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ABSTRACT Fluorescence spectroscopy at the single-molecule scale has been indispensable for studying conformational dy-
namics and rare states of biological macromolecules. Single-molecule two-dimensional (2D) fluorescence lifetime correlation
spectroscopy is an emerging technique that holds promise for the study of protein and nucleic acid dynamics, as the technique
is 1) capable of resolving conformational dynamics using a single chromophore, 2) resolves forward and reverse transitions
independently, and 3) has a dynamic window ranging from microseconds to seconds. However, the calculation of a 2D fluores-
cence relaxation spectrum requires an inverse Laplace transform (ILT), which is an ill-conditioned inversion that must be esti-
mated numerically through a regularized minimization. Current methods for performing ILTs of fluorescence relaxation can be
computationally inefficient, sensitive to noise corruption, and difficult to implement. Here, we adopt an approach developed for
NMR spectroscopy (T1-T2 relaxometry) to perform one-dimensional (1D) and 2D-ILTs on single-molecule fluorescence spec-
troscopy data using singular-valued decomposition and Tikhonov regularization. This approach provides fast, robust, and easy
to implement Laplace inversions of single-molecule fluorescence data. We compare this approach to the widely used maximal
entropy method.
SIGNIFICANCE Inverse Laplace transformations are a powerful approach for analyzing relaxation data. The inversion
computes a relaxation rate spectrum from experimentally measured temporal relaxation, circumventing the need to choose
appropriate fitting functions. They are routinely performed in NMR spectroscopy and are becoming increasingly used in
single-molecule fluorescence experiments. However, as Laplace inversions are ill-conditioned transformations, they must
be estimated from regularization algorithms that are often computationally costly and difficult to implement. In this work, we
adopt an algorithm first developed for NMR relaxometry to provide fast, robust, and easy to implement one-dimensional
and two-dimensional inverse Laplace transformations on single-molecule fluorescence data.
INTRODUCTION

Single-molecule fluorescence spectroscopy has provided
unparalleled access into dynamics of biological macromol-
ecules and the mechanism of biochemical processes (1).
Typical experimental techniques rely on measuring time-
dependent fluctuations in the fluorescence emission wave-
length (2–8), intensity (9–11), or lifetime (12–14) from a
single chromophore or chromophore pair. The dynamics
of biochemical processes of interest are then inferred from
the analysis of the photon stream. The most widespread
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technique is Single Molecule Förster Resonance Energy
Transfer (sm-FRET) (1,15–18), which leverages the highly
sensitive distance dependence for dipole-dipole coupling
between two chromophores to monitor nanometer scale mo-
tions of a biomolecule. Conformations are distinguished by
the emission wavelength, which is either from the acceptor
or donor chromophore depending on the separation dis-
tance. Transitions between two conformations are observed
as abrupt changes in emission intensity at both the acceptor
and donor emission wavelength. This approach has several
advantages, including a clear interpretation of emission
wavelength transitions observed in the photon stream and
the ability to study highlighted conformational motions
through the selective placement of the chromophores (17).
However, the need for site-specific labeling of two
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Inverse Laplace transformations
chromophores on a single biomolecule makes its application
to proteins challenging, in particular when compared with
nucleic acids (18), which are relatively easy to modify.

Single-molecule two-dimensional (2D) fluorescence life-
time correlation spectroscopy (sm-2D-FLCS), first devel-
oped by Tahara and co-workers (19–21) and later
extended into the single-molecule regime by Kondo and
workers (22), provides an alternative analysis of single-
molecule data that does not sacrifice chemical selectivity
or temporal resolution. In this approach, time-correlated sin-
gle-photon counting (TCSPC) is used to detect fluorescence
intensity and emission delay time from a single chromo-
phore, either freely diffusing in dilute solution (19–21) or
surface immobilized (22). The data are recorded in the
Time Tagged Time-Resolved (TTTR) mode which gener-
ates a real-time photon stream (characterized by a global
macrotime) with a recorded emission delay time (character-
ized by a microtime) for each registered photon (23).
Distinct chemical species in the system are distinguished
by their fluorescence lifetime. Thus, chemical exchange be-
tween two states can be kinetically resolved on the condition
that they have different fluorescence lifetimes.

