic permutation of the three axes. Figure 15 shows

the triality loop arising from three consecutive dualizations of node 1.

Let us now consider what happens when dualizing node 3. Interestingly, while this

node is not cubic, it is of the general form discussed in section 4 and shown in figure 7.

We thus know that triality on it takes phase A to another toric phase. The new theory

is shown at the bottom right of figure 16. It is indeed a toric phase and, furthermore,

it is invariant under the permutation of the coordinate axes. We hence refer to it as the

symmetric phase (S).9 It is important to note that in this periodic quiver, the multiplicity

of the Fermi lines that are adjoints of node 4 is two. This special feature follows from how

9It is interesting to remark that phase S can also be directly determined from the Q1,1,1 geometry using

the general methods introduced in [11, 15], without reference to triality.
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Figure 15. Action of three consecutive triality transformations on the cubic node 1 of phase A of

Q1,1,1. It simply amounts to a cyclic permutation of the three T 3 directions.

the periodic quiver captures J- and E-terms for this theory, is related to details of its brane

brick model and is discussed in detail in appendix A.

Continuing with a second dualization on node 3 generates a non-toric phase (NT),

which we show at the top right of figure 16. The rank of node 3 in this theory is 3N .

Since the theory is non-toric, it is not fully captured by a periodic quiver, i.e. there is no

known prescription for reading the J- and E-terms directly from it. The quiver diagram

in figure 16 should be understood merely as a representation of the gauge symmetry and

matter content of the theory. A third dualization on node 3 returns to the toric phase A.

Figure 16 shows the triangular loop obtained by three consecutive dualizations on node

3. In order to place the dualized node at the center, we have shifted the periodic quivers

with respect to figure 14 by half a period in the x direction. It is straightforward to verify

that the three theories are free of non-abelian anomalies, which is in fact guaranteed by

the triality transformation rules.

We can combine our previous analyses to construct a piece of the triality network

for Q1,1,1 involving only dualizations on nodes 1 and 3. The result is shown in figure 17

and consists of the triality loop in figure 15 and three permutations of the triality loop in

figure 16. Since phase S is invariant under the permutation of coordinate axes, it sits at

the intersection of the triality loops of all the three versions of phase A.
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Figure 17. A piece of the triality network for Q1,1,1, involving only dualizations of nodes 1 and 3.
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Figure 18. Periodic quiver for phase A of Q1,1,1/Z2.

The brane brick model for phase A contains another cube (node 2) and another octag-

onal cylinder (node 4). Their behavior under triality is identical to the cases we considered,

up to chiral conjugation. Of course, we may also perform triality moves on other nodes

of phases S and NT, generating even more non-toric phases. We will not pursue them in

this paper.

5.2 Triality network for Q1,1,1/Z2

We now perform a similar study for Q1,1,1/Z2. Our starting point is the theory defined by

the periodic quiver in figure 18. Since it is simply related to figure 14 by doubling the size

of the unit cell, we also refer to it as phase A.

For simplicity, we will only consider triality acting on cubic nodes. Even with this

restriction, the triality network has a much richer structure of toric phases than the one

for Q1,1,1 due to the larger number of gauge groups.10

In order to simplify the presentation of results, we will identify theories that differ by

a relabeling of the nodes in their periodic quivers. Restricting to theories connected to

phase A by a sequence of dualizations on cubic nodes, the triality network for Q1,1,1/Z2

contains five distinct phases: A, B, C, D, D̄. As the notation suggests, phases A, B, C

are self-conjugate under chiral conjugation, whereas D and D̄ are conjugate to each other.

These theories form three minimal triality loops: (A-B-B), (B-C-D), (B-D̄-C). Figure 19

shows a brief summary of the network and figure 20 provides further details. Detailed

information regarding all these phases, including their brane brick models, is presented in

appendix B.

6 The mesonic moduli space

In this section we will see that triality on brane brick models preserves their classical

mesonic moduli space. This moduli space is the toric CY4 transverse to the probe D1-

10As for Q1,1,1, additional toric phases can be generated by dualizing certain non-cubic nodes. For brevity,

we will not discuss such theories.
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Figure 19. A piece of the triality network for Q1,1,1/Z2 containing phase A and restricting to

dualizing cubic nodes. Theories differing by node relabeling are identified.

branes. A more interesting perspective on this fact is as follows. Brane brick models assign

2d (0, 2) gauge theories to toric CY4 singularities. In general, a toric CY4 does not give

rise to a single gauge theory, but to a class of them. Remarkably, at least for the large class

of explicit examples we have considered, all theories within this class are in fact related by

triality.11 It would be interesting to find a general proof of this statement, if it is indeed

true as evidence suggests.

The mesonic moduli space can be computed using the forward algorithm developed

in [11]. This calculation is in principle a straightforward exercise. However, it becomes

extremely demanding already for theories such as the Q1,1,1/Z2 phases discussed earlier.

These complications are overcome by the fast forward algorithm, which was introduced

in [15] and we summarize below.

6.1 The fast forward algorithm

We now briefly review the fast forward algorithm. Its key ingredients are the so-called

brick matchings. Brick matchings are in one-to-one correspondence with GLSM fields in

the toric description of the CY4 singularity. A crucial feature that makes them extremely

powerful is that they are defined combinatorially. To do so, it is useful to complete Ja- and

Ea-terms into pairs of plaquettes by multiplying them by the corresponding Λa or Λ̄a. A

brick matching is then defined as a collection of chiral, Fermi and conjugate Fermi fields

that contribute to every plaquette exactly once as follows:

1. For every Fermi field pair (Λa, Λ̄a), the chiral fields in the brick matching cover either

each of the two Ja-term plaquettes or each of the two Ea-term plaquettes exactly

once.

2. If the chiral fields in the brick matching cover the plaquettes associated to the Ja-

term, then Λ̄a is included in the brick matching.

3. If the chiral fields in the brick matching cover the plaquettes associated to the Ea-

term, then Λa is included in the brick matching.

11When the 2d theories have (2, 2) SUSY, they are actually related by the (2, 2) duality of [23], instead

of triality.
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Figure 20. A detailed version of the triality network for Q1,1,1/Z2 shown in figure 19. On each

triality loop, the node on which the triality operates is given a different color.

The position of every brick matching in the toric diagram is determined by the inter-

sections between the chiral field faces in the brick matching and the edges of the unit cell of

the brane brick model, γa (a = x, y, z). The integer-valued coordinates, (nx, ny, nz) ∈ Z3,

of a brick matching p are given by

na(p) =
∑
Xij∈p

〈Xij , γa〉 , (6.1)

a = x, y, z, where the angle brackets indicate the standard intersection number between an

orientated surface and an oriented line, contributing ±1 or 0 to the overall coordinate na.
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In general, more than one brick matching can be mapped to the same point of the

toric diagram.

The chiral and Fermi field content of brick matchings can be efficiently encoded in

terms of the brick matching matrix PΛΛ̄ (see [15] for details). Rows and columns in this

matrix correspond to quiver fields and brick matchings, respectively. An entry is equal to

1 if the corresponding field is contained in the brick matching and 0 otherwise. We refer to

the restriction of PΛΛ̄ to chiral fields as the P -matrix. Since only chiral fields contain scalar

components, the P -matrix is sufficient for studying the mesonic moduli space. Chiral fields

should be expressed in terms of brick matchings as follows

Xi =
∏
µ

p
Piµ
µ . (6.2)

6.2 A detailed example

We have computed the classical mesonic moduli space for all the examples presented in

section 5 using the fast forward algorithm. Our results are collected in the appendices and

confirm that the theories connected by triality have the same mesonic moduli space.

In order to understand the general reasons behind the invariance of the mesonic moduli

space, we now pick a pair of these theories and discuss the connection between them in

detail. Let us consider phases B and C of Q1,1,1/Z2. For convenience, we reproduce the

toric diagram for Q1,1,1/Z2 in figure 21, where we indicate the positions of brick matchings.

The periodic quivers and brane brick models for both theories are given in appendix B.

Starting from phase B and performing a triality transformation on node 5 we obtain

phase C. The P -matrix for phase B, summarizing the chiral field content of its brick

matchings is:

P (B) =



p1 p2 p3 p4 p5 p6 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

X+
37 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

X−37 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

X+
62 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

X−62 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

X+
84 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1

X−84 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1

X+
24 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1

X−24 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1

X+
68 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0

X−68 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0

X+
75 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

X−75 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0

X+
43 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0

X−43 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0

X+
56 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0

X−56 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

X+
21 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1

X−21 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1

X+
13 0 0 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0

X−13 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0



. (6.3)

In blue, we have highlighted the rows associated to chiral fields affected by triality, namely
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Figure 21. Toric diagram for Q1,1,1/Z2.

those charged under node 5. The P -matrix for phase C is given by:

P (C) =



p̃1 p̃2 p̃3 p̃4 p̃5 p̃6 s̃1 s̃2 s̃3 s̃4 s̃5 s̃6 s̃7 s̃8 s̃9 s̃10 s̃11 s̃12 s̃13 s̃14

X+
15 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0

X−15 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0

X+
37 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

X−37 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

X+
62 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

X−62 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

X+
84 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1

X−84 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1

X+
13 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1

X−13 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1

X+
24 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

X−24 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

X+
57 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1

X−57 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1

X+
68 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0

X−68 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0

X+
21 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0

X−21 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0

X+
43 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0

X−43 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0

X++
76 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

X+−
76 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

X−+
76 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

X−−76 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0



. (6.4)

For clarity, we use tildes for the new brick matchings. Once again, we have highlighted

the chiral fields participating in the triality transformation. In blue, we show the fields

charged under node 5, i.e. the dual flavors. In pink, we show the chiral mesons, which

extend between nodes 7 and 6.

