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The health index measures a person’s overall health status which provides useful informa-
tion for people to manage their health, so developing a precise and relevant health index is
urgent. Currently, many researchers have studied the biological age (BA) estimation, one of
the beneficial health indices, by applying machine learning and deep learning techniques
to health data. However, most of them have focused on the chronological age prediction
or basic latent feature extraction methods. In this paper, we present a new algorithm to
estimate BA, called Risk Score-Embedded Autoencoder-based BA (RSAE-BA). RSAE-BA can
provide an accurate health index by using deep representation learning with an individ-
ual’s health risk. We first proposed a notion of risk score (RS) calculation to monitor a per-
son’s health risk. Then we extracted latent features by using an autoencoder embedding
the RS, and used them to generate BA. To evaluate RSAE-BA, we presented a new BA vali-
dation method using the RS, which is applicable to both unlabeled and labeled data. We
compared the results of RSAE-BA with existing methods, and demonstrated the accuracy
of RSAE-BA and its applicability to predict disease incidence. We believe that RSAE-BA will
be a useful alternative method to measure a person’s health.
� 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Aging is a gradual decline of the physical and mental capacity of an organism over time; the process is correlated with
functional impairment, increasing susceptibility to disease, and risk of death [26,32,38]. Advances in medical technology
have increased the average life expectancy of humans, and this trend has increased the importance of personal health care
and prevention of diseases caused by aging. To estimate an individual’s health and aging status, chronological age (CA) is
used as a general indicator [21,29]. However, CA is recorded by a simple time flow, so it is considered as a low-confident
indicator that cannot accurately evaluate the functional and structural capacity of the body or aging status [2,8]. Hence, esti-
mation of ‘age’ requires the development of a new comprehensive health index that is superior to CA in ability to predict an
individual’s overall health status, aging degree, and even risk of disease [26,29].
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Biological age (BA) is a representative numerical index that can represent a person’s health and aging [48,12]. When peo-
ple are subjected to a health check-up, the use of BA can simplify identification of their condition by summarizing electronic
medical record (EMR) data. The development of BA algorithms begins with the assumption that physical age is different from
CA. With advances in machine learning, several machine-learning methods have been applied to BA estimation, and mean-
ingful BA indices have been developed using various data such as gene expression and EMR [3,16,18,19,24,28,29]. BA has also
been estimated by incorporating with the age-dependent variables, mentioned as biomarkers that are associated with health
status in existing health indicators [10].

Three general types of methods have been used to estimate BA: (1) regression for CA, (2) simulation learning, and (3)
latent feature extraction. First, regression for CA-based BAs have been estimated commonly using multiple linear regression
(MLR) or regularized linear regression (e.g. lasso regression and elastic net). They exploit the correlation between CA and
biomarkers [17,33]. Several deep learning methods have also been used to estimate BA by using a large amount of data
[1]. For example, Cole et al. [11] proposed a deep learning-based predictive modeling approach for CA using convolutional
neural networks (CNN) where they estimated a brain-predicted age using raw brain MRI data. Pyrkov et al. [45] and Rahman
and Adjeroh [46] utilized the physical activity data and presented CNN-based time-series approaches. These methods
attempt to minimize the mean squared error between the estimated BA and CA (i.e., target value is CA). Next, as a simulation
learning-based model, Klemera and Doubal’s method (KDM) was proposed to minimize the distance between the regression
lines and biomarker points in a multi-dimensional space of all biomarkers [30]; this method has been used in many studies
that require BA estimation and has predicted mortality better than other methods [38,39,25,50]. Lastly, many researchers
have estimated BAs by summarizing factors of principal component analysis (PCA) [3,40,42,41], which is widely used to con-
vert high-dimensional data to low-dimensional data based on the orthogonal transformation [27]. Such literature has been
focused on extracting latent features to represent the characteristics of original data well.

However, each existing BA estimation method has a demerit. Linear regression-based methods tend to distort BA to CA;
they do not account for the discontinuity of the aging rate over an individual’s lifetime. Previous deep learning-based meth-
ods (i.e., nonlinear regression) also focused on predicting CA as a target value (i.e., supervised learning); this may deviate
from the main goal of BA estimation, which is to measure the age as a state of health, not as CA. KDM is a simulation-
based method that relies on many assumptions and conditions for experimental settings and thus its accuracy cannot be
guaranteed when data does not conform to the assumptions. Finally, in the case of the PCA-based techniques, the direction
of extracting factors (i.e., maximizing the variance of data for BA estimation) may be ineffective to represent BA.

Furthermore, most existing methods do not consider the risk level or the direction of each variable, whether a bad level of
the variable is less than the normal level, or greater than it. Especially, machine learning and deep learning-based BA esti-
mates generated by using lots of variables are difficult to represent the health risks of all variables, because the criteria (e.g.,
normal criteria for clinical variables) and directions for the risk that they represent are ambiguous or different from each
other; it means that there is a lack of numerical uniformity for risks of the variables. BA should serve as an indicator of
an individual’s health, so an approach to estimating BA should include individual health-risk information. In addition, an
index must be validated before it can be adopted for widespread usage in the real world, but methods to validate the BA
estimates have not been standardized [38], because the index has no specific target value. Conventional methods to estimate
BA have been generally validated by identifying the correlation between BA and CA or by using the mortality or disease inci-
dence of cohort data as a target value of BA [9,47]. However, BA is an indicator of the body’s biological state, and therefore
cannot be easily derived from CA, mortality, or disease incidence [20]. Besides, validating the effect and direct correlation of
BA estimates on mortality is of questionable value [26], and existing methods that consider mortality or disease incidence
cannot be used unless the data are from a cohort study with follow-up examinations.

