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1 Introduction

D-branes probing singular Calabi-Yau (CY) manifolds provide a fruitful framework for

engineering quantum field theories in various dimensions. These setups often give rise to

new perspectives and powerful tools for understanding the dynamics of the corresponding

gauge theories.

A general program for studying the 2d (0, 2) gauge theories that live on the world-

volume of D1-branes probing singular toric CY 4-folds was recently initiated.1 In [7],

1For earlier attempts at this question see [1, 2]. Alternative approaches for realizing 2d (0, 2) theories in

terms of branes can be found in [3–6].
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a systematic procedure for obtaining the 2d gauge theories on D1-branes probing generic

toric CY 4-folds was developed and the general properties of the theories arising from these

setups were established. A new class of Type IIA brane configurations, denoted brane brick

models, was introduced in [8]. Two of their most remarkable features are that they fully en-

code the gauge theories on the D1-branes and streamline the connection to the probed CY

4-folds. Brane brick models are related to D1-branes at singularities by T-duality. In [9],

a new order-3 IR equivalence among 2d (0, 2) theories, called triality, was discovered. The

brane brick model realization of triality was investigated in [10]. In [11], following [12, 13],

mirror symmetry was used to refine our understanding of the correspondence between D1-

brane at singularities, brane brick models and 2d gauge theories. That work also explained

how triality is realized in terms of geometric transitions in the mirror geometry.

In this paper we will introduce orbifold reduction, a new method for generating 2d

(0, 2) gauge theories associated to D1-branes probing singular toric Calabi-Yau 4-folds

starting from 4d N = 1 gauge theories on D3-branes probing toric Calabi-Yau 3-folds. This

procedure generalizes dimensional reduction and orbifolding. Orbifold reduction allows us

to generate the gauge theories for D1-branes probing complicated CY 4-folds with little

effort. This feature makes it a powerful new addition to the toolkit for studying 2d (0, 2)

theories in terms of D-branes and we consequently expect it will find several interesting

applications.

This paper is organized as follows. In section 2, we review 2d (0, 2) theories, D1-

branes over toric CY 4-folds and brane brick models. In section 3, we introduce orbifold

reduction. Section 4 contains explicit examples illustrating the construction. In order to

demonstrate the usefulness of orbifold reduction we then present three possible applications.

In 5, we show how it generates 2d triality duals starting from 4d Seiberg dual theories. A

distinctive feature of this approach is that both the 2d theories and their 4d parents are

realized in terms of D-branes at singularities. In 6, we show how the combinatorics of

orbifold reduction leads to non-trivial triality duals. Finally, in section 7, we use orbifold

reduction to construct an explicit example of a theory admitting a 2d (0, 2) generalization

of the Klebanov-Witten mass deformation. We conclude in section 8. Additional examples

are presented in appendix A.

2 2d (0,2) theories, toric CY4’s and brane brick models

The study of the 2d (0, 2) gauge theories that arise on the worldvolume of D1-branes

probing toric CY 4-folds was developed in [7, 8, 10, 11], to which we refer the reader for

details. The probed CY 4-fold arises as the classical mesonic moduli space of the gauge

theory on the D1-branes.

Brane brick models are Type IIA brane configurations that are related to D1-branes

at toric singularities by T-duality. They were introduced in [7, 8] and they considerably

simplify the connection between gauge theory and the probed CY 4-fold.

A brane brick model consists of D4-branes suspended from an NS5-brane as summa-

rized in table 1. The (01) directions, which are common to all the branes, support the

2d (0, 2) gauge theory. The NS5-brane also wraps a holomorphic surface Σ embedded in
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0 1 2 3 4 5 6 7 8 9

D4 × × × · × · × · · ·
NS5 × × ———– Σ ———— · ·

Table 1. Brane brick models are Type IIA configurations with D4-branes suspended from an

NS5-brane that wraps a holomorphic surface Σ.

Brane Brick Model Gauge Theory

Brick Gauge group

Oriented face between bricks Chiral field in the bifundamental representation

i and j of nodes i and j (adjoint for i = j)

Unoriented square face between Fermi field in the bifundamental representation

bricks i and j of nodes i and j (adjoint for i = j)

Edge Plaquette encoding a monomial in a

J- or E-term

Table 2. Dictionary between brane brick models and 2d (0, 2) gauge theories.

(234567). The coordinates (23), (45) and (67) form three complex variables x, y and z.

The arguments of these variables are identified with (246), which hence form a T 3. The

surface Σ is the zero locus of the Newton polynomial associated to the toric diagram of the

CY4, P (x, y, z) = 0. Stacks of D4-branes extend along (246) and are suspended from the

NS5-brane.

It is convenient to represent a brane brick model by its “skeleton” on T 3. A brane brick

model fully encodes a 2d (0, 2) gauge theory following the dictionary in table 2. Bricks

correspond to U(N) gauge groups.2 There are two types of faces: oriented and unoriented

faces correspond to chiral and Fermi fields, respectively.3 We will identify chiral and

Fermi faces by coloring them grey and red, respectively. Every edge in the brane brick

model is attached to a single face corresponding to a Fermi field and a collection of faces

corresponding to chiral fields. The chiral faces attached to an edge form a holomorphic

monomial product that corresponds to either a J- or E-term that is associated to the Fermi

field attached to the same edge.4 Fermi faces are always 4-sided. This follows from the

special structure of J- and E-terms in toric theories, which are always of the form

Jji = J+
ji − J−

ji , Eij = E+
ij − E−

ij , (2.1)

with J±
ji and E±

ij holomorphic monomials in chiral fields [7].

Brane brick models are in one-to-one correspondence with periodic quivers on T 3 [2,

7, 8]. The two types of objects are related by graph dualization as shown in figure 1.

2It is possible to have different ranks by introducing fractional D1-branes in the T-dual configuration of

branes at a CY4 singularity.
3We refer the reader to [8, 11] for discussions on how to systematically orient faces.
4It is possible to have non-generic gauge theory phases that correspond to brane brick models in which

two Fermi faces share a common edge. In such cases, the J- and E-terms can be determined using alternative

methods, such as partial resolution or triality [7, 8, 10].
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Brane Brick Periodic Quiver

Figure 1. A truncated octahedron as the brane brick for the brane brick model corresponding to

C4 and the corresponding periodic quiver on T 3. In brane brick models, chiral and Fermi fields

are represented by grey oriented faces and red unoriented square faces, respectively. In periodic

quivers, chiral and Fermi fields correspond to arrows and unoriented edges, respectively.