Omitting the colored rows, both P -matrices are identical, up to column repetition. In

other words, the brick matchings in the two theories only differ by the fields affected by

triality. In particular, fields that intersect the boundaries of the unit cell remain unaltered.

Hence, the fast forward algorithm implies that we obtain the same toric diagram.
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Figure 22. It is possible to pick the unit cell of a brane brick model (here shown in green) such

that all fields involved in the triality transformation are fully contained in its interior.

Interestingly, the modification of the pieces of brick matchings affected by triality can

relate different numbers of brick matchings in the dual theories. In this particular example,

we have

s1 → {s̃1, s̃3} s4 → {s̃7, s̃8}
s8 → {s̃11, s̃13} s10 → {s̃12, s̃14}

(6.5)

and

{s2, s3} → s̃6 . (6.6)

6.3 General invariance of the mesonic moduli space

From the previous example, we can infer the general reasons underlying the invariance of

the mesonic moduli space for brane brick models under triality. The key points are:

1. Only fields affected by triality change in the chiral field content of brick matchings,

i.e. fields charged under the dualized gauge group and chiral mesons. This highly

non-trivial fact holds in all the explicit examples we have studied. An interesting

consequence of it is that the map between brick matchings in dual theories is often

not one-to-one.

2. It is always possible to pick the unit cell such that the region of the brane brick

model modified by triality does not intersect the edges of the unit cell. This fact is

schematically illustrated in figure 22.

3. The two previous points imply, via the fast forward algorithm, that the toric diagram

of the mesonic moduli space is preserved.

These general arguments are rather compelling and we expect they underlie a rigorous

proof of the invariance of the mesonic moduli space of brane brick models under triality.
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6.4 Connection to (2, 2) duality

We now study another feature of our explicit examples of triality, their behavior under

partial resolution of the corresponding CY4. Partial resolution translates into classical

higgsing at the level of the gauge theory. The connection between partial resolution and

classical higgsing has been extensively studied in [11], where it was exploited to generate

gauge theories for arbitrary toric CY4’s.

Verifying that the theories behave as expected under partial resolution is an additional

check of the triality rules we used in this paper to derive them. As mentioned earlier, when

multiple (0, 2) brane brick models are associated to the same toric CY4, they are related

by triality. When the CY4 is of the special form CY3 × C, we obtain 2d (2, 2) theories,

which follow from dimensional reduction of the 4d N = 1 theories on the worldvolume of

D3-branes probing the CY3 factor of the geometry. Once again, there can also be multiple

theories for a single geometry. In this case, the different theories are related by 2d (2, 2)

duality [23], which is the dimensional reduction of Seiberg duality for the 4d theories [9].

The periodic quivers and brane brick models of the 2d (2, 2) theories can be system-

atically constructed from periodic quivers and brane tilings of the 4d theories by means of

a lifting algorithm introduced in [11, 15]. Conversely, the objects encoding the 4d theories

are obtained by a projection of those for the 2d theories.

Let us consider Q1,1,1/Z2. As shown in figure 23, this geometry is connected by partial

resolution to F0×C. In fact, this can be achieved by removing any of the six corners of the

toric diagram. The different choices map to different sets of chiral fields getting non-zero

vevs. Performing partial resolution in different ways, it is thus possible to land on dual

theories.

Let us consider for example phase C of Q1,1,1/Z2. Figure 24 presents two higgsings of

this theory associated to the two ways of resolving the geometry down to F0 × C shown

figure 23. They result in two different theories for F0 × C, which are in fact related by 2d

(2, 2) duality.

7 Triality and phase boundaries

So far, we have studied how triality is realized in terms of brane brick models and its

effect on the geometry of the mesonic moduli space via brick matchings. In this section we

continue investigating geometric aspects of triality, this time from the perspective of phase

boundaries.

7.1 Phase boundaries for cubic nodes

Phase boundaries can be succinctly encoded in terms of the phase boundary matrix H [15].

Columns in this matrix correspond to phase boundaries ηα and rows correspond to chi-

ral and Fermi fields. An entry in Hiα is equal to ±1 if the face associated to the row

i is contained in the boundary represented by the column α, with the sign determined

by orientation, and 0 otherwise. In other words, the H-matrix summarizes the net in-

tersection numbers, counted with orientation, between phase boundaries and fields in the

periodic quiver. The H-matrices for all the theories studied in this paper can be found in

the appendices.
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Figure 23. Two different partial resolutions of Q1,1,1/Z2 to F0 × C.

Let us consider phase A of Q1,1,1/Z2. Its H-matrix is given in (B.3) and (B.4). Let us

focus on node 1, which is one of the four cubes in the brane brick model. It is useful to

list the phase boundaries that intersect each of the fields charged under node 1. They are:

X+
15 η13 η14 η15 η16

X−15 η23 η24 η25 η26

X+
31 η13 η23 η35 η36

X−31 η14 η24 η45 η46

Λ+
21 η15 η25 η36 η46 η13 η14 η23 η24

Λ−21 η16 η26 η35 η45 η13 η14 η23 η24

(7.1)

Here ηij indicates the phase boundary associated to the external edge between the points

pi and pj of the toric diagram. In more detail:

• The cube involves twelve different phase boundaries. This is equal to the total number

of phase boundaries for both Q1,1,1 and Q1,1,1/Z2. However, it could be a subset of

all the phase boundaries for more complicated geometries.

• Four phase boundaries intersect each chiral field.

• Eight phase boundaries intersect each Fermi field. Four of them, shown in blue in

the previous table, are common to the two Fermis and are not part of the corre-

sponding alternating cones. These phase boundaries also intersect the chiral fields

and play an important role when phase boundaries get reorganized due to triality, as

explained below.

This configuration seems to be rather generic. Indeed, all the cubes in the phases Q1,1,1 of

Q1,1,1/Z2 studied in this paper have the same general structure.
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Figure 24. Two different higgsings of Q1,1,1/Z2 to F0 × C. The chiral fields whose scalar com-

ponents get non-zero vevs are shown in blue. The third column shows how they project down

to the periodic quivers and brane tilings of the two toric phases of F0 [24], which are related by

Seiberg duality.

X+
15

p1

p2

p4 p3

p5

p6

p1
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p4 p3

p5

p6

p1

p2

p4 p3

p5

p6

p1

p2

p4 p3

p5

p6

X−
15 X+

31 X−
31

Figure 25. Each chiral field involves four phase boundaries associated to edges in the toric diagram

terminating on the same external point.

The four phase boundaries intersecting each of the chiral fields correspond to edges in

the toric diagram connected to a common external point, as shown in figure 25. It would

be interesting to check whether this simple structure generalizes to cubes in theories for

larger toric diagrams.
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Figure 26. Edges on the toric diagram for phase boundaries associated to Fermi fields. The ones

that do not participate in the alternating cones are shown in green.

η16

η13
η14

η23
η24

η25

η26

η15

η35
η45

η36
η46

Figure 27. The configuration of oriented phase boundaries forming the RD associated to cube

1 in the brane brick model. The orientations of phase boundaries are determined from the toric

diagram with the prescription introduced in [15].

For each Fermi field, the phase boundaries indicated in black in (7.1), namely those

giving rise to the alternating cones, correspond to two pairs of edges connected to opposite

external points in the toric diagram. We show these configurations in figure 26. The four

additional phase boundaries, listed in blue in (7.1), are shown in green in the figure. We

observe that their orientations are coplanar.

The twelve phase boundaries form a rhombic dodecahedron (RD) as shown in figure 27.

The relative positions of parallel phase boundaries are crucial, and are such that precisely

the chiral and Fermi fields of the cubic node arise from oriented and alternating cones,

as shown in figure 28. The cubic vertices of the RD are neither oriented nor alternating,

hence they do not give rise to any field in the quiver or, equivalently, to a face in the brane

brick model.12

7.2 Phase boundaries under triality

Triality corresponds to exchanging opposite phase boundaries in two of the “squares” shown

in figure 27. At every dualization, the pair of squares whose phase boundaries are flipped

12It is interesting to note that the phase boundaries in abelian orbifolds of C4 also form rhombic dodeca-

hedra. However, the orientations of the phase boundaries in them are such that the twelve vertices of each

RD correspond to fields.
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Figure 28. Quiver fields charged under node 1 and their corresponding phase boundary intersec-

tions.
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Q1,1,1/Z2 phase A
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Q1,1,1/Z2 phase B

Figure 29. Triality as a rearrangement of phase boundaries.

are the one intersecting the four chirals and the one intersecting the incoming chirals

and the Fermis. Figure 29 shows the triality from phase A to phase B of Q1,1,1/Z2. In

this case, the phase boundaries are exchanged as follows: {η13 ↔ η24, η14 ↔ η23} and

{η35 ↔ η46, η36 ↔ η46}. The correspondence between oriented and alternating intersections

and fields in the quiver implies that this operation precisely implements the modification of

the periodic quiver under triality. Furthermore, as expected, iterating this transformation

three times amounts to the identity.