In this paper, we present a new BA-estimation algorithm that uses representation learning with people’s health risk. We
first calculate the cumulative Gaussian probability function for each risk factor, and define this function as the risk score (RS).
Then we use an RS-embedded autoencoder (RSAE) to extract latent features by modifying a loss function to consider the
original data and RS. Finally, we use the latent features to generate a BA from this RSAE (RSAE-BA). We also present a
new BA validation method that can sort the individuals into high-risk and low-risk groups, then use the RS to examine
the health status of each group. Finally, we apply the algorithm to several real-world health datasets to demonstrate its
validity and usefulness.

Our Contributions. Our study proposes methods that use the RS to estimate and validate BA. The main contributions of
are as follows:

� We introduce a new method for health risk measurement, which represents the risk of clinical variables. We quantify the
risk of each clinical variable into a score (i.e., RS) by considering its type of risk direction and distribution based on prior
knowledge. Further, we use the RS in the BA estimation model construction, which allows our BA to include health risk
information, and we also apply the RS to evaluation of BA from the model.
� We present RSAE, which is an unsupervised deep learning algorithm to estimate BA. Our undated autoencoder structure
composed of a modified loss function to include the RS can generate embeddings that contain the health risk information
and information from original health data specific to each person while capturing their non-linear patterns. Also, we pro-
pose a novel BA validation method using the RS that represents one’s risk levels, which can be implemented to both unla-
beled and labeled data. It can resolve limitations of existing methods that generally require cohort data labeled with
mortality or disease incidence in evaluation.
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� RSAE-BA enables people to diagnose their health status and provides precautionary information related to health care.
This allows one’s health to be quantitatively evaluated and can lead to hyper-personalized health management.

The structure of this paper is as follows. Section 2 describes the methodology for the new BA estimation and validation,
which complements the limitations of existing methods. Section 3 shows the experimental results and comparison with the
existing methods and Section 4 discusses the results and findings. Finally, Section 5 concludes with a brief summary.

2. Methodology

In this section, we describe a new method to estimate BA; the method consists of two parts: RSAE-BA estimation and BA
validation.

2.1. RSAE-BA estimation

RSAE-BA estimation consists of four steps: RS calculation, data transformation, RSAE modeling, and BA calculation. Fig. 1
presents its overall process and detailed information on each step is described below.

2.1.1. RS calculation
Health conditions can be usually distinguished discretely into a normal or abnormal status (i.e., f0;1g). However, individ-

ual conditions may differ in the same health condition and can be represented in a continuous form [31]. In this study, we
introduce the RS to represent an individual’s health risk as a continuous value. The assumption of RS is that the distribution
of each variable on normal health status follows Gaussian distribution Nðl; r2Þ under the central limit theorem [6] where
the mean l is determined using the normal criterion for a medical examination (i.e., medical prior knowledge) and the vari-
ance r2 is estimated from data samples empirically. The variable xj 2 Rn; j ¼ 1; . . . ;m in the EMR data X 2 Rn�m with n sam-
ples and m variables has its own independent Gaussian distribution (xj � Nðlj; r2

j Þ). Then for the RS calculation we consider
three types of variables, which represent different directions of the health abnormality (Fig. 2): poor health is indicated by
the large value (Type 1), by the small value (Type 2); by either the large or small value (Type 3).

The RS is calculated for X 2 Rn�m by the cumulative probability in the probability density function under the premise of
Nðl; r2Þ. It is denoted as P 2 ½0;1�n�m, where pi 2 ½0;1�m is the i-th sample of P, and pj 2 ½0;1�n is the j-th feature of P. For
xj 2Type 1 or xj 2Type 2, pj of the one-sided Gaussian distribution is calculated in opposite directions. For xj 2Type 3, pj

is calculated under the two-sided Gaussian distribution since the health risk increases if the value of xj is either larger or
smaller than lj. Besides, the distribution used in the RS calculation can be easily extended to other distributions such as
binomial or multinomial distribution according to data type (e.g., categorical data).

2.1.2. Data transformation
If the data and RS have different directions as in the three types, the information can be biased. Thus, to use both the orig-

inal data and RS in RSAEmodeling, the direction of the original data must be aligned beforehand with the direction of RS; this
process (Algorithm1) transforms original data X to new data X 0. First, we standardize the data in a feature-wise manner. For
Fig. 1. Overall process of RSAE-BA estimation algorithm.
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Fig. 2. Three types of methods for RS calculation.
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Type 1, we keep the value of variable as it is. For Type 2, we multiply by �1 to change the direction, and for Type 3, we con-
vert the value to an absolute value. Finally, we use a sigmoid function to establish bounds of 0 and 1 on x0j for all j ¼ 1; . . . ;m,

similar to the RS (i.e., x0j 2 ½0;1�n;8j ¼ 1; . . . ;m) where the calculated x0j is the variable of the transformed data X0; it can
increase the learning stability of RSAE by adjusting the value range of input data. Thus, these data transformations avoid
accumulating errors in the loss calculation of RSAE modeling, so the RSAE model can be trained effectively.

Algorithm1: Data transformation
2.1.3. RSAE modeling
An autoencoder, a neural network consisting of an encoder network and a decoder network, has been successfully used

for feature extraction about various types of data in many applications [49,43]. Parameters of the autoencoder are optimized
by minimizing the restoration error that accumulates during the process of projecting the input data to lower dimensions,
then restoring the input data from the projected data [4]. The autoencoder learns a representation of data by capturing both
the non-linear characteristics of various variables and their dependency in an unsupervised learning fashion [13]. In this
study, we modify the vanilla autoencoder to extract latent features that are more beneficial in BA estimation than those
of the vanilla one (Algorithm2 and Fig. 3).

