



## Sex-Related Outcomes of Successful Drug-Coated Balloon Treatment in De Novo Coronary Artery Disease

# Liu Kun<sup>1,2</sup>, Eun-Seok Shin<sup>1,3</sup>, Eun Jung Jun<sup>1</sup>, Youngjune Bhak<sup>4</sup>, Scot Garg<sup>5</sup>, Tae-Hyun Kim<sup>1</sup>, Chang-Bae Sohn<sup>1</sup>, Byung Joo Choi<sup>1</sup>, Lin Hui<sup>1,2</sup>, Song Lin Yuan<sup>1,6</sup>, Wang Zhi<sup>2</sup>, Jiang Hao<sup>2</sup>, Shi Zhentao<sup>2</sup>, and Tang Qiang<sup>2</sup>

<sup>1</sup>Department of Cardiology, Ulsan Medical Center, Ulsan, Korea;

<sup>2</sup>Department of Cardiology, Peking University Shougang Hospital, Peking, China;

<sup>3</sup>Department of Cardiology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea;

<sup>4</sup>Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, Korea;

<sup>5</sup>East Lancashire Hospitals NHS Trust, Blackburn, Lancashire, United Kingdom;

<sup>6</sup>Department of Cardiology, Dong-A University Hospital, Busan, Korea.

**Purpose:** Although drug-coated balloon (DCB) treatment is known to be effective for de novo lesions, the influence of sex on angiographic and clinical outcomes remains unknown. This study aimed to investigate the angiographic and clinical impact of DCB treatment in patients with de novo coronary lesions according to sex.

**Materials and Methods:** A total of 227 patients successfully treated with DCB were retrospectively enrolled and divided into two groups according to sex. The primary endpoint was late lumen loss (LLL) at 6-month angiography, and the secondary endpoint was target vessel failure (TVF), which included cardiac death, target vessel myocardial infarction, target lesion revascularization, and target vessel thrombosis.

**Results:** The study enrolled 60 women (26.4%) and 167 men (73.6%). Compared to men, women had a smaller vessel size, larger DCB to reference vessel ratio, and more dissections after DCB treatment (55.0% vs. 37.1%, p=0.016). Women also had a significantly higher LLL compared to men (0.12±0.26 mm vs. 0.02±0.22 mm, p=0.012) at the 6-month follow-up angiography. During a median follow-up of 3.4 years (range 12.7–28.9 months), TVF was similar (women 6.7% vs. men 7.8%, p=0.944). In multivariable analysis, women were independently associated with a higher LLL.

**Conclusion:** LLL was higher in women, but there was no difference in TVF between women and men. Based on multivariable analysis, the women sex was an independent predictor of higher LLL (Impact of Drug-coated Balloon Treatment in de Novo Coronary Lesion; NCT04619277).

Key Words: Drug-coated balloon, balloon angioplasty, coronary artery disease, sex difference, clinical outcome

Received: April 22, 2021 Revised: July 14, 2021 Accepted: August 17, 2021

**Co-corresponding authors:** Tang Qiang, MD, PhD, Department of Cardiology, Peking University Shougang Hospital, Shijingshan District, Beijing 100144, China. Tel: 86-13911068913, Fax: 86-01057830263, E-mail: tanggqiangg@sina.com and Eun-Seok Shin, MD, PhD, Department of Cardiology, Ulsan University Hospital, University of Ulsan College of Medicine, 877 Bangeojinsunhwan-doro, Dong-gu, Ulsan 44033, Korea.

Tel: 82-52-250-8838, Fax: 82-52-259-5117, E-mail: sesim1989@gmail.com

•The authors have no potential conflicts of interest to disclose.

© Copyright: Yonsei University College of Medicine 2021

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/ by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

### **INTRODUCTION**

Although the mortality from coronary artery disease (CAD) has decreased due to improved prevention and treatment strategies, it remains one of the leading causes of morbidity and mortality in both sexes worldwide. Previous studies have suggested that gender differences have diminished, possibly through the evolution of percutaneous coronary intervention (PCI)-related treatments.<sup>1,2</sup> Unfortunately, in other studies, women have been shown to have an increased risk of adverse events following PCI, including an increased risk of bleeding.<sup>3,4</sup> The women sex is an independent predictor of bleeding but not of ischemic events after adjusting for differences in dual antiplatelet therapy (DAPT) duration, baseline characteristics, and treatment characteristics.<sup>5</sup> Even after normalization for left ventricular mass, women subjects tend to have smaller diameter coronary arteries compared to men.<sup>6</sup> Although drug-eluting stents (DES) are the preferred treatment for PCI in CAD,<sup>7</sup> their efficacy is relatively poor in small coronary arteries.<sup>8</sup> The neointimal proliferation and local inflammation that follow PCI result in higher rates of in-stent restenosis and recurrent ischemic events in small vessels.<sup>9,10</sup> Compared to men, small vessel disease is more common in women; and given their increased risk of bleeding with DAPT after stenting, lesions in women are more difficult to treat adequately.

Drug-coated balloons (DCB) have comparable efficacy to DES for the treatment of small vessel disease.<sup>11,12</sup> An added advantage of using DCB over DES is the short duration of DAPT required, especially in patients with high bleeding risk or those with contraindications to its long-term use.<sup>13,14</sup> Nevertheless, to date, there have been no studies on the sex-related differences in the efficacy of DCB treatment for de novo coronary lesions. Therefore, we aimed to examine the sex-related differences in angiographic and long-term clinical outcomes after DCB treatment of de novo coronary lesions.

