
ll
OPEN ACCESS
Protocol
Backward simulation for inferring hidden
biomolecular kinetic profiles
Junghun Chae,

Roktaek Lim,

Cheol-Min Ghim,

Pan-Jun Kim

cmghim@unist.ac.kr (C.-

M.G.)

panjunkim@hkbu.edu.hk

(P.-J.K.)

Highlights

Inference of upstream

dynamics with

information on the

downstream profile

Applies to infer

protein synthesis

rates with a given

circadian protein

profile

Widely applicable to

systems biology

models with known

downstream profiles
Our backward simulation (BS) is an approach to infer the dynamics of individual components in

ordinary differential equation (ODE) models, given the information on relatively downstream

components or their sums. Here, we demonstrate the use of BS to infer protein synthesis rates

with a given profile of protein concentrations over time in a circadian system. This protocol can

also be applied to a wide range of problems with undetermined dynamics at the upstream levels.
Chae et al., STAR Protocols 2,

100958

December 17, 2021 ª 2021

The Author(s).

https://doi.org/10.1016/

j.xpro.2021.100958

mailto:cmghim@unist.ac.kr
mailto:panjunkim@hkbu.edu.hk
https://doi.org/10.1016/j.xpro.2021.100958
https://doi.org/10.1016/j.xpro.2021.100958
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xpro.2021.100958&domain=pdf

ll
OPEN ACCESS
Protocol
Backward simulation for inferring hidden biomolecular
kinetic profiles

Junghun Chae,1,7,8 Roktaek Lim,2,7 Cheol-Min Ghim,1,3,* and Pan-Jun Kim2,4,5,6,9,*
1Department of Physics, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea

2Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong

3Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea

4Center for Quantitative Systems Biology & Institute of Computational and Theoretical Studies, Hong Kong Baptist
University, Kowloon, Hong Kong

5State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon, Hong Kong

6Abdus Salam International Centre for Theoretical Physics, 34151 Trieste, Italy

7These authors contributed equally

8Technical contact

9Lead contact

*Correspondence: cmghim@unist.ac.kr (C.-M.G.), panjunkim@hkbu.edu.hk (P.-J.K.)
https://doi.org/10.1016/j.xpro.2021.100958
SUMMARY

Our backward simulation (BS) is an approach to infer the dynamics of individual
components in ordinary differential equation (ODE) models, given the informa-
tion on relatively downstream components or their sums. Here, we demonstrate
the use of BS to infer protein synthesis rates with a given profile of protein con-
centrations over time in a circadian system. This protocol can also be applied to a
wide range of problems with undetermined dynamics at the upstream levels.
For complete details on the use and execution of this protocol, please refer to
Lim et al. (2021).
BEFORE YOU BEGIN

Check whether the backward simulation (BS) is desirable

Timing: 10 min

We have developed the backward simulation (BS) method to discover the ‘‘internal’’ dynamics of the

system described by ordinary differential equations (ODEs) with pre-selected model structure and

parameter values. When the temporal profiles of relatively downstream components or their sums

(but not the profiles of upstream components) are known, BS retrieves the upstream profiles that

exactly reproduce the known downstream profiles, through the straightforward ODE calculation

with the relevant downstream variables. On the other hand, an existing practice is to assume the

plausible forms of these unknown upstream profiles with additional free parameters, and then esti-

mate these parameters to best fit the observed downstream profiles. However, in contrast to the BS,

the latter method incurs the computational costs for that parameter estimation and may not even

necessarily reproduce the correct downstream profiles.

As a prototype application of this method, we here elaborate the case of the circadian protein

degradation model in Lim et al. (2021). Specifically, in contrast to a common practice of simulating

the time-course profile of a circadian protein concentration by its upstream elements such as the

rhythmic synthesis rate of the protein over time, we intended to maintain the total protein concen-

tration profile at the downstream side as it was and simulate the corresponding rate of the protein
STAR Protocols 2, 100958, December 17, 2021 ª 2021 The Author(s).
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1

mailto:cmghim@unist.ac.kr
mailto:panjunkim@hkbu.edu.hk
https://doi.org/10.1016/j.xpro.2021.100958
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xpro.2021.100958&domain=pdf
http://creativecommons.org/licenses/by/4.0/

ll
OPEN ACCESS Protocol
synthesis and other upstream kinetic processes in given parameter conditions (Lim et al., 2021).