Let Hð0ÞEnc be the input layer and HðkÞEnc 2 Rn�DðkÞ be the kth hidden layer for 8k 2 1; . . . ;K where K is the number of hidden lay-

ers and DðkÞ is the dimensionality of HðkÞEnc encoded from X 0. Z 2 Rn�DðKÞ is the latent representation after K layers of the encoder
of RSAE:
Hð0ÞEnc ¼ X 0; ð1Þ
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Fig. 3. Structure of RSAE.
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HðkÞEnc ¼ f ReLUðHðk�1ÞEnc W ðkÞ
Enc þ 1n � bðkÞTEnc Þ; ð2Þ

Z ¼ HðKÞEnc; ð3Þ
where W ðkÞ
Enc 2 RDðk�1Þ�DðkÞ and bðkÞEnc 2 RDðkÞ present respectively the weights and biases for the encoder of RSAE.

f ReLUðaÞ ¼ maxða;0Þ is a rectified linear unit (ReLU) activation function for RSAE modeling. We use Hð0ÞDec to represent the input
layer of the decoder of RSAE, which is equal to Z. Then, we define
HðkÞDec ¼ f ReLUðHðk�1ÞDec W ðkÞ
Dec þ 1n � bðkÞTDec Þ 2 Rn�DðK�kÞ ; ð4Þ
as the kth hidden layer, where W ðkÞ
Dec 2 RDðK�kþ1Þ�DðK�kÞ and bðkÞDec 2 RDðK�kÞ are the weights and biases for decoder of RSAE. We also

define
X 00 ¼ HðKÞDec; ð5Þ

as the reconstructed data decoded from Z. The key to this algorithm is to use the RS information as well as original data (after
transformation); the modified loss function is defined as
LRSAE ¼ LðX0;X 00Þ þ LðX 00;PÞ; ð6Þ

where LðX 0;X00Þ is the reconstruction error of X 0 and LðX00;PÞ is the difference error between X 00 and P. Lðx; yÞ is Kullback–
Leibler (KL) divergence loss between x and y [34]. Unlike the vanilla autoencoder, these equations enable extraction of
the DðKÞ-dimensional RSAE latent features zd 2 Rn (d ¼ 1; . . . ;DðKÞ) of Z, which contain the risk information of the RS as well
as capture the non-linearity of both the RS and original data.

Algorithm2: RSAE training

Input: Transformed input data X0, risk score P
Output: Latent feature Z

procedure RSAEðX0;P;DðkÞ;K;g; �;max iterÞ
h ¼ fW ðkÞ

Enc;b
ðkÞ
Enc;W

ðkÞ
Dec;b

ðkÞ
Decg is the set of the parameters of autoencoder

HðkÞEnc 2 Rn�DðkÞ is the kth hidden layer of encoder for 8k 2 1; . . . ;K

HðkÞDec 2 Rn�DðK�kÞ is the kth hidden layer of decoder for 8k 2 1; . . . ;K

DðkÞ is the dimensionality of HðkÞEnc (i.e., the number of hidden units)
K is the number of hidden layers
g is the learning rate
� is the convergence criterion
632
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a (continued)

Algorithm2: RSAE training

max iter is the maximul number of iteration
Initialize: hð0Þ, Lð0Þ
iter  0
repeat
iter  iter þ 1

Hð0ÞEnc  X0

for k 2 1; . . . ;K do

HðkÞEnc  f ReLUðHðk�1ÞEnc W ðkÞ
Enc þ 1n � bðkÞTEnc Þ

end for

Z ¼ HðKÞEnc

Hð0ÞDec  Z
for k 2 1; . . . ;K do

HðkÞDec  f ReLUðHðk�1ÞDec W ðkÞ
Dec þ 1n � bðkÞTDec Þ

end for

X00 ¼ HðKÞDec

L ¼ LðX0;X00Þ þ LðX00;PÞ
g = compute the gradients of the loss with respect to h

hðiterþ1Þ  hðiterÞ � g� gðiterÞ

until jLðiterþ1Þ � LðiterÞj < � or iter < max iter
return h

end procedure
2.1.4. BA calculation
To estimate BA, the BA score (BAS) should be calculated by using the extracted zd as
BAS ¼ 1
DðKÞ

XDðKÞ

d¼1
ðzd � zld1nÞ�ðzrd1nÞ; ð7Þ
where zld ¼ 1
n

Pn
i¼1zid and zrd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1ðzid � zld Þ

2
q

; i ¼ 1; . . . ;n. The n-dimensional vector BAS is an inadequate value for a gen-

eral age scale, so we convert the BAS to the BA to match the range of possible age values. We transform individual BAS to BA
in terms of years by using the T-scale idea, which is a technique to transform from a standard score to a T-score [14]. Finally,
RSAE-BA can be generated.

