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a b s t r a c t 

In-plane anisotropy (IPA) due to asymmetry in lattice structures provides an additional parameter for the precise 

tuning of characteristic polarization-dependent properties in two-dimensional (2D) materials, but the narrow 

range within which such method can modulate properties hinders significant development of related devices. 

Herein we present a novel periodic phase engineering strategy that can remarkably enhance the intrinsic IPA ob- 

tainable from minor variations in asymmetric structures. By introducing alternant monoclinic and rutile phases in 

2D VO 2 single crystals through the regulation of interfacial thermal strain, the IPA in electrical conductivity can 

be reversibly modulated in a range spanning two orders of magnitude, reaching an unprecedented IPA of 113. 

Such an intriguing local phase engineering in 2D materials can be well depicted and predicted by a theoretical 

model consisting of phase transformation, thermal expansion, and friction force at the interface, creating a frame- 

work applicable to other 2D materials. Ultimately, the considerable adjustability and reversibility of the presented 

strategy provide opportunities for future polarization-dependent photoelectric and optoelectronic devices. 
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. Introduction 

Anisotropy is a widely observed phenomenon in crystalline mate-

ials, in which the intrinsic structural asymmetry offers distinct and

olarization-dependent responses of optical [1] , electrical [2] , thermal

3] , and magnetic [4] properties. Such structurally tuned materials pro-

ide an additional degree of freedom for the modulation of physical

nd chemical properties. In-plane anisotropy (IPA), first proposed in

D black phosphorus (BP) [ 5 , 6 ], has increasingly gained traction, with

urther expansion of its applications to 2D materials. A variety of in-

lane polarization-dependent materials have been used in, for example,

hotodetectors [ 7 , 8 ], synaptic transistor [9] , digital inverters [10] , and

on-volatile memories [11] . The structural asymmetry (e.g., orthorhom-

ic, monoclinic, and triclinic crystal systems), however, elicits a weak

ntrinsic IPA of about 10 0 to 10 1 , thus obscuring reliable detection of

olarization-dependent signals. 
∗ Corresponding authors. 

E-mail addresses: f.ding@unist.ac.kr (F. Ding), ganlinust@hust.edu.cn (L. Gan), zh
1 These authors contributed equally to this work. 

ttps://doi.org/10.1016/j.fmre.2021.11.020 

667-3258/© 2021 The Authors. Publishing Services by Elsevier B.V. on behalf of Ke

icense ( http://creativecommons.org/licenses/by/4.0/ ) 
The high anisotropy in materials remains a primary concern and

as been attempted to be controlled through local structure modulation

12–15] , alloy/doping [ 16 , 17 ], strain engineering [18–20] , and exter-

al field [21–23] . Among these methods, the main source of anisotropy

s still the intrinsic asymmetry of structure, which however is hardly al-

ered and therefore provides restricted enhancement of IPA modulation.

his raises questions about whether existing approaches can overcome

he limitation and thereby improve the IPA modulation in 2D materials.

Here we demonstrated a novel periodic phase engineering strategy

o enhance the IPA in 2D VO 2 single crystals by introducing alternant

onoclinic (M, insulating) and rutile (R, metallic) phases under tunable

nterfacial thermal strain. 2D VO 2 single-crystalline nanoflakes were

rown on the mica substrate by chemical vapor deposition (CVD), in

hich two alternating monoclinic phases, M 1 and M 2 , were formed in

O 2 single crystals by the interfacial thermal strain on the mica sub-

trate. This alternant M 1 /M 2 pattern can further reversibly evolve into
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he R/M 2 pattern by modulating the interfacial thermal strain, which

an be precisely depicted and predicted by a general theoretical model.

n this basis, we demonstrated in VO 2 nanoflakes a striking modulation

f electrical IPA over a wide range that spans two orders of magnitude,

eaching an unprecedented IPA of 113. This periodic phase engineer-

ng therefore gains new insight on the full potential of IPA for future

pplications. 

