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Abstract: The growing interest in metal–organic frameworks (MOFs) in both industrial and sci-
entific circles has increased in the last twenty years, owing to their crystallinity, structural ver-
satility, and controlled porosity. In this study, we present three novel MOFs obtained from the
1, 3, 5-tris (1H-benzo[d]imidazole-2-yl) benzene (TIBM) organic linker. The formed TIBM crystal
powders were characterized by scanning electron microscopy (SEM) to estimate the morphology of
the particles, powder X-ray diffraction (XRD) to confirm the crystal structure, Brunauer–Emmett–
Teller (BET) method for structural analysis, and thermogravimetric measurements to examine the
thermal stability. The TIBM-Cu MOF showed excellent CO2 (3.60 mmol/g) adsorption capacity
at 1 bar and 298 K, because of the open Cu site, compared to TIBM-Cr (1.6 mmol/g) and TIBM-
Al (2.1 mmol/g). Additionally, due to the high porosity (0.3–1.5 nm), TIBM-Cu MOF showed a
considerable CO2/N2 selectivity (53) compared to TIBM-Al (35) and TIBM-Cr (10).

Keywords: MOF; adsorption; CO2 capture; porous material; solvothermal synthesis

1. Introduction

The design and implementation of new porous materials for carbon dioxide (CO2)
separation by selective adsorption is a rapidly increasing research area, because of its
importance in energy and environment-related applications [1–3]. The greenhouse effect
responsible for global warming is mainly related to CO2 emissions. Globally, CO2 release
is rapidly increasing because of the combustion of carbon-based fuels (oil, coal, and
natural gas) and chemical reactions in petrochemical industries, steel, and cement [4].
Post-combustion CO2 capture is considered the most effective technique for minimizing
CO2 emitted from industrial and energy-related sources. To this end, different technologies
have been applied for CO2 capture, such as membrane separation [5,6] liquid ammonia, and
amine absorption [7,8] and adsorption [9,10]. Membrane separation is not suitable to large-
scale applications because of its short lifetime, limited performance at low pressure, and
poor stability in acid gas environments [11]. The absorption process has been extensively
used in power plants, thanks to the high CO2 selectivity promoted by amine functional
groups; however, substantial downsides include equipment corrosion, high energy intake,
and toxic ammonia loss [12].

Several materials have been investigated for their promising CO2 capture and cat-
alytic conversion properties, including supported silica [13,14], zeolites [15,16], metal
oxides [17,18], bio-waste-derived carbons [19,20], metal–organic frameworks (MOFs) [21,22],
porous carbons [23,24], and recently, a new class of porous materials, i.e., porous organic
polymers (POPs). The last materials further encompass crystalline covalent organic frame-
works (COFs) [25,26], triazine-based organic frameworks (CTFs) [27,28], conjugated mi-
croporous polymers (CMPs) [29,30], porous aromatic frameworks (PAFs) [31–33], and
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hyper-cross-linked polymers (HCPs) [34,35]. Amongst the cited systems, MOFs have at-
tracted significant attention, owing to their high surface area, pore volume, and surface
functionality. Their unique crystal structure is composed of metal centers connected by
organic linkers [36] that can be tuned to give rise to wide applications in gas storage [37–39],
separation [39,40], drug delivery [41], and catalysis [42].