2.2. BA validation

To assess the feasibility of BA estimates, we introduce a new validation method that uses the RS, and that can be used in
unlabeled data beyond cohort data that are labeled with mortality or disease incidence. We first sort all individuals into two
groups: Group 1 that has BA < CA and Group 2 that has BA > CA. Then we define a user-defined parameter q and define a
low-risk (LR) group as the q% of samples in Group 1 that have the largest CA - BA, and a high-risk (HR) group as the q% of
Fig. 4. Example of LR group and HR group for BA validation.
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samples in Group 2 that have the largest BA - CA (Fig. 4). By exploiting the characteristic of RS, we can construct two
hypotheses: (1) The RS is lower for participants in the LR group than in the HR group, and (2) well-estimated BA would give
a good distinction of the RS difference between LR and HR groups. Finally, we determine whether the BA estimates satisfy
these hypotheses.
3. Results

3.1. Data description and preprocessing

To verify the effectiveness of RSAE-BA and to show the diverse results regarding both the RS and disease incidence based
on our BA validation method, experiments were conducted on three real-world datasets that had distinct characteristics, one
is unlabeled data and the others are labeled data with disease incidence (Table 1). The dataset collected by the Korea
National Health and Nutrition Examination Survey (KNHANES) is a result of an annual survey from 1988 to 2017 to identify
the health and nutritional status of Koreans [35]. A sample-cohort database, collected from the Korean National Health Insur-
ance Corporation (NHIC) from 2002 to 2010, includes health check-up and other information such as medical treatments of
2% of the population stratified by age, sex, and income level. From NHIC database, we used two cohorts: one (NHIC–HTN) to
study determinants of hypertension (HTN) occurrence in the two and half years after the check-up [37], and the other (NHIC-
T2DM) is about type-2 diabetes mellitus (T2DM); both were collected in the same way. To be specific, there is the main dif-
ference among these datasets. KNHANES is a cross-sectional study based on a one-time examination, which cannot provide
disease incidence labels for prediction. On the contrary, NHIC–HTN and NHIC-T2DM are longitudinal studies (i.e., cohort
studies) based on follow-up examinations, which include the incidence labels of certain diseases to predict future disease
onset.

The normal criteria and types of variables for RS calculation were obtained for each dataset (see Tables A.1 and A.2). We
set the gender-specific values for the normal criteria of each variable since they can be different by male and female. Fur-
thermore, KNHANES dataset has many missing values, so we used 21 common clinical variables in all years after excluding
variables that had > 40% missing values. Missing information can lead to biased estimates, so the missing data must be
imputed to preserve as much information as possible [15]. To impute the missing values, we used fast unified random forests
for survival, regression, and classification (RF-SRC) [23], which presented the best result in the preliminary experiments
(Appendix B). For NHIC–HTN and NHIC-T2DM, we selected 10 clinical variables that represent diverse physiological systems
that are commonly available in various examinations. NHIC–HTN and NHIC-T2DM have few missing values, so we excluded
all samples that had any missing values.
3.2. Experimental settings and benchmark methods

The RSAE-BA estimation algorithm in this study involves the RS calculation, data transformation, RSAE training, and BA
calculation processes. For each of three datasets, we first calculated the RS of data samples based on the Gaussian distribu-
tion whose mean and variance were defined by the normal criteria and empirical sample variance of each variable, respec-
tively. Next, we implemented the data transformation method on each dataset, and then we conducted the RSAE training.
We used several hyperparameters for RSAE training, including the number of hidden layers, hidden layer units, learning rate,
and epoch numbers, which had been tuned appropriately (see Table C.1). After the RSAE training, we used the latent features
extracted from the RSAE model to calculate a BAS. Then, we transformed the BAS to BA by applying the T-scale method. To
avoid the problem of too large or too small BAS leading to an abnormal BA (e.g., age < 0), we bounded BAS in the interval
½�2;2� and then calculated stable BA estimates. To validate the result of the proposed algorithm, we compared RSAE-BA with
the most widely-used methods in BA estimation, which are previously described: MLR, PCA, and KDM, where the BA esti-
mates are denoted as MLR-BA, PCA-BA, and KDM-BA, respectively. We additionally estimated BA using non-negative matrix
factorization (NMF) [36] (denoted as NMF-BA), which is a naïve extension of PCA, to increase the diversity of comparison
results. The accuracy of the BA estimation models was evaluated according to the averaged RS for the unlabeled data, and
according to the disease-incidence ratio for the labeled data. We used 10-fold cross-validation to measure the accuracy of
the five BA models for performance comparison. All experiments were implemented on Pytorch 1.4.0 in Python 3.6 with
an i7-8700 CPU, 32 GB of RAM, and a single 16-GB NVidia RTX 2080Ti GPU.
Table 1
Descriptions of three datasets for BA estimation.

Dataset Source # of variables # of samples Imbalance ratio

KNHANES KNHANES 21 85,460 -
NHIC–HTN NHIC 10 149,967 7%
NHIC-T2DM NHIC 10 145,718 11%

Notes: Imbalance ratio is the ratio of the number of samples in the majority class to the number of samples in the minority class. That is, it is the ratio of
disease-free incidence to disease incidence in the datasets in this study.
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3.3. Validation of BA estimates based on RS

To test the hypotheses of BA validation method using the RS, we compared the RS averages of the LR and HR groups, as
produced by the five BA estimation models. We implemented data categorization based on the age groups to show diverse
BA validation results regarding people of their age. The LR and HR groups consist of the botton 5% and top 5% respectively of
samples from the age groups ‘30s’, ‘40s’, ‘50s’, and ‘60s’. Average RS of LR and HR groups were taken for age-stratified sub-
samples (Table 2). Compared to other BA algorithms, RSAE-BA gave the lowest RS average in all age groups for the LR group,
but the highest RS average for the HR group. We also used the t-test with three significance levels (a ¼ 0:05;0:01;0:0001) to
determine significance of differences in average RS between LR and HR groups (Table 3). RSAE-BA obtained statistically sig-
nificant difference between the two groups for all age groups (p < 0:0001). We gradually increased q from 1 to 10 to check
the accuracy of models at different sampling ratios (Fig. 5). In all three datasets, RSAE-BA was more accurate than the other
baseline methods at all sampling ratios.
3.4. Validation of BA estimates based on disease incidence

To examine the relationship between RSAE-BA and disease incidence, our model and four baseline models were evaluated
in terms of HTN and T2DM incidence ratio in the NHIC–HTN and NHIC-T2DM datasets. In the same way as RS-based valida-
tion, BAs were estimated based on the five models, and then LR and HR groups were established according to the difference
between CA and BA and vice versa. Then we tested two hypotheses related to disease incidence: (1) participants in the HR
group would have higher disease incidence than the LR group, and (2) well-estimated BA would differentiate the disease
incidence between LR and HR groups effectively.