. Material and methods 

.1. Synthesis of VO 2 nanoflakes 

VO 2 nanoflakes were synthesized by the chemical vapor deposition

ethod, in which 15 mg V 2 O 5 powder was mixed with 5 mg NaCl pow-

er to accelerate evaporation and was used as the source altogether.

luorophlogopite mica KMg 3 (AlSi 3 O 10 )F 2 was used as the substrate in

he deposition at 780 °C under the protection of 50 sccm high-purity

rgon. After about 30 minutes of deposition, VO 2 nanoflakes were ob-

erved to have grown on the mica substrate. 

.2. Transfer of VO 2 nanoflakes 

The mica substrate with samples on its surface was first covered by

 thin layer of PMMA (poly(methyl methacrylate)) through spin coating

4000 rpm, 60s) and then heated on a hot plate at 150 °C for 5 min-

tes. A thin layer of PPC (Poly (propylene carbonate), v.15% in v. 85%

nisole) was subsequently coated over the PMMA coating and heated

t 95 °C for another 5 minutes. Finally, the whole substrate was sub-

erged in DI water for 30 minutes before the VO 2 samples were embed-

ed in the polymer coating layer and exfoliated from the mica substrate.

ll nanodevices in this study were directly fabricated on the mica sub-

trate without transfer operation to retain the phase pattern in the VO 2 

anoflakes. 

.3. Characterization and simulation of VO 2 nanoflakes 

Optical images of the sample were taken by Olympus optical mi-

roscopy (BX51). Raman spectra were collected by WITec confocal Ra-

an system (Alphas 300 RAS) under a 532 nm laser. A laser power

ensity of 0.5 mW was used for usual tests, but the power was increased

or phase transition tests. Varied-temperature Raman measurement was

onducted in an Oxford cryostat (Microstat HiRes 2). All nanodevices

ere fabricated by the E-beam lithography system (FEI Quanta 650

EM, equipped with the Raith Elphy Plus pattern processor) and mea-

ured in a Lakeshore cryogenic probe station (CRX-6.5K) with a Keith-

ey semiconductor parameter analyzer (B1500A). The wrinkles in VO 2 

anoflake were simulated by a 3D finite element model using the com-

ercial software ABAQUS. Related parameters extracted from experi-

ental results can be found in the theoretical section of the Supporting

nformation. 

. Results and discussions 

.1. Identification of phases in VO 2 nanoflakes 

VO 2 nanoflakes were grown on a fluorophlogopite mica substrate

y the CVD method and developed an obvious piano keyboard-like al-

ernating pattern of bright and dark stripes, which were perpendicular

o the long axis of the sample at room temperature (Fig. S1). This in-

riguing phenomenon has not been observed in previous works since

imilar patterns in strained VO 2 nanowires were reported only at ele-

ated temperatures [ 24 , 25 ]. A typical VO 2 nanoflake shown in Fig. 1 a

ad a thickness of about 30 nm as measured by an atomic force micro-

cope (AFM, Fig. 1 b). Interestingly, periodic wrinkle arrays formed in

he dark stripes, but both the stripes and the wrinkles disappeared after

ample transfer or did not form in thick samples (Fig. S1-S3). Since this
457 
eature was caused by the interfacial stress between VO 2 and the mica

ubstrate, the stress would definitely dissipate after sample exfoliation.

n the other hand, wrinkles failed to form in thick samples because the

equired bending energy exceeded the strain energy that served as the

riving force of wrinkle formation (See theoretical section of this pa-

er for further discussion). The Raman spectrum of each bright (a) and

ark (b) stripe that developed on the sample detected two types of the

onoclinic phase, M 1 and M 2 , respectively (Table S 1 ). In contrast, a

niform Raman signal from the M 1 phase alone was detected from the

hick sample (Fig. S4). To further investigate the observed phenomenon,

he Raman spectra of the M 1 , M 2 , and R phases were aligned and labeled

ith the corresponding unit cells ( Fig. 1 c). First, the R phase belongs to

he p4 2 /mnm (#136) space group, where each V 

4 + ion is surrounded

y six O 

2 − ions to form a slightly distorted octahedral VO 6 unit with

niform V-V bond lengths [26] . As mentioned above, the R phase is

etallic and thus shows no obvious signal of Raman scattering [27] .