There were three main reasons for this simulation: (i) unlike the mRNA profile, the potentially

time-of-day-specific translation rate per mRNA is not commonly known and hence it is difficult to

determine the profile of the protein synthesis rate directly from the existing experimental data. In

contrast, the experimental profile of the total protein levels is readily available for the incorporation

to model simulations. In Lim et al., 2021, given the experimental protein profiles, we performed the

BS over randomly-sampled parameter values, and identified the parameter sets for simulation re-

sults in quantitative agreement with the empirically observed, rhythmic degradation rates of the pro-

teins. (ii) Another reason was that we wanted to dissect the underpinning mechanism of the rhythmic

degradation rate of a circadian protein by rigorously controlling for the effect of the protein profile

over a range of parameter values, while avoiding the confounding effect from the changes in the pro-

tein profile itself caused by the conventional simulation with given profiles of upstream elements

(‘‘forward simulation’’). (iii) Lastly, we considered an evolutionary viewpoint that the protein profile

can be of a more fundamental position than an mRNA or translation-rate profile so that the protein

synthesis rate may have adapted to the protein profile—the protein profile is more likely to influence

a biological phenotype than other elements in the system such as mRNA profile. Overall, we foresee

a variety of applications of the BS, including the cases with data unavailability at upstream sides, the

mechanistic studies with strictly-controlled downstream profiles, and the evolutionary modeling

with fixed downstream profiles.
Install python and python packages

Timing: 10 min

1. Download Python 3.7.4 or a higher version from https://www.python.org. The Python version can

be checked by the following command:
> python3 –version
2. To solve ODE models, the scipy python module is needed. Install scipy package:
> pip install scipy
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Custom codes for model simulation This paper https://git.io/JuAFt

Python 3.7.4 or higher version Python Software Foundation https://www.python.org

SciPy v1.3.1 or higher version Virtanen et al. (2020) https://www.scipy.org
STEP-BY-STEP METHOD DETAILS

BS in general cases

Timing: 1 h for step 1 and 1 h for step 2

In this section, we will describe how to apply the BS to a general system of ODEs where the down-

stream profile is given.
2 STAR Protocols 2, 100958, December 17, 2021

https://www.python.org
https://git.io/JuAFt
https://www.python.org
https://www.scipy.org

ll
OPEN ACCESSProtocol
1. Formulate the dynamics as a set of coupled ODEs.

a. For a dynamical system with n variables ½y1ðtÞ; y2ðtÞ;/; ynðtÞ�h y!ðtÞ and m parameters

½p1ðtÞ;p2ðtÞ;/;pmðtÞ�hp!ðtÞ that can be described by a set of coupled ODEs, we divide the

rate processes into two parts, i.e.,

dyiðtÞ
dt

= Fi

�
p!ðtÞ; y!ðtÞ�+Gi

�
p!ðtÞ; y!ðtÞ; t�; i = 1; 2;/;n; (Equation 1)

where Fi½p!ðtÞ; y!ðtÞ�describes the intermediate or interconversion processes of components satis-

fying
Pn
i =1

Fi½p!ðtÞ; y!ðtÞ� = 0, andGi½p!ðtÞ; y!ðtÞ; t� describes the source/sink-coupled, nonconservative

events responsible for the changes in the total pool of yi(t) (i=1,2,/,n).

b. Summing up the left- and right-hand sides of Equation 1 over i, all the terms responsible for

intermediate processes cancel out, leaving only the source/sink-coupled terms:

d

dt

Xn

i = 1

yiðtÞ =
Xn

i = 1

Gi

�
p!ðtÞ; y!ðtÞ; t�:

c. Take extra care of any fundamental conditions of the variables and terms in the model. For

example, if the variables represent molecular concentrations, they should be nonnegative,

i.e., yi(t)R0 for i=1,2,/,n. Likewise, a nonnegative net influx of component yj(t) from an

external source indicates Gj½p!ðtÞ; y!ðtÞ; t�R0.