A series of 2D photon histograms is generated by cata-
loging all photon pairs separated by a systematically varying
waiting time DT from an experimentally recorded photon
stream (19,20). A 2D inverse Laplace transform (2D-ILT)
of the lifetime histogram generates a 2D-FCLS spectrum at
the given DT. Analogous to 2D-NMR (24), species that do
not undergo any form of exchange duringDT appear as diag-
onal peaks in the 2D spectrum,whereas species that exchange
duringDTappear as cross-peaks. Measuring 2D spectra for a
series of DT allows the overall correlation function to be
effectively split into its components comprising autocorrela-
tions for the diagonal components and cross correlations for
the off-diagonal components. Thus, the chemical exchange
kinetics among the components can be measured directly
through time correlation functions reflecting chemical ex-
change between two states (19–22). As this technique relies
on a single chromophore to resolve conformational dy-
namics, it can be applied to systems in which fluorescence la-
beling is challenging or to native proteinswith an endogenous
chromophore. Additionally, for a conformational transition
of interest, the forward and reverse kinetics are resolved as
they are recorded in different regions of the 2D spectrum.
The ability to measure asymmetric forward and reverse ki-
netics is relevant for studying systems operating out of equi-
librium.Lastly, as the technique requires no additional optical
setup or heavy computing hardware, it can be implemented
on any setup already used for Fluorescence Correlation Spec-
troscopy (FCS) or FRET.

The challenge of this experimental approach is the need
to perform a 2D-ILT, which is an ill-conditioned problem
and is, therefore, numerically unstable. This results in mul-
tiple solutions satisfying the same problem when solved
with traditional least-square analysis (25). Instead, this class
of problems must be solved via regularized least-square
analysis, which imposes a penalty on solutions with unde-
sired features and hence promotes smoother solutions
(26). To date, the calculation of the 2D spectra is tradition-
ally performed using the maximum entropy method (MEM)
(19–22), which produces a solution using Bayesian infer-
ence. The application of MEM has two severe limitations.
First, it involves a constrained optimization because entropy
cannot be defined for negative values, so one must check for
the positivity constraint during each iteration and modify the
fit accordingly. This makes the approach computationally
inefficient. Second, the 2D spectra is fit as a lexicographi-
cally ordered one-dimensional (1D) vector, resulting in a
fitting kernel matrix whose size is of the order of the fourth
power of the number of points in the lifetime spectra, lead-
ing to a tremendous computational cost. To decrease the
computational cost, the data are often binned nonuniformly
before fitting, which results in a loss of temporal informa-
tion in the input data (20).

The challenges of performing 2D-ILTs (i.e., converting
the time-dependent relaxation data to a relaxation rate spec-
trum) are not unique to fluorescence spectroscopy. Indeed,
multidimensional Laplace inversions are commonly em-
ployed in NMR spectroscopy, for instance, in the computa-
tion of T1-T2 correlation spectrum from relaxometry data.
Work by Venkataramanan and co-workers (27) outlined an
efficient algorithm for Laplace inversion in NMR relaxom-
etry data that leveraged singular-valued decomposition
(SVD) and Tikhonov regularization (TK). Subsequent im-
provements of this approach have been reported (28,29).
In this study, we adopt this general approach for application
to single-molecule fluorescence spectroscopy analysis. This
algorithm reduces the computation time to merely a few sec-
onds per 2D spectrum and, hence, enables the analysis of
large data sets with high resolution.
MATERIALS AND METHODS

Generation of 2D photon histograms

A 2D-FLCS spectrum is generated from a 2D-ILT of a lifetime correlation

histogram, easily measured using standard TCSPC techniques (19,20). We

start with a familiar 1D picture to introduce the concept of inverse Laplace

transform (ILT). Given a time series of recorded photons, the emission de-

lays are distributed exponentially and can be represented as the following

equation:

IðtÞ ¼
Xn

j¼ 1

ajexp
ð�t=tjÞ; (1)

for n independent components with amplitudes aj and respective fluores-

cence lifetimes tj. This can be represented in matrix form and generalized

for the sake of broader application as the following equation:

Ii ¼
Xn

j¼ 1

Kij $ Aj; (2)
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FIGURE 1 (a) An example fluorescence decay data exhibiting a biexponential decay. (b) Singular values of the kernel matrix K in Eq. 10 comprising of

exponential decays with 100 distinct lifetimes in range (0.1 ns–10 ns). The singular values decrease rapidly, and K can be represented accurately by �30

highest singular values. (c) Compressed data ~m obtained by Eq. 13 represented using 30 points.
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where K is a kernel with predefined basis of fluorescence lifetime decays

Kij ¼ ð1 =tjÞexpð�ti=tjÞ, and Aj is a column vector representing the ampli-

tudes corresponding the species tj. Kernel K can be defined such that the

experimental lifetimes are included in ½tmin; tmax� with sufficient resolution

such that any measured decay can be represented by a precalculated kernel

and an amplitude vector. Under this construction, AðtjÞ represents a 1D-ILT
of IðtÞ, or the lifetime spectrum corresponding to IðtÞ, as we convert the

time-dependent decay into its lifetime components and their probability

distribution amplitudes.