econd, the M 1 phase is the most reported insulating phase and belongs

o the p2 1 /c (#14) space group. The V-V bonds in the M 1 phase have

wo unequal lengths as the dimerization of the V atoms leads to a slight

eviation from the c axis [26] . Although the Raman spectrum of the

 1 phase contains many peaks, we focused only on the three strongest

eaks at ∼ 192 ( ɷ v1 ), 224 ( ɷ v2 ) and 612 cm 

− 1 ( ɷ o ) [28] . Third, the

 2 phase, which belongs to the C2/m (#12) space group, may emerge

rom either the R or the M1 phase under tensile stress along [001] R or

100] M1 [29] ( b M2 // a M1 // c R ). Like the M 1 phase, there are two V-V

ond types in the M 2 phase, but the dimerization of V occurs directly

o the c axis without deviation. While the Raman spectrum of the M 2 

hase shares similar peaks with the M 1 phase, a tiny blue shift at the

ibrational modes of ɷ v1 and ɷ v2 and a large blue shift (from 612 to

50 cm 

− 1 ) at the vibrational mode of ɷ o were both noticed [29] . The

eliability of identifying the M 2 phase from the Raman spectrum was

lso verified from the bent VO 2 sample (Fig. S5), in which the M 2 phase

ormed under tension [ 30 , 31 ]. To verify the distribution of the M 1 /M 2 

hase in VO 2 , a mapping of the sample was performed using peaks 612

m 

− 1 and 650 cm 

− 1 ( Fig. 1 d,e), showing that the alternating pattern

xactly matched the optical image in Fig.1a. 

.2. Periodic phase engineering in VO 2 nanoflakes 

Metal-insulator transition in VO 2 could be easily triggered by ther-

al treatment, but how the M 1 /M 2 pattern evolves with thermal treat-

ent is an intriguing subject for study. Here we in-situ monitored the

volution of the Raman spectra of the M 1 and the M 2 phases between

00 K and 400 K. As shown in the optical images in Fig. 2 a, the M 1 /M 2 

attern in the 30-nm VO 2 nanoflake displayed a reversed brightness

ontrast as the sample was heated up from 300 to 400 K (more images

n Fig. S6), that is, the M 2 stripes changed from dark to bright and the

 1 -stripes from bright to dark. Combined with the Raman spectra in

ig. 2 b,c, the M 1 stripes exhibited a significant decrease of Raman inten-

ity from 325 K and completely transformed into the R phase (without

aman signal) between 335 and 340 K (See infrared reflection mapping

n Fig. S7), concurring with the bulk result [32] . On the contrary, the Ra-

an signal of the M 2 phase was consistent throughout the temperature

ange of study, except for the attenuation of intensity at higher tem-

eratures, which could be attributed to the shrinking of the M 2 phase

r the temperature effect on Raman [33] . In this case, it is worth not-

ng that the orientation and location of the R phase conversion were

estricted within the M 1 stripes throughout the temperature range, ex-

ept at higher temperatures in which the M 2 stripes also developed into

he R phase. For comparison, we performed the same operation on a

hick sample ( > 100 nm). The R phase, consistent with the trend of the

 1 stripes, emerged beginning from 325 K although randomly over the

ample area and then covered the whole sample at 360 K (Fig. S8). Cool-

ng both samples illustrated the reversibility of phase transition albeit

gain in a disordered manner in the thick sample. On the other hand,

egardless of heating or cooling, the phase in the thin sample exhibited
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Fig. 1. Optical characterization of thin VO 2 nanoflakes with M 1 and M 2 phase. (a) Optical microscope image of as-synthesized VO 2 thin nanoflakes on the mica 

