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1 Introduction

Supersymmetric quantum field theories in various space-time dimensions can be related to

each other in a number of ways, which often leads to fruitful new perspectives on their

dynamics. In this note, we are interested in a highly degenerate case: a “field theory” in

zero dimension — that is, a matrix model. More precisely, we are interested in gauged

matrix models with one supersymmetry, as recently studied by Franco, Lee, Seong and

Vafa [1, 2]. Such models arise naturally from D-instantons in type IIB string theory; in

particular, D(−1)-branes at the tip of a Calabi-Yau fivefold singularity preserve 0d N = 1

supersymmetry, and it is expected that their low-energy dynamics is captured by a quiver

N = 1 gauged matrix model — see in particular [2–4] for recent studies.

The simplest gauged matrix model is a zero-dimensional version of SQCD. It consists of

a U(Nc) gauge group1 with bosonic and fermionic matrices transforming in the fundamental

or antifundamental representations of U(Nc). The model has a flavor symmetry group:

GF =
U(N1)×U(N2)×U(N3)×U(N4)

U(1)
, (1.1)

such that N1−N2 +N3−N4 = 0. It was proposed in [2] that 0d SQCD has four equivalent

descriptions, as we will review momentarily. This quadrality permutes the four flavor groups

U(Ni) in GF .

1A 0d gauge symmetry is an invariance of the matrix model. While there are no 0d gauge fields, the

0d N = 1 vector multiplet contains a gaugino and an auxiliary field D, which leads to familiar D-term

constraints [2].
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The quadrality proposal is on somewhat weaker footing than analogous dualities in

quantum field theory in dimensions d ≥ 2. Zero-dimensional SQCD is defined as a formal

supersymmetric integral. The integral itself (the “partition function”) generally vanishes

due to “‘t Hooft anomalies,” and the non-vanishing observables have not yet been computed

explicitly. Nonetheless, we will argue that the quadrality proposal arises naturally as a

consequence of the Gadde-Gukov-Putrov triality for two-dimensional N = (0, 2) SQCD [5].

Supersymmetric field theories in various dimensions can often be related by dimen-

sional reduction: one obtains a d-dimensional theory from a (d+n)-dimensional theory by

supersymmetric compactification on some n-manifoldMn, by sending the size R ofMn to

zero. While one can always perform such reductions at the level of the classical Lagrangian,

renormalization group flows across dimensions can be rather subtle [6–11]. For instance,

in the case of the S1 reduction of theories with four supercharges, the R → 0 limit does

not commute with the infrared (IR) limit [7, 11]. There is no guarantee, in general, that

infared dualities between (d + n)-dimensional theories lead to infared dualities between

their dimensionally-reduced d-dimensional cousins.

To avoid this issue, one may consider a compactification with a topological twist. By

construction, observables of the (partially) topologically-twisted theory should be inde-

pendent of the size R of the compactification manifold, and therefore one should be able

to safely flow to the IR. A prime example of this procedure is the compactification of 4d

N = 1 gauge theories on R2 × S2 with a topological twist on S2 [12–15]. This preserves

2d N = (0, 2) supersymmetry along R2. Using this setup, it has been argued that N = 1

Seiberg duality in 4d implies N = (0, 2) triality in 2d [14–16].

To obtain 0d SQCD, we similarly consider 2d N = (0, 2) SQCD on S2 with a half-

topological twist. This compactification preserves the right-moving R-symmetry U(1)R of

the 2d theory, by turning on a non-trivial background U(1)R gauge field:

1

2π

∫

S2

dA(R) = −1 . (1.2)

By a convenient choice of R-charge, and restricting to the zero-modes — the lowest modes

on S2 with one unit of U(1)R flux — we directly reproduce the 0d SQCD studied in [2].

More precisely, this holds in a topological sector with vanishing gauge flux. (We only briefly

comment on the dimensionally-reduced theory in the non-trivial topological sectors, where

the gauge group is broken explicitly to a Levi subgroup. In the reduction of [15], they could

argue that only the zero-flux sector contributed to some S2 × T 2 partition function. We

expect something similar to happen here, for certain observables.) Three of the four dual

formulations of 0d SQCD follow from the conjectured triality in 2d. The fourth formulation

of the gauged matrix model can be recovered by consistency.

This note is organized as follows. In section 2, we review how triality maps certain

2d N = (0, 2) supersymmetric gauge theories. In section 3, we discuss gauged matrix

models with N = 1 supersymmetry, and we review the quadrality proposal; next, we

review how the zero-modes of 2d N = (0, 2) multiplets on the half-twisted sphere sit in

0d supersymmetric multiplets; we then show that, for a convenient choice on R-charge, 2d

SQCD can be reduced to 0d SQCD, and 2d triality descends to 0d quadrality. We also
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U(Nc) U(N1) U(N2) U(N3) U(1)R

Φ i Nc N1 1 1 ri

Φ j Nc 1 N2 1 r̃j

Λ I Nc 1 1 N3 rI

Ω± det±1 1 1 1 r±

Γij 1 N1 N2 1 rΓ

Table 1. Charges of the matter fields in 2d N = (0, 2) SQCD. The det and det−1 representation

assigns charge +1 and −1, respectively, to each U(1)a ⊂ U(Nc), a = 1, · · · , Nc, in the Cartan

subgroup of U(Nc). The last line is the fermi gauge-singlet in Γ-SQCD.

briefly discuss a related setup with D-branes at Calabi-Yau singularities. Our conventions

are summarized in appendix.

2 Two-dimensional N = (0, 2) SQCD and triality

Consider a two-dimensional N = (0, 2) gauge theory with U(Nc) gauge group, N1 chiral

multiplets Φ in the fundamental representation, N2 chiral multiplets Φ in the anti-

fundamental representation, N3 fermi multiplets Λ in the fundamental representation,

and two fermi multiplets Ω± in the det±1 representation of U(Nc), as summarized in

table 1. All the fermi multiplets have vanishing E- and J-term superpotentials. We must

have:

Nc =
N1 + N2 −N3

2
, (2.1)

in order to cancel the gauge anomalies.

The flavor group of the theory is:

GF =
U(N1)×U(N2)×U(N3)

U(1)
. (2.2)

Here the quotient is by the overall U(1) ⊂ U(Nc) gauge symmetry. The theory also has a

right-moving R-symmetry U(1)R, which assigns R-charge ±1 to the supercharges Q̄+ and

Q+, respectively. For future reference, it is useful to allow generic R-charges, as indicated

in table 1, which generally breaks the flavor group (2.2) to its maximal torus. The vanishing

of the mixed U(1)R-gauge anomaly requires:

N1∑

i=1

(ri − 1)−
N2∑

j=1

(r̃j − 1)−
N3∑

I=1

rI −Ncr+ +Ncr− = 0 . (2.3)

The flavor indices i, j, I run over the U(N1), U(N2) and U(N3) flavor groups, respectively.

Note that our definition of 2d SQCD differs slightly from the one [5]. The original definition

also involves N1N2 additional gauge-singlet fermi multiplets Γij with:

EΓij = 0 , JΓij = Φ j Φ i , (2.4)

– 3 –
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�

(a) 2d (0,2) SQCD (b) 2d (0,2)  -SQCD�

Figure 1. The quiver diagram of 2d N = (0, 2) (a) SQCD and (b) Γ−SQCD. The fermi fields Ω±
in the determinant representation of U(Nc) are omitted to avoid clutter.

for the N = (0, 2) superpotential, where the gauge indices are kept implicit. This su-

perpotential ensures that, in the appropriate range of parameters, the theory flows to an

SCFT with a normalizable vacuum. We will call this theory, with the gauge-singlet fermi

multiplets added, “Γ-SQCD”. The superconformal R-charges of Γ-SQCD were determined

in [5] using c-extremization [17]. Both types of N = (0, 2) SQCD’s we discussed so far are

summarized in figure 1.