This can be easily extended to 2D. Cataloging all the photon pairs sepa-

rated by a global lag time DT in the experimentally recorded time series and

having emission delays t1 and t2, we can generate a 2D histogram with axes

as t1 and t2, where each point Mðt1; t2;DTÞ represents the number of coin-

cidences when a photon with delay t2 is detected DT after having detected a

photon with delay t1:

M
�
t1;i; t2;j;DT

� ¼
X
k;l

Fðt1;k; t2;l;DTÞ

$expð�t1;i=t1;kÞ$expð�t2;j=t2;lÞ:
(3)
Using the kernel structure mentioned above, we can write in matrix

notation,

Mðt1; t2;DTÞ ¼ K1ðt1; t1Þ Fðt1; t2;DTÞ K2ðt2; t2ÞT ; (4)
where Fðt1; t2;DTÞ is the joint probability distribution of occurrence of a

photon with lifetime t2 occurring DT after registering a photon with life-

time t1. Each point on Fðt1; t2;DTÞ represents the amplitude of correlation

between the components at ðt1; t2Þ separated by lag time DT, the autocor-
relations appear along the diagonal of Fðt1 ¼ t2Þ and the cross correlations
appear as off-diagonal peaks of Fðt1 st2Þ. By varying DT, one can deter-

mine the separated time correlation functions of the constituent components

in any fluorescence emission time series.

Determining Fðt1; t2;DTÞ is equivalent to performing a 2D-ILT on M.

For efficient handling, we can convert the 2D form of Eq. 4 to 1D by lexi-

cographically ordering the matrices m ¼ vec½M�, f ¼ vec½F� and can write

the kernel operations K1 and K2 by a single operator K0 given by the

Kronecker product:

K0 ¼ K1 � K2: (5)
And we represent the equivalent 1D problem as the following equation:

m ¼ K0f : (6)
4592 Biophysical Journal 120, 4590–4599, October 19, 2021
Now, the only task at hand is to solve for f given m and K0. As previously

mentioned, this equation cannot be solved analytically because it is an ill-

conditioned inversion resulting in a solution that is not stable or unique.

Instead, regularized least-squared technique must be used to approximate

the inversion. In regularized least-square minimization, the least square

minimizes the difference between the input data and the fit, whereas the reg-

ularization imposes a penalty on undesired features of the fitted solution.

The regularization prevents overfitting or numerical instability. To avoid

any bias, we start with a uniform before the guess of f and iteratively

find the solution by minimizing the objective function given by the

following equation:

Qðf Þ ¼ kK0f � m k 2 þ aRðf Þ; (7)

where the first term on RHS represents the least-square term, Rðf Þ is the
regularization function of choice, and a is a regularization constant that

weighs the importance of the least-square fitting versus regularization.

The choice of a is critical to appropriate fitting: too small, and the minimi-

zation remains unstable (overfitting); too large, and fit may not reflect the

underlying experimental data (underfitting). Two regularization methods

discussed here include the commonly employed MEM (30–32) and TK

(33,34). Ultimately, we highlight the strength of TK at providing a fast

and robust method for performing 2D-ILT.
2D-ILT by Maximum Entropy Method

The MEM is a commonly employed fitting technique used for a number of

applications, including image reconstruction (30,31) and spectroscopy (32).

It was also the approach applied by Tahara and co-workers in their original

development of 2D-FLCS spectroscopy (19,20). MEM uses a regularization

function based on Shannon entropy penalization fðsÞ ¼ � P
s logs. The

regularization function can be written as follows,

Rðf Þ ¼
X

f � x � f ln

�
f

x

�
; (8)

where x represents the estimated prior fit of the experimental data. The al-

gorithm is initiated by taking f to be a flat distribution and then optimized

according to Eq. 7. Fitting is typically initiated with a large a-parameter,

which is iteratively decreased until the classical MEM condition is satisfied

(35). This method ensures that of all the possible solutions, the solution with

the maximal information entropy is chosen. In our results, we follow the

MEM approach described by Tahara and co-workers (20).

For typical 2D-FLCS spectra, the data sets are too large to compute ILT

using MEM efficiently. Instead, the data are binned logarithmically, which

decreases the data size at the cost of resolution. Furthermore, to obtain a



TABLE 1 Computation Times in Seconds for Methods or 1D

ILT of Same Set of Data Comprising 2 � 106 Total Photons

Regularizer

No

Compression

Compression

Only BRD BRD Only

MEM 32 5 3 9.1 5 0.3 – –

Tikhonov 29 5 3 8.90 5 0.25 0.17 5 0.02 0.22 5 0.02

The corresponding fits are shown in Figure 7, a–f.
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meaningful ILT usingMEM, one must impose a nonnegativity constraint on

f after every iteration because the entropy cannot be defined for negative

values. This significantly decreases the efficiency of the calculation.
2D-ILT by Tikhonov Regularization

Regularization function

An alternative approach has been developed in NMR spectroscopy, which

uses SVD-based data compression and TK (27–29). This approach differs

from MEM in several ways. First, the size of the numerical calculation is

greatly reduced by compressing the kernels using SVD instead of nonuni-

form binning of the data. Because the kernels are smooth functions, the

elementwise data are vastly redundant and SVD can reduce the data size

by roughly 100-fold without compromising the quality of the fit or the spec-

tral resolution. Second, it uses TK on the compressed data, which ensures a

unique solution to the optimization due to the quadratic nature of the terms.