We checked the disease incidence in two groups, then used the t-test to statistically quantify the difference in average
disease incidence between two groups. RSAE-BA showed the largest difference of incidence between LR and HR groups in
all age groups in both datasets (Table 4). Especially in RSAE-BA, the difference in the disease incidence is > 20% for HTN
in 60s age groups and > 25% for T2DM in the 50s and 60s age groups; this result means that people in the HR group have
a much higher potential risk of hypertension and diabetes than those in the LR group. Results of the disease-onset rate were
compared at different q from 1 to 10% for the five models (Figs. 6 and 7). RSAE-BA outperforms other BA models in all age
groups and at all sampling ratios.
Table 2
Average and standard deviation (SD) of RS of LR and HR groups by age when q=5 for five BA estimates.

Dataset Risk group Model Age

30s 40s 50s 60s

KNHANES LR RSAE-BA 0.1698 � 0.0042 0.1990 � 0.0020 0.2637 � 0.0055 0.3033 � 0.0030
KDM-BA 0.1887 � 0.0013 0.2235 � 0.0005 0.2952 � 0.0017 0.3224 � 0.0030
MLR-BA 0.2980 � 0.0001 0.3299 � 0.0003 0.4009 � 0.0012 0.4176 � 0.0074
NMF-BA 0.2005 � 0.0035 0.2341 � 0.0006 0.2940 � 0.0043 0.3431 � 0.0001
PCA-BA 0.2379 � 0.0010 0.2689 � 0.0004 0.3456 � 0.0038 0.3925 � 0.0007

HR RSAE-BA 0.6745 � 0.0035 0.7059 � 0.0043 0.7114 � 0.0039 0.7057 � 0.0051
KDM-BA 0.6592 � 0.0028 0.6880 � 0.0014 0.6844 � 0.0023 0.6732 � 0.0027
MLR-BA 0.5377 � 0.0069 0.5873 � 0.0001 0.6047 � 0.0032 0.5975 � 0.0037
NMF-BA 0.6453 � 0.0026 0.6805 � 0.0025 0.6773 � 0.0022 0.6696 � 0.0006
PCA-BA 0.6169 � 0.0001 0.6413 � 0.0005 0.6403 � 0.0011 0.6250 � 0.0012

NHIC–HTN LR RSAE-BA 0.3682 � 0.0037 0.3749 � 0.0042 0.3818 � 0.0041 0.3680 � 0.0068
KDM-BA 0.4986 � 0.0023 0.5141 � 0.0015 0.5298 � 0.0031 0.5195 � 0.0080
MLR-BA 0.6323 � 0.0011 0.6139 � 0.0004 0.6190 � 0.0038 0.5812 � 0.0011
NMF-BA 0.3876 � 0.0005 0.3965 � 0.0002 0.4004 � 0.0007 0.3950 � 0.0042
PCA-BA 0.4484 � 0.0003 0.4653 � 0.0002 0.4748 � 0.0073 0.4503 � 0.0043

HR RSAE-BA 0.8615 � 0.0054 0.8531 � 0.0081 0.8434 � 0.0065 0.8276 � 0.0112
KDM-BA 0.7634 � 0.0019 0.7480 � 0.0038 0.7171 � 0.0034 0.6873 � 0.0124
MLR-BA 0.6536 � 0.0008 0.6780 � 0.0008 0.6848 � 0.0053 0.6516 � 0.0047
NMF-BA 0.8483 � 0.0016 0.8376 � 0.0001 0.8277 � 0.0041 0.8048 � 0.0014
PCA-BA 0.8340 � 0.0001 0.8218 � 0.0028 0.8041 � 0.0024 0.7783 � 0.0075

NHIC-T2DM LR RSAE-BA 0.3801 � 0.0025 0.3920 � 0.0026 0.4003 � 0.0038 0.3915 � 0.0031
KDM-BA 0.5457 � 0.0052 0.5515 � 0.0017 0.5591 � 0.0001 0.5453 � 0.0065
MLR-BA 0.6527 � 0.0067 0.6274 � 0.0038 0.6273 � 0.0022 0.5909 � 0.0116
NMF-BA 0.3839 � 0.0011 0.3954 � 0.0010 0.4039 � 0.0029 0.3996 � 0.0006
PCA-BA 0.4351 � 0.0001 0.4518 � 0.0004 0.4656 � 0.0031 0.4544 � 0.0049

HR RSAE-BA 0.8676 � 0.0026 0.8543 � 0.0027 0.8490 � 0.0037 0.8288 � 0.0043
KDM-BA 0.7068 � 0.0044 0.7083 � 0.0003 0.6990 � 0.0025 0.6711 � 0.0010
MLR-BA 0.6314 � 0.0040 0.6564 � 0.0017 0.6728 � 0.0011 0.6574 � 0.0044
NMF-BA 0.8548 � 0.0015 0.8405 � 0.0019 0.8360 � 0.0048 0.8147 � 0.0006
PCA-BA 0.8354 � 0.0021 0.8178 � 0.0009 0.8079 � 0.0021 0.7922 � 0.0002
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Table 3
Averaged and SD of RS difference between LR and HR groups by age when q = 5 for five BA estimates.