Generally, MOFs present high CO2 adsorption capacities (2–5 mmol/g) at 298 K and
high pressure, while the CO2 capture capacity at below 1 bar is still challenging [42].
Therefore, many methods have been developed to obtain MOFs with improved adsorp-
tion capacity, such as metal doping in the metal–organic framework [43] and chemical
functionalization with amine groups, such as polyethyleneimine (PEI) and tetraethylene-
pentamine (TEPA) [44–46]. Nevertheless, during the preparation, other aspects must be
considered, such as recyclability, stability, and mild regeneration conditions. Researchers
have highlighted alternative synthetic methods to modify MOFs stability, flexibility, and
particle size [47,48]. The materials were prepared using a solvothermal method, which
requires high-temperature treatment of metal salts and organic ligands in water or organic
solvents [49]. Solvent properties, such as polarity and hydrophobic/hydrophilicity, affect
the reaction mechanism. In particular, low-boiling-point solvents generate high vapor
pressure under a reaction in a sealed reactor. The vapor pressure in a sealed reactor in-
creases as the temperature increases, which causes the formation of a supercritical fluid,
in which liquid and gas exist simultaneously. This supercritical-fluid phase improves the
mixing of chemical reagents in the solvent, and causes product formation by crystallization,
which does not normally occur. Hence, the use of low-volatility solvents increases the
mobility of the dissolved ions and allows better mixing of the reagents [50–52]. The surface
functionalities and structural topologies of MOFs are determined by various types of metal
ions and the network-forming ligands. Concerning this, alteration in the functionality and
structure of MOFs is achieved using different secondary building units (SBUs), specific
functional groups, and multi-topic building blocks [53].

Several novel structures have been developed to improve the MOFs performance.
Chen et al. proposed an NJU-Bai MOF with amide-functionalized carboxylate linkers and
measured a significant improvement in CO2/N2 selectivity (166.7) at 298 K [54]. Wang et al.
reported a covalent triazine framework (CTF) with N-heteroaromatic building blocks,
which exhibited a CO2 capacity of 3.48 mmol/g at 273 K and 1 bar [55]. Suresh et al. studied
an amide-functionalized microporous organic polymer (Am-MOP) with a CO2 capacity
of 40 mL/g at 195 K and 1 bar. To improve CO2 binding affinity, Zheng et al. introduced
polar acylamide groups in the framework, and the obtained Porous Coordination Network
(PCN) series MOF exhibited a CO2 capacity of 20–24 mmol/g at 20 bar and 298 K [56].
Martin Schroder and coworkers prepared a series of isoreticular MFM MOFs functionalized
with amide group, among which MFM-126 showed an excellent CO2 adsorption capacity
of 4.63 mmol/g at 298 K and 1 bar [56].

In this work, we report the preparation of novel MOFs consisting of 1, 3, 5-tris (1H-
benzo[d]imidazole-2-yl) benzene (TIBM) as an organic linker and Al, Cr, and Cu as metal
ions. The synthesis of the organic core integrated with imidazole rings, which possess
secondary and tertiary amines, was crucial for the protonation of metal ions. In order to
allow the correct metal incorporation and obtain high-quality materials, the imidazole
rings of the ligand have to be equally distant and symmetrically anchored to the phenyl
ring [57–62]. Additionally, the use of the TIBM linkers with different metal precursors
affects the pore size and the CO2/N2 adsorption selectivity of the prepared system. In
this regard, we synthesized three novel MOFs using different metal precursors (MOF-Al,
MOF-Cr, and MOF-Cu) for CO2 and N2 capture. The obtained materials were examined
using FT-IR, X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), and
thermogravimetric analysis (TGA). The volumetric method was used for CO2 and N2
adsorption capacity measurements.
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2. Results
2.1. Characterization of the TIBM Based MOFs
2.1.1. Morphological Properties

N2 adsorption isotherms at 77 K (Figure 1a) were measured using a volumetric BET
instrument (BELSORP-max, MicrotracBEL, Osaka, Japan) in order to characterize the
structural properties of the MOFs. All the isotherms showed a typical Type I isotherm,
corresponding to a microporous structure. The specific surface area and pore volume
of the TIBM MOFs were determined by—-the Brunauer Emmett Teller (BET) method.
TIBM-Cr presented the largest surface area and pore volume among the other MOFs
(Table 1). The pore size distribution of the TIBM MOFs was determined by the non-local
density functional theory (NLDFT) method. TIBM-Cr MOFs showed the largest pore size
range (1.0–4.0 nm), compared to TIBM-Cu (0.3 to 1.5 nm) and TIBM-Al (1.0 to 3.0 nm)
(Figure S1b in Supporting Information). The majority of pores appeared at 2 nm for TIBM-
Al and TIBM-Cr, and at 1 nm for TIBM-Cu.
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Figure 1. (a) N2 adsorption isotherms and (b) pore size distribution of TIBM-Al, TIBM-Cr, and
MOF-Cu at 77 K.
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Table 1. Surface area and pore volume of TIBM-MOFs.