Third, it employs Butler-Reeds-Dawson (BRD) method to transform the

constrained optimization to an unconstrained optimization which is compu-

tationally efficient to implement. Lastly, it provides a method for choosing

an appropriate regularization constant proportional to variance in the data.

The outline of the method follows what is presented in (27) and (29). Using

TK, the objective function to be minimized from Eq. 7 becomes the

following:

bf ¼ arg min
f > 0

Qðf Þ; (9)

where,

Qðf Þ ¼ k~m� ~K0 f k 2 þ akf k 2
: (10)

The quadratic nature of the terms ensures a unique solution. The second

term penalizes solutions that have large norms, which is characteristic of

functions with sharp features. Solutions with smoothly varying features

are therefore promoted, and a scales the desired smoothness with respect

to the least-squares difference. However, because f is the probability distri-
bution, it cannot take negative values, which makes this a constrained opti-

mization problem. To convert the inversion to an unconstrained problem,

the BRD algorithm is employed (27). We do not anticipate significant speed

improvement by implementing Tikhonov regularizer alone. Instead, its pur-

pose is to enable the use of the BRD algorithm, which is incompatible with

maximal entropy regularizer.
TABLE 2 Computation Times in Seconds for Methods or 2D

ILT of Same Set of Data with the 2D Emission Delay Histograms

Evaluated at DT ¼ 2 ms

Regularizer No Compression Compression Only BRD BRD Only

MEM 9 x 103 4 x 103 – –

Tikhonov 8 x 103 1.4 x 103 20 500

The corresponding fits are shown in Figure 7, g–l.
Kernel compression

Here, we demonstrate efficient reduction of computational size of the prob-

lem in Eq. 7 without significant loss of temporal information of the data. To

get a sense of magnitude of the computational size, TCSPC experiment per-

formed at the resolution of 64 ps has 256 data points Fig. 1 a. The 2D emis-

sion delay histogram generated from the time trace are thus of size 256 �
256, if we desire to perform 2D ILT with a basis size of 100 lifetime con-

stants, we have the estimated spectrum of the size 100 � 100 and hence the

kernels of size 256 � 100. Converting the problem to 1D by lexicographic

ordering (Eq. 6) gives us m65;536�1 ¼ K65;536�10;000f10;000�1, which is a

tremendously large problem. Traditional solutions include nonuniform

binning of the data and using smaller basis of lifetimes. However, maximal

storage space is occupied by the kernel, which is precalculated and free of

noise.

Here, we show how the size of the problem can be reduced by compress-

ing the kernel using SVD as demonstrated in (27). For simplicity, we illus-

trate the implementation for 1D ILT (Eq. 2). For the implementation in the

case of 2D ILT, the compression is performed before converting the prob-

lem to 1D as shown in the Supporting materials and methods, Section 4.

The 1D problem at hand is as follows,

md� 1 ¼ Kd� s fs� 1; (11)

where the subscripts denote the dimensions (d z 256, s ¼ 100). We repre-

sent the kernel K by its SVD, K ¼ USVT , where U and V are unitary

matrices ðUTU¼ VTV¼ IÞ and S is a diagonal matrix with the singular

values of K arranged in descending order:

md� 1 ¼ Ud� s Ss� s V
T
s� s fs� 1: (12)

Fig. 1 b shows the singular values of a kernel formed using basis of 100

decays within range of lifetimes [0.1–10 ns] and for time [0–16 ns]. We

see that the singular values become negligible after �30 values

ðsi < 10�15; i > 30Þ. This is attributed to the smooth nature of the kernels,

which implies that we can represent the kernel matrix by a compact SVD

where we only keep the r highest singular values greater than 10�15 (first

30 values in this case). Thus, the matrix Ss�s can be compressed to ~Sr�r

without significant loss of information. ~Ud�r and ~Vs�r are formed by select-

ing the first r columns of U and first r rows of V. The resultant compact

kernel ~Ud�r
~Sr�r

~V
T

r�s is an approximation of the original kernel and has

the same dimensions as Kd�s. The difference between the original and

the compact kernel is shown in Fig. S2. We can observe that there is negli-

gible loss of information and that ~Ud�r
~Sr�r

~V
T

r�s approximates K well.

