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In emergency situations such as hazardous gas leak, search and estimation for identifying source 
information, known as source term estimation (STE), in a timely and accurate manner is of significant 
importance. In real world situations, obstacles such as buildings or barriers not only block the path 
for search but also interfere the flow of the gas source. For autonomous source search and estimation 
using a mobile sensor in such obstacle-rich environments, this paper proposes an information-theoretic 
STE approach by combining a widely-used Infotaxis with the rapidly-exploring random trees (RRT). In 
particular, the proposed strategy utilizes the receding-horizon RRT concept with a newly designed utility 
function for determining the next maneuver of a mobile agent to get the best information of the source 
while avoiding obstacles in urban environments. Numerical simulations in various environments show 
the superior performance of the proposed approach compared with the original Infotaxis method.

© 2021 Elsevier Masson SAS. All rights reserved.
1. Introduction

Autonomous source search and estimation has a variety of ap-
plications across disasters, accidents or terrorism situations. For 
instance, chemical, biological or radiological materials could be re-
leased into the atmosphere accidentally or intentionally. When this 
happens, localizing a source location and quantifying source infor-
mation such as a release rate, called source term estimation (STE), 
is the primary task to take proper actions for preventing further 
damages and evacuate people from dangerous regions [1]. In the 
past, a large number of pre-installed sensors are utilized for col-
lecting sensing ques. However, this approach requires high cost and 
has a spatial limitation when the accidents occur in unexpected 
areas. Thus, with recent developments on autonomous systems, us-
ing mobile sensors such as an unmanned aerial vehicle (UAV) for 
STE has been gaining popularity [1–13]. Using a mobile sensor al-
lows to cover a large area and to be rapidly deployed anywhere it 
is needed in a timely manner.

Diverse approaches for STE using mobile sensors are proposed, 
which could be largely categorized as bio-inspired, gradient-based 
and information-theoretic methods [2]. Bio-inspired methods are 
inspired by the behaviors of the living creatures such as moth, 
bacteria or fly [3–5]. These methods mimic and combine the be-
haviors of food searching strategies such as surge, cast, zigzag and 
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spiral. However, in reality, the sensing ability and locomotion of 
mobile sensors is far from those of living creatures [4], which 
makes the implementation and performance of this approach lim-
ited. In gradient-based methods [14], the mobile agent moves to a 
higher concentration point, assuming that the actual plume model 
produces a continuous and smooth gradient field. This assumption 
is often invalid in a real plume dispersion situation especially in 
a turbulent flow. Lastly, information-theoretic methods on which 
this study focuses are based on probabilistic strategies. They use 
the utility function with the entropy or uncertainty to determine 
the best next action of the mobile agent such as Infotaxis [6,7,9,15]
or Entrotaxis [8]. It employs a dispersion model, a sensor model 
and measurements to estimate the source term using a Bayesian 
framework. These strategies perform well even in a turbulent flow 
where the sensing ques are sparse or fluctuate.

It is worthwhile noting that, many of the existing STE studies 
assume that the source search mission is conducted in an open 
space rather than obstacle-filled environments and the maneuver 
of the mobile agent is limited in a discrete domain [6–10,16,17]. 
In a practical source search situation, the searching environments 
usually contain buildings or barriers which affect the dispersion 
phenomena and hinder the search process of the mobile agent 
[18]. Also, as the movement of the mobile agent in one step is 
limited in discrete directions (e.g., left, right, up, and down), the 
estimation performance is affected by the grid resolution of the 
environment and action candidate (i.e., movement step size). If 
the resolution of the grid is small, the estimation performance 
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could be enhanced but the searching time and computational loads 
would increase significantly.

Several studies considering complex environments in STE have 
been studied in [19–28]. Ristic et al. [21,22] assume that the en-
vironment is represented as a grid map and obstacles are located 
at the 2-D lattice points so that only passable links are remained. 
However, this assumption is far from reality. The obstacles are usu-
ally located randomly as well as the lattice sizes mainly affect 
the performance of STE in real situations. If the one-step looka-
head approach, also known as the reactive planning algorithm [29], 
such as Infotaxis [7,9] is used in obstacle-rich environments, lo-
cal optima in which the mobile agent is stuck at the corner of 
the obstacle occurs. Some studies suggest the obstacle avoidance 
mechanism to reduce unnecessary maneuver of the mobile agent 
[23,24]. However, these approaches require a known global map of 
the environment and are highly affected by the obstacle configura-
tion and grid resolution.

With above backgrounds in mind, this paper proposes a multi-
step lookahead source search strategy which belongs to deliber-
ative planning algorithms [29,30]); this approach generates the 
efficient path in an obstacle-rich and continuous domain by intro-
ducing the rapidly-exploring random trees (RRT) [31] as the local 
path planner for source search. The generated tree from RRT in a 
receding horizon (RH) manner is considered as feasible long-term 
future paths for source search. Note that the proposed receding 
horizon RRT approach still requires a local map around the cur-
rent position of the mobile agent; this could be readily available 
using camera or LiDAR sensors [32]. To successfully decide the ef-
ficient search action for the mobile agent, a new utility function 
is introduced. The utility function consists of two parts: i) max-
imizing the entropy reduction for exploration and ii) minimizing 
the path length to the source location for exploitation. For max-
imizing the entropy reduction which generally encourages more 
exploration, the existing Infotaxis utility function with the particle 
filter is adopted [7,33]. Note that the particle filter is utilized to es-
timate target states in highly nonlinear and non-Gaussian systems 
[34–37]. As the proposed approach with the particle filter con-
siders multi-step lookahead states, the computational load could 
become intractable. We address this issue by replacing the origi-
nal Gaussian sensor model with the binary sensor model, similar 
to [38]. For minimizing the path length for source search, the path 
length is calculated by summing up the length from the current 
state to the final future state of the feasible branch from the RRT 
and the length from the final future state to the goal position, that 
is, the estimated source location.