Then, periodic quivers also uniquely define a 2d (0, 2) gauge theory. In particular, J-

and E-terms correspond to minimal plaquettes. A plaquette is a gauge invariant closed

loop in the quiver consisting of an oriented path of chiral fields and a single Fermi field.

Most of our discussion in this paper will be phrased in terms of periodic quivers. This

choice is motivated by the relative simplicity of the resulting figures. Constructing the

corresponding brane brick models is straightforward.

3 Orbifold reduction

In this section we introduce orbifold reduction. It is a natural generalization of dimensional

reduction and orbifolding, so we review them first.

3.1 Dimensional reduction

Let us start with the dimensional reduction of general 4d N = 1 theories down to 2d (2, 2)

theories. Under dimensional reduction, the 4d vector Vi and chiral Xij multiplets become

2d (2, 2) vector and chiral multiplets, respectively. In terms of 2d (0, 2) multiplets, we have:

• 4d N = 1 vector Vi → 2d (0, 2) vector Vi + 2d (0, 2) adjoint chiral Φii

• 4d N = 1 chiral Xij → 2d (0, 2) chiral Xij + 2d (0, 2) Fermi Λij

The J- and E-terms of the 2d theory are

Jji =
∂W

∂Xij
, Eij = ΦiiXij −XijΦjj , (3.1)

where W is the superpotential of the 4d theory.
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Dimensional reduction of toric theories. Let us now focus on the class of 4d N = 1

theories that arise on D3-branes probing toric CY3 singularities. Such theories are fully

encoded by brane tilings, which are bipartite graphs on T 2 (see [14, 15] for details). GLSM

fields in the toric description of the CY3, namely points in its toric diagram, admit a

combinatorial implementation as perfect matchings of the brane tiling. A perfect matching

pα is a collection of edges in the tiling such that every node is the endpoint of exactly

one edge in pα. Given the map between brane tilings and 4d gauge theories, we can

regard perfect matchings as collections of chiral fields. In general, more than one perfect

matching is associated to a given point in the toric diagram. This will become important

later when we discuss orbifold reduction. For details on how to determine perfect matchings

and connect them to toric diagrams we refer the reader to [14] (see also [16] for a more

modern perspective).

Brane tilings are in one-to-one correspondence with periodic quivers on T 2 via graph

dualization. These periodic quivers are equivalent to brane tilings, so they fully specify

the corresponding gauge theories. In particular, every plaquette in the periodic quiver

corresponds to a term in the superpotential.

The dimensional reduction of a 4d N = 1 theory associated to a toric CY3 gives rise

to a 2d (2, 2) theory corresponding to the toric CY4 = CY3 × C. A systematic lifting

algorithm for constructing the periodic quiver on T 3 associated to CY3 × C starting from

the periodic quiver on T 2 for CY3 was introduced in [7]. Let us refer to the new periodic

direction of T 3 as the vertical direction. The lift is achieved by providing chiral and Fermi

fields with vertical shifts. The vertical shifts for chiral fields are measured between the

tail and the head of arrows. For Fermi fields, we use the same prescription, with the

orientation dictated by the corresponding 4d chiral field. The procedure has a beautiful

combinatorial implementation in terms of perfect matchings of the original brane tiling.

For any perfect matching p0, the periodic quiver for the dimensionally reduced theory is

achieved by introducing the following vertical shifts for the different types of matter fields:

Φii → 1 , Xij →
−1 if χij ∈ p0

0 if χij /∈ p0
, Λij →

0 if χij ∈ p0
1 if χij /∈ p0

, (3.2)

where 1 is the periodicity of the vertical direction. As it is standard in the study of brane

tilings [15], let us introduce 〈χij , p0〉, which is defined to be equal to 1 if χij ∈ p0 and 0 if

χij /∈ p0. The vertical shifts can then be compactly written as

Φii → 1 , Xij → −〈χij , p0〉 , Λij → 〈χij , p0〉 − 1 . (3.3)

Figure 2 illustrates this procedure with the dimensional reduction of phase 1 of dP3 [15, 17].

Let us explain how to interpret this kind of figure. In order to avoid clutter, throughout this

paper we will represent periodic quivers in terms of three figures. Each of them contains

different types of fields between layers: chirals coming from 4d vector multiplets in green,

chirals coming from 4d chirals in blue and Fermis coming from 4d chirals in magenta. The

combination of the three figures should be regarded as a single periodic quiver. In addition,

for clarity, we will frequently present a region of the quiver that is larger than a unit cell,

which is easy to determine from the node labels.
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Figure 2. Dimensional reduction of phase 1 of dP3 using the perfect matching p0 =

{X45, X13, X43}.

dP3 dP3 ⇥ C

Figure 3. The toric diagrams for dP3 and dP3 × C.

Any perfect matching can be used to perform the dimensional reduction and the final

result is independent of this choice. The 2d toric diagram of the CY3 becomes the 3d

toric diagram of the CY4 = CY3 × C by adding an extra point that represents the C
factor, as shown in figure 3. This additional point can be regarded as arising from p0. It

can be moved to any position on a plane parallel to the 2d toric diagram by an SL(3,Z)

transformation, which is another indication of the freedom in choosing p0.

If we dimensionally reduce two 4d theories connected by Seiberg duality, we obtain a

pair of 2d (2, 2) theories related by the duality of [18].

While we are not going to use it in this paper, it is worth mentioning that dimensional

reduction also has a beautiful implementation as a lift of brane tilings into brane brick

models [8].

3.2 Orbifolding

In terms of brane brick models and periodic quivers, orbifolds are constructed by enlarging

the unit cell [7, 8]. The details of the geometric action of the orbifold group are encoded

in the periodic identifications on T 3.
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k

k = 2

Figure 4. The toric diagrams for certain orbifolds of the form (dP3 × C)/Zk, with k controlling

the height of the toric diagram.

The lifting algorithm of the previous section can be extended to generate the gauge

theories for certain (CY3 × C)/Zk orbifolds.5 The process is very simple:

1. Stack k copies of the gauge nodes in the T 2 periodic quiver along the vertical direction.

We set the distance between consecutive layers equal to 1.

2. Choose a perfect matching p0.

3. For each of the k layers, introduce matter fields with vertical shifts given by (3.3).

The effect on the toric diagram is to expand the point associated to p0 into a line

of length k, as shown in figure 4. Once again, any perfect matching can be used in this

construction. However, unlike in dimensional reduction, perfect matchings associated to

different points in the toric diagram give rise to non-SL(3, Z) equivalent geometries. In

other words, they correspond to different actions of the orbifold group.