Using the compact SVD, Eq. 12 now becomes the following,

md� 1 ¼ ~Ud� r
~Sr� r

~V
T

r� sfs� 1; (13)

~ T ~ T
Ur� d md� 1 ¼ Sr� r Vr� s fs� 1; (14)

~m ¼ ~K f ; and (15)
r� 1 r� s s� 1

where ~m ¼ ~U
T
m is referred to as compressed data and ~K ¼ ~S~V

T
. Note that

the size of the problem is reduced using the SVD of kernels and not the

experimental datam. The fitting is now performed on ~m that has dimensions

of r � 1 Fig. 1 c. For the typical case of r ¼ 30,

~m30� 1 ¼ ~K30� 100 f100� 1: (16)

This makes it different than the traditional nonuniform binning approach.

Venkataramanan et al. have shown that the structure of the problem Eq. 7

remains unchanged after this transformation (27). That is, the solution f
Biophysical Journal 120, 4590–4599, October 19, 2021 4593



TABLE 3 CPU Time Required for Execution of the Fits for

Various Sizes of Basis Set

Basis Size 1D ILT Time (s) 2D ILT Time (s)

1000 0.40 1000

100 0.17 20

50 0.05 1
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that satisfies Eq. 11 is the same one that satisfies Eq. 16 and again, the

solution is unique because of the quadratic nature of the problem.

Comparing the size of the problem in Eq. 11 to that of Eq. 16, we observe

that the problem size is reduced by a factor of 10. The reduction factor is

even greater in the case of 2D problem (250 times, see Supporting materials

and methods, Section 4). This compression is a general technique and can

be used alongside the existing MEM approach (Figure 7, b and h; Tables 1

and 2) or broadly, with any other problem involving smooth large kernel

functions. The projection of the original data on the range space is given

by the following,

~~m ¼ ~U ~U
T
m ¼ ~U~m; (17)

where ~~m resembles a smoother version or a low pass filtered version of

original data m (Fig. 4 a).

Tikhonov Regularization with BRD

A brief overview of the BRD approach (27,36) summarizing is given below.

In Eq. 10, the gradient of Q with respect to f must be zero at its minimum,

vQ

vfi
¼ � ~K

T

0;ið~m� ~K0f Þ þ afi ¼ 0; (18)

where,

afi ¼ ~K
T

0;ið~m� ~K0f Þ; (19)

and,

fi ¼ ~K
T

0;ic: (20)

We invoke a vector c which maps f as,

c ¼ ~m� ~K0f

a
; (21)

where c has the same dimensions as the compressed data ~m. The uncon-

strained problem then becomes (29),

bc ¼ arg min cðcÞ; (22)

where,

cðcÞ ¼ 1

2
cT ½GðcÞþaI�c� cT ~m; (23)

and,

GðcÞ ¼ ~K0 diag
�
H
�
~K
T

0c
��

~K
T

0 : (24)

Here, Hð $Þ denotes the Heaviside function, which ensures positive

semidefiniteness. The minimization of cðcÞ can be carried out via standard
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unconstrained inverse Newton minimization routines such as fminunc in

MATLAB (The MathWorks, Natick, MA). The required gradients and

Hessian of Eq. 22 are easily computed as follows,

VcðcÞ ¼ ðGðcÞþaIÞc� ~m; (25)

and,

VVcðcÞ ¼ GðcÞ þ aI: (26)

Using the optimized vector c, the ordered vector f is calculated as follows

f ¼ max
�
0; ~K

T

0c
�
: (27)

The 2D-ILT spectrum F is then given by reshaping the f1�kl vector to a

matrix Fk�l. We start with a large value of a to estimate c. The recommen-

ded optimum a for the following iterations is given by the following,

aopt ¼
ffiffiffiffiffiffiffiffiffiffiffi
k � l

p
$bs

kc k F

; (28)

with,

bs ¼ std
� ffiffiffiffi

~~m
p

� ffiffiffiffi
m

p �
: (29)

Equation 29 represents the approximation of noise level in the data ob-

tained by first normalizing the data by square root of the photon counts

and then comparing it with a smoothened version of itself (Fig. 4 a). The

optimized vector c is iteratively evaluated using this aopt. A suitable

stopping criterion is achieved when

kc k F > 1=bs; (30)

or when the relative difference between consecutive a to be less than 0.1%.

jai � aiþ1j
ai

< 10�3: (31)

Typically, convergence is achieved within 10 iterations.
RESULTS AND DISCUSSION

We demonstrate the performance of both MEM and TK us-
ing Markovian Monte Carlo simulations to generate artifi-
cial photon time series for a two-state system with user
defined inputs for fluorescence lifetime, emission intensity
and transition rate matrix (see Supporting materials and
methods, Section 2 for details) We compare the compression
efficiency, tolerance to noise, and the timing of the algo-
rithm for various relevant parameters.
Implementation