The main contribution of this paper is twofold. First, with the 
RRT and receding-horizon concept, the proposed algorithm gener-
ates the next best action of the mobile agent in a continuous do-
main while avoiding obstacles. Second, the proposed utility func-
tion results in the efficient path in terms of search time and suc-
cess rate while providing accurate estimation of the source term. 
In other words, it facilitates better search by autonomously finding 
the right balance between exploration and exploitation. To vali-
date the enhanced performance of the proposed strategy, various 
numerical simulations are conducted and compared with the con-
ventional Infotaxis [7].

The rest of the paper is organized as follows. In Section 2, the 
gas dispersion model and the sensor model are explained. Sec-
tion 3 explains the estimation process based on the particle filter 
and the existing Infotaxis algorithm which is a base of the pro-
posed approach. In Section 4, the proposed receding-horizon RRT-
Infotaxis approach with a brief description on the RRT is presented. 
The details of simulation setup and results are given in Section 5. 
Lastly, conclusions and future work are summarized in Section 6.
2

2. Gas dispersion and sensor modeling

In this section, mathematical formulations of the gas disper-
sion model and the sensor model are explained. In particular, the 
Gaussian plume model is adopted as the dispersion model and the 
Gaussian noise sensor model is utilized.

2.1. Dispersion model

The Gaussian dispersion model [39,40] assumes that the gas is 
dispersed from the point source in the downwind, crosswind, and 
vertical directions where positive x and y directions are aligned 
with the downwind and crosswind directions, respectively. In this 
model, the source is released continuously from the gas source 
origin r0 = [x0, y0, z0]T ∈ R3+ with the release rate of Q 0 ∈ R+
and the mean gas concentration at the sensing location rk =
[rx,k, ry,k, rz,k]T ∈R3+ at time step k is formulated as

R(rk|θ) = Q 0

2π V σyσz
exp

−ck
2

2σy
2

×
(

exp
−(rz,k − z0)

2

2σz
2

+ exp
−(rz,k + z0)

2

2σz
2

)
, (1)

where the source term, θ , indicates the parameters which is re-
quired to model the gas dispersion situation such as source loca-
tion, wind speed, and gas release rate. ck is the crosswind distance 
of the sensing location from the source and V is the mean wind 
velocity. The standard deviations of concentration σy and σz in the 
crosswind and vertical direction are defined as

σy = ζ1dk/
√

1 + 0.0001dk and σz = ζ2dk/
√

1 + 0.0001dk (2)

where dk is the downwind distance from the source. ζ1 and ζ2 are 
the stochastic diffusion terms in the crosswind and vertical direc-
tions, respectively. In this study, we assumed the mobile agent flies 
at 11 m above the ground and the gas stacks at the same height. 
Therefore, from the following sections, we only consider a 2-D en-
vironment where the location of the mobile agent at time step k
is defined as rk = [rx,k, ry,k]T ∈R2+ .

2.2. Sensor model

Since the actual gas concentration follows a stochastic process, 
the sensor model is modeled by the Gaussian distribution [41]. The 
probability density function of the Gaussian sensor model with the 
noise standard deviation σg,k at time step k is formulated as:

p(zk|θ) = N (zk; R(rk|θ),σ 2
g,k) = 1

σg,k
√

2π
exp− (zk − R(rk|θ))

2σ 2
g,k

(3)

where the measurement at time step k is represented as zk ∈ R+
and its mean value is obtained by Eq. (1). The standard deviation 
of the noise is expressed as:

σg,k = αR(rk|θ) + σenv (4)

where the noise is proportional to R(rk|θ) with the positive coef-
ficient α and σenv represents the additional sensing noise caused 
by the environment such as win d disturbance and temperature.

The gas dispersion with the Gaussian dispersion model formu-
lated by Eq. (1) is shown in Fig. 1(a). Corresponding sensor mea-
surements from the gas dispersion are sparse and noisy as shown 
in Fig. 1(b). Due to this aspect, just moving towards higher mea-
surement value gradually for localizing the source (known as the 
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Fig. 1. The sample map of the gas dispersion model and sensor measurements.
gradient following method) does not work well in a real world; 
hence, the information-theoretic method which will be explained 
in the following section is proposed to provide more robust per-
formance against sensor noises and disturbances.

3. Information-theoretic source search

The information-theoretic STE approach has an advantage for 
robust estimation even in a turbulent environment where the gra-
dient of source concentration is not continuous or smooth. Info-
taxis is one of the information-theoretic source search strategies 
for source localization or source term estimation using a mobile 
agent [6–9]. The Infotaxis utilizes the entropy (i.e., uncertainty) 
to calculate the utility function for the source term information. 
By computing the reduction of the entropy for all possible next 
positions based on cardinal movement directions (in general, up, 
down, left, and right), the action with the maximum reduction is 
selected as the next movement step of the mobile agent. From the 
following, Infotaxis with the particle filter is explained mostly by 
following [7] but with some modifications including the use of a 
discretized sensor model.

3.1. Source term estimation

The source term represents parameters required to model 
the gas dispersion such as source location, wind speed, release 
rate and stochastic diffusion terms. Among those parameters, the 
source location and the release rate are key factors to be esti-
mated. Thus, in this paper, the source term vector is defined as 
θ = [x0, y0, Q 0]T = [r0, Q 0]T ∈ R3+ , the 2-D source location and 
release rate, while other parameters are assumed to be known. 
Other parameters can be acquired by the meteorological data and 
gas properties. In many studies on source term estimation, this 
assumption is generally accepted [7–10].

The particle filter based on Bayesian framework is utilized for 
estimating the source term since the source term distribution is 
generally highly non-linear and non-Gaussian. The posterior prob-
ability density function (PDF) of the estimated source term at time 
step k, θk , is represented by:

p(θk|z1:k) = p(zk|θk)p(θk|z1:k−1)

p(zk|z1:k−1)
(5)

where

p(zk|z1:k−1) =
∫

p(zk|θk)p(θk|z1:k−1)dθk. (6)

The posterior PDF is obtained by using the prior PDF p(θk|z1:k−1), 
the likelihood (i.e., sensor model) p(zk|θk), and the marginal likeli-
hood p(zk|z1:k−1). Note that the sensing ques (i.e., measurements), 
3

collected by the mobile sensor located at rk , are expressed as 
z1:k = {z1(r1), z2(r2), · · · , zk(rk)}.