### **MATERIALS AND METHODS**

#### **Patient population**

This retrospective study enrolled patients from Peking University Shougang Hospital and Ulsan Medical Center between July 2014 and August 2018 who had successful PCI performed with DCB for de novo coronary lesions (Impact of Drug-coated Balloon Treatment in de Novo Coronary Lesion; NCT04619277). Patients were excluded for any of the following circumstances: if there was any use of DCB for in-stent restenosis; if they presented with ST-segment elevation myocardial infarction; if they were hemodynamically unstable at presentation, or had a life expectancy of <1 year. The study protocol was approved by the Institutional Review Board or Ethics Committee at each participating center (IRB no: Ulsan Medical Center, USH-20-004; Peking University Shougang Hospital, IRBW2021-09-01). The study was conducted in accordance with the Declaration of Helsinki (2013).

### Procedure

All patients were pretreated with 200 mg of aspirin and 300– 600 mg of clopidogrel as loading doses, and 100 U/kg of unfractionated heparin was injected intravenously to maintain an activated clotting time of  $\geq$ 250 s during the procedure. Intracoronary nitroglycerin (200 µg) was administered routinely before diagnostic coronary angiography. Intervention was performed according to the international and the Asia-Pacific consensus recommendations on DCB treatment.<sup>15-17</sup> Specifically,

predilation with a plain balloon, including a scoring balloon, was mandatory (the recommended balloon-to-vessel ratio was 0.8 to 1.0). In cases of flow-limiting dissection after predilation, PCI using a DES was recommended without using a DCB. The practice at both institutions was not to stent type A to C coronary dissections [National Heart, Lung, and Blood Institute (NHBLI) classification system for intimal tears by the Coronary Angioplasty Registry] in the absence of symptoms, ECG changes, hemodynamic disturbances, or the persistence of a Thrombolysis In Myocardial Infarction (TIMI) flow grade 3. Stenting was performed for type D or higher coronary dissections and/or impaired distal flow after predilation. All patients who had either no dissection or type A to C dissections following predilation went on to undergo treatment with DCB, and were included in the study. The DCB was inflated for 30 s to 60 s at nominal pressure. After using DCB, the final assessment was undertaken at least 5 min after administering a bolus of intracoronary vasodilator to catch any acute vessel closure. In these cases, bailout stent implantation was considered. The use of glycoprotein IIb/IIIa receptor inhibitors was allowed in cases of high thrombus burden. Dual antiplatelet treatment was prescribed for 1 to 3 months, after which the patients were prescribed aspirin monotherapy.

### Definitions and endpoints

Angiographic success was defined as evidence of final residual stenosis by visual estimate ≤30%, with TIMI flow grade 3. Procedural success was defined as angiographic success without the occurrence of in-hospital adverse cardiac events [defined as any occurrence of cardiac death, myocardial infarction, target vessel revascularization (TVR), or target vessel thrombosis]. The primary endpoint was late lumen loss (LLL), and the secondary endpoint was target vessel failure (TVF, composed of cardiac death, target vessel myocardial infarction, TVR, and target vessel thrombosis).

#### Follow-up

All patients underwent clinical follow-up after the index procedure, with 90.8% having scheduled angiographic follow-up with quantitative coronary assessment at the 6-month mark. All measurements were performed on angiograms recorded after 200 µg of intracoronary nitroglycerin administration. Identical projections were used for each comparison. Quantitative analysis of angiographic data was analyzed offline by a single independent expert using the CAAS system (5.10, Pie Medical Imaging B.V., Maastricht, The Netherlands). The following parameters were analyzed: reference vessel diameter (RVD), minimal lumen diameter (MLD), percent diameter stenosis, acute lumen gain (defined as the difference between MLD after index PCI and MLD at baseline), net lumen gain (defined as the difference between MLD at follow-up and MLD at baseline), LLL (defined as the difference between MLD after index PCI and MLD at follow-up), lesion length, binary reste-

### Table 1. Patient Clinical Characteristics

|                         | Total (n=227) | Women (n=60) | Men (n=167) | <i>p</i> value |
|-------------------------|---------------|--------------|-------------|----------------|
| Age, yr                 | 59.4±9.7      | 61.6±11.0    | 58.5±9.1    | 0.034          |
| Hypertension            | 146 (64.3)    | 47 (78.3)    | 99 (59.3)   | 0.008          |
| Hypercholesterolemia    | 161 (70.9)    | 41 (68.3)    | 120 (71.9)  | 0.606          |
| Diabetes mellitus       | 89 (39.2)     | 25 (41.7)    | 64 (38.3)   | 0.649          |
| Current smoker          | 80 (35.2)     | 5 (8.3)      | 75 (44.9)   | <0.001         |
| Prior MI                | 18 (7.9)      | 5 (8.3)      | 13 (7.8)    | 0.893          |
| Prior PCI               | 52 (22.9)     | 15 (25.0)    | 37 (22.2)   | 0.653          |
| Prior stroke            | 37 (16.3)     | 9 (15.0)     | 28 (16.8)   | 0.751          |
| Clinical presentation   |               |              |             |                |
| Stable CAD              | 193 (85.0)    | 51 (85.0)    | 142 (85.0)  | 0.754          |
| Acute coronary syndrome | 34 (15.0)     | 9 (15.0)     | 25 (15.0)   | 0.254          |

MI, myocardial infarction; PCI, percutaneous coronary intervention; CAD, coronary artery disease. Values are mean $\pm$ SD or n (%).

nosis, and dissection persistence (NHBLI classification). Late lumen enlargement was defined as an increase in the luminal diameter of the lesion from the immediate postprocedural measurement to follow-up measurements. This was frequently observed after DCB angioplasty for de novo CAD. Measurements included the whole segment, which was treated 5 mm proximally and distally. Binary restenosis was defined as stenosis of at least 50% of the luminal diameter as determined at the angiographic follow-up.