Phase boundaries should not be regarded as planes, but as 2d surfaces that get de-

formed while preserving their homology during triality. Below we provide a more detailed

description of this process.
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Figure 30. Phase boundaries for phase A of Q1,1,1/Z2 as collections of faces in the brane brick

model. Faces that are repeated due to periodicity are colored only once.

7.3 Phase boundaries as collection of faces

Let us now study the structure of phase boundaries in further detail, regarding them as

collections of faces in the brane brick model. We can use the H-matrix in (B.3) and (B.4)

to locate the twelve phase boundaries on the brane brick model. The result is shown in

figure 30.

In order to simplify the representation of phase boundaries, we have used the same

notation for the bricks as in figure 35 (with the unit cell doubled as in the periodic quiver of

figure 18, to account for the Z2 orbifold) except that we have shrunk the Fermi faces in the

diagonal directions of octagonal cylinders until they become thin strips. As expected, the

phase boundaries form 2-cycles whose homology vectors equal those of the corresponding

edges in the toric diagram.

Figure 31 shows the local appearance of phase boundaries at node 1. We see a sharp

distinction between the black and blue phase boundaries of (7.1), which involve two and

four faces, respectively.

Let us now consider how the discussion in the previous section translates into this

language. To do so, we take the phase boundaries in the first column of figure 31 and
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Figure 31. Local shape of the phase boundaries at the cubic node 1. There are two qualitatively

different classes of phases boundaries: those involving two faces (top and middle rows) and those

involving four faces (bottom row).

η13

η15

η35

A B B

Figure 32. Local behavior of the phase boundaries under repeated triality on node 1.

examine how they transform under repeated triality on node 1. The result is summarized

in figure 32. The phase boundary η13 at the bottom row starts from a 4-face configuration.

Triality transforms it into a 2-face configuration. The next move exchanges the types of

the two faces. Figure 32 shows that the same rule applies to η15 and η35. It also works for

all other phase boundaries in figure 31.

A crucial feature of this transformation is that it is local. A local triality move should

not affect the way the phase boundaries depart from node 1. In figure 32, the edges along

which the phase boundaries depart from node 1 are colored in green. As it is clear from
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the figure, they are invariant under the triality moves. Another sign of the local nature of

the triality move is that the transformation rule described in figure 32 is universal for all

cubes in all toric phases of Q1,1,1 and Q1,1,1/Z2.

7.4 Possible connections to integrable systems

Phase boundaries are the brane brick model analogues of zig-zag paths for brane tilings [25,

26]. Brane tilings encode the 4d N = 1 quiver gauge theories on the worldvolume of D3-

branes probing toric CY3 singularities [27, 28]. It was noted in [25] that the square move

that implements Seiberg duality leading to toric phases in brane tilings can be interpreted

as a double Yang-Baxter transformation in terms of zig-zag paths. This turns out to be

a manifestation of integrable structures underlying these 4d quivers and their dimensional

reductions [29–35].

Zamolodchikov’s tetrahedron equation is the 3d generalization of the Yang-Baxter equa-

tion [36]. Geometrically, it is associated to inequivalent dissections of the rhombic dodec-

ahedron into four hexahedra. As we explained above, triality of brane brick models cor-

responds to a flip of opposite phase boundaries in a rhombic dodecahedron configuration.

It is natural to speculate that this fact hints to integrable structures related to triality. It

would be interesting to explore this direction in further detail.

8 Conclusions

We introduced the first brane realization of 2d (0, 2) triality. Our prescription applies to

the infinite class of gauge theories arising on D1-branes probing toric CY4 singularities,

which are mapped to brane brick models by T-duality.

We showed in explicit examples that triality preserves the classical mesonic moduli

space of the theories, which corresponds to the probed CY4. We also outlined a general

proof of this invariance for arbitrary brane brick models. Conversely, brane brick models

generically associate a class of 2d (0, 2) gauge theories to every toric CY4 and, remarkably,

the theories within this class turn out to be related by triality.

We studied brane brick models for Q1,1,1 and Q1,1,1/Z2, for which we derived several

dual phases and explained how they are connected in the corresponding triality networks.

Finally, we investigated triality from the perspective of the phase boundaries underly-

ing the fast inverse algorithm. For cubic nodes, it simply amounts to an exchange of some

of the opposite faces in a local rhombic dodecahedron configuration.

There are several directions for future investigation. The analysis of brane brick models

in [11, 15] and the study of triality in this paper have been done mostly at a classical level.

An important open question concerns the quantum dynamics of brane brick models. For

the minimal triality quiver [8] we reviewed in section 3, the quantum dynamics was studied

in depth in [3, 4].

It would also be desirable to obtain a deeper understanding of the RG flow of brane

brick models. As explained in [3, 4], the RG flow of a 2d (0, 2) gauge theory proceeds in two

steps. The original gauge theory is regarded as a non-abelian gauged linear sigma model

(GLSM). In the first stage of the RG, the gauge coupling quickly becomes strong and

the theory flows to a non-linear sigma model (NLSM), whose target space is the vacuum
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moduli space of the GLSM. In the second stage, the parameters of the theory, such as the

complexified Kähler parameter of the target space geometry, undergo further RG running.

At an RG fixed point, if it exists, the theory becomes a 2d (0, 2) superconformal field

theory. In summary, we would like to follow the GLSM→ NLSM → SCFT flow for brane

brick models.

There are a handful of tools available to probe the SCFT directly from the GLSM. For

example, we may compute the elliptic genus using localization techniques following [37–40].

Among other things, the elliptic genus in the RR sector captures chiral operators of the

theory. In 2d (0, 2) theories, the spectrum and the operator product expansions (OPE’s) of

chiral operators are described by quantum sheaf cohomology, first introduced in [41].13 In

general, chiral operators of 2d (0, 2) theories do not form a ring, but under certain conditions

they are closed under OPE’s [45].14 In discussing such chiral operators, it is important to

include the left-moving fermions that are annihilated by the right-moving supercharges.

In our earlier works on brane brick models [11, 15], we only enumerated gauge invariant

operators consisting of chiral multiplets, as a way to determine the vacuum moduli space of

the GLSM. It would be interesting to explore whether the combinatorial tools associated to

brane brick models, such as brick matchings, are also useful for incorporating left-moving

fermions. The computation of the elliptic genus and other SCFT observables from the

GLSM will be the topic of a forthcoming paper [46].
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A Phases of Q1,1,1

In the main text, we discussed three phases (A, S, NT) for Q1,1,1 and four phases (A,

B, C, D) for Q1,1,1/Z2. In this appendix and the next one, we present detailed data for

all these theories with the exception of NT, which is a non-toric phase. We start from

Q1,1,1, whose toric diagram is reproduced in figure 33. All the phases satisfy the vanishing

trace condition.

x

y

z

p6

p5

p4 p2

p1
p3

Figure 33. Toric diagram for Q1,1,1.

Phase A. This theory was originally introduced in [11, 15]. Figure 34 shows the periodic

quiver for this phase. It has 4 gauge groups, 10 chiral and 6 Fermi fields. This is in

agreement with nχ = G+ nF , with nχ, G and nF the total numbers of chiral fields, gauge

groups and Fermi fields, respectively. This general expression is valid for all brane brick

models and is obtained by summing the anomaly cancellation condition (4.3) over all gauge

groups [15]. The J- and E-terms for the different Fermi fields are
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34 : X−43 ·X

+
31 ·X

−
14 ·X

+
43 −X

+
43 ·X

−
32 ·X

+
24 ·X

−
43 X+

32 ·X
−
24 −X

−
31 ·X

+
14

Λ−+
34 : X−43 ·X

+
32 ·X

−
24 ·X

+
43 −X

+
43 ·X

−
31 ·X

+
14 ·X

−
43 X−32 ·X

+
24 −X

+
31 ·X

−
14

(A.1)

Given the large size of the brick matching matrices for the theories under consideration,

it is convenient to split them into their chiral and Fermi parts, P and PΛ.15 For phase A,

they are given by

P =



p1 p2 p3 p4 p5 p6

X+
14 1 0 0 0 0 0

X−14 0 1 0 0 0 0

X+
32 1 0 0 0 0 0

X−32 0 1 0 0 0 0

X+
24 0 0 1 0 0 0

X−24 0 0 0 1 0 0

X+
31 0 0 1 0 0 0

X−31 0 0 0 1 0 0

X+
43 0 0 0 0 1 0

X−43 0 0 0 0 0 1



, PΛ =



p1 p2 p3 p4 p5 p6

Λ+
21 0 0 1 1 1 0

Λ−21 0 0 1 1 0 1

Λ++
34 1 0 1 0 0 0

Λ+−
34 1 0 0 1 0 0

Λ−+
34 0 1 1 0 0 0

Λ−−34 0 1 0 1 0 0


. (A.2)

15This notation differs slightly from the one used in [15].
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Figure 34. Periodic quiver for phase A of Q1,1,1. Notice that the region represented has twice the

volume of the unit cell.

The brane brick model is obtained by dualizing the periodic quiver and it is shown in

figure 35. It consists of four bricks, one per gauge group, which are independently listed in

figure 36.