substrate. (b) AFM image and the corresponding height profile. (c) Raman spectra acquired from different positions in (a) and crystal structures of R, M 1 , and M 2 

phases. (d, e) Raman mapping images of 612 cm 

− 1 (M 1 ) and 650 cm 

− 1 (M 2 ) vibrational modes in (a), respectively. The Raman spectra and mapping were measured 

by a 633 nm laser at 0.5 mW. 

Fig. 2. Varied-temperature Raman of the thin VO 2 nanoflake on mica. (a) Optical microscope images of the thin VO 2 nanoflake under different temperatures. 

(b, c) Raman spectra in-situ acquired from the bright (M 1 phase, red point) and the dark (M 2 phase, blue point) stripes in (a) under different temperatures. 
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 high consistency and thus a favorable predictability in terms of orien-

ation and location (Fig. S9). This fascinating real-time phase transition

rocess was captured in Video S1. As for the thin sample exfoliated from

he mica substrate, the phase transition behavior was similar to that of

he thick sample (Fig. S10), suggesting the key role of interfacial stress.

aser could also trigger a phase transition behavior identical to the effect

f heat as demonstrated by both (a) the transformation of the M 1 stripes

o the R phase starting from a laser power intensity of 1.5 mW (633 nm)

nd (b) the resistance against phase transition of the M 2 stripes until a

ower intensity of 2.5 mW (Fig. S11) 
458 
.3. Theoretical model for periodic phase engineering 

Both analytical model and finite element method (FEM) simulation

ere employed to unveil the formation mechanism of the stripes and

he wrinkles. Here we carried out the simulation only on the cooling

rocess (1050 to 300 K) because the heating process is an equivalent but

eversed process as elaborated above. The phase transition during the

ooling process, which followed the simple model shown in Fig. 3 a, can

e separated into two stages according to our experimental data, the R-

 2 transition (from 440 to 340 K) and the R-M 1 /M 2 -M 1 transition (from
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Fig. 3. Theoretical study of the stripes and the wrinkles. (a) Schematic diagram of the VO 2 phase transition during the heating and cooling process. (b, c) Stress 

distribution and proportion of R, M 2 , and M 1 phases evolving with temperature, respectively. (d) The relationship between the periods of the pattern of the stripes 

and the thickness of the VO 2 nanoflakes (The inset denotes the analytical model for the pattern study). (e) The critical thickness estimation for wrinkle formation in 

the M 2 phase of the VO 2 nanosheet. (f) FEM results of the surface topography (upper) and the wrinkle height profile (nether) of the M 2 phase in the VO 2 nanosheet. 
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40 to 300 K). The proposed theoretical model to explain the R-M 2 -M 1 

hase transition (Fig. S12) is expressed as: 

 𝑇 = 𝛼1 𝐸 𝑅 ( 𝑇 ) + 𝛼2 𝐸 𝑀 1 
( 𝑇 ) + 

(
1 − 𝛼1 − 𝛼2 

)
𝐸 𝑀 2 

( 𝑇 ) (1)