To obtain the analytical solution of Eq. (5) is impossible due to 
the non-linearity of the source term. Thus, the particle filter under 
the Sequential Monte Carlo framework [35] is utilized. The random 
samples called particles are employed to approximate the posterior 
PDF p(θk|z1:k). With i-th estimated state of the source term θ i

k and 
its associated weight wi

k at time step k, Eq. (5) is approximated 
by:

p(θk|z1:k) ≈
N∑

i=1

wi
kδ(θ − θ i

k) (7)

where δ(·) indicates the Dirac delta function and N is the num-
ber of particles in the particle filter which represents the potential 
source terms. The particle filter iteratively updates its weights with 
Eq. (5). By assuming that the source term is time-invariant (i.e., 
stationary source location and constant release rate), p(θk|z1:k−1)

is made equal to the PDF p(θk−1|z1:k−1). In other words, the prior 
distribution at time step k is represented by the posterior dis-
tribution at time step k − 1. Besides, as the marginal likelihood 
p(zk|z1:k−1) is not affected by the particles, this term is considered 
as a constant normalization factor when updating the weights. 
Hence, the unnormalized i-th particle is updated by:

w̄i
k = p(zk|θ i

k−1) · wi
k−1, (8)

where the likelihood p(zk|θ i
k−1) can be obtained by the Gaussian 

dispersion model in Eq. (1) and the sensor model in Eq. (3). The 
normalized weight is computed as:

wi
k = w̄i

k∑N
j=1 w̄ j

k

. (9)

In this study, to sample the particles, the importance sam-
pling (IS) is introduced [42]. It samples particles by following 
the importance (proposal) distribution. For the importance dis-
tribution, the estimated source term distribution at the previous 
step, expressed by p(θk−1|z1:k−1), is adopted similar to other rel-
evant studies [7–9]. In addition, to prevent a degeneracy problem 
caused by IS, which indicates that only a small number of par-
ticles have non-zero particle weights, we adopted the resampling 
method [36]. The effective number of samples, Nef f ≈ 1∑N

i=1(wi
k)

2

are computed at every iteration, and when Nef f goes below a cer-
tain value, the particles are resampled [43]. In addition, since we 
assumed that the prior distribution at time step k is represented by 
the posterior distribution at time step k − 1 as mentioned above, it 
might lead to a lack of particles diversity; hence, the Markov chain 
Monte Carlo (MCMC) move step is additionally conducted to in-
crease the diversity of the particles after the resampling step [44].
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3.2. Infotaxis

Infotaxis is one of the information-theoretic strategies for 
source term estimation. It locally maximizes the expected infor-
mation gain which indicates the reduction in the entropy (i.e., 
uncertainty) of the estimated source term distribution. It utilizes 
the information-theoretic utility function formulated by:

I(uk) =p(rk+1)Hk

− (1 − p(rk+1))(E[Ĥk+1(ẑk+1)] − Hk)
(10)

where

Hk = −
∫

p(θk|z1:k) log p(θk|z1:k)dθk. (11)

The Shannon’s entropy, Eq. (11), is adopted to compute the utility 
function. The probability p(rk+1) represents the probability where 
the actual source located at the next sensing point rk+1(= rk + uk). 
The maneuver of the mobile agent is defined in a discrete domain 
where its admissible action set is defined as UI = {↑,↓,←,→}. 
The probability p(rk+1) is meaningful only when the actual source 
is exactly located at rk+1 and computing this term requires signifi-
cant computational burden [7]. Hence, a simplified utility function 
termed as Infotaxis II ignoring the first term in Eq. (10) is utilized, 
given as:

I(uk) = Hk − E[Ĥk+1(ẑk+1)]. (12)

According to Eqs. (7)∼(9), the posterior PDF, p(θk|z1:k), can be 
replaced by the weights of the particle filter. Thus, the Shannon’s 
entropy is able to be approximated using the normalized weights 
in Eq. (9) as:

Hk ≈ −
N∑

i=1

wi
k log wi

k. (13)

The second term in Eq. (12) indicates the expected Shannon’s 
entropy with the future measurement ẑk+1 at the next sensing 
position rk+1. Thus, the expected entropy at time step k + 1 is 
formulated as:

E[Ĥk+1] =
∫

p(ẑk+1|θk)Ĥk+1(ẑk+1)dẑk+1 (14)

where

Ĥk+1(ẑk+1) = −
∫

p(θ̂k+1|z1:k, ẑk+1)

· log p(θ̂k+1|z1:k, ẑk+1)dθ̂k+1.

(15)

The PDF p(θ̂k+1|z1:k, ̂zk+1) in Eq. (5) is able to be represented with 
the particle weights. As done in Eq. (8), the unnormalized weight 
of the potential source term with the future measurement is up-
dated as:

ˆ̄wi
k+1 = p(ẑk+1|θ i

k) · wi
k (16)

and the updated weight, ˆ̄wi
k+1, is normalized to ŵi

k+1, as done in 
Eq. (9). Then, the expectation of the entropy at time step k + 1 can 
be expressed as:

E[Ĥk+1] = −
∫

p(ẑk+1|θk)

N∑
i=1

ŵi
k+1 log ŵi

k+1dẑk+1. (17)

By substituting Eq. (13) and Eq. (17) into Eq. (12), the Infotaxis II 
utility function is expressed as:
4

I(uk) = −
N∑

i=1

wi
k log wi

k

+
∫

p(ẑk+1|θk)

N∑
i=1

(ŵi
k+1) log (ŵi

k+1)dẑk+1. (18)

However, it is difficult to analytically solve the above equation 
as it needs to be integrated with all possible future measurements 
ẑk+1 where the particle weight ŵi

k+1 is also a function of ẑk+1, as 
represented in Eq. (16). To address this issue, we first discretize 
the future measurement with a certain interval δd̂ as:

d̂k+1 = [d̂(min)

k+1 , d̂(min)

k+1 +δd̂k+1, ..., d̂(max)
k+1 ] = [d̂(1)

k+1, d̂(2)

k+1, ..., d̂(dmax)

k+1 ]
(19)

where the minimum and maximum value in future measurements, 
d̂(min)

k+1 and d̂(max)
k+1 are obtained by following the empirical three-

sigma rule as μk+1 ± 3 · σg,k+1 where μk+1 = ∑N
i=1 R(rk|θ i

k) · wi
k

indicates the expected mean concentration derived by Eq. (3) and 
σg,k+1 = α ·μk+1 +σenv . The utility function with discretized mea-
surements is then expressed as:

I(uk) = −
N∑

i=1

wi
k log wi

k +
dmax∑
j=1

p(d̂ j
k+1|θk) ·

N∑
l=1

(ŵl
k+1) log (ŵl

k+1).