As done with the P and PΛ matrices, it is also convenient to split the chiral and Fermi

parts of the H-matrix encoding the phase boundaries. They are

HX =



η13 η14 η23 η24 η15 η16 η25 η26 η35 η36 η45 η46

X+
14 1 1 0 0 1 1 0 0 0 0 0 0

X−14 0 0 1 1 0 0 1 1 0 0 0 0

X+
32 1 1 0 0 1 1 0 0 0 0 0 0

X−32 0 0 1 1 0 0 1 1 0 0 0 0

X+
24 −1 0 −1 0 0 0 0 0 1 1 0 0

X−24 0 −1 0 −1 0 0 0 0 0 0 1 1

X+
31 −1 0 −1 0 0 0 0 0 1 1 0 0

X−31 0 −1 0 −1 0 0 0 0 0 0 1 1

X+
43 0 0 0 0 −1 0 −1 0 −1 0 −1 0

X−43 0 0 0 0 0 −1 0 −1 0 −1 0 −1



, (A.3)

HΛ =



η13 η14 η23 η24 η15 η16 η25 η26 η35 η36 η45 η46

Λ+
21 −1 −1 −1 −1 0 −1 0 −1 1 0 1 0

Λ−21 −1 −1 −1 −1 −1 0 −1 0 0 1 0 1

Λ++
34 0 1 −1 0 1 1 0 0 1 1 0 0

Λ+−
34 1 0 0 −1 1 1 0 0 0 0 1 1

Λ−+
34 −1 0 0 1 0 0 1 1 1 1 0 0

Λ−−34 0 −1 1 0 0 0 1 1 0 0 1 1


. (A.4)

We choose the unit cell of the brane brick model such that the only non-trivial inter-

sections between chiral faces and the unit cell edges

~n(X+
14) = (1, 0, 0) ~n(X−14) = (0, 1, 0)

~n(X+
31) = (1, 1, 0) ~n(X−31) = (0, 0, 0)

~n(X+
43) = (0, 0, 1) ~n(X−43) = (1, 1,−1)

(A.5)
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Figure 35. Brane brick model for phase A of Q1,1,1.

bricks 1 & 2 bricks 3 & 4

Figure 36. Brane bricks for phase A of Q1,1,1.

where ~n(X) indicates the individual contribution of a chiral field X to (6.1). It is now

possible to determine the mesonic moduli space using the fast forward algorithm explained

in section 6.1. Combining (A.5) with the chiral field content of brick matchings summarized

by the P -matrix (A.2), we indeed obtain the Q1,1,1 toric diagram shown in figure 33.

Phase S. The periodic quiver for phase S of Q1,1,1 is shown in figure 37. The theory has

4 gauge groups, 18 chiral fields and 14 Fermi fields.

In contrast to phase A, the periodic quiver of phase S exhibits a manifest octahedral

symmetry. In order to simplify the discussion of the symmetries of the theory, we have

shifted the periodic quiver with respect to figure 16, placing node 4 at the center. It is also

convenient to split the nodes into a central node (4) and three satellite nodes (1, 2, 3). To

emphasize how the octahedral symmetry is realized, we will use the following notation for

the fields:

Outgoing chiral (from center to satellite) : Xs,0,0, X0,s,0, X0,0,s ,

Incoming chiral (to center from satellite) : Y0,s,s′ , Ys′,0,s, Ys,s′,0 ,

Orbiting Fermi (from satellite to another) : Λs,0,0,Λ0,s,0,Λ0,0,s ,

Radial Fermi (center adjoint) : Ψs,s′,s′′ . (A.6)
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Figure 37. Periodic quiver for phase S of Q1,1,1. Notice that the region represented has twice the

volume of the unit cell. The radial Fermi lines have multiplicity 2.

The three subindices, with s, s′, s′′ = ±, indicate the directions of the fields in the periodic

quiver with respect to the three coordinate axes. It is interesting to point out a rather

special feature of this periodic quiver: the multiplicity of the lines for radial Fermis is

two. More specifically, the pair of Fermis on each of these lines is Ψs,s′,s′′ and Ψ−s,−s′,−s′′ .

We will elaborate on this fact below. These fields transform in the adjoint representation

of node 4.

The J- and E-terms for the orbiting Fermi fields are

J E

Λ+00 : Y−0+ ·X00− − Y−0− ·X00+ Y++0 ·X0−0 − Y+−0 ·X0+0

Λ−00 : Y+0+ ·X00− − Y+0− ·X00+ Y−−0 ·X0+0 − Y−+0 ·X0−0

Λ0+0 : Y+−0 ·X−00 − Y−−0 ·X+00 Y0++ ·X00− − Y0+− ·X00+

Λ0−0 : Y++0 ·X−00 − Y−+0 ·X+00 Y0−− ·X00+ − Y0−+ ·X00−
Λ00+ : Y0+− ·X0−0 − Y0−− ·X0+0 Y+0+ ·X−00 − Y−0+ ·X+00

Λ00− : Y0++ ·X0−0 − Y0−+ ·X0+0 Y−0− ·X+00 − Y+0− ·X−00

(A.7)

The J- and E-terms for the radial Fermi fields are

J E

Ψ+−− : X00+ · Y−+0 −X−00 · Y0++ X+00 · Y0−− −X0−0 · Y+0−
Ψ−++ : X+00 · Y0−− −X00− · Y+−0 X−00 · Y0++ −X0+0 · Y−0+

Ψ−+− : X+00 · Y0−+ −X0−0 · Y+0+ X0+0 · Y−0− −X00− · Y−+0

Ψ+−+ : X0+0 · Y−0− −X−00 · Y0+− X0−0 · Y+0+ −X00+ · Y+−0

Ψ−−+ : X0+0 · Y+0− −X00− · Y++0 X00+ · Y−−0 −X−00 · Y0−+

Ψ++− : X00+ · Y−−0 −X0−0 · Y−0+ X00− · Y++0 −X+00 · Y0+−
Ψ+++ : X00− · Y−−0 −X−00 · Y0−− X00+ · Y++0 −X0+0 · Y+0+

Ψ−−− : X+00 · Y0++ −X00+ · Y++0 X00− · Y−−0 −X0−0 · Y−0−

(A.8)
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The four types of fields in (A.6) independently form representations of the octahedral

symmetry of Q1,1,1. In particular, the different J- and E-terms transform into each other

under cyclic permutations of the three indices of the corresponding Fermi fields, with the

exception of those for Ψ+++ and Ψ−−−.

Vanishing of the J- and E-terms for Ψ+++ and Ψ−−− requires that

X+00 · Y0++ = X0+0 · Y+0+ = X00+ · Y++0

X−00 · Y0−− = X0−0 · Y−0− = X00− · Y−−0

(A.9)

It means that the three paths in the chiral ring connecting the center and the corner of

figure 37 on each line are equivalent. This statement is invariant under the cyclic subgroup

of the octahedral symmetry. As a result, the chiral ring constructed based on these relations

will be invariant under the full octahedral symmetry. However, at the level of the periodic

quiver, realizing these relations in terms of toric J- and E-terms, i.e. in terms of plaquettes,

inevitably leads to a spontaneous breaking of the symmetry. Below we will address this

problem in terms of brane brick models. It is important to emphasize that Ψ+++ and

Ψ−−− are by no means special among the radial Fermi fields. They are singled out in our

analysis simply due to our choice of notation and the realization of part of the symmetry

as cyclic permutation of indices.

The brick matchings of phase S are summarized by the matrices

P =



p1 p2 p3 p4 p5 p6

X+00 1 0 0 0 0 0

X−00 0 1 0 0 0 0

X0+0 0 0 1 0 0 0

X0−0 0 0 0 1 0 0

X00+ 0 0 0 0 1 0

X00− 0 0 0 0 0 1

Y0++ 0 0 1 0 1 0

Y0−− 0 0 0 1 0 1

Y0+− 0 0 1 0 0 1

Y0−+ 0 0 0 1 1 0

Y+0+ 1 0 0 0 1 0

Y−0− 0 1 0 0 0 1

Y−0+ 0 1 0 0 1 0

Y+0− 1 0 0 0 0 1

Y++0 1 0 1 0 0 0

Y−−0 0 1 0 1 0 0

Y+−0 1 0 0 1 0 0

Y−+0 0 1 1 0 0 0



, PΛ =



p1 p2 p3 p4 p5 p6

Λ+00 1 0 1 1 0 0

Λ−00 0 1 1 1 0 0

Λ0+0 0 0 1 0 1 1

Λ0−0 0 0 0 1 1 1

Λ00+ 1 1 0 0 1 0

Λ00− 1 1 0 0 0 1

Ψ+−− 1 0 0 1 0 1

Ψ−++ 0 1 1 0 1 0

Ψ−+− 0 1 1 0 0 1

Ψ+−+ 1 0 0 1 1 0

Ψ−−+ 0 1 0 1 1 0

Ψ++− 1 0 1 0 0 1

Ψ+++ 1 0 1 0 1 0

Ψ−−− 0 1 0 1 0 1



. (A.10)

The brane brick model for phase S is shown in figure 38. Figure 39 lists the indivi-

dual bricks.