3.3 Orbifold reduction

Orbifold reduction is a simple generalization of the orbifolding procedure discussed in the

previous section and can be summarized as follows:

1. Stack k copies of the gauge nodes in the T 2 periodic quiver along the vertical direction.

The distance between consecutive layers is set to 1.

2. Choose a perfect matching p0 and a k-dimensional vector of signs s = (s1, . . . , sk),

with si = ±.

3. Between layers i and i+ 1, we introduce matter fields according to (3.3) if si = + or

to its vertical reflection if si = −. Equivalently, if si = −, the vertical shifts of fields

are given by minus (3.3), measured with respect to the i+ 1 layer.

5Not all possible orbifolds of CY3 × C can be generated in this way. This is rather clear, since we are

not considering all possible ways of enlarging the unit cell.
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k� = 1

k+ = 2

Figure 5. Toric diagram for the orbifold reduction of dP3 with k+ = 2 and k− = 1.

Let us denote k+ and k− the number of plus and minus signs in s, respectively. Orbifold

reduction generates a gauge theory that corresponds to a CY4 whose toric diagram is ob-

tained by expanding the point associated to p0 into a line of length k, with k+ points above

the original 2d toric diagram and k− points below it. This generalizes the transformations

of toric diagrams discussed in the two previous sections. Figure 5 shows an example.

Clearly s and −s give rise to the same theory, since their periodic quivers are simply re-

lated by a reflection along the vertical direction. Furthermore, s = (+, . . . ,+) corresponds

to a (CY3 × C)/Zk orbifold. In particular s = (+) corresponds to dimensional reduction.

We previously saw that any perfect matching can be used as p0 for both dimensional

reduction and orbifolding. This is also case for orbifold reduction. In particular, it is easy

to verify that any combination of s and p0 leads to a theory that is free of non-abelian

anomalies. To do so, it is sufficient to check that anomalies do not arise at layers between

(+,−) signs. We already know that layers between equal signs are automatically free of

anomalies, as in dimensional reduction and orbifolding.

Denoting G(2d), N
(2d)
χ and N

(2d)
F the numbers of gauge groups, chirals and Fermis in

the orbifold reduced theory and G(4d) and N
(4d)
χ the numbers of gauge groups and chirals

in the 4d parent, we have

G(2d) = k G(4d) ,

N
(2d)
χ = kN

(4d)
χ ,

N
(2d)
F = k (G(4d) +N

(4d)
χ ) .

(3.4)

A convenient notation for specifying a 2d theory T2 obtained by orbifold reduction is

T2 = T4,s(p0) , (3.5)

which emphasizes the necessary data for performing orbifold reduction: a toric 4d parent

theory T4, a sign vector s and a perfect matching p0. In this paper, we will not consider

pairs of theories that differ only by the choice of p0. For simplicity, we will thus omit p0
from the label of T2.
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2

1 22

2

Figure 6. Toric diagram and periodic quiver for the conifold C.

Figure 7. Periodic quiver for C(+,+).

4 Examples

Below we illustrate orbifold reduction with two simple examples. They are the two inequiv-

alent k = 2 models obtained from the conifold: C(+,+) and C(+,−). Additional examples are

presented in the appendix.

4.1 C(+,+)

Figure 6 shows the toric diagram and periodic quiver for the conifold C. Each of the four

points in the toric diagram corresponds to a single perfect matching. The four points are

equivalent, so any choice of p0 to be used in orbifold reduction generates the same theory.

Performing orbifold reduction with s = (+,+), we obtain a 2d theory that we call

C(+,+). Its periodic quiver is shown in figure 7.

In all the examples we consider in this paper, it is straightforward to identify the p0
that was used from the periodic quiver, as we now explain. The quiver on any of the layers

is almost identical to the periodic quiver for the 4d parent. The only difference is given by

the Fermi fields (red edges) which, according to (3.3), correspond precisely to the chiral

fields contained in p0. Figure 2 gives a good idea of how this works.
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Figure 8. Toric diagram for C(+,+).

From the periodic quiver, we read the following J- and E- terms:

J E

Λ12 : X21 · Y12 · Y21 − Y21 · Y12 ·X21 = 0 P13 ·X32 −X14 · P42 = 0

Λ14 : Y43 ·X32 ·X21 −X43 ·X32 · Y21 = 0 P13 · Y34 − Y12 · P24 = 0

Λ32 : Y21 ·X14 ·X43 −X21 ·X14 · Y43 = 0 P31 · Y12 − Y34 · P42 = 0

Λ34 : X43 · Y34 · Y43 − Y43 · Y34 ·X43 = 0 P31 ·X14 −X32 · P24 = 0

Λ1
23 : Y34 · Y43 ·X32 −X32 · Y21 · Y12 = 0 P24 ·X43 −X21 · P13 = 0

Λ2
23 : X32 ·X21 · Y12 − Y34 ·X43 ·X32 = 0 P24 · Y43 − Y21 · P13 = 0

Λ1
41 : Y12 · Y21 ·X14 −X14 · Y43 · Y34 = 0 P42 ·X21 −X43 · P31 = 0

Λ2
41 : X14 ·X43 · Y34 − Y12 ·X21 ·X14 = 0 P42 · Y21 − Y43 · P31 = 0

(4.1)

Computing the classical mesonic moduli space for this theory, we obtain the toric

diagram that is expected from the general discussion in section 3.3, which is shown in

figure 8.

4.2 C(+,−)

Let us start again from the conifold and perform orbifold reduction with s = (+,−). We

refer to this theory as C(+,−). Figure 9 shows its periodic quiver.

Te corresponding J- and E- terms are:

J E

Λ12 : X21 · Y12 · Y21 − Y21 · Y12 ·X21 = 0 V14 ·Q42 −X14 · P42 = 0

Λ34 : X43 · Y34 · Y43 − Y43 · Y34 ·X43 = 0 P31 ·X14 −Q31 · V14 = 0

Λ1
41 : Y12 · Y21 ·X14 −X14 · Y43 · Y34 = 0 P42 ·X21 −X43 · P31 = 0

Λ2
41 : X14 ·X43 · Y34 − Y12 ·X21 ·X14 = 0 P42 · Y21 − Y43 · P31 = 0

Λ3
41 : Y12 · Y21 · V14 − V14 · Y43 · Y34 = 0 Q42 ·X21 −X43 ·Q31 = 0

Λ4
41 : V14 ·X43 · Y34 − Y12 ·X21 · V14 = 0 Q42 · Y21 − Y43 ·Q31 = 0

Λ1
32 : Y21 ·X14 ·X43 −X21 ·X14 · Y43 = 0 P31 · Y12 − Y34 · P42 = 0

Λ2
32 : Y21 · V14 ·X43 −X21 · V14 · Y43 = 0 Q31 · Y12 − Y34 ·Q42 = 0

(4.2)
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Figure 9. Periodic quiver for C(+,−).