2. Transform theODEs to utilize the accessible information on relatively downstream variables in the

ODE model.

a. Introduce an observable time-course variable Y(t) as Y ðtÞhP
i˛A

yiðtÞ where A is the set of com-

ponents whose sum is of an experimentally available quantity or of theoretical interest.

b. For a particular component j selected among the elements of A, we rewrite yj(t) as

yjðtÞ = Y ðtÞ �
X

i˛Ayfjg
yiðtÞ: (Equation 2)

Then, we define y!Y ðtÞ as an alternative form of y!ðtÞ where yj(t) is replaced by the right-hand side of

Equation 2 and rewrite Equation 1 for isj:

dyiðtÞ
dt

= Fi

�
p!ðtÞ; y!Y ðtÞ

�
+Gi

�
p!ðtÞ; y!Y ðtÞ; t

�
; isj: (Equation 3)

c. Combining Equations 2 and 3 for i=j, we obtain

Gj

�
p!ðtÞ; y!Y ðtÞ; t

�
=
dY ðtÞ
dt

�
X

k˛Ayfjg

dykðtÞ
dt

� Fj

�
p!ðtÞ; y!Y ðtÞ

�
: (Equation 4)

The conventional forward simulation numerically solves Equation 1 to obtain y!ðtÞ, given the values

of p!ðtÞ and Gi½p!ðtÞ; y!ðtÞ; t� and the initial condition of y!ðtÞ. On the other hand, our BS numerically

solves Equations 3 and 4 to obtain Gj½p!ðtÞ; y!Y ðtÞ; t� and y!Y ðtÞ, given the values of p!ðtÞ, Y(t), and
Gi½p!ðtÞ; y!Y ðtÞ; t� (isj) and the initial condition of y!Y ðtÞ. In other words, using a downstream observ-

able Y(t), BS traces back the upstream processes such as Gj½p!ðtÞ; y!Y ðtÞ; t�.
d. If the computed Gj½p!ðtÞ; y!Y ðtÞ; t� or y!Y ðtÞ does not satisfy the fundamental conditions

imposed by a modeler, they are treated as infeasible solutions. For example, if yi(t) in

y!Y ðtÞrepresents the concentration of each molecular species i, yi(t) should be non-negative

for all i’s. Depending on cases, the infeasible solutions may indicate the incompatibility of a

simulated parameter set p!ðtÞ to an observed profile of Y(t).
STAR Protocols 2, 100958, December 17, 2021 3

Figure 1. The protein degradation model

There are a total of five types of substrate proteins, defined in Table 2. Substrate proteins (rounded rectangles, sky

blue) are synthesized from mRNA molecules (blue line, top left) in the ribosome (brown, top left) and ubiquitinated by

E3 ubiquitin ligases (orange ovals) with ubiquitins (yellow circles). The ubiquitinated proteins are degraded (gray

ovals) or deubiquitinated by deubiquitinating enzymes (light green hexagon). The total protein concentration is

represented by x(t) with symbol S at the center.

ll
OPEN ACCESS Protocol
Application of BS to a circadian protein degradation model

Timing: 1 h for step 3, 1 h for step 4, 1 h for step 5, and 2 h for step 6

In this section, we will describe how to apply the BS to a circadian protein degradation model in Lim

et al. (2021). Step 3 and 4 show how to modify the set of coupled ODEs of a circadian protein degra-

dation model for the BS. How to write the codes for the BS and how to examine the ODE system are

included in step 5 and 6, respectively.

3. Formulate the dynamics as a set of coupled ODEs.

a. In our circadian protein degradation model in Lim et al. (2021), the time derivatives of the con-

centrations of several forms of a circadian protein are described as follows (Figure 1):

dx0ðtÞ
dt

= gðtÞ � a0uðtÞx0ðtÞ+ a1xE;0ðtÞ+ sxH;ubðtÞ; (Equation 5)
dxE;0ðtÞ
dt

= a0uðtÞx0ðtÞ � a1xE;0ðtÞ � qxE;0ðtÞ; (Equation 6)
dxE;ubðtÞ
dt

= qxE;0ðtÞ+ a0uðtÞx0;ubðtÞ � a2xE;ubðtÞ � r0xE;ubðtÞ; (Equation 7)
dx0;ubðtÞ
dt

= a2xE;ubðtÞ+b1xH;ubðtÞ � b0vðtÞx0;ubðtÞ
�a0uðtÞx0;ubðtÞ � r0x0;ubðtÞ;

(Equation 8)
dxH;ubðtÞ
dt

= b0vðtÞx0;ubðtÞ � b1xH;ubðtÞ � sxH;ubðtÞ � r0xH;ubðtÞ (Equation 9)

with the following two quantities:

uhuðtÞ+ xE;0ðtÞ+ xE;ubðtÞ; (Equation 10)
vh vðtÞ+ xH;ubðtÞ: (Equation 11)
4 STAR Protocols 2, 100958, December 17, 2021

ll
OPEN ACCESSProtocol
The variables and rate parameters in Equations 5, 6, 7, 8, 9, 10, and 11 are defined in Tables 1 and 2.