First triality move

It was argued in [5] that 2d N = (0, 2) SQCD has two other dual descriptions, forming a

so-called triality of gauge theories with identical infrared physics. The first dual theory is

a U(N ′c) theory with:

N ′c = N2 −Nc =
N2 + N3 −N1

2
, (2.5)

and the matter content:

U(N ′c) U(N1) U(N2) U(N3) U(1)R

Λ′
i

N′c N1 1 1 r′i

Φ′
j

N′c 1 N2 1 r̃′j

Φ′ I N′c 1 1 N3 r′I

Ω′± det±1 1 1 1 r′±

M j
i 1 N1 N2 1 rM

Γ′ jI 1 1 N2 N3 r′Γ

(2.6)

The duality operation changes the gauge group, and permutes the (anti)fundamental mat-

ter according to:

Φ −→ Φ′ , Φ −→ Λ′ , Λ −→ Φ′ . (2.7)

– 4 –
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The dual theory also contains “mesonic” gauge-singlet, the chiral multiplets M j
i and the

fermi multiplets Γ′ jI , which are identified with gauge invariant operators in the original

theory:

M j
i = Φ j Φ i , Γ′ jI = Φ j Λ I . (2.8)

Importantly, the fermi multiplets of the dual theory have non-trivial superpotentials:

EΛ′
i

= Φ′
j
M j

i , JΛ′
i

= 0 ,

EΓ′ j
I

= 0 , JΓ′ j
I

= Φ′
I

Φ′
j
.

(2.9)

The duality operation can be conveniently summarized in terms of quiver diagrams, as

shown in figure 2.

It is useful to think of this duality operation as a “local” operation on the gauge

group U(Nc), which might be part of a more general theory. In particular, there might

be additional superpotential terms of EΛ and JΛ in the original theory. In that case, the

duality move introduces the interaction terms [3, 4]:

EΛ′
i

= Φ′
j
M j

i , JΛ′
i

=

(
∂EΛI

∂Φ i

)
Φ′

I
,

EΓ′ j
I

= −M j
i

(
∂EΛI

∂Φ i

)
, JΓ′ j

I
= Φ′

I
Φ′

j
− ∂JΛI

∂Φ j
,

(2.10)

where we sum over repeated indices. The determinant fields Ω± are spectators in these

dualities.

The dual theory for Γ-SQCD is similar, albeit simpler. After this duality move, the

gauge-singlet fields Γ and M are massive, due to the superpotential (2.4), which becomes

JΓ = M after the duality. After integrating them out, the dual theory looks identical to

the original Γ-SQCD theory, up to the reshuffling of the flavor parameters (N1,N2,N3)→
(N2,N3,N1).

Second triality move

By applying the duality operation (2.7)–(2.10) a second time, to the theory (2.6), we find

another “dual” theory. This is a U(N ′′c ) theory with:

N ′′c = N3 −N ′c =
N3 + N1 −N2

2
, (2.11)

and the following matter content:

U(N ′′c ) U(N1) U(N2) U(N3) U(1)R

Φ′′ i N′′c N1 1 1 r′′i

Λ′′
j

N′′c 1 N2 1 r̃′′j

Φ′′
I

N′′c 1 1 N3 r′′I

Ω′′± det±1 1 1 1 r′′±

M j
i 1 N1 N2 1 rM

Γ′′ I i 1 N1 1 N3 r′′Γ

(2.12)
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Figure 2. The triality cycle for 2d N = (0, 2) SQCD. The fermi fields Ω± in the determinant

representation of U(Nc) are omitted to avoid clutter.

This theory still contains mesonic gauge-singlet, the chiral multiplets M j
i and another

fermi multiplets Γ′′ I i, which are given by:

M j
i = Φ j Φ i , Γ′′ I i = Φ′

I
Λ′

i
, (2.13)

in terms of the fields in the first and second theory, respectively. The fermi multiplets have

the non-trivial superpotentials:

EΛ′′
j

= 0 , JΛ′′
j

= M j
i Φ′′

i
,

EΓ′′ I
i

= 0 , JΓ′′ I
i

= Φ′′
i
Φ′′

I
.

(2.14)

Here, we have already integrated out some massive mesons.2

One can similarly check that a third triality move gives back exactly the original SQCD

theory. The duality operation can be conveniently summarized in terms of quiver diagrams,

as shown in figure 2.

2A direct application of (2.7)–(2.10) leads to a theory with the mesonic chiral fields M and M ′, and the

mesonic fermi multiplets Γ′ and Γ′′. We then have:

EΛ′′ = Φ′′ M ′ , EΓ′′ = −M ′M , EΓ′ = 0 ,

JΛ′′ = MΦ′′ , JΓ′′ = Φ′′ Φ′′ , JΓ′ = M ′ .

The last line states that M ′ and Γ′ are massive, and can be integrated out by setting M ′ = 0. This leads

to (2.14).
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3 Gauged matrix models and sphere compactification

In this section, after reviewing N = 1 matrix models following [2], we explain how one can

obtain them from sphere compactification of 2d N = (0, 2) theories.

3.1 N = 1 supersymmetric matrix models

Gauged matrix models (GMM) with N = 1 supersymmetry are matrix models of c-number

variables ϕ and Grassmanian variables ψ that transform under a single supersymmetry

transformation, which we assume to be nilpotent. By abuse of notation, we will call the

integration variables ϕ and ψ the “bosons” and “fermions,” respectively.

Supermultiplets

Any N = 1 GMM can be defined using the following supersymmetry multiplets:3

Chiral multiplet. The 0d N = 1 chiral multiplet Φ has components and supersymmetry

transformations:

Φ = (φ, φ̄, ψ̄) , δφ = 0 , δφ̄ = ψ̄ , δψ̄ = 0 (3.1)

Note that δ2 = 0 trivially. Obviously, φ and (φ̄, ψ̄) are in fact independent supersymmetry

multiplets, but we consider the boson φ as a complex variables, with φ̄ its complex conjugate

— a particular contour of integration on the φ-plane should be part and parcel of the defi-

nition of the matrix model. The fermion ψ̄ should be considered an independent complex,

anti-commuting variable. The superfield Φ can be charged under some U(1) symmetry, with

charge Q, which means that the fields (φ, φ̄, ψ̄) have charges (Q,−Q,−Q), respectively.

It should be noted that the “target space” spanned by the integration variables φ is

a complex space by construction. Moreover, the supersymmetry δ is naturally identified

with the Dolbeault operator ∂̄ on target space,

Fermi multiplet. The 0d fermi multiplet Λ has a single complex fermion λ, which can

be charged. The supersymmetry transformation is determined by:

δλ = FΛ(φ) . (3.2)

Here, FΛ is an “N = 1 superpotential,” which is an holomorphic function of the bosons φ

in chiral multiplets. We have δ2λ = 0 in virtue of (3.1). The superpotential FΛ must be

specified for each fermi multiplet Λ.