Sample Name BET Surface Area (m2/g) Total Pore Volume (cm3/g)

TIBM-Al 505.19 0.681
TIBM-Cr 2141.1 2.116
TIBM-Cu 1073.5 0.778

Figure 2 reports the SEM images of the three TIBM MOF samples. The average particle
diameters of the TIBM MOFs were determined using Image J software (NIH, Bethesda,
MD, USA) based on the pixel distance of each image, which is correlated with the scale bar.
TIBM-Cr exhibited a smaller particle size (0.25 µm) than TIBM-Cu (28.29 µm) and TIBM-Al
(0.61 µm).
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Figure 2. SEM images of (a) TIBM-Al, (b) TIBM-Cr, and (c) TIBM-Cu.

The MOF TIBM-Al showed a clear hexagonal crystal structure with sharp edges,
spherical and highly porous nanoclusters were observed for TIBM-Cr, and a rhombic
crystal structure was detected for TIBM-Cu. The TIBM-MOFs surfaces were found to be
smooth, without evident cracks due to strong chelation between the central metal ion and
TIBM amine linkers.

2.1.2. X-ray Diffraction (XRD) Analysis

The quality of TIBM-MOFs was optimized, and the samples were successfully doped
with three metal ions by ionic-covalent bonds. The XRD pattern (Figure 3) of the TIBM-
MOFs was compatible with the simulated pattern of UiO-66 from the Cambridge Structural
Database (CCDC 837796) [63]. The patterns of TIBM-Cu and TIBM-Al are consistent with
those of Cu-BTC and HKUST-1, respectively, while for TIBM-Cr, a resemblance to that of
MIL-101 (Fe) and Fe-BTC was found [64–71], thus confirming the successful synthesis and
integrity of the crystal structure after the coordination with TIBM (Table 2). In particular,
the chelation was indicated by a broad peak and a sharp peak at 2θ values of 9◦ and 18◦,
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respectively, providing clear evidence of the crystalline nature of the TIBM-Al MOF. The
Cr-TIBM MOF exhibited blunt peak intensities at 2θ values of 10◦ and 18◦–20◦, showing
an increase in the crystalline degree of the MOFs [67,68]. On the other hand, the Cu-TIBM
MOF showed sharp crystalline peaks, comparable to those of the Cu-based MOFs [64,65].

Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 17 
 

that of MIL-101 (Fe) and Fe-BTC was found [64–71], thus confirming the successful syn-

thesis and integrity of the crystal structure after the coordination with TIBM (Table 2). In 

particular, the chelation was indicated by a broad peak and a sharp peak at 2θ values of 

9° and 18°, respectively, providing clear evidence of the crystalline nature of the TIBM-Al 

MOF. The Cr-TIBM MOF exhibited blunt peak intensities at 2θ values of 10° and 18°–20°, 

showing an increase in the crystalline degree of the MOFs [67,68]. On the other hand, the 

Cu-TIBM MOF showed sharp crystalline peaks, comparable to those of the Cu-based 

MOFs [64,65] 

 

Figure 3. XRD patterns of MOF-Al, MOF-Cr, and MOF-Cu. (The dashed boxes represent the char-

acteristic peaks that are matched with those of the reported MOFs). 

  

Figure 3. XRD patterns of MOF-Al, MOF-Cr, and MOF-Cu. (The dashed boxes represent the characteristic peaks that are
matched with those of the reported MOFs).