We simulate a two-state system with fluorescence lifetimes
of t1 ¼ 1:0 ns and t2 ¼ 3:0 ns, and exchange rates of
kf ¼ kr ¼ 1� 103s�1 corresponding to an exchange time
of 1 ms. The number of photons analyzed is roughly
2:5� 105. The corresponding 1D and 2D lifetime spectra



FIGURE 2 Laplace inversions by Tikhonov Regularization . Monte

Carlo simulations generate an artificial photon stream of a two-component

system with fluorescence lifetimes of t1 ¼ 1 ns and t2 ¼ 3 ns undergoing

equilibrium chemical exchange at a rate of 1� 103 s�1. (a) Raw 1D-photon

histogram (blue) and the obtained fit (red) from 1D-ILT. (b) The 1D lifetime

spectrum shows two peaks with relaxation rates of 1 and 3 ns, consistent

with fluorescence lifetime of the two components in the system. (c) Resid-

ual between the 1D photon histogram and the fit obtained by 1D-ILT. (d) 2D

photon correlation histogram and (e) 2D relaxation rate spectrum computed

at a waiting time of DT¼ 2 ms obtained from a 2D-ILT. The spectrum con-

sists of diagonal peaks at 1 and 3 ns, as well as cross-peaks indicating chem-

ical exchange between the two species. (f) Residual between the 2D photon

correlation histogram and 2D-ILT fit.
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were obtained by ILT by TK as described above, using a ba-
sis set of size L ¼ 100 and with an SVD using 30 greatest
values. The 1D photon histogram, resulting fit computed
by a 1D-ILT, and residual are shown in Fig. 2, a and c.
The 1D relaxation rate spectrum shows two peaks located
at t1 ¼ 1:0 ns and t2 ¼ 3:0 ns, consistent with the input pa-
rameters of the simulation Fig. 2 b.

The 2D photon correlation histogram evaluated at DT ¼
2 ms, resulting fit computed by a 2D-ILT, and residual are
shown in Fig. 2, d and f. A 2D-FLCS spectrum shows two
diagonal peaks at t1 ¼ 1:0 ns and t2 ¼ 3:0 ns, and two
off-diagonal cross-peaks between these transitions Fig. 2
e. The cross-peaks indicate that chemical exchange has
occurred within the timescale DT ¼ 2 ms, which is consis-
tent with the input transition rate matrix.

Computing the 2D-FLCS spectrum for a series ofDT delay
times allows the chemical exchange kinetics to be directly
measured. Fig. 3,a–c shows the 2D-FLCS spectrummeasured
for delay times ranging from 10 ms to 2 s. At early timesDT <
texchange, only diagonal peaks are observed as no chemical ex-
change had occurred Fig. 3 a. AsDT is increased, cross-peaks
emerge as chemical exchange occurs Fig. 3 b. The exchange
cross-peaks reach a steady state as DT > texchange Fig. 3 c.
Monitoring the amplitude of these diagonal and cross-peaks
provides direct information regarding the chemical exchange
process. The amplitude of the peaks can be expressed as,

CijðDTÞ ¼ CSiðtÞSjðtþDTÞD; (32)

where i and j represent the state of the system with lifetimes
ti and tj: CijðDTÞ thus represents the probability of the sys-
tem in state i at time t to be observed in state j at later time
t þ DT. The diagonal is given by the condition i ¼ j,
whereas cross-peaks are given by the condition i s j. The
two autocorrelation and cross-correlation functions ob-
tained from the 2D-FLCS spectra are shown in Fig. 3 d.
As expected, the autocorrelation functions decay on the
timescale of texchange, whereas the cross-correlation func-
tions grow on the timescale texchange. Fitting the data pro-
vides a direct measure of texchange for the system.

In practice, lifetime histograms are convoluted by a sys-
tematic instrument response function (IRF) and do not
manifest as pure exponential decays. We can account for
this by fitting the data with kernels convoluted by a known
IRF that can be measured experimentally from scattering
of the excitation pulse from a colloidal medium. The
experimentally observed TCSPC histogram is modeled
from Eq. 1 as

Iobsðt; tÞ ¼
X
i

IRFðti � t0Þexp
�
�t � ti

t

�
; (33)

where, t0 is the unavoidable zero-time shift for the IRF. It is
important so estimate the correct value of t0 as it can lead to
undesirable errors in the ILT spectrum. To circumvent this,
we calculate the 1D-ILT spectrum at various values of zero-
time shifts and use the range over which the fitting least-
square error c2 is minimal. The ILTobtained from this range
is then averaged to obtain the final 1D-ILT spectrum to be
used for further analysis. 2D spectrum is calculated using
the same range of zero-time-shifts. The kernels to be fitted
are also convoluted with the IRF similarly (see Supporting
materials and methods, Section 3) and Fig. S2.
Effect of compression