b. As a sanity check, sum up Equations 5, 6, 7, 8, and 9 and obtain the time derivative of the total

protein concentration:

d

dt
½x0ðtÞ+ xE;0ðtÞ+ xE;ubðtÞ+ x0;ubðtÞ+ xH;ubðtÞ�
=gðtÞ � r0½xE;ubðtÞ+ x0;ubðtÞ+ xH;ubðtÞ�:

(Equation 12)

This result makes sense because g(t) represents the ultimate source of protein production and the

variables with a common coefficient r0 are the concentrations of ubiquitinated proteins destined

for degradation.

c. Let x(t) denote the total protein concentration:

xðtÞh x0ðtÞ+ xE;0ðtÞ+ xE;ubðtÞ+ x0;ubðtÞ+ xH;ubðtÞ: (Equation 13)

Equation 12 is rewritten as

dxðtÞ
dt

= gðtÞ � rðtÞxðtÞ; (Equation 14)

where r(t) is the protein degradation rate given by

rðtÞhr0½xE;ubðtÞ + x0;ubðtÞ + xH;ubðtÞ�
�
xðtÞ: (Equation 15)

d. Be cautious about the implicit physical or biological constraints on the variables and param-

eters. In the example of our model, all the molecular concentrations should be nonnegative.

That is,

x0ðtÞR0; xE;0ðtÞR0; xE;ubðtÞR0; x0;ubðtÞR0; xH;ubðtÞR0;
uðtÞR0; vðtÞR0:

(Equation 16)

Additionally, because the protein synthesis rate cannot be negative, the following inequality should

be satisfied:

gðtÞR0: (Equation 17)

4. Transform the ODEs to utilize the experimentally available information on relatively downstream

variables in the ODE model.

a. In the example of our model, the experimentally available data were the total concentration

x(t) of a protein rather than those of the individual sub-forms of the protein or the protein syn-

thesis rate at the upstream level. Although the experimental data usually represent the rela-

tive, but not absolute, molecular concentrations, the use of the relative concentration for

x(t) in our model only changes the ‘‘unit’’ of concentrations without loss of generality. On

the other hand, if multiple datasets of their own relative levels are incorporated into the model

variables of the same dimensional quantities, the appropriate proportionality coefficients or

conversion factors should be introduced for the sake of a unified scale.

b. Plug the following relation (from Equation 13) in Equations 5 and 6:

x0ðtÞ = xðtÞ � ½xE;0ðtÞ + xE;ubðtÞ + x0;ubðtÞ + xH;ubðtÞ�: (Equation 18)

c. g(t) in Equation 5 is rewritten as

gðtÞ = dx0ðtÞ
dt

+ a0uðtÞx0ðtÞ � a1xE;0ðtÞ � sxH;ubðtÞ; (Equation 19)

where x0(t) is replaced by the right-hand side in Equation 18. We are now ready for the BS of our

model, using Equations 6, 7, 8, 9, 10, 11, 18, and 19. Note that, in usual practice, x(t) and other
STAR Protocols 2, 100958, December 17, 2021 5

Figure 2. Examining the behaviors of the protein degradation model

(A) The example, total protein concentration profile used for BS.

(B and C) Simulated g(t) (B) and r(t) (C) with different initial conditions. Given the protein profile in (A), the simulated

g(t) or r(t) rapidly converges at the same trajectory, regardless of its initial conditions.

(D) The example output of the code ‘‘check_physical_constraints.py’’ to check the feasibility of the BS solution. If the

solution does not satisfy its fundamental conditions, the code returns the message in (D).

(E and F) Simulated profiles of protein sub-states: x0(t) (purple), xE,0(t) (yellow), xE,ub(t) (gray), x0,ub(t) (blue), and xH,ub(t)

(red). When v is set to zero, xH,ub(t) becomes zero (E). When a0, b0, u, and v are set as relatively high and a2 and b1 are

set as relatively low, x0,ub(t) becomes almost zero (F).

ll
OPEN ACCESS Protocol
variables are simulated using the profile of g(t); in our BS, g(t) and other variables are reversely simu-

lated using the profile of x(t), through Equations 6, 7, 8, 9, 10, 11, 18, and 19.