Figure 10. Toric diagram for C(+,−).

The classical mesonic moduli space for this theory corresponds to the toric diagram

shown in figure 8, as expected.

5 Triality from Seiberg duality

Orbifold reduction of Seiberg dual toric theories generically leads to different 2d (0, 2)

theories associated to the same CY 4-fold. Following [10, 11], we expect such theories to

be related by triality (namely, either a single triality transformation or a sequence of them).

This approach to triality is in the same general spirit of other constructions that derive it

from Seiberg duality, such as [19].

Let us illustrate this idea with an explicit example. Consider the complex cone over

F0 or, for brevity, just F0 from now on. Its toric diagram is shown in figure 11.

There are two toric phases for F0, which are related by Seiberg duality. They have

been extensively studied in the literature (see e.g. [15, 17, 20, 21]). Their periodic quivers

are shown in figure 12.
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Figure 11. Toric diagram for F0.

32

41

32

41

F II
0F I

0

Figure 12. Periodic quivers for phases I and II of F0.

F0 Q1,1,1/Z2

Figure 13. Lift of the toric diagram from F0 to Q1,1,1/Z2 by an s = (+,−) orbifold reduction

acting on the central point.

Starting from the two theories, we will perform orbifold reductions that lift the center

point in the toric diagram with s = (+,−). The toric diagram is then transformed into the

one for Q1,1,1/Z2, as shown in figure 13. This geometry has several toric phases connected

by triality, whose study was initiated in [10]. Some of these phases were analyzed using

mirror symmetry in [11].

5.1 F I
0 (+,−)

Let us first consider the s = (+,−) orbifold reduction of phase I of F0 using a p0 associated

to the central point of the toric diagram. We refer to the resulting theory as F I0 (+,−)

– 12 –
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Figure 14. Periodic quiver for F I
0 (+,−).

and present its periodic quiver in figure 14. As explained earlier, our choice of p0 can be

immediately identified from this figure.

The J- and E-terms are:

J E

Λ1
65 : Y58 · Y87 ·X76 −X58 · Y87 · Y76 = 0 Q62 · U25 − P62 ·X25 = 0

Λ1
72 : U25 · Y58 · Y87 −X87 · Y58 · V25 = 0 Q73 ·X32 −X76 ·Q62 = 0

Λ1
83 : X32 · U25 · Y58 −X58 · U25 · Y32 = 0 Q84 · Y43 − Y87 ·Q73 = 0

Λ1
54 : Y43 ·X32 · U25 −X43 ·X32 · V25 = 0 Q51 · Y14 − Y58 ·Q84 = 0

Λ2
65 : X58 ·X87 · Y76 − Y58 ·X87 ·X76 = 0 Q62 · V25 − P62 · Y25 = 0

Λ2
72 : V25 ·X58 ·X87 − U25 ·X58 · Y87 = 0 Q73 · Y32 − Y76 ·Q62 = 0

Λ2
83 : Y32 · V25 ·X58 −X32 · V25 · Y58 = 0 Q84 ·X43 −X87 ·Q73 = 0

Λ2
54 : X43 · Y32 · V25 − Y43 · Y32 · U25 = 0 Q51 ·X14 −X58 ·Q84 = 0

Λ1
21 : Y14 · Y43 ·X32 −X14 · Y43 · Y32 = 0 X25 · P51 − U25 ·Q51 = 0

Λ3
72 : X25 · Y58 · Y87 − Y25 · Y58 ·X87 = 0 P73 ·X32 −X76 · P62 = 0

Λ3
83 : X32 ·X25 · Y58 − Y32 ·X25 ·X58 = 0 P84 · Y43 − Y87 · P73 = 0

Λ3
54 : Y43 ·X32 ·X25 −X43 ·X32 · Y25 = 0 P51 · Y14 − Y58 · P84 = 0

Λ2
21 : X14 ·X43 · Y32 − Y14 ·X43 ·X32 = 0 Y25 · P51 − V25 ·Q51 = 0

Λ4
72 : Y25 ·X58 ·X87 −X25 ·X58 · Y87 = 0 P73 · Y32 − Y76 · P62 = 0

Λ4
83 : Y32 · Y25 ·X58 −X32 · Y25 · Y58 = 0 P84 ·X43 −X87 · P73 = 0

Λ4
54 : X43 · Y32 · Y25 − Y43 · Y32 ·X25 = 0 P51 ·X14 −X58 · P84 = 0

(5.1)

This theory corresponds to Q1,1,1/Z2. In fact, this is phase C in the classification

of [10]. The ease with which orbifold reduction generates a phase for such a complicated

geometry is truly remarkable.
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5.2 F II
0 (+,−)

Next, let us construct a second theory for Q1,1,1/Z2, by performing the orbifold reduction

of phase II of F0 with s = (+,−) and a p0 associated to the central point in the toric

diagram. We call this theory F II0 (+,−) and present its periodic quiver in figure 15.