#### Statistical analysis

The independent expert analyzing the angiographic data was blinded to the gender and clinical data of patients. Categorical variables are presented as counts and percentages, and they were compared using Pearson's chi-square or Fisher's exact tests. Continuous variables are presented as mean±standard deviation or median [interguartile range (IOR)] according to a normal distribution as confirmed by the Kolmogorov-Smirnov test. The correlations between parameters were tested using the Spearman correlation coefficient. The cumulative incidence of clinical events was compared using the log-rank test. Hazard ratios (HRs) with 95% confidence intervals (CIs) were analyzed using the Cox proportional hazard model. For multivariable analysis, adjustments were made for age, sex, hypertension, diabetes mellitus, current smoking, clinical presentation, prior PCI, multivessel disease, scoring balloon use, DCB to reference vessel ratio, dissection presence, RVD, lesion length, and MLD. Linear regression analysis was used to estimate the correlation coefficient between quantitative variables. All probability values were two-sided. p values<0.05 were considered statistically significant. Statistical analyses were performed using R version 3.6.3 (R Foundation for Statistical Computing, Vienna, Austria).

### RESULTS

The study population consisted of 227 consecutive patients treated with paclitaxel-coated balloons (SeQuent Please, B. Braun Melsungen AG, Berlin, Germany) for de novo CAD, who were retrospectively entered into the database and categorized by sex. The population consisted of 60 women (26.4%) and 167 men (73.6%). Angiographic and procedural success was achieved in all patients. None of the patients required administration of glycoprotein IIb/IIIa inhibitor or bailout stenting during the hospitalization period. Baseline clinical characteristics of the study population are shown in Table 1. Women were older and more women had hypertension, whereas men were more frequent smokers (8.3% vs. 44.9%, p<0.001).

Baseline angiographic and procedural characteristics are shown in Table 2. Of note, compared to men, women had smaller RVD (2.2, IQR: 2.0–2.5 mm vs. 2.5, IQR: 2.1–2.8 mm, p<0.001), smaller DCB diameters (2.5, IQR: 2.0–2.8 mm vs. 2.5, IQR: 2.5–3.0 mm, p=0.008), larger DCB to reference vessel ratios (1.14± 0.20 vs. 1.09±0.15, p=0.033), and more dissections after DCB use (55.0% vs. 37.1%, p=0.016). In women, the predilation balloon to reference vessel ratio was higher than that in men (1.14±0.20 vs. 1.07±0.17, p=0.010). The DCB to predilation balloon ratio was similar in both sexes (1.02±0.16 in women vs. 1.03±0.14 in men, p=0.745). Acute lumen gain was also similar (1.40±0.47 mm in women vs. 1.51±0.51 mm in men, p=0.143).

Angiographic follow-up data of the 206 patients (90.8% of total patients, 88% of women, and 92% of men) returning for scheduled angiography at 6 months (IQR: 5 to 9-month) after treatment are shown in Table 2. The primary endpoint, LLL, was significantly higher in women ( $0.12\pm0.26$  mm vs.  $0.02\pm0.22$  mm, p=0.012) (Fig. 1). Women also had a significantly lower net lumen gain ( $1.26\pm0.43$  mm vs.  $1.47\pm0.54$  mm, p=0.011). The distribution of LLL was similar in both sexes (Fig. 2). Of the 206 lesions, 66 (32.0%) developed late lumen enlargement (24.5% in women and 34.6% in men) during the follow-up period. Dissection immediately after DCB treatment was more common