Gaugino multiplet. The gaugino multiplet V is of the form:

V = (χ0, D0) , δχ0 = D0 (3.3)

for some gauge group G. The “gaugino” χ0 and the real “auxiliary” field D0 are valued in

the adjoint representation of g = Lie(G).

3Our definition of a 0d fermi multiplet differs slightly from [2]. Our present definition is naturally

inherited from (0, 2) fermi multiplets in two dimensions upon sphere compactification.
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Interaction terms

Consider a “linear” N = 1 matrix model consisting of chiral multiplets Φi and fermi

multiplets ΛI , with φi valued in C. We have the supersymmetric action:

SF = F̄ I(φ̄)FI(φ) + ψ̄i
∂F̄ I

∂φ̄i
λI (3.4)

where FI is the superpotential for ΛI . Incidentally, the action is δ-exact:

SF = δ
(
F̄ IλI

)
. (3.5)

In particular, if F (φ) is linear in φ, the action (3.4) is a “mass term” and the matrix-model

integral is Gaussian. Another interaction term is available at second order in the fermions:

SH = HIJ(φ)λIλJ . (3.6)

The holomorphic potential HIJ = −HJI must satisfy the condition HIJFI = 0. It is not

δ-exact.

Next, consider any continuous symmetry group G acting on the fields (and commuting

with δ), preserved by the potential terms. One can “gauge” this symmetry by introducing

the corresponding g-valued gaugino multiplet with the action:

Sgauge = SD + Sξ + Sφ̄φ =
1

2
D2

0 − iξD0 + iφ̄D0φ− iψ̄χ0φ , (3.7)

coupling the “matter fields” to the gaugino multiplet, with ξ a Fayet-Iliopoulos (FI) term.

These terms are also δ-exact:

SD = δ

(
1

2
D0χ0

)
, Sξ = δ (−iξχ0) , Sφ̄φ = δ

(
iφ̄χ0φ

)
. (3.8)

Integrating out D0, we have:

D = −i
(
φ̄φ− ξφ

)
≡ −iµ , (3.9)

where µ is the moment map for the G action on field space. We then obtain:

Sgauge
∼= µ2 − iψ̄χ0φ . (3.10)

Since one can tune the coefficient of Sgauge at will (at least formally), one finds that the

matrix integral receives only contributions from µ = 0. In other words, the gauging leaves

us with a target space described as a Kähler quotient of flat space.

Anomalies and selection rules

Consider a matrix model defined by the schematic integral:

Z =

∫ ∏

i

dφi dφ̄i dψ̄i

∫ ∏

I

dλI

∫
dχ0 dD0 e

−S(φ,φ̄,ψ̄,λ,χ0,D0) . (3.11)

– 8 –
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U(Nc) U(N1) U(N2) U(N3) U(N4)

Φ i Nc N1 1 1 1

Φ j Nc 1 N2 1 1

Λ I Nc 1 1 N3 1

Λ J Nc 1 1 1 N4

Γ̃ji 1 N1 N2 1 1

Table 2. Matter fields in 0d N = 1 SQCD. The last line is the gauge-singlet in 0d Γ̃-SQCD. We

use i, j, I, J for the U(N1)×U(N2)×U(N3)×U(N4) flavor indices.

Here, φ, φ̄ and D denote complex and real bosons, respectively, while ψ, λ, χ0 are fermions,

while the action S is the sum of the terms (3.4), (3.6) and (3.7). In such a model, a sym-

metry — which leaves S invariant, by definition — can be “anomalous” if the integration

measure fails to be invariant as well. One can check that this can only happen for an abelian

symmetry. Consider a U(1) symmetry that assigns charges Qi and QI to the chiral multi-

plets Φi and fermi multiplets ΛI , respectively. The integration measure has the U(1) charge:

AU(1) =
∑

i

Qi −
∑

I

QI . (3.12)

This anomaly must vanish if U(1) is a gauge symmetry. For a global symmetry, on the

other hand, a non-zero anomaly — that is, a ‘t Hooft anomaly — implies a selection rule.

Consider the observable:

〈O(Φ,Λ)〉 =

∫
dΦdΛdV O(Φ,Λ) e−S , (3.13)

where the integration measure is the same as in (3.11), and O is a gauge invariant func-

tion of the variables. This vanishes whenever Q[O] + AU(1) 6= 0 [2] because Grassmann

integration measure cannot be saturated by the expansion of symmetry-invariant action.

3.2 0d SQCD and quadrality

Let us define zero-dimensional N = 1 SQCD as the supersymmetric GMM with U(Nc)

gauge symmetry which associates gaugino multiplet coupled to N1 chiral multiplets Φ

in the fundamental representation, N2 chiral multiplets Φ in the anti-fundamental rep-

resentation, N3 fermi multiplets Λ in the anti-fundamental representation, and N4 fermi

multiplets Λ in the fundamental representation. The fields are summarized in table 2. In

order to cancel the gauge anomaly, we must have:

N1 −N2 +N3 −N4 = 0 . (3.14)

All the fermi multiplets have vanishing potentials, FI = 0 and HIJ = 0.

– 9 –
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(a) 0d N=1 SQCD (b) 0d N=1  -SQCDe�

N4
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N4

N1

�⇤ �⇤

⇤⇤ ⇤⇤

e�
N2 N2

N3 N3

Figure 3. Quiver diagrams of two different 0d N = 1 SQCD.

This matrix model is a somewhat ill-defined since the bosonic integral generally di-

verges, while the fermionic measure is not adequately saturated. Nevertheless, it is inter-

esting to study 0d SQCD formally, as a particularly simple starting point. We will consider

a better-behaved model shortly.

0d Γ̃-SQCD

Similarly to Γ-SQCD in two dimensions, the zero-dimensional Γ̃-SQCD is defined as a

U(Nc) GMM with the (anti-) fundamentally charged fields introduced above, together

with additional gauge-singlet fermi fields Γ̃ji with non-trivial N = 1 superpotential:

F
Γ̃ji

= φ j φ i . (3.15)

This implies that, in addition to the gauge interactions, the action contains the term:

S
Γ̃

= φ
j
φ

i
φ j φ i + ψ

j
φ

i
Γ̃ji − Γ̃ji φ j

ψ
i

(3.16)

The φ4 term provides a damping factor. Both SQCD and Γ̃-SQCD are summarized in

figure 3.

Quadrality. It has been conjectured that 0d SQCD has four equivalent descriptions [2],

related by a so-called quadrality. The first dual theory is a U(N ′c) theory, with dual rank:

N ′c = N2 −Nc . (3.17)

– 10 –
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The matter content is given as follows:

U(Nc) U(N1) U(N2) U(N3) U(N4)

Λ′
i

Nc N1 1 1 1

Φ′
j

Nc 1 N2 1 1

Φ′ I Nc 1 1 N3 1

Λ′ J Nc 1 1 1 N4

M j
i 1 N1 N2 1 1

Γ̃′ Ij 1 1 N2 N3 1

ΞjJ 1 1 N2 1 N4

(3.18)

Here the symbols Λ, Γ̃ and Ξ denote fermions, while the symbols Φ and M denote bosons.