Dataset Model Age

30s 40s 50s 60s

KNHANES RSAE-BA 0.5046 � 0.0069***,* 0.5069 � 0.0054***,* 0.4477 � 0.008***,* 0.4024 � 0.0074***,*
KDM-BA 0.4705 � 0.0041*** 0.4644 � 0.0009*** 0.3892 � 0.0006*** 0.3508 � 0.0056***
MLR-BA 0.2397 � 0.0070*** 0.2573 � 0.0003*** 0.2038 � 0.0020** 0.1799 � 0.0037**
NMF-BA 0.4448 � 0.0061*** 0.4464 � 0.0019*** 0.3833 � 0.0022*** 0.3265 � 0.0007***
PCA-BA 0.3790 � 0.0010*** 0.3725 � 0.0001*** 0.2948 � 0.0028** 0.2325 � 0.0005**

NHIC–HTN RSAE-BA 0.4933 � 0.0086***,* 0.4783 � 0.0121***,* 0.4616 � 0.0101***,* 0.4596 � 0.0127***,*
KDM-BA 0.2648 � 0.0004** 0.2338 � 0.0052** 0.1873 � 0.0065* 0.1677 � 0.0044*
MLR-BA 0.0213 � 0.0004 0.0641 � 0.0004 0.0658 � 0.0015 0.0704 � 0.0058
NMF-BA 0.4606 � 0.0020 0.4411 � 0.0002 0.4272 � 0.0048 0.4098 � 0.0028
PCA-BA 0.3856 � 0.0002*** 0.3564 � 0.0030*** 0.3293 � 0.0097*** 0.3279 � 0.0032**

NHIC-T2DM RSAE-BA 0.4874 � 0.0042***,* 0.4624 � 0.0041***,* 0.4487 � 0.0057***,* 0.4373 � 0.0054***,*
KDM-BA 0.1610 � 0.0009 0.1568 � 0.0014 0.1399 � 0.0025 0.1258 � 0.0075
MLR-BA �0.0213 � 0.0027 0.0289 � 0.0022 0.0455 � 0.0011 0.0664 � 0.0072
NMF-BA 0.4709 � 0.0027*** 0.4451 � 0.0029*** 0.4321 � 0.0076*** 0.4151 � 0.0012***
PCA-BA 0.4003 � 0.0022*** 0.3660 � 0.0013*** 0.3423 � 0.0011*** 0.3378 � 0.0051**

Notes:*** p < 0:0001: ** p < 0:01: * p < 0:05:; p is denoted by p-value for t-test. The first group of asterisks indicates statistical significance for difference
between the LR and HR groups; the second group of asterisks refers to difference between BA models.
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4. Discussion

This study provides several methodological advances.

1. This study introduced the RS which can represent the degree of risk of a specific clinical variable quantitatively by con-
sidering the data distribution. The RS increases the detail provided by health risk information. We also constructed a new
autoencoder model structure that can embed the RS in the model learning. Since the RS calculated from the Gaussian dis-
tribution has non-linear characteristics, RSAE can extract latent features that represent both original data and the poten-
tial health risk, better than the vanilla autoencoder can.

2. In general, an ‘index’ is an expression of the state of an object by reference to a specific value or level in the data for a
given purpose (e.g., body mass index is calculated from height and weight). However, these indices cannot easily repre-
sent the features of various variables and their inter-relationship simultaneously; this condition demonstrates the need
for an index that uses machine learning, especially deep learning, to efficiently and effectively represent the inter-
relations and characteristics among a large number of variables. Our BA model uses a deep autoencoder that can extract
the latent representations of original variables from a large amount of unlabeled data. It can learn non-linear character-
istics of the variables automatically, whereas linear models such as PCA cannot accomplish this task.

3. Indices do not have an actual target (label), so they cannot be validated by direct comparison with one. Therefore, indices
have mainly been validated by consulting experts in the field; this approach is time consuming and expensive. For index
validation, we presented a novel method that can identify risk levels by dividing the samples into LR and HR groups and
evaluating the RS in each group.

4. We demonstrated the feasibility of RSAE-BA by comparing the existing BA estimation methods in terms of the RS and
disease incidence. RSAE-BA also showed higher accuracy of prediction of disease incidence than the other methods
(Table 4, Fig. 6, and Fig. 7); this success means that the RS is also highly associated with the health conditions with certain
diseases. Also, the validation method using the RS enables us to evaluate the estimated BA regardless of the types of data
(i.e., unlabeled or labeled data). It can significantly improve the usability of BA estimates by solving the limitations of
existing studies related to BA estimation and validation.

Our BA model has several managerial implications in the healthcare industry. The use of a weight scale that can simply
measure body compositions has been popularized, so this trend to provide a more comprehensive and supplementary index
including BA rather than the body indices itself through its own software or connection with a healthcare service application
(app). This study proposed a new BA estimation method that is more accurate than the existing algorithms, and that enables
such healthcare products or apps to utilize accurate health index. People can easily and conveniently compare their BA and
CA to understand their health status at a glance. Private companies related to BA estimation systems such as ‘Inner-age’ [22]
and ‘Bio-age’ [7] have begun to provide BA management services by using body measurement and blood tests to measure
overall BA. Beyond the function as an overall health index, this study provides individuals with the RS information to intu-
itively identify their risk level group (HR or LR group) and to identify clinical variables that have high potential risk. Thus,
RSAE-BA can raise the awareness of the need for health management, and lead healthcare companies to build personalized
healthcare services.