(20)

Note that the updated and normalized weight ŵl
k+1 is now af-

fected by d̂ j
k+1 rather than ẑk+1 in Eq. (16). Besides, the mea-

surement likelihood with the discretized measurement set from 
the Gaussian sensor model, p(d̂ j

k+1|θk), can be expressed with the 
cumulative distribution function (CDF) of the standard normal dis-
tribution, �(·) [45], as given:

p(d̂ j
k+1|θk) =

N∑
i=1

[
�

(
	d̂ j

k+1 + δd̂

σ i
g,k+1

)
− �

(
	d̂ j

k+1

σ i
g,k+1

)]
wi

k (21)

where

	d̂ j
k+1 = d̂ j

k+1 − R(rk+1|θ i
k),

σ i
g,k+1 = αR(rk+1|θ i

k) + σenv .
(22)

Finally, the next best action, u∗
k , among the action candidate set, 

UI = {↑,↓,←,→}, is chosen as:

u∗
k = arg max

uk∈UI

I(uk). (23)

The conventional Infotaxis is basically a one-step greedy ap-
proach and considers next movements in cardinal directions (i.e. 
neighboring up, down, left and right grid points) only, which is 
highly likely to lead the mobile agent to fall into the local op-
tima in obstacle-rich environments. When the obstacles block the 
next step of the mobile agent, possible maneuvers are reduced 
and it could be stuck at the corner or boundary of the obsta-
cle. Furthermore, the utility function of Infotaxis tends to guide 
the mobile agent to be biased toward exploration rather than ex-
ploitation [33]. Therefore, directly using the entropy for the Info-
taxis utility function might not be efficient from the perspective of 
the search time. Thus, for efficient source search for obstacle-rich 
environments, long-term (i.e. multi-step ahead) planning using a 
continuous action space is needed.
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4. Rapidly-exploring random tree-Infotaxis

To resolve the aforementioned problem of conventional info-
taxis, the rapidly-exploring random tree (RRT), the sampling-based 
deliberative path planning algorithm [29], is incorporated with In-
fotaxis to predict the reward from long-term future measurements 
in an obstacle-rich domain with a newly-designed utility function. 
The advantage of introducing RRT is not only obstacle avoidance 
but also generating various feasible paths in the obstacle-filled do-
main. Generated RRT tree in a receding horizon manner (similar 
to the concept of model predictive control [46]) is used as the 
long-term action candidate set of the mobile agent. It helps the 
mobile agent not to fall into the local optima. From the following, 
the principle of the RRT is briefly explained, and then the overall 
process of RRT-Infotaxis is described.

4.1. Rapidly-exploring random tree (RRT)

The rapidly-exploring random tree (RRT) is a sampling-based 
path planning algorithm [31]. It is designed to search non-convex 
and high-dimensional spaces efficiently. By randomly generating 
samples in a continuous space, it inherently fills the space towards 
to unexplored areas uniformly. Let the given space be denoted by a 
set Z ⊂R2 as we consider a 2-D configuration space. The area oc-
cupied with obstacles is represented by Zobs and the obstacle-free 
area is denoted as Z f ree . The RRT constructs a tree by sampling 
random nodes in Z f ree . From the starting point qinit , the tree 
gradually expands and the process ends when the tree expands 
sufficiently near the goal point, qgoal . During each iteration of the 
algorithm, the random sample node qrand is sampled in Z and if 
it lies in Z f ree , the closest sample node qnearest in the tree T from 
qrand is selected. If qrand is accessible to qnearest and distance be-
tween them is less than the predefined movement distance 	, 
qrand is considered as the new node qnew and added to the tree 
T . If the distance is longer than 	, a new sample from qnearest to 
qrand at the distance 	 is considered as qnew . The process of tree 
expansion is described in Fig. 2.

The representative characteristics of the RRT can be categorized 
twofold [47]. First, it generates the safe path avoiding obstacles. 
Second, it makes random samples in a continuous domain with 
simple implementation so that the tree tends to expand towards 
the unexplored area. By adopting these properties, the proposed 
RRT-Infotaxis strategy is able to choose efficient action candidates 
of the mobile agent.

4.2. Search process of RRT-Infotaxis

The proposed approach uses RRT as a local path planner. Unlike 
the RRT, in the source term estimation problem, the goal point 
which can be regarded as a true source origin is not known in 
advance. Furthermore, in practice, the entire (i.e., global) map in-
formation is not given. Thus, planning the global path towards 
the goal directly is impossible. However, as the estimation pro-
cess proceeds, the estimated source location is closer to the actual 
source location and with a range sensor such as LiDAR, the obsta-
cles nearby can be detected. Thus, by planning the local path at 
each iteration of the search process in a receding horizon manner, 
the mobile agent can select the efficient path to the source origin 
while avoiding obstacles.

The overall process of the RRT-Infotaxis is described in Fig. 3. 
The tree is generated with Ntn number of RRT nodes in the limited 
region with a radius of Rrange from the current position, as shown 
in Fig. 3 (a). After that, the tree pruning process is conducted. 
As we consider m receding horizon steps, only the branches hav-
ing m number of nodes are considered, as illustrated in Fig. 3
(b). Note that, m is three in this figure. The pruned branches, 
5

Fig. 2. Tree expansion of the RRT.