The non-vanishing superpotentials are:

FΛ′
i

= Φ′
j
M j

i , F
Γ̃′ I

j
= Φ′

I
Φ′

j
. (3.19)

for Λ′
i

and Γ̃′ Ij , respectively. We also have H-terms that couple Λ′ J and ΞjJ , according

to:

HΞjJ Λ′ J
= Φ′

j
, ⇒ SH = Φ′

j
ΞjJ Λ′

J
. (3.20)

The quadrality move. We can think of quadrality as a particular operation on a 0d

N = 1 quiver, which is locally like the SQCD quiver in figure 3. The quadrality move can be

summarized as follows: first of all, the (anti)-fundamental fields are permuted according to:

Φ −→ Φ′ , Φ −→ Λ′ , Λ −→ Λ′ , Λ −→ Φ′ . (3.21)

The gauge group rank transforms according to Nc → NA−Nc, where NA is the number of

anti-fundamental chiral multiplets in the original theory. (In the present case, NA = N2.)

One also introduce the gauge-singlet M , Γ̃ and Ξ, which are identified with “mesons” in

the original theory:

M j
i = Φ j Φ i , Γ̃′ Ij = Λ I φ

j
, ΞjJ = Φ j Λ J . (3.22)

In the absence of interactions in the original theory, the new interactions are specified

by (3.19) and (3.20). More generally, consider the interaction terms:

FΛJ , FΛI , FΘ , HΛIΛJ , HΛJΘ , HΛIΘ , (3.23)

in the original theory, where Θ denote any other fermi multiplets that are not charged

under the U(Nc) gauge theory. All the superpotential terms (3.23) are holomorphic in

Φ i, Φ j and in any other chiral multiplets X in the larger theory. In the dual theory

obtained after one quadrality move, the new F -terms are given by:

FΛ′
i

= Φ′
j
M j

i , FΛ′J = HΛIΛJΦ′
I
,

F
Γ̃′ I

j
= Φ′

I
Φ′

j
− ∂FΛI

∂Φ j
, FΞjJ = −M j

i
∂FΛJ

∂Φ i

.
(3.24)
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Figure 4. The quadrality cycle for 0d N = 1 SQCD.

For the spectator fermi multiplets Θ, the potentials FΘ are the same as in the original

theory after substituting the gauge-invariant combination ΦjΦi with the “meson” singlet

M j
i. The non-zero H-term potentials are given by:4

HΛ
′JΛ′

i =
∂FΛJ

∂Φ i

, HΞjJΛ
′J

= Φ′
j
, H Γ̃′ I

j ΞjJ = −HΛIΛJ ,

HΛ′
i Θ =

∂HΛIΘ

∂Φ i

Φ′
I
, HΞjJ Θ =

∂HΛJΘ

∂Φ j
, H Γ̃′ I

j Θ = −M j
i
∂HΛJΘ

∂Φ j
.

(3.25)

These transformations rules for the interactions were first discussed in [3].

The quadrality cycle. Using these rules, it is easy to apply the quadrality move repeat-

edly. After four quadrality moves, one recovers the original theory. The field content can

be conveniently summarized in quiver notation, as depicted in figure 4. (The interactions

are essentially given by all the allowed cycles in each quiver. Two-cycles are mass terms,

and the relevant fields should be “integrated out.”) The gauge group rank transforms as:

N ′c = N2 −Nc , N ′′c = N3 −N ′c , N ′′′c = N4 −N ′′c , N ′′′′c = N1 −N ′′′c = Nc , (3.26)

4This is given up to some signs, which can be fixed for consistency with Tr(HIJFI) = 0 in any given

example.
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where the last equation follows from (3.14). One can also check that the four matrix models

have the same ’t Hooft anomalies [2]. The quadrality cycle for Γ̃-SQCD can be constructed

similarly — its quadrality cycle is almost identical to figure 4, except that there are no

chiral multiplet mesons M at any step.

3.3 Sphere compactification of 2d SQCD

Consider an N = (0, 2) gauge theory on a sphere, S2, with the half-twist, as studied e.g.

in [18]. We are interested in what happens when we send the radius of S2 to zero. On

general ground, one expect that only the zero-modes survive. For a neutral scalar field,

that would just be the s-wave; more generally, any field has a zero-modes if it is valued in

some holomorphic vector bundle over S2 which admits holomorphic sections.

The counting of zero-modes goes as follows [18]. Consider first the 2d N = (0, 2) vector

multiplet. There exists a supersymmetric configuration for any choice of integer-quantized

gauge fluxes m through S2:
1

2π

∫

S2

da = m , (3.27)

where aµ is the 2d gauge field and m is valued in ΓG∨ , the magnetic flux lattice of G.

Let ea (a = 1, · · · , rank(G)) denote a basis of ΓG∨ such that ρ(ea) ∈ Z for any weight ρ.

Consider G = U(Nc) for simplicity. The gauge flux m = mae
a, with:

(ma) = (m(1), · · · ,m(1),m(2), · · · ,m(2), · · · ,m(s), · · · ,m(s)) , m(l) ∈ Z , (3.28)

breaks U(Nc) to the Levi subgroup
∏s
l=1 U(nl), with

∑s
l=1 nl = Nc.

Upon reduction on the sphere, the gaugino has a zero-mode, leading to a 0d gaugino

multiplet:5

χ̃(2d) = χ0 , D(2d) − 2if11̄ = iD0 . (3.29)

In the presence of the gauge flux (3.28), we obtain a matrix model with gauge group∏
k U(nl). The 2d “W-bosons” become 0d fermi multiplets in bifundamental representa-

tions (connecting different U(nl) factors). In the zero-flux sector, m = 0, we simply obtain

a 0d matrix model with gauge group U(Nc). This is the sector we will focus on.

The zero-modes of the 2d matter fields are similarly accounted for. We refer to ap-

pendix A for more detail. Given a 2d N = (0, 2) chiral multiplet Φi in the representation

Ri of g, with ρi ∈ R the weights of the representation, and with R-charge ri, let us define

the integer:

nρi = ρi(m)− ri + 1 . (3.30)

for each field component Φρi . Upon reduction on S2, we obtain a number of 0d chiral

and/or fermi multiplets, depending on the sign of nρi :

Φρi →
{
nρi 0d chiral multiplets Φρi if nρi ≥ 0 ,

−nρi 0d fermi multiplets Λρi if nρi < 0 .
(3.31)

5Here we have set to one the dimensionful parameter
√

vol(S2)/e2, with e2 the 2d gauge coupling.
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In particular, in the zero-flux sector, the 2d chiral multiplet Φi gives rise to 0d chiral or a

fermi multiplets in the same representation Ri of G depending on whether ri < 1 or ri > 1,

respectively.

Given a 2d N = (0, 2) fermi multiplet ΛI in the representation RI of g and with

R-charge rI , let us define the integer:

nρI = ρi(m)− rI . (3.32)

for each field component ΛρI . Upon reduction, we have:

ΛρI →
{
nρI 0d fermi multiplets ΛρI if nρI ≥ 0 ,

−nρI 0d fermi multiplets Λ̄ρ̄I if nρI < 0 ,
(3.33)

where ρI ∈ R̄I denote the weights of the conjugate representation. In particular, in the

zero-flux sector, a 2d fermi multiplet in a representation R gives rise to 0d fermi multiplets

in the representation R if rI < 0, or in the conjugate representation R̄ if rI > 0.