Nonetheless, the proposed method has some limitations. First, we assumed that variables are independent of each other
and that each has a Gaussian distribution. The RS calculated using these assumptions may be questionable when information
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Fig. 5. RS comparison results of five BA estimates in terms of RS difference between LR and HR groups by age and sampling ratio.

Table 4
Disease incidence difference between LR and HR groups by age when q=5 for five BA estimates.

Disease Model Age

30s 40s 50s 60s

HTN RSAE-BA 0.1943 � 0.0094***,* 0.1903 � 0.0154***,* 0.1989 � 0.0247***,* 0.2084 � 0.0252***,*
KDM-BA 0.1034 � 0.0069*** 0.1038 � 0.0203*** 0.0825 � 0.0002*** 0.0132 � 0.0137
MLR-BA �0.0047 � 0.0096 0.0296 � 0.0100 0.0271 � 0.0012 0.0014 � 0.0111
NMF-BA 0.1593 � 0.0077*** 0.1527 � 0.0032*** 0.1379 � 0.0016*** 0.1254 � 0.0097**
PCA-BA 0.0983 � 0.0008*** 0.0460 � 0.0027* 0.0330 � 0.0050 0.0279 � 0.0163

T2DM RSAE-BA 0.1728 � 0.0099***,* 0.2347 � 0.0119***,* 0.2535 � 0.0251***,* 0.2568 � 0.0192***,*
KDM-BA 0.0975 � 0.0184*** 0.1703 � 0.0053*** 0.2017 � 0.0330*** 0.1481 � 0.0382***
MLR-BA �0.0141 � 0.0081 0.0930 � 0.0168*** 0.1282 � 0.0269*** 0.0979 � 0.0652
NMF-BA 0.1559 � 0.0155*** 0.1956 � 0.0079*** 0.1976 � 0.0252*** 0.1944 � 0.0185***
PCA-BA 0.1204 � 0.0014*** 0.1781 � 0.0026*** 0.1902 � 0.0076*** 0.2398 � 0.0159***

Notes:*** p < 0:0001: ** p < 0:01: * p < 0:05:; p is denoted by p-value for t-test. The first group of asterisks indicates statistical significance for difference
between the LR and HR groups; the second group of asterisks refers to difference between BA models.
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Fig. 6. HTN incidence difference between LR and HR groups by age and sampling ratio for five BA estimates.
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about the types and normal criteria of the variables is insufficient. This problem should be studied using different empirical
distributions in the RS calculation. In addition, although the experimental results from deep-representation learning are
accurate, the relationships between the original variables and latent features extracted from the RSAE are not easily identi-
fied due to its intrinsic ‘black-box’ nature [5,44].

Several future research directions could improve our study. First, it can be extended to BAs that are specific to body func-
tions such as cardiovascular age, immune age, and kidney age. Further, the concept of disease-specific BA (e.g., diabetes age)
could be refined by supervised learning using a slight modification of our proposed method. Second, advances in healthcare
are yielding new health-related data about such topics as DNA methylation, physical activity, and metabolites, so RSAE-BA is
applicable to such data. Third, the RS-embedded method that uses the modified loss function can be applied to other man-
ifold learning methods such as PCA and NMF, and a comparison of their results with RSAE-BA might yield interesting
insights. Fourth, the RS was defined as the relative level of a person’s health risk to others in this study, but we can also con-
sider the risk level of the same person’s health data in a different period as the absolute RS (i.e., the personalized RS). Thus,
the RSAE-BA model is able to be extended by reflecting both the relative and absolute RS of each person’s health status
simultaneously into the RSAE-BA estimation. Lastly, the approach used in this study can be used to develop diverse indices
in other fields beyond healthcare, such as finance, insurance, and transportation safety.
638



Fig. 7. T2DM incidence difference between LR and HR groups by age and sampling ratio for five BA estimates.
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5. Conclusion

This study presented a new BA estimation method called RSAE-BA, which uses an autoencoder to achieve deep represen-
tation learning. The key idea behind this is the concept of RS, which can measure people’s health risk level into BA estimation
and validation. This technique enables extraction of latent features that aggregate information of both original data and the
RS by embedding the RS into autoencoder learning. Further, we proposed BA-validation method that uses the RS by defining
high-risk and low-risk groups based on BAs and comparing their average RSs. We conducted experiments on three datasets
with or without labels to demonstrate the usefulness of the proposed method. It provides significant improvement in accu-
racy of the RS and disease incidence compared with existing methods. We believe that our approach can provide an accurate
health index and lead to improvements in personal health management.
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Appendix A. Baseline characteristics
Table A.1
Baseline characteristics and clinical criteria of KNHANES.

Variable Mean (SD) Criteria for normality Type Missing ratio (%)

Male Female

CA 49.22 (16.61) - - - 0.0
BMI (kg/m2) 23.66 (3.39) 21.75 21.75 3 0.0
WC (cm) 81.37 (9.92) - - 1 0.2
SBP (mmHg) 119.59 (21.25) 105 105 1 0.9
DBP (mmHg) 75.6 (13.07) 70 70 1 0.9
GLU0 (mg/dL) 98.97 (24.32) 90 90 1 4.9
TC (mg/dL) 188.8 (36.38) 150 150 1 4.8
HMG (g/dL) 13.93 (1.61) 14.75 13.75 3 5.0
SGOT (U/L) 23.25 (14.28) 20 20 1 4.7
SGPT (U/L) 22.26 (18.55) 22.5 18.5 1 4.8
TG (mg/dL) 133.78 (103.45) 100 100 1 4.9
HbA1c (%) 8.56 (16.03) 4.35 4.35 1 36.1
PLS 17.73 (2.32) 20 20 3 5.8
UPH 5.76 (0.83) 5.2 4.05 1 14.4
USG 1.02 (0.01) 1.019 1.019 3 14.4
HCT (%) 41.76 (4.37) 45 39 3 5.0