### Table 2. Angiographic and Procedural Characteristics

| Total (n=227)   | Women (n=60)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>Men (n=167)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>p</i> value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 81 (35.7)       | 26 (43.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 55 (32.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 90 (39.6)       | 22 (36.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 68 (40.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.582                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 56 (24.7)       | 12 (20.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 44 (26.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 143 (63.0)      | 35 (58.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 108 (64.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.436                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 22 (9.7)        | 3 (5.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19 (11.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2.5 (2.0-3.0)   | 2.5 (2.0–3.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.5 (2.5–3.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.08±0.18       | 1.14±0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.07±0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2.5 (2.5–3.0)   | 2.5 (2.0–2.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.5 (2.5–3.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 70 (30.8)       | 50 (23.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20 (33.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.10±0.17       | 1.14±0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.09±0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.03±0.15       | 1.02±0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.03±0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.745                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 20 (17–20)      | 20 (17–20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20 (17–26)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 8 (7–9)         | 8 (7–10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8 (7–9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.518                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 60 (45–60)      | 60 (41–60)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 55 (45–60)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.892                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| n=227           | n=60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n=167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.5 (2.1–2.8)   | 2.2 (2.0–2.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.5 (2.1–2.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 15.2 (9.8–20.0) | 14.4 (9.9–18.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15.5 (9.7–20.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.8 (0.4–1.1)   | 0.7 (0.4–1.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9 (0.5–1.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 66.2±16.5       | 66.7±16.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 66.0±16.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.783                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| n=227           | n=60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n=167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.3 (1.9–2.7)   | 2.1 (1.9–2.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.4 (2.1–2.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 9.6±11.2        | 98±100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 96+116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.865                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.48±0.50       | 1.40+0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.51+0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| n=206           | n=53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n=153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.3 (2.0-2.6)   | 2.0 (1.8–2.3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.4 (2.0-2.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 98±120          | 12 1±13 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.0±11.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1 42±0 52       | 1 26+0 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 47±0 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.05+0.24       | 0.12+0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.02+0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 66 (32.0)       | 13 (24,5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 53 (34.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2 (1 0)         | 1 (1.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 (0 7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| n=227           | n=60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n=167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 133 (58.6)      | 27 (45.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 106 (63.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 59 (26.0)       | 13 (21.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 46 (27.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 22 (9.7)        | 15 (25.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7 (4.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 13 (5 7)        | 5 (8 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8 (4 8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| n=227           | n=60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n=167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 132 (58 1)      | 27 (45 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 105 (62.