The 2d holomorphic potentials E and J give rise to the 0d holomorphic potentials

F and H. Let us denote by (φi, ψi, φ̄
i, ψ̄i) and by (λI , λ̄

I) the 2d fields in chiral and

fermi multiplets, respectively, with superpotentials EI = EI(φ) and JI = JI(φ) such that

Tr(JIEI) = 0. The 2d interactions are given by:

Lpot = J̄IJ
I + ĒIEI +

(
ψ̄i
∂ĒI

∂φ̄i
+
∂JI

∂φi
ψi

)
λI −

(
ψi
∂EI
∂φi

+
∂J̄I
∂φ̄i

ψ̄i
)
λ̄I , (3.34)

from which one can read off the interaction terms in the matrix model. Let us expand the

2d indices i, I into:

i→ (j,K) , I → (M,N) , (3.35)

where the righ-hand-side index j runs over the 0d chiral multiplets, and the right-hand-side

indices K,M,N run over the 0d fermi multiplets, obtained according to (3.31) and (3.33).6

In two dimensions, we have δΛI = EI and δΛ̄I = JI (on-shell) under the one supersymme-

try that survives the half-topological twist. Therefore, to obtain a consistent reduction to

0d, we need that:

JM
∣∣
S2 = 0 , EN

∣∣
S2 = 0 . (3.36)

In that case, we have the 0d fermi multiplets given in terms of the 2d zero-modes by:

λK = ψK , λM = λM , λN = λ̄N , (3.37)

with the 0d holomorphic potentials:

FK = 0 , FM = EM , FN = JN , HMK =
∂JM

∂φK
, HNK =

∂EN
∂φK

. (3.38)

In particular, the supersymmetric condition FMH
MK + FNH

NK = 0 follows from the 2d

condition JIEI = 0.

6That is, the 0d fermions λK come from the second line in (3.31), and the 0d fermions λM and λN come

from the first and second line of (3.33), respectively.
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(a) deformed 2d (0,2) SQCD quiver (b) 0d N=1 SQCD quiver
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Figure 5. The reduction with the half-topological twist from (a) deformed 2d N = (0, 2) SQCD

to (b) 0d N = 1 SQCD.

Finally, let us note that the cancellation of the U(1) gauge anomalies for the 0d GGM

follows from the cancellation of the mixed anomaly between the U(1)’s and the R-symmetry

in two dimensions: ∑

i

Qi(ri − 1)−
∑

I

QIrI = 0 , (3.39)

where i and I run over the 2d chiral and fermi multiplets, respectively, as above. The condi-

tion (3.39) is necessary for the 2d R-symmetry to exist, and thus for the half-twist to exist.

Given the 0d fields obtained upon reduction on S2, one easily checks that (3.39) implies

that the 0d gauge anomalies (3.12) vanish. This can be also understood, more generally, in

terms of the reduction of the anomaly polynomial of the 2d theory on S2 with the U(1)R
flux. If FR and FG denote the U(1)R and U(1) field strengths in 2d, the relevant terms are:

∫

S2×R2

tr(FRFG) = −2π

∫

R2

tr(FG) , (3.40)

so that any Tr(RQ) quadratic anomaly in 2d reduces to the linear Tr(Q) anomaly in 0d.

See for instance [15, 19] for further discussions in similar contexts.

3.4 Quadrality from triality

Using the above rules, it is straightforward to study the dimensional reduction of 2d SQCD

to 0d. We focus on the zero-flux sector. Consider 2d SQCD with the R-charges:

Φ i Φ j Λ I Λ J Λ L Ω±

U(1)R 0 0 1 −1 0 0
(3.41)

This choice of R-charges breaks down the U(N3) factor of the 2d flavor group to:

U(N3)→ U(N3)×U(N4)×U(N5) , N5 ≡ N3 −N3 −N4 , (3.42)
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where we labelled the indices I → (I, J, L) with I = 1, · · ·N3, J = 1, · · · , N4 and L =

1, · · · , N5. We also take N1 = N1 and N2 = N2, with indices i and j, respectively. By

restriction to the zero-modes, we exactly obtain 0d SQCD with the field content of table 2.

If we consider 2d Γ-SQCD instead, we must choose the R-charge assignment:

rΓij = 1 , (3.43)

for the gauge-singlet fermi multiplets Γij , consistently with the J-potential (2.4). This di-

rectly leads to 0d Γ̃-SQCD. The potential term (3.15) follows from (2.4) together with (3.38)

— we simply have F
Γ̃

= JΓ in this case.

The analysis of the other 2d theories related to SQCD by triality is similar. Consider

the theory (2.6) obtained after one triality move. The R-charge assignment dual to (3.41)

reads:

Λ′
i

Φ′
j

Φ′ I Φ′ J Φ′ K M j
i Γ′ jI Γ′ jJ Γ′ jL

U(1)R −1 0 0 2 1 0 1 −1 0
(3.44)

Upon reduction, this gives exactly the matrix model obtained from 0d SQCD after one

quadrality move, with matter content (3.18) and the interaction terms (3.19)–(3.20). More-

over, 0d t’Hooft anomaly matching directly follow from the matching of the 2d anomalies

under triality.

We can similarly consider the third theory in the triality chain in 2d. The corresponding

R-charge assignment reads:

Φ′′ i Λ′′
j

Φ′′
I

Φ′′
J

Φ′′
K
M j

i Γ′′ I i Γ′′ J i Γ′′Li

U(1)R 0 −1 2 0 1 0 −1 1 0
(3.45)

One can check that this exactly recovers three out of the four 0d theories in the quadrality

cycle. This is summarized in figure 6.

From this discussion, we see that we recover most the quadrality, but we are still

missing the lower-right corner in figure 4. However, if we think about the triality and

quadrality “moves” as particular operations on a U(N) gauge theory, as described above,

we can simply recover one single quadrality move from one triality move. Indeed, consider

2d SQCD with the R-charge assignment (3.41) and generic interactions such that (3.36)

holds. Upon reduction, we obtain 0d SQCD with interaction terms:

FI = JI , FJ = EJ , HII = HJJ = HIJ = 0 . (3.46)

A triality move gives rise to a new theory with the new 2d interactions (2.10). Reducing

this dual theory to 0d with the dual R-charge assignment (3.44) and using (3.38), one can

check that the new interactions in the 0d theory are exactly given by (3.24)–(3.25), in the

special case where H = 0 in the original theory. This gives a simple derivation of the 0d

quadrality move from the 2d triality move, including all interaction terms. One can then

check that the quadrality move is indeed an operation of order four on the 0d theory. This

completes the derivation of quadrality from triality.
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Figure 6. The triality (order-3) cycle of 0d N = 1 SQCD. From the first move interpreted as

acting on the 0d theory, one can recover the full quadrality cycle of figure 4.

3.5 Comment on the non-zero flux sectors

We have seen that 0d SQCD, a U(Nc) gauged matrix model, describes the zero-mode sector

of 2d N = (0, 2) SQCD on a half-twisted sphere, in the absence of gauge fluxes — or, for

that matter, of any background flux for the flavor symmetries.7 On the other hand, 2d

observables on the sphere are expected to receive contributions from an infinite number

of flux sectors, in general. Using the rules above, one can easily write down the matrix

model that one obtains by dimensional reduction in the presence of some particular gauge

flux (3.28). It is essentially a quiver GMM with gauge group
∏
l U(nl), with bifundamental

fermi multiplets connecting the nodes (coming from the 2d W -bosons). In addition, the

2d fields Ω± give rise to 0d fermions that couple all the U(nl) gauge factors together. It

might be interesting to study those more complicated matrix models systematically.