Let us revisit the spontaneous breaking of the octahedral symmetry from the perspec-

tive of the brane brick model. The source of symmetry breaking can be traced to the

hexagonal faces associated to the radial Fermi fields. Due to the toric condition on J-

and E-terms, Fermi faces must always be quadrilaterals. Every hexagonal face should be
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Figure 38. Brane brick model for phase S of Q1,1,1.

brick 1 brick 2 brick 3 brick 4

Figure 39. Brane bricks for phase S of Q1,1,1.

understood as two quadrilaterals, representing a Ψs,s′,s′′ and Ψ−s,−s′,−s′′ pair, joined by a

common edge. There are three different ways to draw a diagonal line splitting each of the

hexagons into two trapezoids. This fact nicely matches the three ways in which we can

pick toric J- and E-terms for every Ψs,s′,s′′ and Ψ−s,−s′,−s′′ pair such that they give rise to

the same relations when they vanish.
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The chiral and Fermi field parts of the phase boundary matrix are

HX =



η13 η14 η23 η24 η15 η16 η25 η26 η35 η36 η45 η46

X+00 1 1 0 0 1 1 0 0 0 0 0 0

X−00 0 0 1 1 0 0 1 1 0 0 0 0

X0+0 −1 0 −1 0 0 0 0 0 1 1 0 0

X0−0 0 −1 0 −1 0 0 0 0 0 0 1 1

X00+ 0 0 0 0 −1 0 −1 0 −1 0 −1 0

X00− 0 0 0 0 0 −1 0 −1 0 −1 0 −1

Y0++ −1 0 −1 0 −1 0 −1 0 0 1 −1 0

Y0−− 0 −1 0 −1 0 −1 0 −1 0 −1 1 0

Y0+− −1 0 −1 0 0 −1 0 −1 1 0 0 −1

Y0−+ 0 −1 0 −1 −1 0 −1 0 −1 0 0 1

Y+0+ 1 1 0 0 0 1 −1 0 −1 0 −1 0

Y−0− 0 0 1 1 0 −1 1 0 0 −1 0 −1

Y−0+ 0 0 1 1 −1 0 0 1 −1 0 −1 0

Y+0− 1 1 0 0 1 0 0 −1 0 −1 0 −1

Y++0 0 1 −1 0 1 1 0 0 1 1 0 0

Y−−0 0 −1 1 0 0 0 1 1 0 0 1 1

Y+−0 1 0 0 −1 1 1 0 0 0 0 1 1

Y−+0 −1 0 0 1 0 0 1 1 1 1 0 0



, (A.11)

HΛ =



η13 η14 η23 η24 η15 η16 η25 η26 η35 η36 η45 η46

Λ+00 0 0 −1 −1 1 1 0 0 1 1 1 1

Λ−00 −1 −1 0 0 0 0 1 1 1 1 1 1

Λ0+0 −1 0 −1 0 −1 −1 −1 −1 0 0 −1 −1

Λ0−0 0 −1 0 −1 −1 −1 −1 −1 −1 −1 0 0

Λ00+ 1 1 1 1 0 1 0 1 −1 0 −1 0

Λ00− 1 1 1 1 1 0 1 0 0 −1 0 −1

Ψ+−− 1 0 0 −1 1 0 0 −1 0 −1 1 0

Ψ−++ −1 0 0 1 −1 0 0 1 0 1 −1 0

Ψ−+− −1 0 0 1 0 −1 1 0 1 0 0 −1

Ψ+−+ 1 0 0 −1 0 1 −1 0 −1 0 0 1

Ψ−−+ 0 −1 1 0 −1 0 0 1 −1 0 0 1

Ψ++− 0 1 −1 0 1 0 0 −1 1 0 0 −1

Ψ+++ 0 1 −1 0 0 1 −1 0 0 1 −1 0

Ψ−−− 0 −1 1 0 0 −1 1 0 0 −1 1 0



. (A.12)

We choose the unit cell of the brane brick model such that the non-zero intersection

between chiral field faces and the unit cell edges are

~n(Y++0) = (1, 0, 0) ~n(Y−+0) = (0, 1, 0)

~n(X00+) = (0, 0, 1) ~n(X00−) = (1, 1,−1)
(A.13)

Once again, combining (A.10) and (A.13), the fast forward algorithm implies that the toric

diagram for the mesonic moduli space is the one for Q1,1,1.
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B Phases of Q1,1,1/Z2

We now discuss the A, B, C and D toric phases of Q1,1,1/Z2, whose toric diagram is

reproduced in figure 40. All these theories satisfy the vanishing trace condition.

si

x

y

z

p1

p2

p4 p3

p5

p6

Figure 40. Toric diagram for Q1,1,1/Z2.

Phase A. Phase A of the Q1,1,1/Z2 model is defined by the periodic quiver in figure 41.

It has 8 gauge groups, 20 chiral fields and 12 Fermi fields. It is identical to figure 34 up to

a doubling of the unit cell, which accounts for the Z2 orbifold.
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Figure 41. Periodic quiver for phase A of Q1,1,1/Z2.
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The J- and E-terms are

J E

Λ+
21 : X+

15 ·X
−
56 ·X

−
62 −X−15 ·X

−
56 ·X

+
62 X+

24 ·X
+
43 ·X

−
31 −X−24 ·X

+
43 ·X

+
31

Λ−21 : X−15 ·X
+
56 ·X

+
62 −X+

15 ·X
+
56 ·X

−
62 X+

24 ·X
−
43 ·X

−
31 −X−24 ·X

−
43 ·X

+
31

Λ+
78 : X+

84 ·X
−
43 ·X

−
37 −X−84 ·X

−
43 ·X

+
37 X+

75 ·X
+
56 ·X

−
68 −X−75 ·X

+
56 ·X

+
68

Λ−78 : X−84 ·X
+
43 ·X

+
37 −X+

84 ·X
+
43 ·X

−
37 X+

75 ·X
−
56 ·X

−
68 −X−75 ·X

−
56 ·X

+
68

Λ++
64 : X+

43 ·X
−
37 ·X

−
75 ·X

−
56 −X−43 ·X

−
31 ·X

−
15 ·X

+
56 X+

62 ·X
+
24 −X+

68 ·X
+
84

Λ−−64 : X+
43 ·X

+
31 ·X

+
15 ·X

−
56 −X−43 ·X

+
37 ·X

+
75 ·X

+
56 X−62 ·X

−
24 −X−68 ·X

−
84

Λ+−
64 : X−43 ·X

+
31 ·X

−
15 ·X

+
56 −X+

43 ·X
−
37 ·X

+
75 ·X

−
56 X+

62 ·X
−
24 −X−68 ·X

+
84

Λ−+
64 : X−43 ·X

+
37 ·X

−
75 ·X

+
56 −X+

43 ·X
−
31 ·X

+
15 ·X

−
56 X−62 ·X

+
24 −X+

68 ·X
−
84

Λ++
35 : X+

56 ·X
−
62 ·X

−
24 ·X

−
43 −X−56 ·X

−
68 ·X

−
84 ·X

+
43 X+

37 ·X
+
75 −X+

31 ·X
+
15

Λ−−35 : X+
56 ·X

+
68 ·X

+
84 ·X

−
43 −X−56 ·X

+
62 ·X

+
24 ·X

+
43 X−37 ·X

−
75 −X−31 ·X

−
15

Λ+−
35 : X−56 ·X

+
68 ·X

−
84 ·X

+
43 −X+

56 ·X
−
62 ·X

+
24 ·X

−
43 X+

37 ·X
−
75 −X−31 ·X

+
15

Λ−+
35 : X−56 ·X

+
62 ·X

−
24 ·X

+
43 −X+

56 ·X
−
68 ·X

+
84 ·X

−
43 X−37 ·X

+
75 −X+

31 ·X
−
15

(B.1)

The brick matchings are given by

P =



p1 p2 p3 p4 p5 p6 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

X+
37 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0

X−37 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0

X+
62 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

X−62 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1

X+
84 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

X−84 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1

X+
24 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0

X−24 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0

X+
68 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0

X−68 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0

X+
75 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0

X−75 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0

X+
43 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

X−43 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

X+
56 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0

X−56 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

X+
31 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0

X−31 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0

X+
15 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

X−15 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0



,

PΛ =



p1 p2 p3 p4 p5 p6 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

Λ+
21 0 0 1 1 1 0 1 0 0 0 1 1 1 1 0 0

Λ−21 0 0 1 1 0 1 1 0 0 0 1 1 1 1 0 0

Λ+
78 0 0 1 1 1 0 0 1 0 1 1 0 0 1 1 0

Λ−78 0 0 1 1 0 1 0 1 0 1 1 0 0 1 1 0

Λ++
64 1 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1

Λ+−
64 1 0 0 1 0 0 0 0 0 0 1 1 0 0 1 1

Λ−+
64 0 1 1 0 0 0 0 0 0 0 1 1 0 0 1 1

Λ−−64 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1

Λ++
35 1 0 1 0 0 0 0 0 1 1 0 0 1 1 0 0

Λ+−
35 1 0 0 1 0 0 0 0 1 1 0 0 1 1 0 0

Λ−+
35 0 1 1 0 0 0 0 0 1 1 0 0 1 1 0 0

Λ−−35 0 1 0 1 0 0 0 0 1 1 0 0 1 1 0 0



. (B.2)
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The brane brick model for phase A is identical to the one in figure 35 for Q1,1,1, with

the appropriate doubling of the size of the unit cell corresponding to the periodic quiver

in figure 41.