V = [V1, V2, ..., VNb ] where Nb is the total number of pruned 
branch, are considered as the possible future receding horizon (i.e., 
local) path of the mobile agent. Each branch is formulated by a 
node set Vb = {

vb,1,vb,2, ...,vb,m
}

where the element in the set in-
dicates the 2-D location in the search area. The elements of the 
branch set are used as the action candidates (i.e., movement direc-
tions) of the mobile agent. Thereafter, the utility function of each 
branch is computed and the best rewarded branch is selected as 
shown in Fig. 3 (c). Detailed explanation on the utility function 
will be described in the following section. Among the nodes in the 
selected branch, the mobile agent moves to the first node of the 
selected branch as illustrated in Fig. 3 (d). The RRT-Infotaxis al-
gorithm repeatedly removes the old tree and creates new tree by 
centering the current position of the mobile agent at every time 
step.

4.3. Utility function of RRT-Infotaxis

For efficient source search, balancing exploration and exploita-
tion is of primary importance [48]. As explained in Section 3.2, 
the Infotaxis utility function only utilizes the entropy reduction 
and it is known to be biased towards exploration [33]. Hence, 
by introducing a new term in the utility function, the proposed 
RRT-Infotaxis facilitates both exploration and exploitation properly 
in obstacle-rich environments. In other words, combined with the 
information-theoretic utility function and the cost function from 
the receding-horizon RRT, the mobile agent balances exploration 
(i.e., looking for the informative sensing ques) and exploitation (i.e., 
moving towards the source origin). The proposed new utility func-
tion is comprised of two parts: maximizing the entropy reduction 
and minimizing the search path.
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Fig. 3. The example process of selecting the next best action of RRT-Infotaxis when m is 3.
4.3.1. Maximizing entropy reduction
To maximize the entropy reduction, the Infotaxis utility func-

tion, Eq. (20) explained in the previous section, is used. However, 
to reduce the computational burden considering multiple reced-
ing horizon steps, the discretized Gaussian sensor model (Eq. (21)) 
is replaced with the binary sensor model. It has only two sensor 
measurement values: 1 (when detected) and 0 (not detected), so 
the future binary measurement is denoted as b̂ ∈ [0, 1]. The prob-
ability of the measurement at time step k + n considering m steps 
(n ≤ m) is then represented as:

p(b̂k+n|θk) =
{

β if b̂k+n = 0

1 − β if b̂k+n = 1.
(24)

The probability, β , can be formulated as:

β =
N∑

i=1

[
�

(
	c̄i

k+n

σ i
g,k+n

)
wi

k

]
(25)

where

	c̄i
k+n = c̄k − R(rk+n|θ i

k),

σ i
g,k+n = αR(rk+n|θ i

k) + σenv .
(26)

To efficiently update the threshold c̄k which decides whether the 
measurement is detected or not, it is designed to be changed adap-
tively with respect to the current sensor measurement, ck , as:

c̄k =

⎧⎪⎨
⎪⎩

ack + (1 − a)c̄k−1 if k > 1, ck > c̄k−1

c̄k−1 if k > 1, ck ≤ c̄k−1

ck if k = 1,

(27)

where a is set as 0.5 in this paper similar to [49,50]. The thresh-
old increases only when the new measurement is greater than 
the current threshold so that the mobile agent gradually moves 
to get a higher concentration. Updating the threshold in this way 
can facilitate more exploitation since the agent can obtain a larger 
measurement value as it gets closer to the source.
6

For updating the probability of the future measurements in re-
ceding horizon steps, we utilize the current weight of the particle 
filter at time step k. Sequentially predicting the weights and using 
them for the next step might be possible [51], but it requires a sig-
nificant computational load. Furthermore, as updating weights for 
future steps, the reliability of the prediction decreases. Thus, the 
unnormalized updated weight at n receding horizon step is repre-
sented by:

ŵi
k+n = p(b̂k+n|θ i

k) · wi
k. (28)

Finally, the utility function for each node in a branch Vb using the 
binary sensor model can be represented as:

I(vb,n) = −
N∑

i=1

wi
k log wi

k +
1∑

b̂k+n=0

p(b̂k+n|θk)

·
N∑

l=1

(ŵl
k+n) log (ŵl

k+n). (29)

Note that, computing this utility function is much lighter than that 
of Eq. (20) owing to the binary model. All the nodes from the first 
to the mth node in each branch, which are the action candidates for 
the receding horizon approach, are computed by the Eq. (29) and 
accumulated. However, as the closest node has the most reliable 
information, a discount factor γ is applied when accumulating the 
value of the utility function. Thus, the utility function of maximiz-
ing the entropy reduction in RRT-Infotaxis is formulated by:

J1(Vb) =
m∑

n=1

γ (n−1) I(vb,n). (30)

4.3.2. Minimizing search path
To improve the performance in terms of reducing the search 

time or equivalently path length, the additional cost function is 
introduced into the RRT-Infotaxis utility function. This new cost 
function of the RRT calculates the path length from the initial po-
sition to the current position of the mobile agent and adds the 
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Euclidean distance between the current position and goal point 
motivated from the A* cost function [47,52]. As the exact source 
location is not known in advance, the estimated source origin r̂0

from the particle filter is considered as the goal point and it is up-
dated at each search and estimation iteration. As the source search 
process proceeds, the estimated location becomes more accurate. 
It implies that as the mobile agent collects more informative mea-
surements, the mobile agent tends to move towards the correct 
source location. To this end, the cost function of minimizing the 
search path is formulated as:

J2(Vb) =
m∑

n=1

(|vb,n − vb,n−1|) + |r̂0 − vb,m| (31)

where b ∈ {1,2, ..., Nb} and vb,0 indicates the current location of 
the mobile agent. In the above equation, the left term of the right-
hand side indicates that the sum of the path lengths from current 
to m step future location of the mobile agent, and right term repre-
sents the Euclidean distance between the final future step location 
and the goal point (i.e., estimated source origin r̂0).