3.6 Beyond SQCD: a comment on brane hyper-brick models

It is interesting to ask how the reduction on a sphere with half-topological twist of a 2d

(0, 2) theory might look like when the 2d theory is not a SQCD-type theory, but rather

7Or, we may think of the R-charge assignments as being the results of certain flavor fluxes, that explicitly

break the 2d flavor group down to the 0d flavor group as specified above.
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Brane Configuration T-Duality D-Brane Probe

(a)

0 1 2 3 4 5 6 7 8 9

D5 × × × × · × · × · ·
NS5 × × × × —– Σ —– · ·

2 times←→ D3 ⊥ CY3

(b)

0 1 2 3 4 5 6 7 8 9

D4 × × · × · × · × · ·
NS5 × × ———– Σ ———– · ·

3 times←→ D1 ⊥ CY4

(c)

0 1 2 3 4 5 6 7 8 9

D3 · × · × · × · × · ·
NS5 ————— Σ ————— · ·

4 times←→ D(−1) ⊥ CY5

Table 3. The various brane configurations for supersymmetric gauge theories arising on D-brane

probes at toric Calabi-Yau singularities. (a) Brane tilings give rise to 4d N = 1 supersymmetric

gauge theories as worldvolume theories D3-branes at toric Calabi-Yau threefold singularities, (b)

brane brick models give rise to 2d N = (0, 2) theories as worldvolume theories of D1-branes at toric

Calabi-Yau fourfold singularities, and (c) brane hyper-brick models give rise to 0d N = 1 gauged

matrix models as worldvolume theories of D(−1)-branes at toric Calabi-Yau fivefold singularities.

a worldvolume theory of D1-branes at a tip of a Calabi-Yau fourfold singularity. Such

theories have been extensively studied in the context of brane brick models [20, 21] and were

extended to worldvolume theories of D(−1)-branes at Calabi-Yau fivefold singularities [2]

known as brane hyper-brick models. Here we would like to point out that the “orbifold

reduction” of [22] has features similar to the twisted S2 reduction. It would be interesting

to study this further.

Reductions from 4d N = 1 theories to brane brick models, from the point of view of

the underlying brane configurations, were introduced in [22]. These 4d N = 1 theories are

worldvolume theories on D3-branes probing toric Calabi-Yau threefold singularities and

are realized in terms of type IIB brane configurations known as brane tilings [23]. Simple

dimensional reduction of a brane tiling corresponding to a toric Calabi-Yau threefold CY3

leads to a 2d N = (2, 2) theory corresponding to a Calabi-Yau fourfold of the form CY3×C.

When expressed in terms of 2d N = (0, 2) multiplets, the 2d N = (2, 2) theory can be

represented by a brane brick model with 2d N = (0, 2) adjoint chiral multiplets originating

from the 4d N = 1 vector multiplets under dimensional reduction.

When the dimensionally reduced theory is abelian, in which case the probed Calabi-Yau

becomes the classical moduli space of the corresponding supersymmetric gauge theory, the

adjoint chiral multiplets coming from the reduction parameterize the C factor of CY3×C.

Brane tilings are realized in terms of D5-branes suspended between a NS5-brane that

wraps a holomorphic surface Σ, which can be mapped to a bipartite periodic graph on a

2-torus T 2.8 Similarly, brane brick models are type IIA brane configurations of D4-branes

suspended between a NS5-brane that wraps a complex 2-dimensional holomorphic surface

8This bipartite graph is also known in the literature as a dimer model.
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Σ. They can be represented by periodic tessellations of a 3-torus T 3. When a brane tiling

is dimensionally reduced, the resulting brane brick model can be constructed using layers

of the original brane tiling that wrap around an additional S1 cycle parameterized by the

multiplets coming from the dimensional reduction, in particular the adjoint chiral multiplet

parameterizing the C factor of the moduli space [21]. This additional S1 cycle gives rise to

the full T 3 on which the brane brick model is defined.

In order to break supersymmetry down to (0, 2), an abelian orbifold was introduced

in [22] that has the geometric effect of mixing the C factor with the rest of the Calabi-Yau

space. For example, a Z2 orbifold has the effect of doubling the number of gauge groups

in the 2d theory, with adjoint chiral multiplets from the original dimensional reduction

becoming pairs of bifundamental chiral mutliplets. These pairs of bifundamental chiral

multiplets transform in conjugate representations of the two gauge groups that come from

the original single gauge group under the Z2 orbifold. Alternatively, one can introduce a

reflection symmetry in addition to the Z2 orbifold, which has the effect of mapping the

adjoint chiral mutliplets into a pair of bifundamental chiral multiplets transforming in the

same representation rather than in conjugate representations.

The same orbifold reduction (that is, combining dimensonal reduction and orbifolding)

can also be used to obtain 0d N = 1 matrix models from brane brick models. The 0d

N = 1 matrix models one obtains from orbifold reduction are worldvolume theories of

D(−1)-branes at toric Calabi-Yau fivefold singularities. These theories are called “brane

hyper-brick models” [2] and are realized in terms of a type IIB brane configuration of D3-

branes suspended between a NS5-brane wrapping a 3-complex dimensional holomorphic

surface Σ. The brane configuration can be represented in terms of a tessellation of a

4-torus T 4 that originates from a complex coordinate (tropical) projection of Σ. Under

orbifold reduction, these brane hyper-brick models on T 4 can be built from copies of brane

brick models on T 3. The additional S1 cycle is parameterized by pairs of bifundamental

chiral mutliplets that either are in the same or conjugate representations of pairs of distinct

gauge groups originating from the orbifolding. The map due to orbifold reduction from

adjoint multiplets charged under a single gauge group to a pair of bifundamental chiral

multiplets charged under two gauge groups resembles the reduction of the 2d N = (0, 2)

SQCD theory on the sphere in the presence of gauge fluxes, which we briefly discussed in

section 3.3. It would be interesting to understand and derive orbifold reduction towards

brane hyper-brick models corresponding to toric Calabi-Yau fivefolds in terms of sphere

reductions, as we have done for SCQD-type theories in this paper.

4 Discussion

We introduced a convenient way to construct supersymmetric matrix models, also known

as 0d N = 1 “quantum field theories,” by compactification of 2d N = (0, 2) supersymmet-

ric theories on a sphere with the half-topological twist. In this setup, one can naturally

derive quadrality relations among 0d theories from 2d Gadde-Gukov-Putrov triality. To-

gether with the results of [14, 15], this leads to an interesting unification of Seiberg-like

dualities in even dimensions by twisted compactification. Assuming that the topological
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twisting commutes with the RG flow in two dimensions, our results provides a field theory

“derivation” of matrix-model quadrality, which can be understood as a property of a sub-

sector (the zero-instanton sector) of 2d SQCD. In contrast, previous evidence for quadrality

mostly relied on its string theory embedding [1, 2].

It would be interesting to study such twisted compactifications more thoroughly, in a

number of dimensions and with various amounts of supersymmetry. In the present context,

it would be important to study the non-zero gauge flux sectors systematically. It would

also be crucial to actually compute general observables in 0d SQCD. This is essentially a

toy-model for the direct computation of the 2d N = (0, 2) half-BPS observables on the

sphere, which encode rather important chiral algebras — see e.g. [5, 24–26]. We hope for

this note to be a modest step toward that ambitious goal.
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A 2d N = (0, 2) supersymmetry and the half-twist

In this appendix, we review our notation for 2d N = (0, 2) supersymmetric gauge the-

ories [27]. For a thorough discussion of the half-topological twist, we refer to [18] and

references therein. There are three kinds of supermultiplets in 2d N = (0, 2) gauge the-

ories. All component fields are assumed to be complex-valued unless specified otherwise.