Appl. Sci. 2021, 11, 9856 6 of 17

Table 2. Matching the characteristics peaks of TIMB MOFs with reported MOFs.

Synthesized MOFs Matching Peak Angles (2θ) Reported MOFs with Matching Peaks Known Structure

TIBM-Al 9.1, 12.5–20, 24–29 Cu-BTC, Ni-BTC [67,68,72] Hexagonal, cubic

TIBM-Cu 9.4–20, 28.8, 35.3, 38.9 Cu-BTC, HKUST-1 [64,65] Cubic, pyramidal

TIBM-Cr 10.9, 14, 20, 24 Fe-BTC, MIL-100, MOF-235 [67–69,71,73] Irregular spherical

2.1.3. FTIR Analysis

The FTIR analysis allowed characterizing molecular interactions and bonding for-
mation in the MOF frameworks (Figure 4). The strong stretching bands at 490–500 cm−1

were attributed to metal-hydrogen bonds, particularly those of Cr and Cu metal ions. The
bands at 720–724 cm−1 and 750–754 cm−1 correspond to =C-H bond modes in phenyl
rings [74,75]. The characteristic MOFs bands, related to metal-ion-bound second and third
amines (>NH-M-N and >N-M-N of MOF), appear in the range 1090–1100 cm−1. Stretching
bands due to C=C and C-H deformations of the phenyl rings were observed at 1399 cm−1.
The strong vibration mode at 1455 cm−1 related to -NH and metal ions was attributed
to the bidentate behavior of the N-M-N moiety. These characteristic peaks match well
with the previously reported FTIR analysis of MOF-199 [28]. The strong resonance band
exhibited by TIBM-Al was attributed to strong H-bonding of hydroxyl groups in the porous
TIBM-Al material, as compared to TIBM-Cr and TIBM-Cu. This strong H-bonding occurs
in Al-metal-based MOFs such as MIL-53(Al) and MIL-96 (Al), as compared to the Zn-based
ZIF-8 and Zr-based UiO-66, and results in a strong resonance band [76–78]. The spectra
for TIBM-Cr appear noticeably different after 3500 cm−1, as compared to TIBM-Al and
TIBM-Cu. The small peaks that were observed in the TIBM-Al and TIBM-Cu spectra
after 3500 cm−1 were attributed to the presence of crystalline water or the acidic -OH in
carboxylic groups; these peaks do not appear in the case of TIBM-Cr [79,80]. The FTIR
spectrum of the TIBM linker showed the typical peaks for NH wagging at 910 cm−1, for
C=C at 1420 cm−1, for C=N at 1442 cm−1, and 1610 cm−1, for CO-NH at 1713 cm−1, and
for NH at 3448 cm−1 (Figure 4b).

2.1.4. Thermal Analysis

During the TIBM MOFs thermogravimetric analysis (Figure 5), small drops in the
range 50–150 ◦C were caused by dehydration. A further loss of 48% (300–500 ◦C) for
TIBM-Cu, 28% (500–650 ◦C) for TIBM-Al, and 40% (400–600 ◦C) for TIBM-Cr, was ascribed
to the decomposition of chelated imidazolium moieties [81,82]. According to the large drop
temperatures, TIBM-Al presented better thermal stability than the other TIBM MOFs.