The chiral and Fermi field pieces of the phase boundary matrix are

HX =



η13 η14 η23 η24 η15 η16 η25 η26 η35 η36 η45 η46

X+
37 1 1 0 0 1 1 0 0 0 0 0 0

X−37 0 0 1 1 0 0 1 1 0 0 0 0

X+
62 1 1 0 0 1 1 0 0 0 0 0 0

X−62 0 0 1 1 0 0 1 1 0 0 0 0

X+
84 1 1 0 0 1 1 0 0 0 0 0 0

X−84 0 0 1 1 0 0 1 1 0 0 0 0

X+
24 −1 0 −1 0 0 0 0 0 1 1 0 0

X−24 0 −1 0 −1 0 0 0 0 0 0 1 1

X+
68 −1 0 −1 0 0 0 0 0 1 1 0 0

X−68 0 −1 0 −1 0 0 0 0 0 0 1 1

X+
75 −1 0 −1 0 0 0 0 0 1 1 0 0

X−75 0 −1 0 −1 0 0 0 0 0 0 1 1

X+
43 0 0 0 0 −1 0 −1 0 −1 0 −1 0

X−43 0 0 0 0 0 −1 0 −1 0 −1 0 −1

X+
56 0 0 0 0 −1 0 −1 0 −1 0 −1 0

X−56 0 0 0 0 0 −1 0 −1 0 −1 0 −1

X+
15 1 1 0 0 1 1 0 0 0 0 0 0

X−15 0 0 1 1 0 0 1 1 0 0 0 0

X+
31 −1 0 −1 0 0 0 0 0 1 1 0 0

X−31 0 −1 0 −1 0 0 0 0 0 0 1 1



, (B.3)

HΛ =



η13 η14 η23 η24 η15 η16 η25 η26 η35 η36 η45 η46

Λ+
21 −1 −1 −1 −1 −1 0 −1 0 0 1 0 1

Λ−21 −1 −1 −1 −1 0 −1 0 −1 1 0 1 0

Λ+
78 −1 −1 −1 −1 −1 0 −1 0 0 1 0 1

Λ−78 −1 −1 −1 −1 0 −1 0 −1 1 0 1 0

Λ++
64 0 1 −1 0 1 1 0 0 1 1 0 0

Λ+−
64 1 0 0 −1 1 1 0 0 0 0 1 1

Λ−+
64 −1 0 0 1 0 0 1 1 1 1 0 0

Λ−−64 0 −1 1 0 0 0 1 1 0 0 1 1

Λ++
35 0 1 −1 0 1 1 0 0 1 1 0 0

Λ+−
35 1 0 0 −1 1 1 0 0 0 0 1 1

Λ−+
35 −1 0 0 1 0 0 1 1 1 1 0 0

Λ−−35 0 −1 1 0 0 0 1 1 0 0 1 1



. (B.4)

We choose the unit cell to have the origin at node 4 and its three axes along the x, y

and z directions of figure 41. The non-zero intersection numbers of chiral field faces with

the edges of the unit cell are

~n(X±84) = (±1, 0, 0) , ~n(X±24) = (0,±1, 0) , ~n(X±43) = (0, 0,±1) . (B.5)

Combining this with (B.2), the fast forward algorithm produces the toric diagram for

Q1,1,1/Z2 shown in figure 40. Each chiral field in (B.5) contributes to a single external brick

matching. For internal brick matchings, the contributions from X+
ij and X−ij cancel out.

A nice feature or our choice of unit cell is that the chiral fields with non-zero intersection

numbers remain intact under the triality transformations we consider. As a result, following

the general discussion in section 6.3, the moduli space of all other phases (B, C, D) is the

same. The number of brick matchings associated to the internal point in the toric diagram

may however vary from phase to phase.
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Phase B. Phase B of Q1,1,1/Z2 is defined by the periodic quiver in figure 42. It has 8

gauge groups, 20 chiral fields and 12 Fermi fields.
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Figure 42. Periodic quiver for phase B of Q1,1,1/Z2.

The J- and E-terms are

J E

Λ+
51 : X+

13 ·X−37 ·X−75 −X−13 ·X−37 ·X+
75 X+

56 ·X+
62 ·X−21 −X−56 ·X+

62 ·X+
21

Λ−51 : X−13 ·X+
37 ·X+

75 −X+
13 ·X+

37 ·X−75 X+
56 ·X−62 ·X−21 −X−56 ·X−62 ·X+

21

Λ+
78 : X+

84 ·X−43 ·X−37 −X−84 ·X−43 ·X+
37 X+

75 ·X+
56 ·X−68 −X−75 ·X+

56 ·X+
68

Λ−78 : X−84 ·X+
43 ·X+

37 −X+
84 ·X+

43 ·X−37 X+
75 ·X−56 ·X−68 −X−75 ·X−56 ·X+

68

Λ++
64 : X+

43 ·X−37 ·X−75 ·X−56 −X−43 ·X−37 ·X−75 ·X+
56 X+

62 ·X+
24 −X+

68 ·X+
84

Λ−−64 : X+
43 ·X+

37 ·X+
75 ·X−56 −X−43 ·X+

37 ·X+
75 ·X+

56 X−62 ·X−24 −X−68 ·X−84

Λ+−
64 : X−43 ·X−37 ·X+

75 ·X+
56 −X+

43 ·X−37 ·X+
75 ·X−56 X+

62 ·X−24 −X−68 ·X+
84

Λ−+
64 : X−43 ·X+

37 ·X−75 ·X+
56 −X+

43 ·X+
37 ·X−75 ·X−56 X−62 ·X+

24 −X+
68 ·X−84

J E

Λ++
23 : X+

37 ·X−75 ·X−56 ·X−62 −X−37 ·X−75 ·X−56 ·X+
62 X+

24 ·X+
43 −X+

21 ·X+
13

Λ−−23 : X+
37 ·X+

75 ·X+
56 ·X−62 −X−37 ·X+

75 ·X+
56 ·X+

62 X−24 ·X−43 −X−21 ·X−13

Λ+−
23 : X−37 ·X−75 ·X+

56 ·X+
62 −X+

37 ·X−75 ·X+
56 ·X−62 X+

24 ·X−43 −X−21 ·X+
13

Λ−+
23 : X−37 ·X+

75 ·X−56 ·X+
62 −X+

37 ·X+
75 ·X−56 ·X−62 X−24 ·X+

43 −X+
21 ·X−13

(B.6)
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The brick matchings are given by

P =



p1 p2 p3 p4 p5 p6 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

X+
37 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

X−37 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

X+
62 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

X−62 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

X+
84 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1

X−84 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1

X+
24 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1

X−24 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1

X+
68 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0

X−68 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0

X+
75 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

X−75 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0

X+
43 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0

X−43 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0

X+
56 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0

X−56 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

X+
21 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1

X−21 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1

X+
13 0 0 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0

X−13 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0



,

PΛ =



p1 p2 p3 p4 p5 p6 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

Λ+
51 1 0 0 0 1 1 0 1 0 0 1 1 1 0 0 1 1

Λ−51 0 1 0 0 1 1 0 1 0 0 1 1 1 0 0 1 1

Λ+
78 0 0 1 1 1 0 0 1 1 0 0 1 0 1 0 1 0

Λ−78 0 0 1 1 0 1 0 1 1 0 0 1 0 1 0 1 0

Λ++
64 1 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1

Λ+−
64 1 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1

Λ−+
64 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1

Λ−−64 0 1 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1

Λ++
23 0 0 1 0 1 0 0 0 0 1 1 0 0 1 1 1 1

Λ+−
23 0 0 1 0 0 1 0 0 0 1 1 0 0 1 1 1 1

Λ−+
23 0 0 0 1 1 0 0 0 0 1 1 0 0 1 1 1 1

Λ−−23 0 0 0 1 0 1 0 0 0 1 1 0 0 1 1 1 1



. (B.7)

As explained above, the fast forward algorithm leads to the same mesonic moduli space

for all phases of Q1,1,1/Z2. For this theory and the ones that follow, the column labels in

the P -matrix indicate the corresponding point in the toric diagram.

Figures 43 and 44 show the brane brick model and individual bricks for phase B.

Figure 43. Brane brick model for phase B of Q1,1,1/Z2.
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Figure 44. Brane bricks for phase B of Q1,1,1/Z2.

The chiral and Fermi field pieces of the phase boundary matrix are

HX =



η13 η14 η23 η24 η15 η16 η25 η26 η35 η36 η45 η46

X+
37 1 1 0 0 1 1 0 0 0 0 0 0

X−37 0 0 1 1 0 0 1 1 0 0 0 0

X+
62 1 1 0 0 1 1 0 0 0 0 0 0

X−62 0 0 1 1 0 0 1 1 0 0 0 0

X+
84 1 1 0 0 1 1 0 0 0 0 0 0

X−84 0 0 1 1 0 0 1 1 0 0 0 0

X+
24 −1 0 −1 0 0 0 0 0 1 1 0 0

X−24 0 −1 0 −1 0 0 0 0 0 0 1 1

X+
68 −1 0 −1 0 0 0 0 0 1 1 0 0

X−68 0 −1 0 −1 0 0 0 0 0 0 1 1

X+
75 −1 0 −1 0 0 0 0 0 1 1 0 0

X−75 0 −1 0 −1 0 0 0 0 0 0 1 1

X+
43 0 0 0 0 −1 0 −1 0 −1 0 −1 0

X−43 0 0 0 0 0 −1 0 −1 0 −1 0 −1

X+
56 0 0 0 0 −1 0 −1 0 −1 0 −1 0

X−56 0 0 0 0 0 −1 0 −1 0 −1 0 −1

X+
21 0 0 0 0 −1 0 −1 0 −1 0 −1 0

X−21 0 0 0 0 0 −1 0 −1 0 −1 0 −1

X+
13 −1 0 −1 0 0 0 0 0 1 1 0 0

X−13 0 −1 0 −1 0 0 0 0 0 0 1 1



, (B.8)

HΛ =



η13 η14 η23 η24 η15 η16 η25 η26 η35 η36 η45 η46

Λ+
51 1 1 0 0 0 0 −1 −1 −1 −1 −1 −1

Λ−51 0 0 1 1 −1 −1 0 0 −1 −1 −1 −1

Λ+
78 −1 −1 −1 −1 −1 0 −1 0 0 1 0 1

Λ−78 −1 −1 −1 −1 0 −1 0 −1 1 0 1 0

Λ++
64 0 1 −1 0 1 1 0 0 1 1 0 0

Λ+−
64 1 0 0 −1 1 1 0 0 0 0 1 1

Λ−+
64 −1 0 0 1 0 0 1 1 1 1 0 0

Λ−−64 0 −1 1 0 0 0 1 1 0 0 1 1

Λ++
23 −1 0 −1 0 −1 0 −1 0 0 1 −1 0

Λ+−
23 −1 0 −1 0 0 −1 0 −1 1 0 0 −1

Λ−+
23 0 −1 0 −1 −1 0 −1 0 −1 0 0 1

Λ−−23 0 −1 0 −1 0 −1 0 −1 0 −1 1 0



. (B.9)
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Phase C. The periodic quiver for phase C is given in figure 45. It has 8 gauge groups,

24 chiral fields and 16 Fermi fields.
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Figure 45. Periodic quiver for phase C of Q1,1,1/Z2.