By combining above two utility functions, the proposed utility 
function at time step k for the RRT-Infotaxis is expressed as:

Jk(Vb) = ε J1(Vb) − (1 − ε) J2(Vb) (32)

where ε is the positive weight. In this study, ε is chosen as 0.5 to 
make the two functions contribute equally. Note that, as the cost 
function of the RRT is supposed to minimize the cost, the utility 
function, J2(Vb), has a minus sign in the final utility function, Jk . 
The best branch is obtained as:

V∗
b = arg max

Vb∈V
J (Vb). (33)

The first node v∗
b,1 from the best branch V∗

b is chosen as the next 
maneuver of the mobile agent.

Note that, at the beginning of the estimation process, the esti-
mated source location could be far from the true value, and mov-
ing towards the wrong source origin could be bad for exploration 
initially. However, at early stages, the moving direction does not 
mean much as there would be no meaningful information around 
the mobile sensor anyway and the Infotaxis utility function (i.e., 
J1) makes sure that the agent explores the environment well. It is 
reported that the Infotaxis utility function has a good exploration 
property but lacks an exploitation property [33]. Thus, the heuris-
tic term J2 is introduced for better exploitation. Once the mobile 
agent gathers sufficient measurements, the utility function J1 does 
not change much. Thus, after estimation of the source is more or 
less converged, the utility function J2 would play a main role to 
lead the mobile agent towards the source, facilitating better ex-
ploitation. In summary, by the heuristic term J2, we might lose a
little bit of performance in terms of exploration but gain a lot more 
in terms of exploitation, which results in right balance between 
exploration and exploitation and much better search estimation 
performance. This will be supported by numerical simulation re-
sults later.

During the source term estimation process, the mobile agent 
is assumed to stay at one location for a few seconds to obtain a 
reliable gas sensor measurement before moving to the next sam-
pling point. Note that, in general, the response and recovery time 
of the gas sensor ranges from a few seconds to minutes [53]. This 
is why we considered the discrete action strategy moving to the 
next sampling point at each time step with a constant speed in 
this study. This is a common practice in the Infotaxis-based source 
search studies, supported by experimental validation [17,41]. Tra-
jectory (or velocity) planning considering the detailed dynamics 
7

Algorithm 1 RRT-Infotaxis.
1: T.init(qinit )
2: for k = 1, 2, . . . , kmax do
3: zk ← Read a new sensor measurement
4:

{
(θk−1, wk−1) → (θk, wk)

}
using Eq. (9)

5: qnew ← qinit = [rx,k, ry,k]
6: while Nseed ≤ Ntn do
7: qrand ← Sample(qrand)

8: qnearest ← FindNearestNode(qrand, T )

9: qnew ← Steer(qnearest , qrand)

10: if Obstacle Free then
11: T.add_node(qnew )
12: T.add_vertex(qnew , qnearest )
13: Nseed = Nseed + 1
14: V = {

V1, ...,VNb

} ← TreePrune(T)
15: for all Vb = [vb,1, ...vb,m] ∈V do
16: for n = 1, 2, ..., m do

17:
{
(θk, wk) → (θ̂k+n, wk+n)

}
using Eq. (28)

18: [b̂k+1, ..., ̂bk+m] ← Collect binary sensor measurements

19: Jk computation with Eq. (32)

20: V∗
b = arg maxVb∈V Jk(Vb) ← Next best maneuvers for receding horizon 

time steps
21: Clear T
22: if σp < σt then ← estimation converged
23: break;
24: rk+1 = [rx,(k+1), ry,(k+1)]
 = [rx,k, ry,k]
 +v∗

b,1 ← move to the next sampling 
position rk+1 using the first node of V∗

b

and nonholonomic constraints of the mobile agent with a high-
performance gas sensor (providing a fast response time) remains 
as future work.

The entire process of the RRT-Infotaxis is summarized in Algo-
rithm 1. The detail of the functions in Algorithm 1 is described as 
follows.

• Sample: This function generates the random position qrand
which is included in the region with the radius of Rrange cen-
tering the current location of the mobile agent.

• FindNearestNode: This function finds the nearest node from 
other nodes in RRT tree T to qrand .

• Steer: This function generates qnew along the path from qnearest

towards qrand at a distance 	 where 	 is the fixed incremental 
distance.

• TreePrune: This function returns all set of branches.

5. Numerical simulations

To validate the performance of the proposed RRT-Infotaxis, we 
performed Monte Carlo simulations in various environments. The 
Gaussian plume model and binary sensor model are utilized.

5.1. Actual gas dispersion in an environment with obstacles

For the simulations, gas dispersion situations need to be mod-
eled. To describe it realistically, the Graz Lagrangian (GRAL) model, 
which is developed by the Graz University of Technology, Austria, 
is utilized for simulations, which computes flows around obsta-
cles [54]. It is the revised Lagrangian particle model where the 
Lagrangian particle model produces gas particles from the diffu-
sion source by considering not only the gas properties but also 
the statistical environment. This model assumes that atmospheric 
diffusion is able to be modeled by a Markov chain process and 
represents portions of each particle by calculating 3-D wind veloc-
ity [55]. The GRAL model is adopted as the dispersion model in 
the environment with obstacles as it is suitable for fast and ro-
bust modeling in a large area [54]. The sample map is described in 
Fig. 4 and the parameters used in this map are as follows.
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Fig. 4. The satellite view of the sample map and gas dispersion map with obstacles using the GRAL model.
• True source term: Q 0 = 2 kg/h = 0.56 g/h, and r0 = [197 m,

235 m]
;
• Search area: A = 255 m × 267 m, wind velocity V = 2 m/s

and direction φ = 240◦ , horizontal standard deviation σy = 20, 
vertical standard deviation σz = 10, and stacking height z0 =
11 m;

• Search agent: Movement step size d = 9 m, constant flight al-
titude at 11 m above the ground which is the same as the 
gas stacking height, and the radius of the region for generat-
ing RRT sample nodes, Rrange , is defined as RH-step×d where 
RH-step represents receding horizon steps;

• Estimation condition: Number of particles for the particle filter 
N = 3, 000. The standard deviation of the sensor noise is set to 
σg = R(r|θ) + 10; and

• Terminal conditions: standard deviation of the particle filter 
σt = 2, and the estimation success threshold ds = 2 m.