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 58 (25 6)       | 12 (20 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 46 (27 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 24 (10.6)       | 16 (26 7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8 (4 8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 13 (5 7)        | 5 (8 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8 (4 8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| n=206           | n=53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n=153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | በ 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 201 (97 6)      | 50 (94 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 151 (98 7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4 (1.9)         | 2 (3 8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 (1 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1 (0.5)         | 1 (1 9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                 | Total (n=227) $81$ (35.7) $90$ (39.6) $56$ (24.7) $143$ (63.0) $22$ (9.7) $2.5$ (2.0–3.0) $1.08\pm0.18$ $2.5$ (2.5–3.0) $70$ (30.8) $1.10\pm0.17$ $1.03\pm0.15$ $20$ (17–20) $8$ (7–9) $60$ (45–60) $n=227$ $2.5$ (2.1–2.8) $15.2$ (9.8–20.0) $0.8$ (0.4–1.1) $66.2\pm16.5$ $n=227$ $2.3$ (1.9–2.7) $9.6\pm11.2$ $1.48\pm0.50$ $n=206$ $2.3$ (2.0–2.6) $9.8\pm12.0$ $1.42\pm0.52$ $0.05\pm0.24$ $66$ (32.0) $2$ (1.0) $n=227$ $1.33$ (58.6) $59$ (26.0) $22$ (9.7) $13$ (5.7) $n=227$ $133$ (58.6) $59$ (26.0) $22$ (9.7) $13$ (5.7) $n=226$ $24$ (10.6) $13$ (5.7) <tr< td=""><td>Total (n=227)Women (n=60)<math>81 (35.7)</math><math>26 (43.3)</math><math>90 (39.6)</math><math>22 (36.7)</math><math>56 (24.7)</math><math>12 (20.0)</math><math>143 (63.0)</math><math>35 (58.3)</math><math>22 (9.7)</math><math>3 (5.0)</math><math>2.5 (2.0-3.0)</math><math>2.5 (2.0-3.0)</math><math>1.08 \pm 0.18</math><math>1.14 \pm 0.20</math><math>2.5 (2.5-3.0)</math><math>2.5 (2.0-2.8)</math><math>70 (30.8)</math><math>50 (23.4)</math><math>1.10 \pm 0.17</math><math>1.14 \pm 0.20</math><math>1.03 \pm 0.15</math><math>1.02 \pm 0.16</math><math>20 (17-20)</math><math>20 (17-20)</math><math>8 (7-9)</math><math>8 (7-10)</math><math>60 (45-60)</math><math>60 (41-60)</math><math>n=227</math><math>n=60</math><math>r=227</math><math>n=60</math><math>2.5 (2.1-2.8)</math><math>2.2 (2.0-2.5)</math><math>15.2 (9.8-20.0)</math><math>14.4 (9.9-18.8)</math><math>0.8 (0.4-1.1)</math><math>0.7 (0.4-1.0)</math><math>66.2\pm 16.5</math><math>66.7\pm 16.8</math><math>n=227</math><math>n=60</math><math>2.3 (1.9-2.7)</math><math>2.1 (1.9-2.5)</math><math>9.6 \pm 11.2</math><math>9.8 \pm 10.0</math><math>1.48 \pm 0.50</math><math>1.40 \pm 0.47</math><math>n=206</math><math>n=53</math><math>2.3 (2.0-2.6)</math><math>2.0 (1.8-2.3)</math><math>9.8 \pm 12.0</math><math>12.1 \pm 13.6</math><math>1.42 \pm 0.52</math><math>12.6 \pm 0.43</math><math>0.05 \pm 0.24</math><math>0.12 \pm 0.26</math><math>66 (32.0)</math><math>13 (21.7)</math><math>22 (9.7)</math><math>15 (25.0)</math><math>13 (5.6)</math><math>27 (45.0)</math><math>59 (26.0)</math><math>13 (21.7)</math><math>22 (9.7)</math><math>15 (25.0)</math><math>13 (5.7)</math><math>5 (8.3)</math><math>n=227</math><math>n=60</math><math>132 (58.1)</math><math>27 (45.0)</math><math>59 (26.0)</math><math>13 (21.7)</math><math>22 (9.7)</math><math>15 (25.0)</math><math>13 (5.7)</math><math>5 (8.3)</math></td><td>Total (n=227)Women (n=60)Men (n=167)81 (35.7)26 (43.3)55 (32.9)90 (39.6)22 (36.7)68 (40.7)56 (24.7)12 (20.0)44 (26.3)14 31 (63.0)35 (58.3)108 (64.7)22 (9.7)3 (5.0)19 (11.4)2.5 (2.0-3.0)2.5 (2.5-3.0)2.5 (2.5-3.0)7.0 (30.8)50 (23.4)20 (33.6)1.1.0±0.171.1.4±0.201.07±0.171.08±0.151.02±0.161.03±0.142.0 (17-20)20 (17-20)20 (17-26)8 (7-9)8 (7-19)8 (7-9)60 (44-60)60 (41-60)55 (2.1-2.8)15.2 (3.8-20.0)14.4 (9.9-18.8)15.5 (9.7-20.5)0.8 (0.4-1.1)0.7 (0.4-1.0)0.9 (0.5-1.1)66.2±16.566.7±16.866.0±16.5<math>n=227</math><math>n=60</math><math>n=167</math>2.3 (1.9-2.7)2.1 (1.9-2.5)2.4 (2.1-2.7)9.6±11.29.8±10.09.6±11.61.48±0.501.40±0.471.51±0.51<math>n=206</math><math>n=53</math><math>n=153</math>2.3 (2.0-2.6)2.0 (1.8-2.3)2.4 (2.0-2.7)9.8±12.01.2±0.521.2±0.431.47±0.540.05±0.240.12±0.260.02±0.2266 (32.0)13 (24.5)53 (34.6)2.1 (1.9)1.0(7)<math>n=227</math><math>n=60</math><math>n=167</math>1.3 (56.6)27 (45.0)106 (63.5)5.9 (26.0)13 (24.5)53 (34.6)2.1 (1.9-2.7)5 (6.3)8 (4.8)<math>n=206</math><math>n=167</math>1.3 (57.1)5 (6.3)<t< td=""></t<></td></tr<> | Total (n=227)Women (n=60) $81 (35.7)$ $26 (43.3)$ $90 (39.6)$ $22 (36.7)$ $56 (24.7)$ $12 (20.0)$ $143 (63.0)$ $35 (58.3)$ $22 (9.7)$ $3 (5.0)$ $2.5 (2.0-3.0)$ $2.5 (2.0-3.0)$ $1.08 \pm 0.18$ $1.14 \pm 0.20$ $2.5 (2.5-3.0)$ $2.5 (2.0-2.8)$ $70 (30.8)$ $50 (23.4)$ $1.10 \pm 0.17$ $1.14 \pm 0.20$ $1.03 \pm 0.15$ $1.02 \pm 0.16$ $20 (17-20)$ $20 (17-20)$ $8 (7-9)$ $8 (7-10)$ $60 (45-60)$ $60 (41-60)$ $n=227$ $n=60$ $r=227$ $n=60$ $2.5 (2.1-2.8)$ $2.2 (2.0-2.5)$ $15.2 (9.8-20.0)$ $14.4 (9.9-18.8)$ $0.8 (0.4-1.1)$ $0.7 (0.4-1.0)$ $66.2\pm 16.5$ $66.7\pm 16.8$ $n=227$ $n=60$ $2.3 (1.9-2.7)$ $2.1 (1.9-2.5)$ $9.6 \pm 11.2$ $9.8 \pm 10.0$ $1.48 \pm 0.50$ $1.40 \pm 0.47$ $n=206$ $n=53$ $2.3 (2.0-2.6)$ $2.0 (1.8-2.3)$ $9.8 \pm 12.0$ $12.1 \pm 13.6$ $1.42 \pm 0.52$ $12.6 \pm 0.43$ $0.05 \pm 0.24$ $0.12 \pm 0.26$ $66 (32.0)$ $13 (21.7)$ $22 (9.7)$ $15 (25.0)$ $13 (5.6)$ $27 (45.0)$ $59 (26.0)$ $13 (21.7)$ $22 (9.7)$ $15 (25.0)$ $13 (5.7)$ $5 (8.3)$ $n=227$ $n=60$ $132 (58.1)$ $27 (45.0)$ $59 (26.0)$ $13 (21.7)$ $22 (9.7)$ $15 (25.0)$ $13 (5.7)$ $5 (8.3)$ | Total (n=227)Women (n=60)Men (n=167)81 (35.7)26 (43.3)55 (32.9)90 (39.6)22 (36.7)68 (40.7)56 (24.7)12 (20.0)44 (26.3)14 31 (63.0)35 (58.3)108 (64.7)22 (9.7)3 (5.0)19 (11.4)2.5 (2.0-3.0)2.5 (2.5-3.0)2.5 (2.5-3.0)7.0 (30.8)50 (23.4)20 (33.6)1.1.0±0.171.1.4±0.201.07±0.171.08±0.151.02±0.161.03±0.142.0 (17-20)20 (17-20)20 (17-26)8 (7-9)8 (7-19)8 (7-9)60 (44-60)60 (41-60)55 (2.1-2.8)15.2 (3.8-20.0)14.4 (9.9-18.8)15.5 (9.7-20.5)0.8 (0.4-1.1)0.7 (0.4-1.0)0.9 (0.5-1.1)66.2±16.566.7±16.866.0±16.5 $n=227$ $n=60$ $n=167$ 2.3 (1.9-2.7)2.1 (1.9-2.5)2.4 (2.1-2.7)9.6±11.29.8±10.09.6±11.61.48±0.501.40±0.471.51±0.51 $n=206$ $n=53$ $n=153$ 2.3 (2.0-2.6)2.0 (1.8-2.3)2.4 (2.0-2.7)9.8±12.01.2±0.521.2±0.431.47±0.540.05±0.240.12±0.260.02±0.2266 (32.0)13 (24.5)53 (34.6)2.1 (1.9)1.0(7) $n=227$ $n=60$ $n=167$ 1.3 (56.6)27 (45.0)106 (63.5)5.9 (26.0)13 (24.5)53 (34.6)2.1 (1.9-2.7)5 (6.3)8 (4.8) $n=206$ $n=167$ 1.3 (57.1)5 (6.3) <t< td=""></t<> |