5. Write the codes for simulation.

a. Import Python modules (scipy).

b. Read the time-course data of the total protein abundance. If the data do not span more than a

single circadian period, expand them by the repetition of the data points to multiple circadian

periods. This step is necessary if one wants to simulate the long-term asymptotic behavior of

our circadian model, as will be explained later.

c. Interpolate the data points of the total protein abundance. This step is necessary for the con-

struction of a continuous trajectory of x(t) for our model simulation, given the discrete nature of

time points with available data.
6

i. Import interp1d module from scipy.interpolate.

ii. Implement a cubic interpolation by setting the option ‘‘kind = ‘cubic’’’. The result is an

interpolated curve of x(t), as exemplified by Figure 2A.

iii. Build a Python function that uses time, an array of concentrations, an array of kinetic param-

eters, an interpolated curve of x(t) as input, and returns an array of the model variables and

their time derivatives in Equations 6, 7, 8, 9, 10, 11, 18, and 19 as output.

d. Solve the ODEs with scipy.solve_ivp module.
STAR Protocols 2, 100958, December 17, 2021

Table 1. Parameters in the protein degradation model

Parameter Meaning

a0 Rate of ubiquitin ligase binding to a substrate protein.

a1 Dissociation rate of a ubiquitin ligase and a not-ubiquitinated protein.

a2 Dissociation rate of a ubiquitin ligase and a ubiquitinated protein.

b0 Rate of deubiquitinating enzyme binding to a ubiquitinated protein.

b1 Dissociation rate of a deubiquitinating enzyme and a ubiquitinated
protein.

q Ubiquitination rate of a protein binding to a ubiquitin ligase.

s Deubiquitination rate of a protein binding to a deubiquitinating
enzyme, lumped with its subsequent dissociation from the
deubiquitinating enzyme.

r0 Degradation rate of a ubiquitinated protein.

u Total ubiquitin ligase concentration.

v Total deubiquitinating enzyme concentration.

Table

Variabl

t

x0(t)

xE,0(t)

xE,ub(t)

x0,ub(t)

xH,ub(t)

g(t)

u(t)

v(t)

ll
OPEN ACCESSProtocol
i. Import solve_ivp module from scipy.integrate.

ii. Set the parameters ‘‘fun’’, ‘‘t_span’’, ‘‘t_eval’’, and ‘‘y0’’. Here, ‘‘fun’’ is a Python function of

which input is ‘t’ (time) and ‘y’ (an array of the values of variables) and output is an array of

the time derivatives of the variables. ‘‘t_span’’ is a tuple containing two time points that

indicate the beginning and end of the simulation. ‘‘t_eval’’ is an array of time points at

which to store the computed solutions. ‘‘y0’’ is an array of the initial states of the variables.

iii. When solving the system of ODEs numerically, we must take the following into consider-

ation:(1) Selection of time step: When selecting the maximum time step for the simulation,

it should be much smaller than the time scale of dynamics. For the circadian proteins, the

time scale is�24 h. Therefore, it is safe to select the maximum time step much smaller than

an hour. Moreover, checking whether the solution does not noticeably change with smaller

time steps will assure the selection of an adequate time step. In the scipy.solve_ivp mod-

ule, changing the ‘‘max_step’’ option would modify the maximum time step to solve the

ODEs.(2) Stiffness of the problem: If the ODEs contain stiff terms, the Runge-Kutta method

is not recommended. In this case, ‘‘LSODA’’, ‘‘BDF’’, or ‘‘Radau’’ methods are recommen-

ded. The method to solve the ODEs can be changed by setting the ‘‘method’’ option in the

scipy.solve_ivp module.(3) Numerical error tolerance: When solving the system of ODEs,

estimated errors can be controlled. ‘‘atol’’ and ‘‘rtol’’ options in the scipy.solve_ivp module

can be used to control absolute and relative errors respectively.
2. Variables in the protein degradation model

e Meaning

Time.

Concentration of a free protein without ubiquitination.

Concentration of a not-ubiquitinated protein that is binding to a
ubiquitin ligase.

Concentration of a ubiquitinated protein that is binding to a ubiquitin
ligase.

Concentration of a ubiquitinated protein that is not binding to a
ubiquitin ligase.

Concentration of a ubiquitinated protein that is binding to a
deubiquitinating enzyme.

Protein synthesis rate.

Concentration of a free ubiquitin ligase.