2.2. CO2 and N2 Adsorption Measurements

To examine the CO2-capture performance of all the samples, CO2 and N2 adsorption
properties were measured at 298 K and 0–1 bar. As reported in Figure 6, TIBM-Cu showed
the highest CO2 adsorption capacity (3.60 mmol/g) at 1 bar, compared to the TIBM-Al
(2.04 mmol/g) and TIBM-Cr (1.67 mmol/g). This result is ascribable to both the metal site
exposure and the metal oxide chelation of the TIBM host precursor for Cu2+ ions [83]. The
Cu-Cu magnetic interaction of TIBM-Cu is stronger than the Al-Al and Cr-Cr magnetic
interactions of TIBM-Al and TIBM-Cr, respectively, and results in a strong interaction
between CO2 and the two available electrons of the Cu2+ metal in the TIBM-Cu MOF [84,85].
Conversely, TIBM-Cr showed the highest surface area (2141.1 m2/g) and total pore volume
2.116 cm3/g, compared to the other examined MOFs (Table 1), while a reverse adsorption
trend was found for N2 adsorption for the TIBM MOFs. With regards to the CO2/N2
adsorption selectivity, which is defined as the ratio between CO2 adsorption capacity at
0.15 bar and N2 adsorption capacity at 0.85 bar, TIBM-Cu showed the highest value (53.69)
compared to TIBM-Cr (11.16) and TIBM-Al (33.33), as reported in Figure 7, mainly in virtue
of its high CO2 adsorption capacity, and concurrent low N2 adsorption capacity. In addition,
CO2/N2 selectivity is different for each of the TIBM MOFs and depends on different factors,
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such as MOF pore size and available open metal sites for CO2. The pore sizes of TIBM-Cu
(0.5 and 1 nm) are more suited to selective adsorption of CO2 (0.33 nm) over N2 (0.35 nm)
than TIMB-Al (1.9 nm) and TIBM-Cr (2.2 nm), owing to the size-selective separation. The
CO2/N2 adsorption selectivity of TIBM-Cu is promising, compared to other MOFs reported
in the literature (e.g., 6 for CuDABCO [86], 8 for ZIF-8 [87], 12 for MIL-101 (Cr) [88], 18 for
MOF-5 [89], 16.5 for MOF-177 [89]). However, the adsorption capacities of the TIBM MOFs
are comparable to those of previously reported MOFs (Table 3). TIBM-Cu was selected for
the performance evaluation, showing that the CO2 adsorption capacity (Figure 8) gradually
decreased with increasing temperature from 298 to 338 K.
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Table 3. CO2 adsorption capacities of different MOFs.

Adsorbent Condition (Temperature/Pressure) CO2 Adsorption Capacity (mmol/g) Reference

TIBM-Cu 298 K/1 bar 3.6 This work

TIBM-Al 298 K/1 bar 2.0 This work

TIBM-Cr 298 K/1 bar 1.6 This work

IRMOF-74-III-(CH2NH2)2 298 K/1 bar 3 [90]

SNU-5 195 K /1 bar 2.6 [91]

Fe-BTT 298 K/1 bar 3.1 [92]

[Cd2L1(H2O)]2 293 K /1 bar 2.1 [93]

[Mg(3,5-PDC)(H2O)] 298 K/1 bar 0.6 [94]

[Zn4(OH)2(1,2,4-BTC)2(H2O)2] 295 K/1 bar 1.9 [95]

NH2-MIL-125 298 K/1 bar 2.2 [96]

IRMOF-74-III-(CH2NH2)2 298 K/1 bar 3 [90]

IFMC-1 298 K/1 bar 2.7 [97]

TMOF-1 298 K/1 bar 1.4 [98]

MAF-23 298 K/1 bar 2.5 [99]

USTC-253 298 K/1 bar 2.1 [100]

[Zn(L2)]n 298 K/1 bar 2.1 [101]

USTC-253-TFA 298 K/1 bar 2.9 [100]

SNU-71 298 K/1 bar 1 [102]

CPM-5 299 K/1 bar 2.4 [103]

SNU-M10 298 K/1 bar 2.1 [104]

UiO-66-SO3H-0.15 298 K/1 bar 2.2 [105]

SHF-61 295 K/1 bar 1 [106]

Cu-BTTri-ens 298 K/1 bar 1.3 [107]

SNU-31 298 K/1 bar 0.6 [108]