DCB, drug-coated balloon. Values are mean±SD, median (interquartile ranges, 25th–75th), or n (%).

in women. However, most of these disappeared angiographically during follow-up (no dissection: 94.3% in women and 98.7% in men) (Fig. 3). Moreover, no new dissections or no worse dissections were observed at follow-up in either sex. The presence of dissection and its severity were not associated with LLL in either sex (Fig. 4). The cumulative frequency of MLD, diameter stenosis, and LLL are shown in Fig. 5.

The clinical outcomes are presented in Table 3. During a median follow-up of 3.4 years (IQR: 25–53 months), the TVF was comparable, with a rate of 6.7% in women and 7.8% in men (p= 0.922), and driven mainly by TVR in both groups. There was no cardiac death, and only one target vessel myocardial infarction, which occurred in men at 22-month, and was related to target lesion revascularization. In the multivariable analysis, the women sex was the only independent risk factor for LLL (Table 4).

In the multivariable analysis, women, stable CAD, higher DCB to reference vessel ratio, and longer lesion length were independently associated with a higher risk of dissection. Women had more dissections after DCB treatment; and dissections were significantly associated with women [odds ratio (OR)=2.69, p= 0.009], stable CAD (OR=5.17, 95% CI: 1.82–17.34, p=0.004), DCB to reference vessel ratio (OR=1.36, 95% CI: 1.06–1.79, p=



Fig. 1. Sex difference in late lumen loss (LLL).



Fig. 2. Comparison of late lumen loss (LLL) frequency according to sex.





https://doi.org/10.3349/ymj.2021.62.11.981



Fig. 4. Sex difference in LLL according to the presence of dissection (A) and comparison of LLL according to the dissection severity (B). LLL according to the severity of dissection in both sexes (C). LLL, late lumen loss.



Fig. 5. Cumulative frequency distribution curves of MLD (A) and percent diameter stenosis (B) pre-procedure, post-procedure, and at follow-up. Cumulative frequency distribution curves of LLL according to sex (C). MLD, minimal lumen diameter; LLL, late lumen loss.

0.020), and lesion length (OR=1.11, 95% CI: 1.04–1.18, *p*=0.001), even after adjusting for clinical, angiographic, and procedural characteristics (Supplementary Table 1, only online).

### **DISCUSSION**

The main findings of our study on the angiographic and clinical outcomes of DCB treatment for de novo coronary lesions according to sex were as follows: 1) women had a smaller

#### Liu Kun, et al.

#### Table 3. Comparison of Clinical Outcomes according to Sex



|                                     | Total (n=227) | Women (n=60) | Men (n=167) | <i>p</i> value* |
|-------------------------------------|---------------|--------------|-------------|-----------------|
| Cardiac death                       | 0             | 0            | 0           | -               |
| Target vessel myocardial infarction | 1 (0.4)       | 0            | 1 (0.6)     | 0.573           |
| Target lesion revascularization     | 6 (2.6)       | 2 (3.3)      | 4 (2.4)     | 0.528           |
| Target vessel revascularization     | 17 (7.5)      | 4 (6.7)      | 13 (7.8)    | 0.944           |
| Target vessel thrombosis            | 0             | 0            | 0           | -               |
| Target vessel failure               | 17 (7.5)      | 4 (6.7)      | 13 (7.8)    | 0.944           |

Event rates are presented as the proportion of patients with events in groups during a median follow-up duration of 3.4 years (range 12.7–28.9 months). Target vessel failure included cardiac death, target vessel myocardial infarction, target vessel revascularization, and target vessel thrombosis. Values are n (%).

\*p value is from the log-rank test.

#### Table 4. Independent Predictors of Late Lumen Loss

|                               | Multivariable analysis |              |                |
|-------------------------------|------------------------|--------------|----------------|
|                               | Beta                   | 95% Cl       | <i>p</i> value |
| Women                         | 0.091                  | 0.006-0.176  | 0.036          |
| Age                           | -0.002                 | -0.006-0.001 | 0.188          |
| Hypertension                  | -0.026                 | -0.098-0.045 | 0.464          |
| Diabetes                      | 0.040                  | -0.029-0.110 | 0.256          |
| Prior PCI                     | 0.061                  | -0.021-0.143 | 0.143          |
| Stable CAD                    | 0.054                  | -0.039-0.147 | 0.256          |
| DCB to reference vessel ratio | -0.118                 | -0.389-0.152 | 0.388          |
| Scoring balloon use           | -0.081                 | -0.200-0.037 | 0.177          |
| Presence of dissection        | -0.029                 | -0.106-0.048 | 0.455          |
| Reference vessel diameter     | -0.020                 | -0.107-0.067 | 0.648          |
| Lesion length                 | 0.004                  | -0.003-0.010 | 0.261          |
| Minimal lumen diameter        | -0.005                 | -0.097-0.088 | 0.920          |

PCI, percutaneous coronary intervention; CAD, coronary artery disease; DCB, drug-coated balloon.

vessel size (despite this, a larger DCB compared to RVD was used and women had more dissections after DCB treatment), 2) women had higher LLL compared to men, and 3) the women sex was an independent predictor of higher LLL.

Women coronary arteries are naturally smaller than men coronary arteries. This is independent of the body size and persists even after normalization for left ventricular mass.<sup>6,18</sup> In this study, women had a smaller RVD compared to men, which was consistent with previous studies.<sup>19,20</sup> The predilation balloon to reference vessel ratio was larger in women as the selected predilation balloon diameter did not differ between men and women. This finding can help explain why dissections occurred more frequently in women after predilation. The DCB diameter was relatively smaller in women, but the DCB to reference vessel ratio was larger. The DCB to the predilation balloon ratio was similar in men and women. Dissections after DCB treatment were not statistically significant compared to dissections observed after predilation. In women, predilation balloons and DCBs were larger than the RVD compared to men, which is believed to have resulted in more dissections in women. Therefore, in women, operators should be careful not to overestimate the size when choosing the predilation balloon and DCB.