The J- and E-terms are:

J E

Λ1
61 : X14 ·X46 − Y14 · Z46 = 0 X65 · P51 − P62 ·X21 = 0

Λ1
54 : X46 ·X65 − V46 · Y65 = 0 X58 · P84 − P51 ·X14 = 0

Λ1
86 : X65 ·X58 − Y67 · Y78 = 0 P84 ·X46 −Q84 ·R46 = 0

Λ2
61 : Y14 · Y46 −X14 · V46 = 0 Y65 · P51 − P62 · Y21 = 0

Λ2
54 : Y46 · Y65 − Z46 ·X65 = 0 Y58 · P84 − P51 · Y14 = 0

Λ2
86 : Y65 · Y58 −X67 ·X78 = 0 P84 · Y46 −Q84 · S46 = 0

Λ1
63 : Y34 · Z46 −X34 · Y46 = 0 X67 · P73 − P62 ·X23 = 0

Λ1
74 : Z46 ·X67 −X46 · Y67 = 0 Y78 · P84 − P73 · Y34 = 0

Λ3
86 : X67 · Y78 −X65 · Y58 = 0 P84 · Z46 −Q84 · T46 = 0

Λ2
63 : X34 · V46 − Y34 ·X46 = 0 Y67 · P73 − P62 · Y23 = 0

Λ2
74 : V46 · Y67 − Y46 ·X67 = 0 X78 · P84 − P73 ·X34 = 0

Λ4
86 : Y67 ·X78 − Y65 ·X58 = 0 P84 · V46 −Q84 · U46 = 0

Λ3
61 : X14 ·R46 − Y14 · T46 = 0 X65 ·Q51 −Q62 ·X21 = 0

Λ3
54 : R46 ·X65 − U46 · Y65 = 0 X58 ·Q84 −Q51 ·X14 = 0

Λ1
42 : X21 ·X14 − Y23 · Y34 = 0 R46 ·Q62 −X46 · P62 = 0

Λ4
61 : Y14 · S46 −X14 · U46 = 0 Y65 ·Q51 −Q62 · Y21 = 0

Λ4
54 : S46 · Y65 − T46 ·X65 = 0 Y58 ·Q84 −Q51 · Y14 = 0

Λ2
42 : Y21 · Y14 −X23 ·X34 = 0 S46 ·Q62 − Y46 · P62 = 0

Λ3
63 : Y34 · T46 −X34 · S46 = 0 X67 ·Q73 −Q62 ·X23 = 0

Λ3
74 : T46 ·X67 −R46 · Y67 = 0 Y78 ·Q84 −Q73 · Y34 = 0

Λ3
42 : X23 · Y34 −X21 · Y14 = 0 T46 ·Q62 − Z46 · P62 = 0

Λ4
63 : X34 · U46 − Y34 ·R46 = 0 Y67 ·Q73 −Q62 · Y23 = 0

Λ4
74 : U46 · Y67 − S46 ·X67 = 0 X78 ·Q84 −Q73 ·X34 = 0

Λ4
42 : Y23 ·X34 − Y21 ·X14 = 0 U46 ·Q62 − V46 · P62 = 0

(5.2)

This is a new theory that has not appeared in the existing partial survey of phases of

Q1,1,1/Z2 of [10]. It is possible to show that it is indeed related by triality to the other

phases. In particular, it can be obtained from F I0 (+,−) (phase C) by consecutive triality

transformations on nodes 1 and 4 and relabeling of nodes.6

The two theories considered in this section demonstrate one of the salient features

of orbifold reduction: the simplicity with which it generates 2d (0, 2) gauge theories for

relatively complicated CY 4-folds. They also show that, in general, not all toric phases of

a CY4 can be derived by orbifold reduction. In particular, only phases whose field contents

are related to 4d parents by (3.4) can be constructed this way.

6 Triality from combinatorics in multi-layered orbifold reduction

Things become very interesting when the number of layers k is increased. Whenever we

have a pair of orbifold reduced theories obtained by lifting the same point in the toric

6We are thankful to Azeem Hasan for his help establishing this fact and for his collaboration in a related

classification of Q1,1,1/Z2 phases.
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Figure 15. Periodic quiver for F II
0 (+,−).

Figure 16. Toric diagram for both the C(+,+,−,−) and C(+,−,+,−) theories.

diagram and whose sign vectors are related by permutations but not by an overall sign flip,

we expect them to be different gauge theories that correspond to the same CY4, and hence

to be related by triality. This phenomenon first arises for k = 4, for which s = (+,+,−,−)

and s = (+,−,+,−) produce different gauge theories.

Below we consider two explicit examples based on the conifold: C(+,+,−,−) and

C(+,−,+,−). We have explicitly verified that classical mesonic moduli spaces for both of

them correspond to the toric diagram shown in figure 16.
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6.1 C(+,+,−,−)

The periodic quiver for this theory is shown in figure 17. The J- and E-terms are:

J E

Λ12 : X21 · Y12 · Y21 − Y21 · Y12 ·X21 = 0 P13 ·X32 −X18 · P82 = 0

Λ1
81 : Y12 · Y21 ·X18 −X18 · Y87 · Y78 = 0 P82 ·X21 −X87 · P71 = 0

Λ72 : Y21 ·X18 ·X87 −X21 ·X18 · Y87 = 0 P71 · Y12 − Y78 · P82 = 0

Λ2
81 : X18 ·X87 · Y78 − Y12 ·X21 ·X18 = 0 P82 · Y21 − Y87 · P71 = 0

Λ34 : X43 · Y34 · Y43 − Y43 · Y34 ·X43 = 0 V36 ·Q64 −X32 · P24 = 0

Λ1
23 : Y34 · Y43 ·X32 −X32 · Y21 · Y12 = 0 P24 ·X43 −X21 · P13 = 0

Λ14 : Y43 ·X32 ·X21 −X43 ·X32 · Y21 = 0 P13 · Y34 − Y12 · P24 = 0

Λ2
23 : X32 ·X21 · Y12 − Y34 ·X43 ·X32 = 0 P24 · Y43 − Y21 · P13 = 0

Λ56 : X65 · Y56 · Y65 − Y65 · Y56 ·X65 = 0 Q53 · V36 − V58 ·Q86 = 0

Λ1
63 : Y34 · Y43 · V36 − V36 · Y65 · Y56 = 0 Q64 ·X43 −X65 ·Q53 = 0

Λ54 : Y43 · V36 ·X65 −X43 · V36 · Y65 = 0 Q53 · Y34 − Y56 ·Q64 = 0

Λ2
63 : V36 ·X65 · Y56 − Y34 ·X43 · V36 = 0 Q64 · Y43 − Y65 ·Q53 = 0

Λ78 : X87 · Y78 · Y87 − Y87 · Y78 ·X87 = 0 P71 ·X18 −Q75 · V58 = 0

Λ1
85 : Y56 · Y65 · V58 − V58 · Y87 · Y78 = 0 Q86 ·X65 −X87 ·Q75 = 0

Λ76 : Y65 · V58 ·X87 −X65 · V58 · Y87 = 0 Q75 · Y56 − Y78 ·Q86 = 0

Λ2
85 : V58 ·X87 · Y78 − Y56 ·X65 · V58 = 0 Q86 · Y65 − Y87 ·Q75 = 0

(6.1)

6.2 C(+,−,+,−)

The periodic quiver for this theory is shown in figure 18.