Kernel compression (KC) increases the computational speed
by excluding redundant or insignificant information and thus
reducing the size of the problem. However, there is a tradeoff
between the magnitude of compression and loss of informa-
tion. The measure of compression in our case is given by the
number of singular values chosen to represent the kernel of
exponential. Fig. 1 b shows the singular values for a kernel
comprising of 100 basis exponentials ranging from lifetimes
[0.1–10 ns]. It is observed that only the greatest 30 singular
Biophysical Journal 120, 4590–4599, October 19, 2021 4595



FIGURE 4 Noise estimation for stopping criterion. (a) Normalized fluo-

rescence data superimposed with ~~m, projection of compressed data onto the

range space of kernel given by Eq. 17. It is observed that ~~m serves as a

smooth approximation to input data referring to which we infer the corre-

sponding noise level given by Eq. 29. (b) Shows the difference ~~m� m,
which is dependent on the photon counts. We normalize both traces using

square root of photon counts which eliminates the intensity dependence.

(c) Shows the difference after normalization given by
ffiffiffiffi
~~m

p
� ffiffiffiffi

m
p

.

FIGURE 3 Chemical Exchange kinetics of a two-state system. 2D-FLCS

spectra computed at (a) DT ¼ 10–20 ms, (b) DT ¼ 100–200 ms, and (c)

DT ¼ 1–2 ms. At DT < texchange, no cross-peaks are observed between

the two states, indicating no exchange has occurred. As DT approaches

texchange cross-peaks emerge indicating both forward and reverse transitions

between the two states. (d) The kinetics of the exchange process are re-

flected in the autocorrelation and cross-correlation functions of the diagonal

and off-diagonal peaks, respectively. Fitting either the autocorrelation or

cross-correlation functions provide a direct measure of the exchange ki-

netics in the system.
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values are enough to sufficiently describe the kernel. This is
demonstrated in Fig. S1 d showing the difference between the
true kernel and the approximated kernel constructed by
choosing only the 30 greatest singular values and Fig. S1 c
showing the least-square error in the kernel approximation
lsq ¼ SðK � KcompactÞ2.

Finally, transforming the problem by operation of UT ,
Eq. 14 reduces the computational size by 10 times for
1D-ILTand 250 times for 2D-ILT. The number of significant
singular values depends largely on the range of lifetimes
used to generate the basis and not the number of basis vec-
tors chosen for fitting (Fig. S1, a and b).
Dependence on total photon counts

A robust algorithm should produce consistent results for
various realizations of data obtained from same source. In
case of regularized optimization, this is reflected in the
choice of the regularization parameter a (Eq. 7). a repre-
sents the bias toward the smoothness with respect to the
least-square errors, which manifests as the width of the
peaks in case of the ILT. We start with a sufficiently high
value of a and gradually decrease it following Eq. 28 as sug-
gested in (36), where bs2 is a measure of the variance in data.

Determining bs is straightforward in experiments influ-
enced by uniform gaussian noise however, for the fluores-
cence lifetime histogram, the photon counts follow Poisson
4596 Biophysical Journal 120, 4590–4599, October 19, 2021
distribution at each point individually. As a result, the vari-
ance at each point is different and is proportional to the total
accumulated photons. The best case is to determine the
point-wise variance experimentally however, the data used
for determination can be simply added together into a fluores-
cence decay with more counts and hence less relative noise.
Thus, we chose to approximate the point-wise variance by
comparing the data with a smoothened version of itself.
Luckily, ~~m ¼ ~U

T ~U m which is the projection of compressed
data to the range space of the kernels serves as an approximate
smoothened curve corresponding to the data given that the to-
tal number of photons is sufficiently high (above � 104 total
photons) Fig. 4 a. Thenwe estimate bs using Eq. 29, where the
traces m and ~~m are normalized by their square root which
effectively removes the intensity dependence of each data
point and produces uniformly distributed residues Fig. 4, b
and c. Decrease in photon counts leads to higher bs, which
in turn leads to a higher aopt and hence smoother fits. Fig. 5,
a and b shows dependence of bs and aopt on the total photon
counts. Fig. 5, c–f also shows the normalized 1D and 2D-
ILT fits for trajectories with various total photon counts. A
similar approach of using preliminary fits has been shown
to improve the accuracy and precision of estimated parame-
ters in fitting of single-molecule fluorescence decays (37).
A qualitative analysis of effect of noise on the resulting ILT



FIGURE 5 Dependence of 2D spectrum on total photon counts. (a) The estimated bs with respect to total photon counts in the fluorescence data. (b) Shows

the optimum regularization parameter obtained with respect to the total photon counts in the fluorescence data. Error bars denote the standard deviation using

30 instances of simulated data. Higher aopt due to lower photon counts results in smoother fits and vice versa as demonstrated in (c), which showing 1D-ILTof

three trajectories with varying total photons. (d–f) show the normalized 2D-ILT obtained at DT ¼ 2 ms using the simulated trajectories from (c).