UiO-66-AD4 298 K/1 bar 1.9 [109]
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3. Materials and Methods
3.1. Chemicals

All chemicals were used as received, without further purification. Trimesic acid,
chromium nitrate nonahydrate (99%), hydrofluoric acid (ACS reagent ≥ 48%), deionized
water, copper acetate (trace metals basis ≥ 99.99%), ethanol (absolute alcohol ≥ 99.8%),
aluminum chloride hexahydrate (reagent plus ≥ 99%), zinc acetate dihydrate (ACS
reagent ≥ 98%), N,N-dimethylformamide (anhydrous, ≥ 99.8%), polyphosphoric acid
(reagent grade), o-phenylenediamine (≥ 98%), sodium bicarbonate solution (Bioreagent
7.5%), and methanol (ACS reagent) were purchased from Sigma Aldrich (St. Louis,
MO, USA).

3.2. Preparation of 1, 3, 5-tris (1H-benzo[d]imidazole-2-yl) Benzene

O-phenylenediamine (7.2 g, 0.06 mol) was added to a solution of trimesic acid (4 g,
0.03 mmol) in polyphosphoric acid (PPA) (50 mL), and the reaction mixture was heated at
230 ◦C for 12 h (Figure 9). The resultant yellowish-colored reaction mixture was poured
into ice-cold water (500 mL); upon stirring, the obtained brown precipitate was collected.
The precipitate was neutralized by adding 20% sodium bicarbonate solution and filtered by
centrifugation (4000 rpm). The brown solid converted into a white solid (82% yield) after
recrystallization with methanol [110]; Mp. 280 ◦C. 1H NMR (400 MHz, DMSO-d6/TMS,
ppm) δ 7.24–7.52 (m, 6H), δ 7.62–7.92 (m, 6H), 8.9 (s, 3H), 13.2 (s, 3H); 13C (100 MHz,
DMSO-d6/TMS, ppm) δ 115.2, 119.2, 122.2, 123.3, 125.5, 131.6, 135.8, 144.2, 159.1; ESI-MS:
([M + H]+) m/z 427.18 (100%), found m/z 427.32 (100%), Chemical Formula: C27H19N6

+,
(Figure S1). The TIBM was synthesized as described in the literature [110]; the obtained pale
yellow solid presented FT-IR and 1H-NMR spectra compatible with the ones previously
reported [110,111].

3.3. Synthesis of TIBM-Cr

Chromium nitrate nonahydrate (0.6340 g) and TIBM (0.438 g) were dissolved in 20 mL
deionized water by sonication for 10 min, and hydrofluoric acid (HF) (60 µL) was added to
the mixture. The reaction mixture was transferred into a Teflon autoclave reactor sealed in
a stainless steel vessel and maintained at 483 K for 48 h. The fine green-colored precipitate
was washed three times in hot ethanol and five times in hot water. The final TBIM-Cr MOF
was dried at 373 K and evacuated at 423 K for 12 h.
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Figure 9. Synthesis of TIBM linker.

3.4. Synthesis of TIBM-Cu

Copper acetate (1.4 g) and TIBM (0.78 g) were dissolved in 30 mL water/ethanol (2:1)
solution by sonication. HF (120 µL) was added to the mixture as a module. The reaction
mixture was transferred into a Teflon autoclave reactor sealed in a stainless-steel vessel and
kept at 423 K for 24 h. The blue-gray-colored precipitate was washed five times in ethanol
and dried at 373 K, and then evacuated at 393 K for 12 h.