5.2. The effect receding horizon steps and the number of nodes

When implementing RRT-Infotaxis, we need to sample random 
nodes to generate RRT trees. However, taking too many samples 
would not increase the efficiency for source search further while 
increasing computational loads. Besides, for applying the receding 
horizon approach, the proper number of future steps needs to be 
investigated. Therefore, in order to find the proper number of the 
RRT sample nodes Ntn and receding horizon step (RH-step) m, cor-
responding numerical simulations are first conducted; these two 
parameters are key factors which affect the performance of the 
algorithm. With changing the number of RRT sample nodes, Ntn , 
the mean search time (MST) of RRT-Infotaxis with different m is 
compared for the simulations using the sample map environment 
explained in the previous section in Fig. 5. In the figure, results are 
averaged over 100 Monte Carlo simulations and RH-steps from 2 
to 5 are denoted as RH2 to RH5. As Ntn increases to 30, all cases 
show the decreasing trend of the MST. However, the MST does not 
get better over 30 sample nodes. When there are too many sample 
nodes in a certain region, the utility function value difference be-
tween different branches might be insignificant. Besides, selecting 
the best action candidate does not always provide the best per-
formance due to the difference between the approximated utility 
function and real situation. From this result, RH3 with Ntn of 30 
can be seen as the proper values. Although the MSTs of RH4 or 
RH5 with 40 nodes are almost the same as that of RH3, the larger 
receding horizon steps or sample nodes would mean the higher 
8

Fig. 5. The MST of RRT-Infotaxis with different RRT nodes and RH-steps.

computational load. Thus, all of the following simulations hereafter 
are conducted with m of 3 and Ntn of 30.

It is worthwhile noting that, one search time step (in comput-
ing MST) includes the time taken for collecting the reliable sensor 
reading at one position, computation time to calculate the next 
best sampling position and time to reach the next sampling po-
sition with a constant speed. In this regard, let us compare the 
MST between Infotaxis and the RRT-Infotaxis. First, the averaged 
computation time per step for calculating the best position in In-
fotaxis (one-step lookahead) and RRT-Infotaxis algorithms (RH3) 
is 0.0024 and 0.0535 seconds in the MATLAB environment on a 
desktop with an Intel(R) Core(TM) i7-7707HQ CPU @ 2.80 GHz 
and NVIDIA GeForce GTX 1060, respectively. On the other hand, 
the movement distance between consecutive sampling positions is 
fixed in the original Infotaxis (i.e., movement step size d = 9 m as 
defined earlier) while that of the RRT-Infotaxis is equal or slightly 
smaller than d = 9 m; this is because the RRT algorithm adds 
new random nodes (sampling position candidates) to the exist-
ing tree within the fixed threshold distance of d = 9 m. In fact, 
the averaged distance between sampling positions of RRT-Infotaxis 
is 8.3 m. Thus, considering both time loss from computation and 
gain from moving a shorter movement step size between sam-
pling points of RRT-Infotaxis, we could consider that the same MST 
for RRT-Infotaxis (RH3) and Infotaxis represents approximately the 
same time taken for the source search and estimation process.
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Fig. 6. Various simulation environments.
5.3. The effect of the new utility function

In this section, to investigate the effect of the new utility func-
tion, the MST of RRT-Infotaxis is compared with different utility 
functions. By using the proposed utility function (Eq. (32)) and the 
Infotaxis utility function (Eq. (30)), the MST and standard devia-
tion (STD) are compared in the environment described in Fig. 4
with different number of RRT sampling nodes.

As shown in Table 1, the proposed utility function shows the 
lower MST compared with the cases using the entropy reduction 
only. As explained earlier in Section 4.3, as the estimated source 
location gets closer to the actual source origin, the total utility 
function is mainly affected by the value of J2, the cost of minimiz-
ing the search path; this means that the proposed search algorithm
9

Table 1
The performance comparison of two different utility functions by increasing the 
number of nodes averaged over 100 Monte Carlo simulations.

No. of Nodes Proposed utility (Eq. (32)) Entropy reduction only (Eq. (30))
(Ntn) (MST±STD) (MST±STD)

10 136 ± 66 139 ± 70
20 105 ± 55 134 ± 57
30 81 ± 39 123 ± 64
40 83 ± 62 118 ± 53
50 98 ± 62 135 ± 51

encourages exploitation rather than exploration once the mobile 
agent collects sufficient measurements (or information), resulting 
in the reduced MST. Besides, when the RRT node number is 30, 
the proposed approach shows the best performance.
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Fig. 7. The illustrative run of conventional Infotaxis. The upper figure at each time step represents the histogram and mean value of the estimated release rate along with the 
true release rate.
5.4. Comparative simulation in various environments

The RRT-Infotaxis approach is now compared with the conven-
tional Infotaxis in various environments. The MST and success rate 
(SR) are the comparison metric. Eight simulation environments are 
designed with the GRAL model as illustrated in Fig. 6. In each 
environment, 100 Monte Carlo simulations are conducted. The en-
vironment of case 2 is a city-like map modeled in the study [56]. 
To design other simulation environments, the configurations of the 
obstacles in case 3 and case 4 are designed as done in [57] where 
the urban environment is characterized by three parameters: the 
ratio of the built-up land area to the total land area (α0), the mean 
number of buildings per unit area (β0), and the scale factor that 
describes the building height (γ0). In this paper, as simulations are 
conducted in a 2-D environment, the height of building is assumed 
to be the same but higher than the UAV flight altitude. In case 3, 
α0 is set as 0.3 and β0 is 100. In case 4, α0 is 0.3 and β0 is defined 
as 150. The same randomly-generated obstacles are used in cases 
5∼8 as shown in Fig. 6. To figure out the effect of the dynamically 
changing wind effect, time-varying wind velocities (both magni-
tude and direction) are used in the GRAL dispersion model for 
cases 6∼8. The diffusive gas concentration of cases 6∼8 in Fig. 6
is the mean concentration over wind changes while that of case 5 
(i.e., Fig. 6(e)) is generated with the constant wind velocity. Note 
that the source term estimation algorithm uses the mean value of 
the speed (2 m/s) and direction (240◦) for cases 6∼8. The param-
eters for modeling the gas dispersion in each environment are set 
as:
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• Case 1: A = 240 ×260 m2, r0 = [197 m, 235 m]
 , Q 0 = 2 kg/h, 
V = 2 m/s, φ = 240◦;