The J- and E-terms are:

J E

Λ12 : X21 · Y12 · Y21 − Y21 · Y12 ·X21 = 0 X18 · P82 − V14 ·Q42 = 0

Λ1
81 : Y12 · Y21 ·X18 −X18 · Y87 · Y78 = 0 P82 ·X21 −X87 · P71 = 0

Λ72 : Y21 ·X18 ·X87 −X21 ·X18 · Y87 = 0 P71 · Y12 − Y78 · P82 = 0

Λ2
81 : X18 ·X87 · Y78 − Y12 ·X21 ·X18 = 0 P82 · Y21 − Y87 · P71 = 0

Λ34 : X43 · Y34 · Y43 − Y43 · Y34 ·X43 = 0 Q31 · V14 − P35 ·X54 = 0

Λ1
41 : Y12 · Y21 · V14 − V14 · Y43 · Y34 = 0 Q42 ·X21 −X43 ·Q31 = 0

Λ32 : Y21 · V14 ·X43 −X21 · V14 · Y43 = 0 Q31 · Y12 − Y34 ·Q42 = 0

Λ2
41 : V14 ·X43 · Y34 − Y12 ·X21 · V14 = 0 Q42 · Y21 − Y43 ·Q31 = 0

Λ56 : X65 · Y56 · Y65 − Y65 · Y56 ·X65 = 0 V58 ·Q86 −X54 · P46 = 0

Λ1
45 : Y56 · Y65 ·X54 −X54 · Y43 · Y34 = 0 P46 ·X65 −X43 · P35 = 0

Λ36 : Y65 ·X54 ·X43 −X65 ·X54 · Y43 = 0 P35 · Y56 − Y34 · P46 = 0

Λ2
45 : X54 ·X43 · Y34 − Y56 ·X65 ·X54 = 0 P46 · Y65 − Y43 · P35 = 0

Λ78 : X87 · Y78 · Y87 − Y87 · Y78 ·X87 = 0 Q75 · V58 − P71 ·X18 = 0

Λ1
85 : Y56 · Y65 · V58 − V58 · Y87 · Y78 = 0 Q86 ·X65 −X87 ·Q75 = 0

Λ76 : Y65 · V58 ·X87 −X65 · V58 · Y87 = 0 Q75 · Y56 − Y78 ·Q86 = 0

Λ2
85 : V58 ·X87 · Y78 − Y56 ·X65 · V58 = 0 Q86 · Y65 − Y87 ·Q75 = 0

(6.2)

It is possible to show that the two theories discussed above are related by triality,

as expected. Explicitly: starting from C(+,+,−,−), performing a triality transformation on

node 7, relabeling nodes according to (1, 2, 3, 4, 5, 6, 7, 8) → (2, 1, 4, 3, 6, 5, 7, 8) and charge

conjugating all fields, we obtain precisely the C(+,−,+,−) theory.

The field content and types of interactions terms in the two theories are very similar.

The action of the permutation of the sign vectors as a rearrangement of layers along the
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Figure 17. Periodic quiver for C(+,+,−,−).

Figure 18. Periodic quiver for C(+,−,+,−).

vertical direction of the periodic quiver is reminiscent of the motion of impurities in Y p,q

and La,b,a quivers due to Seiberg duality [22–25]. It would be interesting to explore this

connection in further detail.
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C+,� Q1,1,1

Figure 19. Transition between the toric diagrams for C(+,−) and Q1,1,1.

7 2d (0,2) Klebanov-Witten deformations

In their seminal paper [26], Klebanov and Witten (KW) introduced a mass deformation

that connects the 4d N = 2 gauge theory on D3-branes probing C2/Z2 × C to the N = 1

gauge theory associated to the conifold. This type of deformation has been generalized

to a wide class of 4d theories on D3-branes probing toric CY3 singularities and studied in

detail in terms of brane tilings [27]. The new examples include starting points with only

N = 1 SUSY.

It is natural to ask whether 2d analogues of KW deformations exist: namely mass

deformations connecting the gauge theories on D1-branes probing two different CY4 ge-

ometries.7 First, it is easy to verify that the dimensional reductions of 4d KW-type defor-

mations work. Such deformations, connect pairs of theories with at least (2, 2) SUSY. A

more interesting question is whether (0, 2) KW deformations exist. Below we present an

explicit example in which both the initial and final theories have (0, 2) SUSY. It would

certainly be interesting to carry out a systematic investigation of (0, 2) KW deformations.

We leave this question for future work.

7.1 A deformation from C(+,−) to Q1,1,1

We will now show that a (0, 2) KW deformation relates the gauge theories for C(+,−) and

Q1,1,1. Figure 19 shows the corresponding toric diagrams.

In order to visualize the relation between the matter contents of both theories, it is

convenient to consider their standard, instead of periodic quivers. These quivers are shown

in figure 20. The two gauge theories are connected by turning on appropriate mass terms for

the (Λ12, Y12) and (Λ34, Y34) chiral-Fermi pairs and integrating them out. While the process

is rather straightforward, we consider it is instructive to go over the computation in detail.

Let us first consider the effect that integrating out these fields has on the quiver. As shown

in figure 20, the final quiver agrees with the one for Q1,1,1, which was introduced in [7].

7We are indebted to Igor Klebanov for raising this question.
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Figure 20. Starting from the quiver for C(+,−) and giving masses to the two chiral-Fermi pairs

(Λ12, Y12) and (Λ34, Y34) (shown with dotted lines), we obtain the quiver for Q1,1,1.