The and J- and E-terms are

J E

Λ+
56 : X+

62 ·X−21 ·X−15 −X−62 ·X−21 ·X+
15 X+

57 ·X−+
76 −X−57 ·X++

76

Λ−56 : X−62 ·X+
21 ·X+

15 −X+
62 ·X+

21 ·X−15 X+
57 ·X−−76 −X−57 ·X+−

76

Λ+
78 : X+

84 ·X−43 ·X−37 −X−84 ·X−43 ·X+
37 X++

76 ·X−68 −X−+
76 ·X+

68

Λ−78 : X−84 ·X+
43 ·X+

37 −X+
84 ·X+

43 ·X−37 X+−
76 ·X−68 −X−−76 ·X+

68

Λ++
64 : X+

43 ·X−37 ·X−−76 −X−43 ·X−37 ·X−+
76 X+

62 ·X+
24 −X+

68 ·X+
84

Λ−−64 : X+
43 ·X+

37 ·X+−
76 −X−43 ·X+

37 ·X++
76 X−62 ·X−24 −X−68 ·X−84

Λ+−
64 : X−43 ·X−37 ·X++

76 −X+
43 ·X−37 ·X+−

76 X+
62 ·X−24 −X−68 ·X+

84

Λ−+
64 : X−43 ·X+

37 ·X−+
76 −X+

43 ·X+
37 ·X−−76 X−62 ·X+

24 −X+
68 ·X−84

Λ++
17 : X−+

76 ·X−62 ·X−21 −X−−76 ·X−62 ·X+
21 X+

15 ·X+
57 −X+

13 ·X+
37

Λ−−17 : X++
76 ·X+

62 ·X−21 −X+−
76 ·X+

62 ·X+
21 X−15 ·X−57 −X−13 ·X−37

Λ+−
17 : X+−

76 ·X−62 ·X+
21 −X++

76 ·X−62 ·X−21 X+
15 ·X−57 −X−13 ·X+

37

Λ−+
17 : X−−76 ·X+

62 ·X+
21 −X−+

76 ·X+
62 ·X−21 X−15 ·X+

57 −X+
13 ·X−37

Λ++
23 : X+

37 ·X−−76 ·X−62 −X−37 ·X−−76 ·X+
62 X+

24 ·X+
43 −X+

21 ·X+
13

Λ−−23 : X+
37 ·X++

76 ·X−62 −X−37 ·X++
76 ·X+

62 X−24 ·X−43 −X−21 ·X−13

Λ+−
23 : X−37 ·X−+

76 ·X+
62 −X+

37 ·X−+
76 ·X−62 X+

24 ·X−43 −X−21 ·X+
13

Λ−+
23 : X−37 ·X+−

76 ·X+
62 −X+

37 ·X+−
76 ·X−62 X−24 ·X+

43 −X+
21 ·X−13

(B.10)
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The brick matchings are given by

P =



p1 p2 p3 p4 p5 p6 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14

X+
15 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0

X−15 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0

X+
37 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

X−37 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

X+
62 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

X−62 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

X+
84 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1

X−84 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1

X+
13 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1

X−13 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1

X+
24 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

X−24 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

X+
57 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1

X−57 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1

X+
68 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0

X−68 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0

X+
21 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0

X−21 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0

X+
43 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0

X−43 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0

X++
76 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

X+−
76 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

X−+
76 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

X−−76 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0



,

PΛ =



p1 p2 p3 p4 p5 p6 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14

Λ+
56 0 0 1 1 1 0 0 0 1 0 0 1 0 1 0 0 0 0 1 1

Λ−56 0 0 1 1 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1 1

Λ+
78 0 0 1 1 1 0 0 0 0 1 0 1 0 0 1 0 1 0 1 0

Λ−78 0 0 1 1 0 1 0 0 0 1 0 1 0 0 1 0 1 0 1 0

Λ++
64 1 0 1 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1 1 1

Λ+−
64 1 0 0 1 0 0 0 0 0 1 1 0 0 0 1 1 1 1 1 1

Λ−+
64 0 1 1 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1 1 1

Λ−64 0 1 0 1 0 0 0 0 0 1 1 0 0 0 1 1 1 1 1 1

Λ++
17 1 0 1 0 0 0 1 0 1 0 0 0 1 1 0 0 1 1 1 1

Λ+−
17 1 0 0 1 0 0 1 0 1 0 0 0 1 1 0 0 1 1 1 1

Λ−+
17 0 1 1 0 0 0 1 0 1 0 0 0 1 1 0 0 1 1 1 1

Λ−−17 0 1 0 1 0 0 1 0 1 0 0 0 1 1 0 0 1 1 1 1

Λ++
23 0 0 1 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1

Λ+−
23 0 0 1 0 0 1 0 1 0 0 0 0 1 1 1 1 1 1 1 1

Λ−+
23 0 0 0 1 1 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1

Λ−−23 0 0 0 1 0 1 0 1 0 0 0 0 1 1 1 1 1 1 1 1



. (B.11)

The brane brick model for phase C and its individual bricks are shown in figures 46

and 47.
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Figure 46. Brane brick model for phase C of Q1,1,1/Z2.

brick 1 brick 2 brick 3 brick 4

brick 5 brick 6 brick 7 brick 8

Figure 47. Brane bricks for phase C of Q1,1,1/Z2.
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The chiral and Fermi field pieces of the phase boundary matrix are

HX =



η13 η14 η23 η24 η15 η16 η25 η26 η35 η36 η45 η46

X+
15 1 1 0 0 1 1 0 0 0 0 0 0

X−15 0 0 1 1 0 0 1 1 0 0 0 0

X+
37 1 1 0 0 1 1 0 0 0 0 0 0

X−37 0 0 1 1 0 0 1 1 0 0 0 0

X+
62 1 1 0 0 1 1 0 0 0 0 0 0

X−62 0 0 1 1 0 0 1 1 0 0 0 0

X+
84 1 1 0 0 1 1 0 0 0 0 0 0

X−84 0 0 1 1 0 0 1 1 0 0 0 0

X+
13 −1 0 −1 0 0 0 0 0 1 1 0 0

X−13 0 −1 0 −1 0 0 0 0 0 0 1 1

X+
24 −1 0 −1 0 0 0 0 0 1 1 0 0

X−24 0 −1 0 −1 0 0 0 0 0 0 1 1

X+
57 −1 0 −1 0 0 0 0 0 1 1 0 0

X−57 0 −1 0 −1 0 0 0 0 0 0 1 1

X+
68 −1 0 −1 0 0 0 0 0 1 1 0 0

X−68 0 −1 0 −1 0 0 0 0 0 0 1 1

X+
21 0 0 0 0 −1 0 −1 0 −1 0 −1 0

X−21 0 0 0 0 0 −1 0 −1 0 −1 0 −1

X+
43 0 0 0 0 −1 0 −1 0 −1 0 −1 0

X−43 0 0 0 0 0 −1 0 −1 0 −1 0 −1

X++
76 −1 0 −1 0 −1 0 −1 0 0 1 −1 0

X+−
76 −1 0 −1 0 0 −1 0 −1 1 0 0 −1

X−+
76 0 −1 0 −1 −1 0 −1 0 −1 0 0 1

X−−76 0 −1 0 −1 0 −1 0 −1 0 −1 1 0



, (B.12)

HΛ =



η13 η14 η23 η24 η15 η16 η25 η26 η35 η36 η45 η46

Λ+
56 −1 −1 −1 −1 −1 0 −1 0 0 1 0 1

Λ−56 −1 −1 −1 −1 0 −1 0 −1 1 0 1 0

Λ+
78 −1 −1 −1 −1 −1 0 −1 0 0 1 0 1

Λ−78 −1 −1 −1 −1 0 −1 0 −1 1 0 1 0

Λ++
64 0 1 −1 0 1 1 0 0 1 1 0 0

Λ+−
64 1 0 0 −1 1 1 0 0 0 0 1 1

Λ−+
64 −1 0 0 1 0 0 1 1 1 1 0 0

Λ−−64 0 −1 1 0 0 0 1 1 0 0 1 1

Λ++
17 0 1 −1 0 1 1 0 0 1 1 0 0

Λ+−
17 1 0 0 −1 1 1 0 0 0 0 1 1

Λ−+
17 −1 0 0 1 0 0 1 1 1 1 0 0

Λ−−17 0 −1 1 0 0 0 1 1 0 0 1 1

Λ++
23 −1 0 −1 0 −1 0 −1 0 0 1 −1 0

Λ+−
23 −1 0 −1 0 0 −1 0 −1 1 0 0 −1

Λ−+
23 0 −1 0 −1 −1 0 −1 0 −1 0 0 1

Λ−−23 0 −1 0 −1 0 −1 0 −1 0 −1 1 0



. (B.13)
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Phase D. The periodic quiver for phase D is given in figure 48. It has 8 gauge groups,

24 chiral fields and 16 Fermi fields.
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Figure 48. Periodic quiver for phase D of Q1,1,1/Z2.