• Case 2: A = 150 × 200 m2, r0 = [9 m, 81 m]
 , Q 0 = 5 kg/h, 
V = 2 m/s, φ = 0◦;

• Case 3: A = 540 × 420 m2, r0 = [81 m, 339 m]
 , Q 0 = 6 kg/h, 
V = 5 m/s, φ = 300◦;

• Case 4: A = 440 × 560 m2, r0 = [63 m, 320 m]
 , Q 0 = 6 kg/h, 
V = 2 m/s, φ = 0◦;

• Case 5: A = 270 ×330 m2, r0 = [222 m, 293 m]
 , Q 0 = 2 kg/h, 
V = 2 m/s, φ = 240◦;

• Case 6: A = 270 ×330 m2, r0 = [222 m, 293 m]
 , Q 0 = 2 kg/h, 
V ∼ U(1.9 m/s, 2.1 m/s), φ ∼ U(235◦, 245◦);

• Case 7: A = 270 ×330 m2, r0 = [222 m, 293 m]
 , Q 0 = 2 kg/h, 
V ∼ U(1.5 m/s, 2.5 m/s), φ ∼ U(220◦, 260◦); and

• Case 8: A = 270 ×330 m2, r0 = [222 m, 293 m]
 , Q 0 = 2 kg/h, 
V ∼ U(1 m/s, 3 m/s), φ ∼ U(200◦, 280◦).

The other parameters are the same as described in the sample map 
environment in the previous section. The stochastic wind velocity 
and direction in cases 6∼8 follow the uniform random distribu-
tion U(a, b) where the parameter a and b represent minimum and 
maximum values, respectively.

The sample runs of Infotaxis and RRT-Infotaxis for case 1 are 
displayed in Figs. 7 and 8. The red cross symbol represents where 
the sensor measurement exceeds the detection threshold c̄k in 
Eq. (26), and the upper figure at each time step represents the his-
togram and mean value of the estimated release rate along with 
the true release rate. In Fig. 8, blue dotted lines indicate the sam-
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Fig. 8. The illustrative run of RRT-Infotaxis. The upper figure at each time step represents the histogram and mean value of the estimated release rate along with the true 
release rate. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
pled RRT tree and the red line shows the next best rewarded 
movement. In the conventional Infotaxis case, the mobile agent is 
stuck at the corner of the black obstacle during time step 20 to 
170 as it only considers the one-step ahead action. When the agent 
encounters the obstacle and the particle filter happens to estimate 
that the source is at the other side of the obstacle, the agent first 
moves one step towards the obstacle; it is expected to have bet-
ter information getting closer to the source location. At the next 
step, it realizes that it cannot move any further to the same direc-
tion due to the obstacle, so it chooses the second best direction. 
However, at the next step, it tries to move towards the obstacle 
again to gain better information and this behavior of wandering 
around the obstacle repeats. By the random nature of the utility 
function of Infotaxis (from the particle filter), it manages to escape 
the obstacle after a while. On the other hand, in RRT-Infotaxis, the 
mobile agent is able to efficiently collect useful information by vis-
iting various locations while not trapped by any obstacles with the 
help of RRT sampling and the receding horizon concept.

For more statistical analysis, 100 Monte Carlo simulation results 
are summarized in Fig. 9. From the results, RRT-Infotaxis shows 
much better performance in terms of MST and SR in all cases com-
pared with original Infotaxis. Besides, the benefit of the using the 
proposed is more apparent for the complex environment such as 
case 4. It shows that generating action candidates in a continuous 
obstacle-rich region with the RRT concept in a receding-horizon 
manner with the proposed utility function is able to guide the 
mobile agent more efficiently for source term estimation. By com-
paring the results of cases 5∼8 represented in Fig. 9, it can be 
11
seen that the RRT-Infotaxis provides more robust performance in 
challenging and uncertain environments than that of the original 
Infotaxis approach.

6. Conclusions and future work

An autonomous source search algorithm in obstacle-filled en-
vironments has been developed by applying the receding-horizon 
RRT as a local path planner. Thanks to the nature of the RRT, the 
tree (i.e., sampled path) is generated in an obstacle-rich continuous 
domain uniformly no matter what the configurations of the obsta-
cles are. It enables the mobile agent to avoid obstacles and gen-
erate the efficient path for estimating the source term. Besides, by 
introducing the new utility function which is the combination of 
maximizing the entropy reduction and minimizing the search path, 
the proposed RRT-Infotaxis makes an attempt to balance between 
exploration and exploitation for source term estimation. Numerical 
simulations are conducted to compare the performance between 
conventional Infotaxis and RRT-Infotaxis. In terms of search time 
and success rate, RRT-Infotaxis shows the superior performance 
compared with Infotaxis in different environments.

There are several areas to be explored to improve the per-
formance of the proposed method and make it more robust in 
reality. First, in this study, the proposed utility function uses the 
same weight factor on exploration (maximizing the entropy re-
duction) and exploitation (minimizing the search path). However, 
these weights may need to be adjusted adaptively depending the 
situations such as different wind velocities and source release 
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Fig. 9. The MST and SR comparison of Infotaxis and RRT-Infotaxis in each case.
rates. Second, the gas dispersion models are generated under the 
assumption of steady-state dispersion situations. To have more ro-
bustness and fidelity, simulations using dynamic dispersion models 
need to be conducted. Additionally, source term parameters except 
for the source location and release rate are assumed to be known 
in this study, which could be relaxed. To apply the proposed algo-
rithm in 3-D environments, as it could require significant computa-
tion with a large number of particles in the particle filter and RRT 
nodes, more careful consideration and approximation need to be 
made to reduce the computational burden considering real time 
implementation. Lastly, real experiments are remained as future 
work.
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