This transformation of the quiver is promising. However, it is crucial to determine

whether the J- and E-terms become those of Q1,1,1. The mass terms correspond to adding

a term in linear in Y12 to the E-term for Λ12 and a term linear in Y34 to the E-term for

Λ34 as follows:8

J E

Λ12 : X21 · Y12 · Y21 − Y21 · Y12 ·X21 = 0 −Y12 + V14 ·Q42 −X14 · P42 = 0

Λ34 : X43 · Y34 · Y43 − Y43 · Y34 ·X43 = 0 Y34 + P31 ·X14 −Q31 · V14 = 0

Λ1
41 : Y12 · Y21 ·X14 −X14 · Y43 · Y34 = 0 P42 ·X21 −X43 · P31 = 0

Λ2
41 : X14 ·X43 · Y34 − Y12 ·X21 ·X14 = 0 P42 · Y21 − Y43 · P31 = 0

Λ3
41 : Y12 · Y21 · V14 − V14 · Y43 · Y34 = 0 Q42 ·X21 −X43 ·Q31 = 0

Λ4
41 : V14 ·X43 · Y34 − Y12 ·X21 · V14 = 0 Q42 · Y21 − Y43 ·Q31 = 0

Λ1
32 : Y21 ·X14 ·X43 −X21 ·X14 · Y43 = 0 P31 · Y12 − Y34 · P42 = 0

Λ2
32 : Y21 · V14 ·X43 −X21 · V14 · Y43 = 0 Q31 · Y12 − Y34 ·Q42 = 0

(7.1)

where we have indicated the new terms in blue. The relative minus sign is crucial for

the deformation to have the desired effect. It is reminiscent of analogous relative signs

between pairs of mass terms that are necessary in the original KW deformation [26] and its

generalizations to other 4d theories [27]. Λ12 and Λ34 are integrated out and, consequently,

the corresponding rows in (7.1) disappear. In addition, Y12 and Y34 are replaced by

Y12 = V14 ·Q42 −X14 · P42

Y34 = −(P31 ·X14 −Q31 · V14)
(7.2)

Interestingly, whenever these two chiral fields appear in a surviving J- or E-term,

they do so in pairs. This fact will be important for many cancellations, as we now show.

8If we conjugate any of these two Fermis, the deformed term would be a J-term. The distinction between

J- and E-terms is irrelevant in (0, 2) theories, which are symmetric under the exchange of any Fermi field

with its conjugate. The terms to be deformed are univocally determined as those associated to the Fermi

fields that acquire a mass and that have the same gauge quantum numbers as the massive chiral fields.
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Using (7.1) and (7.2), we obtain

Λ1
41 : J : V14 ·Q42 · Y21 ·X14−X14 · P42 · Y21 ·X14 +X14 · Y43 · P31 ·X14 −X14 · Y43 ·Q31 · V14 = 0

E : P42 ·X21 −X43 · P31 = 0

Λ2
41 : J : −X14 ·X43 · P31 ·X14 +X14 ·X43 ·Q31 · V14 − V14 ·Q42 ·X21 ·X14+X14 · P42 ·X21 ·X14 = 0

E : P42 · Y21 − Y43 · P31 = 0

Λ3
41 : J : V14 ·Q42 · Y21 · V14 −X14 · P42 · Y21 · V14 + V14 · Y43 · P31 ·X14−V14 · Y43 ·Q31 · V14 = 0

E : Q42 ·X21 −X43 ·Q31 = 0

Λ4
41 : J : −V14 ·X43 · P31 ·X14+V14 ·X43 ·Q31 · V14 − V14 ·Q42 ·X21 · V14 +X14 · P42 ·X21 · V14 = 0

E : Q42 · Y21 − Y43 ·Q31 = 0

Λ1
32 : J : −Y21 ·X14 ·X43 −X21 ·X14 · Y43 = 0

E : P31 · V14 ·Q42 − P31 ·X14 · P42 + P31 ·X14 · P42 −Q31 · V14 · P42 = 0

Λ2
32 : J : Y21 · V14 ·X43 −X21 · V14 · Y43 = 0

E : Q31 · V14 ·Q42 −Q31 ·X14 · P42 + P31 ·X14 ·Q42−Q31 · V14 ·Q42 = 0

(7.3)

For each Λi34, the terms shown in green are identical to the E-terms of another Λj34 and

hence vanish on the moduli space. The pairs of terms shown in red vanish directly. Taking

these cancellations into account, we get

J E

Λ1
41 : V14 ·Q42 · Y21 ·X14 −X14 · Y43 ·Q31 · V14 = 0 P42 ·X21 −X43 · P31 = 0

Λ2
41 : X14 ·X43 ·Q31 · V14 − V14 ·Q42 ·X21 ·X14 = 0 P42 · Y21 − Y43 · P31 = 0

Λ3
41 : −X14 · P42 · Y21 · V14 + V14 · Y43 · P31 ·X14 = 0 Q42 ·X21 −X43 ·Q31 = 0

Λ4
41 : −V14 ·X43 · P31 ·X14 +X14 · P42 ·X21 · V14 = 0 Q42 · Y21 − Y43 ·Q31 = 0

Λ1
32 : −Y21 ·X14 ·X43 −X21 ·X14 · Y43 = 0 P31 ·X14 · P42 −Q31 · V14 · P42 = 0

Λ2
32 : Y21 · V14 ·X43 −X21 · V14 · Y43 = 0 −Q31 ·X14 · P42 + P31 ·X14 ·Q42 = 0

(7.4)

which are precisely the J- and E-terms for Q1,1,1 [7]. We conclude that the mass deforma-

tion we introduced in (7.1) transforms C(+,−) into Q1,1,1, providing an explicit example of

a 2d (0, 2) KW deformation.

8 Conclusions

We introduced orbifold reduction, a novel method for generating 2d (0, 2) gauge theories

associated to D1-branes probing toric CY 4-folds starting from 4d N = 1 gauge theories

on D3-branes probing toric CY 3-folds. This procedure generalizes dimensional reduction

and orbifolding. Orbifold reduction generates the periodic quiver on T 3 that encodes a

2d theory starting from the periodic quiver on T 2 for a 4d one. Equivalently, it generates

brane brick models from brane tilings.

Orbifold reduction allows us to construct gauge theories for D1-branes probing toric

CY 4-folds almost effortlessly. It is thus an ideal tool for generating new examples, which

can in turn be used for studying both the D-brane configurations and the dynamics of the

gauge theories.

In order to illustrate the usefulness of orbifold reduction we presented three applica-

tions. We first showed how it connects 4d Seiberg duality to 2d triality. Next, we discussed

how theories related by permutations of the sign vectors are automatically triality duals.

The periodic quivers for such theories differ by a reorganization of layers that is similar
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to the motion of impurities in certain 4d toric theories due to Seiberg duality. Finally, we

exploited orbifold reduction to construct an explicit example of a 2d (0, 2) KW deformation.