here the three terms are the total energies of the R, M 1 , and M 2 phases,

espectively, and comprise the bulk free energy and the elastic strain

nergy. The proportion of the R and M 1 phase, 𝛼1 and 𝛼2 , could be cal-

ulated by minimizing the total energy or 
𝜕 𝐸 𝑇 

𝜕 𝛼1 
= 0 and 

𝜕 𝐸 𝑇 

𝜕 𝛼2 
= 0 (Supple-

entary Section 11.1). Fig. 3 b shows the phase diagram [31] and the

tress distribution of VO 2 evolving with temperature. When lowering

he temperature, the stress of the VO 2 nanoflake increases first and then

ecreases along the R-M 2 phase transition boundary, indicating the R-

 2 phase transition process. Subsequently, the stress increases along the

 2 -M 1 boundary, implying the M 2 -M 1 phase transition process, before

ltimately reaching the M 1 phase. Meanwhile, the proportion of the R,

 2 , and M 1 phases evolving with temperature is shown in Fig. 3 c. As

emperature cools down to about 445 K, the M 2 phase gradually ap-

ears and grows to its maximum at about 338 K with the decrease of

he R phase. Further lowering of the temperature results in the shrinking

nd the growth of the M 2 and the M 1 phases, respectively, agreeing with

he presented experimental observation. Fig. 3 d shows the periods of the

attern of stripes (data collected from Fig. S13), which expands almost

inearly with increasing thickness of the VO 2 nanoflakes. These periods

ere modeled (the inset in Fig. 3 d) as a function of the thickness of the

O 2 nanoflakes and the frictional shear stress between the nanoflakes

nd the mica substrate (Supplementary Section 11.2.1). According to

his model, the frictional shear stress was roughly estimated to be 8.1

Pa, which is on the same order of magnitude as that of ZnO-mica

nterface (5.1 MPa) [34] , a member of Van der Waals oxide heteroepi-

axy family [35] . Furthermore, we found that the wrinkles disappeared

hen the thickness of VO 2 nanoflakes is greater than 66 nm (Fig. S13).

o understand the formation of wrinkles, the profile of the wrinkles,

hich were described with an average wrinkle height of 1.5 to 2.0 nm

nd a wavelength of ∼ 380 nm through AFM, was depicted in an ana-
459 
ytical model (Fig. S14-15). To form a wrinkle, the compressive strain

nergy should be greater than the bending energy shown in Fig. 3 e,

hich shows that the increase of the former and the latter with growing

hickness of VO 2 nanoflakes are linear and cubic, respectively. Thus, the

rinkles can only be theoretically formed below approximately 70 nm

n thickness (Supplementary Section 11.2.2), which is consistent with

ur experimental data. To investigate the wrinkle in depth, we further

uilt a 3D finite element model to simulate the wrinkles in thin VO 2 

amples via buckling [36] and post-buckling analysis [37] (Fig. S16).

e found that when the wrinkle height is between 1.5 and 2.0 nm, the

imulated wavelength of the wrinkles ( Fig. 3 f) matches well with the

esults of our work. 

.4. Effect of periodic phase engineering on IPA of VO 2 nanoflake 

To verify the modulation effect on the IPA, devices with cross-type

lectrode pairs were fabricated onto thin VO 2 nanoflakes. As illustrated

n Fig. 4 a, electrode pairs 1-3 and 2-4 were deposited along the longer

xis ([100] M1 ) and the shorter axis ([011] M1 ) of the VO 2 nanoflake, re-

pectively, wherein each pair dominated the same channel length and

idth. In this design, the insulating M 1 stripes turned into metallic

 stripes upon heating, while the insulating M 2 stripes remained un-

hanged, causing disparity in the electrical conductivities of [100] M1 

with M 2 /R interfaces) and [011] M1 (shorted by metallic R phase). It

hould be emphasized here that at least one phase interface (M 1 /M 2 )

ust be included in each channel. An optical image of the device is

hown in Fig. 4 b, with the corresponding AFM image (inset) indicating

he VO 2 to be about 14 nm. Enlarged AFM images ( Fig. 4 c) confirmed

he flat surface in the M 1 stripes and wrinkles in the M 2 stripes as ex-

ected. The initial IPA ratio, defined as the conductance ratio of [011]

o [100], was initially about 1.5 at 300 K and achieved its maximum

alue of about 112.9 at 355 K, during which the M 1 stripes have already

ransitioned completely to the R phase. Moreover, at this point the con-

erted M stripes were still too small to reduce the IPA ratio significantly
2 
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Fig. 4. Modulation of electrical anisotropy of the striped VO 2 device. (a) Design of the in-plane electrical anisotropy measurement by cross-type electrode pairs. 