Concentration of a free deubiquitinating enzyme.
6. Test the behaviors of the ODE model.
STAR Protocols 2, 100958, December 17, 2021 7

>

>

>

>

ll
OPEN ACCESS

8

Protocol
a. Check whether the model output is not too sensitive to the initial conditions, given the profile

of the observable (e.g., x(t) in our case) and the parameter values. This step is to determine

whether the simulation outcome is essentially unique or not, regardless of particular initial

conditions. One method is to randomly sample the initial conditions of each variable within

a physiologically-relevant range and then check whether the simulation outcomes converge

at similar trajectories. In the case of our model, the code in the following command allows

the test of this initial condition dependency:
python check_initial_conditions_sensitivity.py
The execution of the code gives the graphs of each variable as the functions of time with

different initial conditions. Figures 2B and 2C demonstrate that g(t) and r(t) in our model

converge well respectively, regardless of their initial conditions when x(t) (Figure 2A) and

parameter values are assigned for the simulation.

b. Determine the minimum simulation length to approach the asymptotic solutions of the ODE

model. By running the simulation for a long enough time, i.e., setting the large values for

‘t_span’ and ‘t_eval’ options, check when the ODE solutions exhibit saturated and sustained

oscillations in our case. If the simulation does not result in the stable oscillations, try longer

simulation lengths. Identify the minimum simulation length to ensure the stable oscillations.

The code in the following command allows this test:
python check_long_time.py
Executing the code gives the graphs of each variable over a long time. Through these graphs,

one can determine the minimum simulation length.

c. Check whether the ODE solutions satisfy all the physical and biological constraints and thus

can be considered as feasible solutions. SomeODE solutionsmay not satisfy these constraints,

particularly in the case of BS. The reason is that BS does not run in a natural causal direction

from upstream to downstream levels, but traces back the upstream states without the pros-

pect of their compatibility with the parameter values. In other words, only the parameter

values with the feasible solutions of BS are compatible with the downstream observable,

and hence BS can identify those sensible parameter values. In the example of our model,

the solutions should satisfy all the constraints in Equations 16 and 17. The code in the following

command allows this feasibility test of the model solutions:
python check_physical_constraints.py
The code verifies whether the constraints in Equations 16 and 17 are satisfied or not (Fig-

ure 2D).

d. Debug the code of the ODE model. By simulating different parameter values, one can check

the potential bugs in the code. In the example of our model, if v is set to 0, xH,ub(t) should be

zero. In Equation 8, if a0u(t) and b0v(t) are much higher than a2 and b1 by setting a0, b0, u, and v

as relatively high and setting a2 and b1 as relatively low, then x0,ub(t) should become very small

(Figures 2E and 2F). The code in the following command allows these bug tests:
python check_debugging.py
Executing this code gives the parameter conditions and the graphs of the relevant simulation

results.
Sampling of parameter values

Timing: 1 h to several days (depending on the size of parameter dimension)
STAR Protocols 2, 100958, December 17, 2021

ll
OPEN ACCESSProtocol
In this section, we will describe how to sample a large number of parameter values with multiple CPU

cores. Utilizing parallel computing would save much of the simulation time.

7. Generate multiple parameter values and run the BS with these parameter values.

a. If the number of the parameter values is too large, the Python modules ‘‘multiprocessing’’ and

‘‘mpi4py’’ can save much of the simulation time.
> im

> pa

> po

> po

> fr

> co

> nu

> ra

> si

> si

> wh

> .

> s
i. How to use ‘‘multiprocessing’’ module: construct the wrapping module that only takes ‘‘pa-

rameter_sets’’. The ‘‘parameter_sets’’ is a list of N parameter sets, and the wrapper is a

wrapping module that takes a single parameter set as input. Parallel computing with a num-

ber of CPU cores can be implemented using these modules.
port multiprocessing as mp

rameter_sets = [parameter_set_1, ., parameter_set_N]

ol = mp.Pool(Number_of_CPU_cores)

ol.map(wrapper, parameter_sets)
ii. How to use ‘‘mpi4py’’ module: ‘‘mpi4py’’ module allows the model simulation with each

node. An example is shown below.
om mpi4py import MPI

mm = MPI.COMM_WORLD

m_processor = comm.Get_size()

nk = comm.Get_rank()

mulation_done_by_one = 0

mulation_target_by_one = N

ile(simulation_done_by_one < simulation_target_by_one):

imulation_done_by_one += 1
Here, N is the target number of the simulations in one node.