Immediately after DCB treatment, there was no difference in acute lumen gain between the sexes, but the net lumen gain on follow-up angiography was greater in men. The primary endpoint, LLL, was higher in women (0.12±0.26 mm vs. 0.02±0.22 mm, p=0.012). However, the presence of dissection and higher LLL, which occurred in many women, were not related (Fig. 4A). Moreover, LLL did not differ according to the type of dissection in either sex (Fig. 4B and C). Reassuringly, in both men and women, dissections were rarely seen on follow-up angiography. Even the non-flow-limiting dissections that occurred after DCB treatment had mostly healed by the 6-month followup, and they did not result in restenosis or impact the outcomes. This phenomenon was different from the era of plain old balloon angioplasty, where in-hospital death rates were higher in women (0.3%) than in men (0.09%).<sup>18</sup> In contemporary practice, unlike in the angioplasty era, DES, dual antiplatelets, and anticoagulants are available to help manage complications after balloon angioplasty. The present study excluded cases of severe or flow-limiting dissections after balloon angioplasty and only evaluated angiography and clinical follow-up of those who successfully received DCB treatment. However, our findings did confirm that balloon angioplasty can now be used safely with the knowledge that optimal medical support and that new-generation DES are available to manage flow-limiting dissections or acute vessel closures, thereby enabling DCB treatment to achieve DES-like clinical results.<sup>12,13,21,22</sup> This effect may be one of the reasons women have had positive results after DCB treatment. In a previous study regarding the sex differences in angiographic outcomes after PCI, the 2-year followup angiography showed no difference in terms of in-stent LLL (0.18±0.54 mm vs. 0.20±0.99 mm, p=0.76) and in-segment binary restenosis (8.5% vs. 8.5%, p=0.76) after DES implantation between women and men, respectively.<sup>23</sup> In the current study, LLL was higher in women than in men (0.12±0.26 mm vs.  $0.02\pm0.22$  mm, p=0.012). Considering that the mechanism by which DES and DCB inhibit intimal hyperplasia is through antiproliferative drugs, it is difficult to assess the higher levels of LLL in women than in men in this study. This result may be due to the small number of samples; therefore, studies with a larger sample size may be needed in the future. Our study had sever-

## YMJ

al limitations. First, this study was a retrospective analysis of a relatively small number of patients. Second, the study population was limited as they came from two centers with expertise in this type of PCI. Consequently, the low incidence of TVF made it difficult to show the impact of sex on TVF. However, this was consistent with other studies on DCB treatment in de novo lesions.<sup>12,13,21,22</sup> Third, there was no information on medications, such as statins or antithrombotics, that could affect LLL in this study. Fourth, the present study did not target all patients, and focused only on those who successfully received DCB treatment. In this study, it was not possible to determine the proportion of patients who received DES implantation in both groups since lesion preparation was not appropriate after predilation. Therefore, the results of this study should be interpreted carefully. Large-scale prospective studies are needed to clarify the mechanisms responsible for TVF in men and women after DCB treatment.

In conclusion, women had worse LLL, while there was no difference in TVF between women and men. Based on the multivariable analysis, the women sex was an independent predictor of higher LLL and the presence of dissection.

### **AUTHOR CONTRIBUTIONS**

Conceptualization: Eun-Seok Shin and Tang Qiang. Data curation: Eun-Seok Shin, Tang Qiang, and Liu Kun. Formal analysis: Eun-Seok Shin, Tang Qiang, Liu Kun, Eun Jung Jun, and Youngjune Bhak. Investigation: Eun-Seok Shin, Tang Qiang, Liu Kun, and Eun Jung Jun. Methodology: Eun-Seok Shin, Tang Qiang, and Liu Kun. Project administration: Eun-Seok Shin and Tang Qiang. Resources: Eun-Seok Shin and Tang Qiang. Software: Eun Jung Jun and Youngjune Bhak. Supervision: Eun-Seok Shin and Tang Qiang. Validation: Eun Jung Jun and Youngjune Bhak. Visualization: Eun Jung Jun and Youngjune Bhak. Writing—original draft: Eun-Seok Shin and Liu Kun. Writing review & editing: all authors. Approval of final manuscript: all authors.

### **ORCID iDs**

Liu Kun Eun-Seok Shin Eun Jung Jun Youngjune Bhak Scot Garg Tae-Hyun Kim Chang-Bae Sohn Byung Joo Choi Lin Hui Song Lin Yuan Wang Zhi Jiang Hao Shi Zhentao Tang Qiang https://orcid.org/0000-0003-3093-064X https://orcid.org/0000-0002-9169-6968 https://orcid.org/0000-0003-3287-125X https://orcid.org/0000-0002-9273-6984 https://orcid.org/0000-0002-8911-0278 https://orcid.org/0000-0001-5195-2413 https://orcid.org/0000-0001-7403-3778 https://orcid.org/0000-0002-2089-1811 https://orcid.org/0000-0002-8355-250X https://orcid.org/0000-0002-0884-3753 https://orcid.org/0000-0001-7176-628X https://orcid.org/0000-0003-1440-5730 https://orcid.org/0000-0003-1893-1607 https://orcid.org/0000-0001-5022-2099

### REFERENCES

1. Funakoshi S, Furukawa Y, Ehara N, Morimoto T, Kaji S, Yamamuro

A, et al. Clinical characteristics and outcomes of Japanese women undergoing coronary revascularization therapy. Circ J 2011;75: 1358-67.