Inverse Laplace transformations
fits is detailed in Supportingmaterials andmethods, Section 5
and Figs. S3 and S4.
Application to experimental data

In this section, we demonstrate the utility of the outlined
2D-ILT algorithm on experimental data. We measure
2D-FLCS for bacteriorhodopsin (bR), a transmembrane pro-
ton pump protein with an endogenous retinal chromophore.
Photon absorption by the retinal chromophore initiates a
complex reaction cycle that involves a series of conforma-
FIGURE 6 2D-ILTon bR single-molecule fluorescence data. (a) Crystal struct

spectrum of the bR in the ground state, with lmax ¼ 560 nm. (c and d) 2D-FL

diagonal peaks can be assigned to the K, L, and N intermediate formed during the

exchange between the intermediate species.
tional transitions that occur on timescales ranging from
microseconds to milliseconds (38). The dynamics of confor-
mational transitions involved in the biochemical cycle can
be mapped through changes in the retinal chromophore fluo-
rescence lifetime (39). Note, here, we are interested only in
demonstrating the use of the outlined approach to obtaining
reliable 2D-FLCS spectra for an experimental system. An
analysis of the dynamics of bR reaction cycle are reported
elsewhere (39).

The crystal structure and absorption spectra of bR is
shown in Fig. 6, a and b. The experiments were carried out
ure of bR, with the retinal chromophore highlighted in green. (b) Absorption

CS spectra computed for DT ¼ 10–50 ms and DT ¼ 10–50 ms. The three

photoinduced reaction cycle of bR. Cross-peaks evolve because of chemical
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FIGURE 7 Comparison of TK and MEM. (a–f) Show 1D-ILT of same simulated data set comprising 2� 106 total photons with lifetimes 1 and 3 ns. (g–l)

show the 2D-ILT of the same data set evaluated at DT ¼ 2ms. The computational times for the simulations are given in Tables 1 and 2.
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with 532-nm excitation. 2D-FLCS spectra computed at DT¼
10–50 ms and DT ¼ 10–50 ms are shown in Fig. 6, c and d -
(single-molecule fluorescence traces contained�5� 106 pho-
tons). AtDT¼ 10–50ms, the spectrum contains three diagonal
peaks, which can be assigned to the K, L, and N intermediates
of the reaction cycle (Fig. 6 c) (38–40). Cross-peaks are
observed between the K and L intermediates indicating ex-
change, consistent with the millisecond exchange rates
measured from bulk spectroscopy. At later times, cross-peaks
between the L andN state, aswell as the K andN state, appear,
consistent with a millisecond exchange time (41).
Comparison to existing methods

We tested the fitting of same sets of simulated data and
quantified the performance of each step individually. The
key improvements suggested are kernel compression (KC),
Tikhonov Regularization (TK), and implementation of the
BRDalgorithm (BRD).Tables 1 and2 show the computational
time in seconds required to evaluate the 1D and 2D-ILT fits
using MEM alone, MEM with KC, TK alone, TK and KC,
TK and BRD, and finally TK with KC and BRD. The corre-
sponding 1D and 2D-ILT fits are shown in Fig. 7. We observe
that all the above techniques give accurate results. For cases
involving constrained optimization without compression,
Fig. 7, g and i (MEM and TK) the 2D-ILTs appear smoother
as compared to thefits obtainedusing constrainedoptimization
along with KC. However, considering computational effi-
ciency andmemory requirements (Tables 1 and 2), we observe
that the best and results are obtained when the techniques
(TK, KC, BRD) are used in conjunction Fig. 7, e and k.

Table 3 shows typical computational times required to
evaluate 1D and 2D-ILT fits for various sizes of lifetime
basis. The fittings were performed on an Intel-Core i7-
4790 CPU and using home-built code written in MATLAB
2020a software. The code is publicly available at (https://
github.com/saurabhtauke/2D-FLCS_King_lab).
4598 Biophysical Journal 120, 4590–4599, October 19, 2021
CONCLUSIONS

sm-2D-FLCS is a powerful tool for studying dynamics
of biological macromolecules, though the difficulty of
computing ILTsmay be prohibitive to itswidespread applica-
tion. Here, we outline a fast and robust method of computing
2D-ILTs. The method, based on SVD and TK, is adopted
from NMR spectroscopy for application to single-molecule
fluorescence spectroscopy. The approach allows for stable in-
versions of large, noisy data sets, common in single-molecule
spectroscopy, to be carried out efficiently, without sacrificing
the resolution of the spectra. Furthermore, usingMonteCarlo
simulations to generate artificial photon streams, we demon-
strate that this technique is robust in terms of the spectral res-
olution, noise tolerance, and computational efficiency. This
provides an alternative method (beyond typical MEMs) for
performing Laplace inversions of single-molecule fluores-
cence data that is easily implemented.
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