3.5. Synthesis of TIBM-Al

Aluminum chloride hexahydrate was dehydrated at 373 K for 10 h to remove water
from the metal precursor. The dehydrated Al–metal precursor (1.2 g) and TIBM (0.626 g)
were mixed in 30 mL water/ethanol (1:1) by sonication for 10 min. HF (60 µL) was added
to the mixture as a module. The reaction mixture was transferred into a Teflon autoclave
reactor sealed in a stainless-steel vessel, and maintained at 423 K for 48 h. The white-colored
powder precipitate was washed five times in ethanol, subsequently dried at 373 K, and
evacuated at 393 K for 12 h (Figure 10).
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3.6. Characterization

Fourier-transform infrared spectra (FTIR) in the range of 400–4000 cm−1 were obtained
with a Spectrum Two, PerkinElmer, UK spectrometer. A mixture of TIBM MOF power and
KBr in the weight ratio of 1:99 was used to prepare the sample. The TIBM-MOFs particle
morphology and crystal size were determined by means of SEM (Merlin compact, Carl
Zeiss) at an accelerating voltage of 1 kV/10 kV, with a current of 10 µA. A volumetric
method was used to analyze morphological properties, such as specific surface area, pore
size distribution, and pore volume, using a BELSORP-mini (Microtrac BEL, Osaka, Japan)
based on N2 adsorption isotherm at 77 K. XRD analysis (X’Pert Pro-MPD, PANalytical,
Almelo, The Netherlands) was performed to determine the TIBM-MOFs crystallinity.
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For the thermal stability test, the samples were heated to 800 ◦C at a heating rate of
20 ◦C/min under N2 atmosphere (50 mL/min), using a TGA instrument (Scinco TGA
N1000, Twin Lakes, WI, USA). 1H-NMR spectra were obtained with a Bruker 400 MHz
NMR spectrometer in CDCl3, using tetramethylsilane (TMS) as an internal standard. Mass
spectra were recorded on a Bruker Daltonik, Bremen, Germany, operated in linear mode
with a pulsed nitrogen laser (337 nm, pulse frequency, 2 Hz).

3.7. CO2 and N2 Adsorption Capacity Measurements

CO2 and N2 adsorption on TIBM-MOFs were measured at 298–338 K at the pressure
of 0–1 bar using a volumetric apparatus (BELSORP-mini, MicrotracBEL, Osaka, Japan).
TIBM MOFs were first evacuated at 393 K (TIBM-Cu, TIBM-Al) and 423 K (TIBM-Cr) for
12 h, to remove impurities. A water circulating jacket connected to a thermostatic bath was
used to control the measurement temperature with a precision of ±0.01 ◦C. A reference gas
(helium) was used to determine the free space in the sample holder.

4. Conclusions

In summary, we have developed novel TIBM MOFs using a simple and inexpen-
sive solvothermal process. The TIBM linker was prepared via condensation method,
using trimesic acid and o-phenylenediamine. Interestingly, metal-modified TIBM MOFs
(Cu-TIBM, Cr-TIBM, Al-TIBM) showed modifications in characteristic properties such as
morphology, surface area, and pore size distribution. In particular, TIBM-Cu showed
a remarkable CO2 adsorption capacity (3.60 mmol/g) and selectivity (53), compared
to TIBM-Cr and TIBM-Al. Due to the presence of open metal sites, N atoms of the
imidazole functional groups, and an ideal pore size (0.3–1.5 nm) for selective CO2 ad-
sorption (the size of the pore aperture is similar to the size of CO2), the TIBM-Cu CO2
adsorption capacity is higher than that of previously reported MOFs, including MOF-5
(2.1 mmol/g), ZIF-8 (0.8 mmol/g), MIL-101 (Cr) (1.8 mmol/g) [112], MIL-101 (Cr, Mg)
(2.0 mmol/g) [113], UiO-66 (2.5 mmol/g) [112], UiO-66- NH2 (3 mmol/g) [114], and MOF-
177 (0.8 mmol/g) [115,116]. Moreover, the TIBM-Cr MOF high surface area (2141 m2/g)
and pore volume (2.116 cm3/g) points to the material potential for further applications.

Supplementary Materials: The following figures are available online at https://www.mdpi.com/
article/10.3390/app11219856/s1, Figure S1: NMR spectra of TIBM linker.
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