The J- and E-terms for this theory are

J E

Λ+
75 : X−51 ·X−13 ·X+

37 −X+
51 ·X−13 ·X−37 X++

76 ·X−65 −X+−
76 ·X+

65

Λ−75 : X+
51 ·X+

13 ·X−37 −X−51 ·X+
13 ·X+

37 X−+
76 ·X−65 −X−−76 ·X+

65

Λ+
78 : X+

84 ·X−43 ·X−37 −X−84 ·X−43 ·X+
37 X++

76 ·X−68 −X−+
76 ·X+

68

Λ−78 : X−84 ·X+
43 ·X+

37 −X+
84 ·X+

43 ·X−37 X+−
76 ·X−68 −X−−76 ·X+

68

Λ++
64 : X+

43 ·X−37 ·X−−76 −X−43 ·X−37 ·X−+
76 X+

62 ·X+
24 −X+

68 ·X+
84

Λ−−64 : X+
43 ·X+

37 ·X+−
76 −X−43 ·X+

37 ·X++
76 X−62 ·X−24 −X−68 ·X−84

Λ+−
64 : X−43 ·X−37 ·X++

76 −X+
43 ·X−37 ·X+−

76 X+
62 ·X−24 −X−68 ·X+

84

Λ−+
64 : X−43 ·X+

37 ·X−+
76 −X+

43 ·X+
37 ·X−−76 X−62 ·X+

24 −X+
68 ·X−84

Λ++
23 : X+

37 ·X−−76 ·X−62 −X−37 ·X−−76 ·X+
62 X+

24 ·X+
43 −X+

21 ·X+
13

Λ−−23 : X+
37 ·X++

76 ·X−62 −X−37 ·X++
76 ·X+

62 X−24 ·X−43 −X−21 ·X−13

Λ+−
23 : X−37 ·X−+

76 ·X+
62 −X+

37 ·X−+
76 ·X−62 X+

24 ·X−43 −X−21 ·X+
13

Λ−+
23 : X−37 ·X+−

76 ·X+
62 −X+

37 ·X+−
76 ·X−62 X−24 ·X+

43 −X+
21 ·X−13

Λ++
61 : X−13 ·X−37 ·X+−

76 −X+
13 ·X−37 ·X−−76 X+

62 ·X+
21 −X+

65 ·X+
51

Λ−−61 : X−13 ·X+
37 ·X++

76 −X+
13 ·X+

37 ·X−+
76 X−62 ·X−21 −X−65 ·X−51

Λ+−
61 : X+

13 ·X−37 ·X−+
76 −X−13 ·X−37 ·X++

76 X+
62 ·X−21 −X−65 ·X+

51

Λ−+
61 : X+

13 ·X+
37 ·X−−76 −X−13 ·X+

37 ·X+−
76 X−62 ·X+

21 −X+
65 ·X−51

(B.14)
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The brick matchings are given by

P =



p1 p2 p3 p4 p5 p6 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15

X+
37 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X−37 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X+
51 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 0 0

X−51 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 1 0 0

X+
62 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

X−62 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

X+
84 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1

X−84 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1

X+
13 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0

X−13 0 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0

X+
24 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1 1

X−24 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1 1

X+
68 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0

X−68 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0

X+
21 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1

X−21 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1

X+
43 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0

X−43 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0

X+
65 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1

X−65 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1

X++
76 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

X+−
76 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

X−+
76 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

X−−76 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0



, (B.15)

PΛ =



p1 p2 p3 p4 p5 p6 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15

Λ+
75 0 0 1 0 1 1 0 0 1 0 0 0 1 0 0 1 1 0 0 1 1

Λ−75 0 0 0 1 1 1 0 0 1 0 0 0 1 0 0 1 1 0 0 1 1

Λ+
78 0 0 1 1 1 0 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0

Λ−78 0 0 1 1 0 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0

Λ++
64 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1

Λ+−
64 1 0 0 1 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1

Λ−+
64 0 1 1 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1

Λ−−64 0 1 0 1 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1

Λ++
23 0 0 1 0 1 0 0 1 0 1 1 1 1 0 0 0 0 1 1 1 1

Λ+−
23 0 0 1 0 0 1 0 1 0 1 1 1 1 0 0 0 0 1 1 1 1

Λ−+
23 0 0 0 1 1 0 0 1 0 1 1 1 1 0 0 0 0 1 1 1 1

Λ−−23 0 0 0 1 0 1 0 1 0 1 1 1 1 0 0 0 0 1 1 1 1

Λ++
61 1 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

Λ+−
61 1 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

Λ−+
61 0 1 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

Λ−−61 0 1 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1



. (B.16)

Figures 49 and 50 show the brane brick model and individual bricks for this theory.

– 52 –



J
H
E
P
0
5
(
2
0
1
6
)
0
2
0

Figure 49. Brane brick model for phase D of Q1,1,1/Z2.

brick 1 brick 2 brick 3 brick 4

brick 5 brick 6 brick 7 brick 8

Figure 50. Brane bricks for phase D of Q1,1,1/Z2.
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The chiral and Fermi field pieces of the phase boundary matrix are

HX =



η13 η14 η23 η24 η15 η16 η25 η26 η35 η36 η45 η46

X+
37 1 1 0 0 1 1 0 0 0 0 0 0

X−37 0 0 1 1 0 0 1 1 0 0 0 0

X+
51 1 1 0 0 1 1 0 0 0 0 0 0

X−51 0 0 1 1 0 0 1 1 0 0 0 0

X+
62 1 1 0 0 1 1 0 0 0 0 0 0

X−62 0 0 1 1 0 0 1 1 0 0 0 0

X+
84 1 1 0 0 1 1 0 0 0 0 0 0

X−84 0 0 1 1 0 0 1 1 0 0 0 0

X+
13 −1 0 −1 0 0 0 0 0 1 1 0 0

X−13 0 −1 0 −1 0 0 0 0 0 0 1 1

X+
24 −1 0 −1 0 0 0 0 0 1 1 0 0

X−24 0 −1 0 −1 0 0 0 0 0 0 1 1

X+
68 −1 0 −1 0 0 0 0 0 1 1 0 0

X−68 0 −1 0 −1 0 0 0 0 0 0 1 1

X+
21 0 0 0 0 −1 0 −1 0 −1 0 −1 0

X−21 0 0 0 0 0 −1 0 −1 0 −1 0 −1

X+
43 0 0 0 0 −1 0 −1 0 −1 0 −1 0

X−43 0 0 0 0 0 −1 0 −1 0 −1 0 −1

X+
65 0 0 0 0 −1 0 −1 0 −1 0 −1 0

X−65 0 0 0 0 0 −1 0 −1 0 −1 0 −1

X++
76 −1 0 −1 0 −1 0 −1 0 0 1 −1 0

X+−
76 −1 0 −1 0 0 −1 0 −1 1 0 0 −1

X−+
76 0 −1 0 −1 −1 0 −1 0 −1 0 0 1

X−−76 0 −1 0 −1 0 −1 0 −1 0 −1 1 0



, (B.17)

HΛ =



η13 η14 η23 η24 η15 η16 η25 η26 η35 η36 η45 η46

Λ+
75 −1 0 −1 0 −1 −1 −1 −1 0 0 −1 −1

Λ−75 0 −1 0 −1 −1 −1 −1 −1 −1 −1 0 0

Λ+
78 −1 −1 −1 −1 −1 0 −1 0 0 1 0 1

Λ−78 −1 −1 −1 −1 0 −1 0 −1 1 0 1 0

Λ++
64 0 1 −1 0 1 1 0 0 1 1 0 0

Λ+−
64 1 0 0 −1 1 1 0 0 0 0 1 1

Λ−+
64 −1 0 0 1 0 0 1 1 1 1 0 0

Λ−−64 0 −1 1 0 0 0 1 1 0 0 1 1

Λ++
23 −1 0 −1 0 −1 0 −1 0 0 1 −1 0

Λ+−
23 −1 0 −1 0 0 −1 0 −1 1 0 0 −1

Λ−+
23 0 −1 0 −1 −1 0 −1 0 −1 0 0 1

Λ−−23 0 −1 0 −1 0 −1 0 −1 0 −1 1 0

Λ++
61 1 1 0 0 0 1 −1 0 −1 0 −1 0

Λ+−
61 1 1 0 0 1 0 0 −1 0 −1 0 −1

Λ−+
61 0 0 1 1 −1 0 0 1 −1 0 −1 0

Λ−−61 0 0 1 1 0 −1 1 0 0 −1 0 −1



. (B.18)
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