RBC (106/uL) 4.57 (0.47) 4.85 4.2 3 5.0

WBC (103/uL) 6.2 (6.53) 7 7 3 12.6

HDL (mg/dL) 49.25 (11.98) 55 55 2 4.8
LDL (mg/dL) 114.03 (31.81) 100 100 1 6.7
BUN (mg/dL) 14.43 (4.49) 13 13 3 4.7
CREA (mg/dL) 0.87 (0.26) 1 1 1 4.7

Notes: CA = chronological age; BMI = body mass index; WC = waistline; SBP = systolic blood pressure; DBP = diastolic blood pressure; GLU0 = fasting
glucose; TC = total cholesterol; HMG = hemoglobin level; SGOT = serum glutamate oxaloacetate transaminase; SGTP = serum glutamic pyruvic
transaminase; TG = triglycerides; HbA1c = hemoglobin A1c; PLS = pulse; UPH = urine acid; USG = urine specific gravity; HCT = hematocrit; RBC = red
blood cells; WBC = white blood cells; HDL = high-density lipoprotein cholesterol; LDL = low-density lipoprotein cholesterol; BUN = blood urea nitrogen;
CREA = creatinine
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Table A.2
Baseline characteristics and clinical criteria of NHIC–HTN and NHIC-T2DM.

Variable Mean (SD) Criteria for normality Type

NHIC–HTN (N = 81,775) NHIC-T2DM (N = 84,130) Male Female

CA 41.46 (10.95) 45.15 (12.72) - - -
Disease 10,814 15,665 - - -
BMI (kg/m2) 23.81 (2.91) 24.06 (2.96) 21.75 21.75 3
WC (cm) 82.68 (7.53) 83.61 (7.56) - - 1
SBP (mmHg) 119.98 (10.35) 124.39 (14) 105 105 1
DBP (mmHg) 75.20 (7.34) 78.13 (9.67) 70 70 1
GLU0 (mg/dL) 95.22 (22.2) 92.78 (11.85) 90 90 1
TC (mg/dL) 191.57 (35.12) 193.24 (35) 150 150 1
HMG (g/dL) 15 (1.12) 14.96 (1.15) 14.75 13 3
SGOT (U/L) 25.92 (12.11) 26.84 (16.14) - - 1
SGPT (U/L) 28.58 (19.21) 29.34 (22.52) 22.5 18.5 1
r-GTP (U/L) 41.47 (35.41) 46.4 (52.35) 40.5 24 1

Notes: CA = chronological age; BMI = body mass index; WC = waistline; SBP = systolic blood pressure; DBP = diastolic blood pressure; GLU0 = fasting
glucose; TC = total cholesterol; HMG = hemoglobin level; SGOT = serum glutamate oxaloacetate transaminase; SGTP = serum glutamic pyruvic
transaminase; r-GTP = gamma glutamyl transpeptidase.
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Appendix B. Missing value imputation

Missing values in the KNHANES dataset were imputed by comparing four representative data imputation methods, Har-
rell miscellaneous (Hmisc), missForest, RF-SRC, and multivariate imputation by chained equations (MICE). To select the most
accurate imputation method, we artificially generated missing values and compared the estimated value with the corre-
sponding real values. A normalized root mean squared error (NRMSE) was used as a metric to assess the accuracy of impu-
tation. The computational speeds of the models were also compared, to assess their abilities to process large datasets. Of the
four imputation methods for KNHANES data, RF-SRC showed the highest accuracy (e.g., the lowest NRMSE) and the smallest
computation time (Table B.1); i.e., RF-SRC is an accurate and time-efficient method to impute missing values.
Appendix C. Hyperparameters

We used a grid search to select the optimal value for hyperparameters which minimizes our loss in the training set. For
the RSAE-BA model, the search space of the number of hidden layers was {2, 3, 4} for three datasets. In case of the number of
hidden layer units, it was explored at the range of [3,20] for the KNHANES data and [3,9] for the NHIC datasets, respectively.
In addition, experiments with several learning rates of {0.05, 0.01, 0.001}, convergence criterion of 10�5, and the number of
epochs at every 50 interval with the range of [200, 500] were conducted. The determined optimal hyperparameters for three
datasets are listed in Table C.1.
Appendix D. BA statistics
Table B.1
Comparison for missing value imputation methods in terms of NRMSE and computational costs.

Hmisc missForest RF-SRC MICE

NRMSE 0.855 0.303 0.188 0.399
Time cost (N = 1000) 3 min 30 min 1 s 1 min
Time cost (N = 10000) 12 min 1 h 3.3 s 7 min

Table C.1
Hyperparameters used in experiments for each dataset.

Hyperparameter Value

KNHANES NHIC–HTN NHIC-T2DM

Hidden layers 4 2 2
Hidden layer units 18–14-10–6 7–4 7–4
Learning rate 0.01 0.01 0.01
Convergence criterion 10�5 10�5 10�5

Epoch 300 350 350
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Table D.1
Average and SD of difference between BA and CA by age group based on CA when q ¼ 5.

Age group with CA

30s 40s 50s 60s

jBA-CAj 5.95 (3.95) 5.54 (3.98) 4.85 (3.73) 4.33 (3.41)
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