Note: In both the cases i and ii above, be careful when writing a file. If two different nodes ac-

cess the same file, this file may not be readable at the end.
EXPECTED OUTCOMES

The BS method allows us to identify the valid parameter sets for experimentally available down-

stream data and to inspect the internal dynamics of the system with the fixed profiles of particular

components. The latter would be useful for rigorous mechanistic inspection of a dynamical system.

For example, we controlled for the protein profile x(t) in Lim et al. (2021) and found that the degra-

dation rate r(t) tends to be more rhythmic with a lower level of a ubiquitin ligase u. In addition, we

identified a definite lower bound of u for the establishment of a given profile of x(t) itself, along

with other interesting phenomena. Without the help of the BS, these clear conclusions may not

be drawn, because in the conventional simulation with a fixed profile of the protein synthesis rate

g(t), the change of u modifies the oscillatory form of x(t) itself and thus does not clearly separate

the effect of u from that of the x(t) profile on the generation of rhythmic r(t) (Lim et al., 2021).
STAR Protocols 2, 100958, December 17, 2021 9

ll
OPEN ACCESS Protocol
LIMITATIONS

Our BS method is based on ODE models, and its applications beyond ODE models are not yet

straightforward. In addition, it should be noticed that BS does not aim to infer unknown parameter

values; rather, it infers the upstream dynamics with given parameter values, and thereby identifies

the parameter values with feasible upstream states, compatible with the downstream observables.

If the BS is implemented with randomly-sampled parameters, the large number of parameter sets

may need to be sampled as the dimension of the parameter space increases (dN parameter sets,

where N is the number of parameters in the model and d is the number of different values sampled

for each parameter). Obviously, this massive parameter sampling can be computationally

demanding.

TROUBLESHOOTING

Problem 1

When solving anODEmodel with the scipy.solve_ivpmodule, the computation timemay sometimes

be very long (step 6 of section ‘‘application of BS to a circadian protein degradation model’’).

Potential solution

When the interpolated curve of the experimental profile is smooth enough, the option ‘‘method =

‘‘RK45’’’’ and ‘‘method = ‘‘LSODA’’’’ will not take much different computational times. However, if

the interpolated curve is not smooth enough, ‘‘method = ‘‘RK45’’’’ will take longer computational

time. Therefore, in this case, we recommend the use of ‘‘method = ‘‘LSODA’’’’ for shorter computa-

tional time.

Problem 2

If the profile of x(t) in our model is too noisy, most BS results will not give the feasible solutions of the

upstream states. These noisy patterns are likely to come from very high temporal resolution of the

experimental data. For example, the PER2 profile for our BS in Lim et al. (2021) was obtained

from the data of Zhou et al. (2015) with 6-min resolution. (step 2.a of section ‘‘BS in general cases’’

and step 4.a of section ‘‘application of BS to a circadian protein degradation model’’).

Potential solution

Time window averaging or other denoising techniques can be applied to the noisy profile. However,

be cautious of the possibility that such smoothening may distort the original patterns in the profile.

Problem 3

The ODE solutions are not sometimes accurate enough (step 5.d.iii and step 6 of section ‘‘applica-

tion of BS to a circadian protein degradation model’’).

Potential solution

There is an option in scipy.solve_ivp to control the error-tolerance level in numerical integration of

ODEs. By adjusting the options ‘atol’ and ‘rtol’, one can manage the absolute and relative levels of

the tolerance to the numerical errors, respectively. However, too small ‘atol’ and ‘rtol’ values can

considerably slow down the computation.

Problem 4

When simulating excessively many parameter sets, it is difficult to manually determine whether ODE

solutions have reached their attractors or not within the simulation time (step 7 of section ‘‘sampling

of parameter values’’).

Potential solution

Some parameter sets may take long computation time towards the asymptotic states of the model

outcome. In the case of our model, if the peak values of the oscillating variables decrease or increase
10 STAR Protocols 2, 100958, December 17, 2021

ll
OPEN ACCESSProtocol
with more than some fold change in the past two circadian periods, these variables may not be

considered to reach the stable oscillatory states at that time.

Problem 5

When solving the system of ODEs with the scipy.solve_ivp module, the solution includes time points

assigned in the ‘‘t_eval’’ argument. However, a continuous time series of the solution might be

needed in some cases (step 5.d of section ‘‘application of BS to a circadian protein degradation

model’’).