- 2. Kornowski R, Vaknin-Assa H, Assali A, Lev EI, Porter A, Battler A, et al. A comparative analysis of major clinical outcomes with drug-eluting stents versus bare metal stents in male versus female patients. EuroIntervention 2012;7:1051-9.
- Mehran R, Pocock SJ, Nikolsky E, Clayton T, Dangas GD, Kirtane AJ, et al. A risk score to predict bleeding in patients with acute coronary syndromes. J Am Coll Cardiol 2010;55:2556-66.
- 4. Rao SV, McCoy LA, Spertus JA, Krone RJ, Singh M, Fitzgerald S, et al. An updated bleeding model to predict the risk of post-procedure bleeding among patients undergoing percutaneous coronary intervention: a report using an expanded bleeding definition from the National Cardiovascular Data Registry CathPCI Registry. JACC Cardiovasc Interv 2013;6:897-904.
- 5. Yu J, Baber U, Mastoris I, Dangas G, Sartori S, Steg PG, et al. Sexbased differences in cessation of dual-antiplatelet therapy following percutaneous coronary intervention with stents. JACC Cardiovasc Interv 2016;9:1461-9.
- Hiteshi AK, Li D, Gao Y, Chen A, Flores F, Mao SS, et al. Gender differences in coronary artery diameter are not related to body habitus or left ventricular mass. Clin Cardiol 2014;37:605-9.
- 7. Windecker S, Kolh P, Alfonso F, Collet JP, Cremer J, Falk V, et al. 2014 ESC/EACTS Guidelines on myocardial revascularization: the task force on myocardial revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J 2014;35:2541-619.
- Dola J, Morawiec B, Wańha W, Nowalany-Kozielska E, Wojakowski W, Kawecki D. Results of PCI with drug-eluting stents in an allcomer population depending on vessel diameter. J Clin Med 2020; 9:524.
- 9. van der Heijden LC, Kok MM, Danse PW, Schramm AR, Hartmann M, Löwik MM, et al. Small-vessel treatment with contemporary newer-generation drug-eluting coronary stents in all-comers: insights from 2-year DUTCH PEERS (TWENTE II) randomized trial. Am Heart J 2016;176:28-35.
- 10. Claessen BE, Smits PC, Kereiakes DJ, Parise H, Fahy M, Kedhi E, et al. Impact of lesion length and vessel size on clinical outcomes after percutaneous coronary intervention with everolimus- versus paclitaxel-eluting stents pooled analysis from the SPIRIT (clinical evaluation of the XIENCE V everolimus eluting coronary stent system) and COMPARE (second-generation everolimus-eluting and paclitaxel-eluting stents in real-life practice) randomized trials. JACC Cardiovasc Interv 2011;4:1209-15.
- 11. Jeger RV, Farah A, Ohlow MA, Mangner N, Möbius-Winkler S, Leibundgut G, et al. Drug-coated balloons for small coronary artery disease (BASKET-SMALL 2): an open-label randomised noninferiority trial. Lancet 2018;392:849-56.
- Her AY, Shin ES, Lee JM, Garg S, Doh JH, Nam CW, et al. Paclitaxelcoated balloon treatment for functionally nonsignificant residual coronary lesions after balloon angioplasty. Int J Cardiovasc Imaging 2018;34:1339-47.
- 13. Shin ES, Lee JM, Her AY, Chung JH, Eun Lee K, Garg S, et al. Prospective randomized trial of paclitaxel-coated balloon versus baremetal stent in high bleeding risk patients with de novo coronary artery lesions. Coron Artery Dis 2019;30:425-31.
- 14. Rissanen TT, Uskela S, Eränen J, Mäntylä P, Olli A, Romppanen H, et al. Drug-coated balloon for treatment of de-novo coronary artery lesions in patients with high bleeding risk (DEBUT): a singleblind, randomised, non-inferiority trial. Lancet 2019;394:230-9.

- 15. Jeger RV, Eccleshall S, Wan Ahmad WA, Ge J, Poerner TC, Shin ES, et al. Drug-coated balloons for coronary artery disease: third report of the international DCB consensus group. JACC Cardiovasc Interv 2020;13:1391-402.
- Her AY, Shin ES, Bang LH, Nuruddin AA, Tang Q, Hsieh IC, et al. Drug-coated balloon treatment in coronary artery disease: recommendations from an Asia-Pacific consensus group. Cardiol J 2021; 28:136-49.
- 17. Shin ES, Bang LH, Jun EJ, Her AY, Chung JH, Garg S, et al. Provisional drug-coated balloon treatment guided by physiology on de novo coronary lesion. Cardiol J 2021;28:615-22.
- Weintraub WS, Wenger NK, Kosinski AS, Douglas JS Jr, Liberman HA, Morris DC, et al. Percutaneous transluminal coronary angioplasty in women compared with men. J Am Coll Cardiol 1994;24: 81-90.
- Nakatani D, Ako J, Tremmel JA, Waseda K, Otake H, Koo BK, et al. Sex differences in neointimal hyperplasia following endeavor zotarolimus-eluting stent implantation. Am J Cardiol 2011;108:912-7.

- 20. Kok MM, van der Heijden LC, Sen H, Danse PW, Löwik MM, Anthonio RL, et al. Sex difference in chest pain after implantation of newer generation coronary drug-eluting stents: a patientlevel pooled analysis from the TWENTE and DUTCH PEERS trials. JACC Cardiovasc Interv 2016;9:553-61.
- Shin ES, Ann SH, Balbir Singh G, Lim KH, Kleber FX, Koo BK. Fractional flow reserve-guided paclitaxel-coated balloon treatment for de novo coronary lesions. Catheter Cardiovasc Interv 2016;88:193-200.
- 22. Her AY, Ann SH, Singh GB, Kim YH, Yoo SY, Garg S, et al. Comparison of paclitaxel-coated balloon treatment and plain old Bballoon angioplasty for de novo coronary lesions. Yonsei Med J 2016;57: 337-41.
- 23. Stefanini GG, Kalesan B, Pilgrim T, Räber L, Onuma Y, Silber S, et al. Impact of sex on clinical and angiographic outcomes among patients undergoing revascularization with drug-eluting stents. JACC Cardiovasc Interv 2012;5:301-10.