(b) Optical image of the striped VO 2 device and its AFM image (inset). (c) Enlarged AFM image of the solid boxed area in (b). (d) The initial current–voltage curves 

along the [011] and the [100] directions at 300 K and the maximum current difference curves along the [011] axis and the [100] axis during the cooling process 

at 355 K. (e) The evolution of the conductance ratio in a cycle covering the temperature range from 300 to 400 K. (f, g) 3D images of the relationship between the 

working current and the bias voltage along [011] and [100], respectively, in the temperature cycle. (h) The corresponding conductance ratio of [011]/[100] in the 

temperature cycle. All measurements are conducted in the ambient environment. 
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 Fig. 4 d; another device with a similar trend is shown in Fig. S17 & Table

2). A complete cycle of conductance ratio evolution in the range from

00 to 400 K is summarized in Fig. 4 e, wherein an apparent hystere-

is is observed between the heating and cooling curves. Such a thermal

ysteresis is a typical character of the phase transition in VO 2 , resulting

rom the lattice incompatibility between the transformed and the parent

hases [38] . Importantly, the excellent reversible and strict phase tran-

ition defined by the interfacial strain is reproducible with IPA modula-

ion (Supplementary Fig. S18). We further compared the IPA ratios with

ther common anisotropic 2D materials and enhanced strategies (Table

3). To examine the evolution of the conductance along the different

xes, the correlations between the working current and the bias voltage

n the temperature cycle along [100] and [011] were individually plot-

ed in 3D mode. The conductance along [011] abruptly changed at an

lmost fixed temperature ( Fig. 4 f), whereas the corresponding bias volt-

ge along [100] dropped with rising temperature ( Fig. 4 g). Such non-

ynchronous change demonstrated the ratio reached its maximum at an

ptimal temperature ( Fig. 4 h). A more detailed model that describes this

lectrical transport evolution due to phase transition can be found in Fig.

19-S22. The conductance curves in the thick VO 2 nanoflake displayed

 steep slope near the temperature of phase transition (Supplementary

ig. S23), agreeing with a previous report that attributed the absence

f a sudden change in value to the existence of stress in VO 2 [39] . It

ust be emphasized that this demonstration of property modulation is

ikewise applicable in other kinds of properties. For example, the tun-

bility of optical and thermal conductivities through this strategy can
460 
e achieved, considering the diversity of features realized here between

onoclinic and rutile VO 2 . 

. Conclusion 

In summary, we demonstrated a novel periodic phase engineer-

ng strategy to elevate the small IPA in 2D structures by introducing

lternant phases. This technique enabled the modulation of IPA with-

ut depending on structural asymmetry alone but by phase type and

heir spatial distribution as well. On this basis, we achieved a re-

arkable improvement of the electrical IPA in VO 2 nanoflakes by two

rders of magnitude and built a general theoretical model to accu-

ately depict and predict this intriguing phase evolution in 2D mate-

ials. The full potential of this strategy, however, cannot be entirely

nderstood if considering the 10 3 to 10 5 times resistivity difference

40] between the metallic and the insulating phases of VO 2 . It is

lso worth pointing out that the interfacial interaction is largely at-

ributed to the strain caused by the mismatch of thermal expansion

oefficients at the interface, highlighting the importance of selecting

 proper substrate. But such method of inducing phase transition may

e insufficient and thus ineffective for phase modulation in other 2D

aterials, like TMDs. Other ways to strengthen interfacial interaction

ay be further explored, including piezoelectric substrates for larger

nterfacial strain [41] , surface morphology design for enhanced lo-

al strain [42] , and tunable friction force [43] . The construction of

 global energy background, such as temperature or charge doping,
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ould also facilitate the phase transition with higher activation energy

equirements. 
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