Potential solution

If an option in the solve_ivpmodule, ‘‘dense_output’’ is set to ‘‘True’’, it will return a class instance for

the ODE solution at a given time point. However, this option might increase the computation time

for the solution especially when the solution involves a long time series. Alternatively, the use of

small time steps for the ‘‘t_eval’’ option and the interpolation of the solution over the last one or

two time periods only would save the computation time.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be ful-

filled by the lead contact, Pan-Jun Kim (panjunkim@hkbu.edu.hk).

Materials availability

This study did not generate any unique reagents.

Data and code availability

This study did not generate new experimental data.

Source codes for our model simulation have been deposited to public repository GitHub, and the

link is provided in the key resources table.

ACKNOWLEDGMENTS

This work was supported by Hong Kong Baptist University, Research Committee, Start-up Grant for

New Academics (R.L. and P.-J.K.) and the National Research Foundation of Korea Grants NRF-

2020R1A4A1019140 and NRF-2020R1F1A1075942 funded by the Ministry of Science and ICT

(J.C. and C.-M.G). This work was partially conducted with the resources of the High Performance

Cluster Computing Centre, Hong Kong Baptist University, which receives funding from Research

Grant Council, University Grant Committee of the HKSAR and Hong Kong Baptist University. We

also acknowledge the support of the UNIST Supercomputing Center for the computing resources.

AUTHOR CONTRIBUTIONS

C.-M.G. and P.-J.K. supervised the research. J.C., R.L., C.-M.G., and P.-J.K. designed the research.

J.C. and R.L. performed the research. J.C., R.L., C.-M.G., and P.-J.K. wrote the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.
REFERENCES
Lim, R., Chae, J., Somers, D.E., Ghim, C.-M., and
Kim, P.-J. (2021). Cost-effective circadian
mechanism: rhythmic degradation of circadian
proteins spontaneously emerges without rhythmic
post-translational regulation. iScience 24, 102726.
Virtanen, P.,Gommers,R.,Oliphant, T.E.,Haberland,
M., Reddy, T., Cournapeau, D., Burovski, E.,
Peterson, P., Weckesser, W., Bright, J., et al. (2020).
SciPy 1.0: fundamental algorithms for scientific
computing in Python. Nat. Methods 17, 261–272.
STA
Zhou, M., Kim, J.K., Eng, G.W., Forger, D.B.,
and Virshup, D.M. (2015). A Period2
phosphoswitch regulates and temperature
compensates circadian period. Mol. Cell 60,
77–88.
R Protocols 2, 100958, December 17, 2021 11

mailto:panjunkim@hkbu.edu.hk
http://refhub.elsevier.com/S2666-1667(21)00664-X/sref1
http://refhub.elsevier.com/S2666-1667(21)00664-X/sref1
http://refhub.elsevier.com/S2666-1667(21)00664-X/sref1
http://refhub.elsevier.com/S2666-1667(21)00664-X/sref1
http://refhub.elsevier.com/S2666-1667(21)00664-X/sref1
http://refhub.elsevier.com/S2666-1667(21)00664-X/sref2
http://refhub.elsevier.com/S2666-1667(21)00664-X/sref2
http://refhub.elsevier.com/S2666-1667(21)00664-X/sref2
http://refhub.elsevier.com/S2666-1667(21)00664-X/sref2
http://refhub.elsevier.com/S2666-1667(21)00664-X/sref2
http://refhub.elsevier.com/S2666-1667(21)00664-X/sref3
http://refhub.elsevier.com/S2666-1667(21)00664-X/sref3
http://refhub.elsevier.com/S2666-1667(21)00664-X/sref3
http://refhub.elsevier.com/S2666-1667(21)00664-X/sref3
http://refhub.elsevier.com/S2666-1667(21)00664-X/sref3

	XPRO100958_proof_v2i4.pdf
	Backward simulation for inferring hidden biomolecular kinetic profiles
	Before you begin
	Check whether the backward simulation (BS) is desirable
	Install python and python packages

	Key resources table
	Step-by-step method details
	BS in general cases
	Application of BS to a circadian protein degradation model
	Sampling of parameter values

	Expected outcomes
	Limitations
	Troubleshooting
	Problem 1
	Potential solution
	Problem 2
	Potential solution
	Problem 3
	Potential solution
	Problem 4
	Potential solution
	Problem 5
	Potential solution

	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Acknowledgments
	Author contributions
	Declaration of interests
	References