The multiplets are:

N = (0, 2) chiral multiplet. Its physical (on-shell) component fields are a boson φ

and a right-moving Fermion ψ+.

Φ = (φ , ψ+) , D+ Φ = 0 , (A.1)

where D+ is a supercovariant derivative.

N = (0, 2) Fermi multiplet. The only physical field is the left-moving fermion λ−,

which is a supersymmetry singlet in the free theory limit, and its charged conjugate. The

off-shell multiplet also contains an auxiliary field G. A deformation of the chirality condi-

tion allows for a coupling to a holomorphic function E(Φ) of chiral superfields:

Λ = (λ− , G) , D+ Λ = E(Φ) . (A.2)
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N = (0, 2) vector multiplet. It contains the real gauge boson vµ, complex gaugini χ−
and a real auxiliary field D while the on-shell degree of freedoms are gaugini:

V = (vµ, χ−, χ̄−, D) . (A.3)

They couple to matter fields minimally through a supersymmetric completion of the gauge-

covariant derivative.

For each Fermi multiplet ΛI , in addition to the holomorphic EI -term mentioned above,

it is possible to introduce another holomorphic term called JI(Φ). The N = (0, 2) super-

symmetry requires that J- and E-terms satisfy an overall constraint:

∑

I

Tr
(
EI(Φ)JI(Φ)

)
= 0 . (A.4)

Integrating out the auxiliary fields Dα, we obtain a familiar looking D-term potential

(and its fermionic partners). For abelian theories, the potential takes the form

VD =
∑

α

(∑

i

Qiα|φi|2 − tα
)2

, (A.5)

where tα are complexified Fayet-Iliopoulos (FI) parameters. Integrating out the auxiliary

fields GI , we obtain what may be called an F -term potential,

VF =
∑

I

Tr
(
|EI(φ)|2 + |JI(φ)|2

)
, (A.6)

as well as Yukawa-like interactions between scalars and pairs of fermions.

Zero-modes on the twisted sphere

For each dynamical degree of freedom in 2d, one can analyze its spectrum and count how

many zero-mode survives after sphere compactification, as follows. The spectrum of scalars

φi in N = (0, 2) chiral multiplet Φi on sphere S2 with magnetic flux n is determined by

the eigenvalue problem:

− 4DzDz̄φ = lnρiφ , lnρi ≥ 0 , (A.7)

where z, z̄ denote the complexified frame indices. The eigenfunctions are known as

monopole spherical harmonics [28]. On the round S2, the spectrum takes the form:

lj(i,k) = j(j + 1)− (nρi − 1)(nρi + 1)

4
, j = j0 , j0 + 1 , · · · , (A.8)

with

j0(nρi) =
|nρi | − 1

2
, nρi = ρi(m)− ri + 1 . (A.9)

It is known that each eigenvalue has multiplicity 2j + 1. The zero-mode appears at j = j0
with multiplicity 2j0 + 1. Those zero-modes, in fact, exist for any metric on the sphere

with flux. They are solutions to the equation:

Dz̄φ = 0 , (A.10)
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where z is a complex coordinate on the sphere. These scalar zero-modes are holomorphic

sections of a line bundle O(nρi − 1) over P1, and it is well known that there are nρi such

modes if and only if nρi > 0.

For the chiral fermions in N = (0, 2) multiplets, the spectrum is not well-defined

by itself (as for any chiral fermion), but the number of zero-modes is again completely

determined by the topology of the line bundles. For right-moving fermions ψ+i inN = (0, 2)

chiral multiplets Φi, we have:

(zero-mode equation for ψ+i)→
{
Dz̄ψ+i = 0 , if nρi ≥ 0 ,

Dzψ+i = 0 , if nρi < 0 .
(A.11)

This leads to (3.31). Similarly, for the left-moving fermions λ−, λ̄− in fermi multiplets with

nρI = ρI(m)− rI , we have:

(zero-mode equation for λ−I)→
{
Dz̄λ−I = 0 if nρI ≥ 0 ,

Dzλ−I = 0 if nρI < 0 ,
(A.12)

which gives us (3.33). This zero-mode counting was previously discussed in [18].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] S. Franco, S. Lee, R.-K. Seong and C. Vafa, Brane brick models in the mirror, JHEP 02

(2017) 106 [arXiv:1609.01723] [INSPIRE].

[2] S. Franco, S. Lee, R.-K. Seong and C. Vafa, Quadrality for supersymmetric matrix models,

JHEP 07 (2017) 053 [arXiv:1612.06859] [INSPIRE].

[3] S. Franco and G. Musiker, Higher cluster categories and QFT dualities, arXiv:1711.01270

[INSPIRE].

[4] C. Closset, J. Guo and E. Sharpe, B-branes and supersymmetric quivers in 2d, JHEP 02

(2018) 051 [arXiv:1711.10195] [INSPIRE].

[5] A. Gadde, S. Gukov and P. Putrov, (0, 2) trialities, JHEP 03 (2014) 076 [arXiv:1310.0818]

[INSPIRE].

[6] V. Niarchos, Seiberg dualities and the 3d/4d connection, JHEP 07 (2012) 075

[arXiv:1205.2086] [INSPIRE].

[7] O. Aharony, S.S. Razamat, N. Seiberg and B. Willett, 3d dualities from 4d dualities, JHEP

07 (2013) 149 [arXiv:1305.3924] [INSPIRE].

[8] O. Aharony, S.S. Razamat, N. Seiberg and B. Willett, 3d dualities from 4d dualities for

orthogonal groups, JHEP 08 (2013) 099 [arXiv:1307.0511] [INSPIRE].

[9] F. Benini, N. Bobev and P.M. Crichigno, Two-dimensional SCFTs from D3-branes, JHEP

07 (2016) 020 [arXiv:1511.09462] [INSPIRE].

– 22 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/JHEP02(2017)106
https://doi.org/10.1007/JHEP02(2017)106
https://arxiv.org/abs/1609.01723
https://inspirehep.net/search?p=find+EPRINT+arXiv:1609.01723
https://doi.org/10.1007/JHEP07(2017)053
https://arxiv.org/abs/1612.06859
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.06859
https://arxiv.org/abs/1711.01270
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.01270
https://doi.org/10.1007/JHEP02(2018)051
https://doi.org/10.1007/JHEP02(2018)051
https://arxiv.org/abs/1711.10195
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.10195
https://doi.org/10.1007/JHEP03(2014)076
https://arxiv.org/abs/1310.0818
https://inspirehep.net/search?p=find+EPRINT+arXiv:1310.0818
https://doi.org/10.1007/JHEP07(2012)075
https://arxiv.org/abs/1205.2086
https://inspirehep.net/search?p=find+EPRINT+arXiv:1205.2086
https://doi.org/10.1007/JHEP07(2013)149
https://doi.org/10.1007/JHEP07(2013)149
https://arxiv.org/abs/1305.3924
https://inspirehep.net/search?p=find+EPRINT+arXiv:1305.3924
https://doi.org/10.1007/JHEP08(2013)099
https://arxiv.org/abs/1307.0511
https://inspirehep.net/search?p=find+EPRINT+arXiv:1307.0511
https://doi.org/10.1007/JHEP07(2016)020
https://doi.org/10.1007/JHEP07(2016)020
https://arxiv.org/abs/1511.09462
https://inspirehep.net/search?p=find+EPRINT+arXiv:1511.09462


J
H
E
P
0
5
(
2
0
1
8
)
0
2
6

[10] C. Hwang and P. Yi, Twisted partition functions and H-saddles, JHEP 06 (2017) 045

[arXiv:1704.08285] [INSPIRE].