Our work suggests various interesting directions for future investigation. Let us men-

tion a couple of them. It would be interesting to perform a systematic study of 2d KW

deformations determining, among other things, the effect of the deformations on phase

boundaries (the brane brick model analogues of zig-zag paths for brane tilings [8]) and

establishing whether there is a general criterion that identifies theories with such deforma-

tions. Finally, it would be interesting to investigate whether a generalization of orbifold

reduction similarly simplifies the construction of 0d N = 1 matrix models arising on the

worldvolume of D(-1)-branes probing toric CY 5-folds. Understanding these theories is

certainly a natural next step after brane tilings and brane brick models. Moreover, recent

studies based on mirror symmetry suggest that these matrix models exhibit a quadrality

symmetry [11, 28], making the development of new tools for studying such theories even

more timely.
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A Additional examples

In this appendix we present two additional examples, obtained by orbifold reduction from

the complex cone over dP0, whose toric diagram and periodic quiver are shown in figure 21.

A.1 M3,2

Let us first consider an s = (+,−) orbifold reduction of dP0 using a p0 associated to the

central point of the toric diagram in figure 21. The resulting theory corresponds to the

toric diagram shown in figure 22, which is usually referred to as M3,2.

The periodic quiver for this theory is shown in figure 23.
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Figure 21. Periodic quiver and toric diagram for dP0.

Figure 22. Toric diagram for M3,2.

Figure 23. Periodic quiver for M3,2.
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The J- and E- terms are:

J E

Λ1
12 : Z23 · Y31 − Y23 · Z31 = 0 P14 ·X1

42 −Q14 ·X2
42 = 0

Λ2
12 : X23 · Z31 − Z23 ·X31 = 0 P14 · Y 1

42 −Q14 · Y 2
42 = 0

Λ3
12 : Y23 ·X31 −X23 · Y31 = 0 P14 · Z1

42 −Q14 · Z2
42 = 0

Λ1
45 : Z56 · Y64 − Y56 · Z64 = 0 X1

42 · P25 −X2
42 ·Q25 = 0

Λ2
45 : X56 · Z64 − Z56 ·X64 = 0 Y 1

42 · P25 − Y 2
42 ·Q25 = 0

Λ3
45 : Y56 ·X64 −X56 · Y64 = 0 Z1

42 · P25 − Z2
42 ·Q25 = 0

Λ1
26 : Z64 · Y 1

42 − Y64 · Z1
42 = 0 P25 ·X56 −X23 · P36 = 0

Λ2
26 : X64 · Z1

42 − Z64 ·X1
42 = 0 P25 · Y56 − Y23 · P36 = 0

Λ3
26 : Y64 ·X1

42 −X64 · Y 1
42 = 0 P25 · Z56 − Z23 · P36 = 0

Λ4
26 : Z64 · Y 2

42 − Y64 · Z2
42 = 0 Q25 ·X56 −X23 ·Q36 = 0

Λ5
26 : X64 · Z2

42 − Z64 ·X2
42 = 0 Q25 · Y56 − Y23 ·Q36 = 0

Λ6
26 : Y64 ·X2

42 −X64 · Y 2
42 = 0 Q25 · Z56 − Z23 ·Q36 = 0

Λ1
34 : Z2

42 · Y23 − Y 2
42 · Z23 = 0 Q36 ·X64 −X31 ·Q14 = 0

Λ2
34 : X2

42 · Z23 − Z2
42 ·X23 = 0 Q36 · Y64 − Y31 ·Q14 = 0

Λ3
34 : Y 2

42 ·X23 −X2
42 · Y23 = 0 Q36 · Z64 − Z31 ·Q14 = 0

Λ4
34 : Z1

42 · Y23 − Y 1
42 · Z23 = 0 P36 ·X64 −X31 · P14 = 0

Λ5
34 : X1

42 · Z23 − Z1
42 ·X23 = 0 P36 · Y64 − Y31 · P14 = 0

Λ6
34 : Y 1

42 ·X23 −X1
42 · Y23 = 0 P36 · Z64 − Z31 · P14 = 0

(A.1)

In [11], we constructed a different phase for M3,2 using mirror symmetry. That theory

is related to the one we have just presented by triality.

A.2 K3,2

Let us now construct another s = (+,−) orbifold reduction of dP0, but using a p0 at one

of the corners of the toric diagram in figure 21. The resulting theory corresponds to the

toric diagram shown in figure 24. We will refer to this geometry as K3,2.

Figure 25 shows the periodic quiver for this theory.

Its J- and E-terms are:

J E

Λ1
15 : Z56 · Y61 − Y53 · Z31 = 0 P14 ·X45 −X12 · P25 = 0

Λ1
26 : Z64 · Y42 − Y61 · Z12 = 0 P25 ·X56 −X23 · P36 = 0

Λ1
34 : Z45 · Y53 − Y42 · Z23 = 0 P36 ·X64 −X31 · P14 = 0

Λ2
15 : Z56 · V61 − V53 · Z31 = 0 Q14 ·X45 −X12 ·Q25 = 0

Λ2
26 : Z64 · V42 − V61 · Z12 = 0 Q25 ·X56 −X23 ·Q36 = 0

Λ2
34 : Z45 · V53 − V42 · Z23 = 0 Q36 ·X64 −X31 ·Q14 = 0

Λ3
15 : Y53 ·X31 −X56 · Y61 = 0 P14 · Z45 − Z12 · P25 = 0

Λ3
26 : Y61 ·X12 −X64 · Y42 = 0 P25 · Z56 − Z23 · P36 = 0

Λ3
34 : Y42 ·X23 −X45 · Y53 = 0 P36 · Z64 − Z31 · P14 = 0

Λ4
15 : V53 ·X31 −X56 · V61 = 0 Q14 · Z45 − Z12 ·Q25 = 0

Λ4
26 : V61 ·X12 −X64 · V42 = 0 Q25 · Z56 − Z23 ·Q36 = 0

Λ4
34 : V42 ·X23 −X45 · V53 = 0 Q36 · Z64 − Z31 ·Q14 = 0

Λ12 : X23 · Z31 − Z23 ·X31 = 0 P14 · Y42 −Q14 · V42 = 0

Λ23 : X31 · Z12 − Z31 ·X12 = 0 P25 · Y53 −Q25 · V53 = 0

Λ31 : X12 · Z23 − Z12 ·X23 = 0 P36 · Y61 −Q36 · V61 = 0

Λ45 : X56 · Z64 − Z56 ·X64 = 0 Y42 · P25 − V42 ·Q25 = 0

Λ56 : X64 · Z45 − Z64 ·X45 = 0 Y53 · P36 − V53 ·Q36 = 0

Λ64 : X45 · Z56 − Z45 ·X56 = 0 Y61 · P14 − V61 ·Q14 = 0

(A.2)
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Figure 24. Toric diagram for K3,2.

Figure 25. Periodic quiver for K3,2.
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