[11] O. Aharony, S.S. Razamat and B. Willett, From 3d duality to 2d duality, JHEP 11 (2017)

090 [arXiv:1710.00926] [INSPIRE].

[12] C. Closset and I. Shamir, The N = 1 chiral multiplet on T 2 × S2 and supersymmetric

localization, JHEP 03 (2014) 040 [arXiv:1311.2430] [INSPIRE].

[13] F. Benini and A. Zaffaroni, A topologically twisted index for three-dimensional

supersymmetric theories, JHEP 07 (2015) 127 [arXiv:1504.03698] [INSPIRE].

[14] M. Honda and Y. Yoshida, Supersymmetric index on T 2 × S2 and elliptic genus,

arXiv:1504.04355 [INSPIRE].

[15] A. Gadde, S.S. Razamat and B. Willett, On the reduction of 4d N = 1 theories on S2, JHEP

11 (2015) 163 [arXiv:1506.08795] [INSPIRE].

[16] Y. Tachikawa, unpublished.

[17] F. Benini and N. Bobev, Exact two-dimensional superconformal R-symmetry and

c-extremization, Phys. Rev. Lett. 110 (2013) 061601 [arXiv:1211.4030] [INSPIRE].

[18] C. Closset, W. Gu, B. Jia and E. Sharpe, Localization of twisted N = (0, 2) gauged linear

σ-models in two dimensions, JHEP 03 (2016) 070 [arXiv:1512.08058] [INSPIRE].

[19] N. Bobev and P.M. Crichigno, Universal RG flows across dimensions and holography, JHEP

12 (2017) 065 [arXiv:1708.05052] [INSPIRE].

[20] S. Franco, D. Ghim, S. Lee, R.-K. Seong and D. Yokoyama, 2d (0, 2) quiver gauge theories

and D-branes, JHEP 09 (2015) 072 [arXiv:1506.03818] [INSPIRE].

[21] S. Franco, S. Lee and R.-K. Seong, Brane brick models, toric Calabi-Yau 4-folds and 2d (0, 2)

quivers, JHEP 02 (2016) 047 [arXiv:1510.01744] [INSPIRE].

[22] S. Franco, S. Lee and R.-K. Seong, Orbifold reduction and 2d (0, 2) gauge theories, JHEP 03

(2017) 016 [arXiv:1609.07144] [INSPIRE].

[23] S. Franco, A. Hanany, K.D. Kennaway, D. Vegh and B. Wecht, Brane dimers and quiver

gauge theories, JHEP 01 (2006) 096 [hep-th/0504110] [INSPIRE].

[24] A. Gadde, S. Gukov and P. Putrov, Exact solutions of 2d supersymmetric gauge theories,

arXiv:1404.5314 [INSPIRE].

[25] M. Dedushenko, Chiral algebras in Landau-Ginzburg models, JHEP 03 (2018) 079

[arXiv:1511.04372] [INSPIRE].

[26] M. Dedushenko and S. Gukov, A 2d (0, 2) appetizer, arXiv:1712.07659 [INSPIRE].

[27] E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys. B 403 (1993) 159

[hep-th/9301042] [INSPIRE].

[28] T.T. Wu and C.N. Yang, Dirac monopole without strings: monopole harmonics, Nucl. Phys.

B 107 (1976) 365 [INSPIRE].

– 23 –

https://doi.org/10.1007/JHEP06(2017)045
https://arxiv.org/abs/1704.08285
https://inspirehep.net/search?p=find+EPRINT+arXiv:1704.08285
https://doi.org/10.1007/JHEP11(2017)090
https://doi.org/10.1007/JHEP11(2017)090
https://arxiv.org/abs/1710.00926
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.00926
https://doi.org/10.1007/JHEP03(2014)040
https://arxiv.org/abs/1311.2430
https://inspirehep.net/search?p=find+EPRINT+arXiv:1311.2430
https://doi.org/10.1007/JHEP07(2015)127
https://arxiv.org/abs/1504.03698
https://inspirehep.net/search?p=find+EPRINT+arXiv:1504.03698
https://arxiv.org/abs/1504.04355
https://inspirehep.net/search?p=find+EPRINT+arXiv:1504.04355
https://doi.org/10.1007/JHEP11(2015)163
https://doi.org/10.1007/JHEP11(2015)163
https://arxiv.org/abs/1506.08795
https://inspirehep.net/search?p=find+EPRINT+arXiv:1506.08795
https://doi.org/10.1103/PhysRevLett.110.061601
https://arxiv.org/abs/1211.4030
https://inspirehep.net/search?p=find+EPRINT+arXiv:1211.4030
https://doi.org/10.1007/JHEP03(2016)070
https://arxiv.org/abs/1512.08058
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.08058
https://doi.org/10.1007/JHEP12(2017)065
https://doi.org/10.1007/JHEP12(2017)065
https://arxiv.org/abs/1708.05052
https://inspirehep.net/search?p=find+EPRINT+arXiv:1708.05052
https://doi.org/10.1007/JHEP09(2015)072
https://arxiv.org/abs/1506.03818
https://inspirehep.net/search?p=find+EPRINT+arXiv:1506.03818
https://doi.org/10.1007/JHEP02(2016)047
https://arxiv.org/abs/1510.01744
https://inspirehep.net/search?p=find+EPRINT+arXiv:1510.01744
https://doi.org/10.1007/JHEP03(2017)016
https://doi.org/10.1007/JHEP03(2017)016
https://arxiv.org/abs/1609.07144
https://inspirehep.net/search?p=find+EPRINT+arXiv:1609.07144
https://doi.org/10.1088/1126-6708/2006/01/096
https://arxiv.org/abs/hep-th/0504110
https://inspirehep.net/search?p=find+EPRINT+hep-th/0504110
https://arxiv.org/abs/1404.5314
https://inspirehep.net/search?p=find+EPRINT+arXiv:1404.5314
https://doi.org/10.1007/JHEP03(2018)079
https://arxiv.org/abs/1511.04372
https://inspirehep.net/search?p=find+EPRINT+arXiv:1511.04372
https://arxiv.org/abs/1712.07659
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.07659
https://doi.org/10.1016/0550-3213(93)90033-L
https://arxiv.org/abs/hep-th/9301042
https://inspirehep.net/search?p=find+EPRINT+hep-th/9301042
https://doi.org/10.1016/0550-3213(76)90143-7
https://doi.org/10.1016/0550-3213(76)90143-7
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B107,365%22

	Introduction
	Two-dimensional N=(0,2) SQCD and triality
	Gauged matrix models and sphere compactification
	N=1 supersymmetric matrix models
	0d SQCD and quadrality
	Sphere compactification of 2d SQCD
	Quadrality from triality 
	Comment on the non-zero flux sectors
	Beyond SQCD: a comment on brane hyper-brick models

	Discussion
	2d N=(0,2) supersymmetry and the half-twist

