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ABSTRACT

The charge transfer (CT) properties of photosensitizers largely determine the photovoltaic performances
of dye sensitized solar cells (DSSCs). Thus, understanding the CT properties of photosensitizers is key to
further improving the performances of DSSCs. We herein investigated the underlying relationship be-
tween the molecular structures and CT properties of the photosensitizers using resonance Raman (RR)
spectroscopy and density functional theory (DFT) calculations. RR spectroscopy combined with DFT
calculations showed that the presence of a triple bond (T-D1, T-D2, and T-D3) enhanced the degree of CT
from the donor to the acceptor. In addition, the presence of electron donating groups (EDGs) on the
donor (T-D2 and T-D3) further increased the CT properties of the donor. Moreover, DFT analysis based on
the harmonic oscillator model of aromaticity revealed that the presence of a triple bond and an EDG
increased the quinoidal character of the photosensitizer in the excited state. Finally, it was found that the
degree of CT properties exhibited by each photosensitizer was in good agreement with the order of the
DSSC performances.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Dye-sensitized solar cells (DSSCs) based on thin films have been
investigated for use as promising indoor power generating photo-
voltaic cells owing to their fast charge transport properties,
retarded charge recombination, and high efficiency under dim light
[1—4]. These properties render DSSCs potentially suitable for ap-
plications in building-integrated photovoltaics and wireless power
generators for small electronics [5]. To accelerate the commercial-
ization of DSSCs, many researchers have investigated the
enhancement of the power conversion efficiencies (PCEs) of DSSCs
through the use of thin TiO; films (<3.5 um) [6,7]. Consequently,
the relationships between the electronic dynamics and the DSSC
performances of such systems have been reported [8,9]. Typically,
the charge injection efficiency, which depends on the charge
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transfer (CT) property of a photosensitizer, has been reported to
dominantly determine the performances of DSSCs possessing thin
film photoanodes [10]. In addition, the CT properties of the pho-
tosensitizers are largely dependent on their molecular structures,
and therefore, it is crucial to understand the relationship between
the molecular structure and the CT properties to improve the per-
formances of DSSCs.

To enhance the CT properties, a general photosensitizer struc-
ture has been developed based on electron donor—m-bridge-
—electron acceptor (D—n—A) structures [11—14]. As a result, one of
the highest performances reported to date was presented, wherein
a PCE of 13.0% was achieved using a porphyrin-based sensitizer,
SM315, which contained an ethynyl (triple) bond and a benzo|c]
[1,2,5]thiadiazole (BTD) spacer between the donor and acceptor
groups [14]. SM315 exhibited an increased absorption range and a
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superior incident photon-to-electron conversion efficiency (IPCE)
due to the quinoidal property of the triple bond and the BTD unit
[15,16]. To further investigate the effect of the triple bond and the
quinoidal property, we previously modified dithieno[3,2-b:2’,3'-d]
thiophene (DTT)-based photosensitizers with different bond types
between the donor and the w-bridge (S-D1 for single, D-D1 for
double, and T-D1 for triple bonds) and bearing an electron donating
group (EDG) at the para position of the donor (T-D2 for methoxy-,
and T-D3 for N-carbazolyl EDGs) (Fig. 1a). It was found that the
triple bond-incorporated photosensitizer (T-D1) exhibited a higher
charge injection efficiency compared to the corresponding struc-
tures containing single (S-D1) or double bonds (D-D1) [17].
Furthermore, the photosensitizer containing an EDG (T-D2)
exhibited an increased photocurrent density that was correlated to
the donating ability of the EDG [18]. However, these previous works
and other molecular engineering studies focused on the effects of
structural modification of the photosensitizers in terms of charge
recombination, regeneration, and injection in the DSSCs [19—25],
with no spectroscopic evidence being available regarding the CT
nature and quinoidal properties of the photosensitizers.

Thus, we herein report a spectroscopic and computational study
on the CT and quinoidal properties of five DTT-based photosensi-
tizers (S-D1, D-D1, T-D1, T-D2, and T-D3) using resonance Raman
(RR) spectroscopy and density functional theory (DFT) calculations.
RR spectroscopy was selected due to its ability to reveal vibrational
modes that mimic changes in the charge density as a result of
specific electronic transitions probed with different excitation
wavelengths (Fig. 1b) [26]. More specifically, RR spectroscopy ex-
cites molecules of interest to electronic excited states (E; and Ey),
which correspond to intramolecular charge transfer (ICT) and 7—m*
transitions. Non-resonant Raman spectroscopy (Fig. 1b(i)) acts as a
reference, where molecules are excited from the electronic ground
state (Eg) to the virtual state [27—29]. Thus, the RR spectra shown in
Fig. 1b(ii) and 1b(iii) can indicate the vibration modes involved in
the corresponding electronic transitions, consequently allowing
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elucidation of the molecular structure that contributes to the
enhanced CT properties. Hence, the effect of the bond type and the
EDGs on the nature of the electronic transitions can be observed
through changes in the vibrational modes that are enhanced in the
RR spectra. These spectroscopic changes correspond to the qui-
noidal properties confirmed by DFT calculations in terms of changes
in the bond lengths and quinoidal character (Q) based on the har-
monic oscillator model of aromaticity (HOMA) analysis. Based on
spectroscopic and computational investigations, we aim to unveil
the relationship between the molecular structures and CT natures
of photosensitizers. In addition, the effects of structural modifica-
tion on the photocurrent density are examined by evaluation of the
device performance of a DSSC containing a thin photoanode
(3.5 pm). This study will therefore be expected to deliver new in-
sights into molecular engineering strategies for enhancing the CT
and quinoidal properties of photosensitizers.

2. Experimental section
2.1. Materials

All chemicals and reagents were purchased from Aldrich, Alfa
Aesar, TCI, and Acros and used without further purification. Re-
actions were performed using anhydrous solvent prepared by
molecular sieves prior to use under inert atmosphere of nitrogen or
argon. Silica gel was used for flash column chromatography, and
thin layer chromatography was performed on silica gel glass
(0.2 mm thick). All syntheses of the photosensitizers were carried
out as previously reported [17,18,30] and 'H and 3C nuclear mag-
netic resonance spectroscopy (NMR) spectra of the photosensi-
tizers are presented in the Supplementary Data (Part 8).
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Fig. 1. (a) Molecular structures of the DTT-based photosensitizers. (b) Schematic illustration of resonance Raman (RR) spectroscopy. The energy level diagram shows the states
involved in non-resonant and resonance Raman spectroscopy (left). The RR spectra exhibit an enhanced Raman intensity compared to the non-resonant Raman spectrum (middle).
Thus, the vibrational mode involved in the RR spectra contributes to charge transfer (right).
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2.2. Computational details

Geometry optimizations and vibrational calculations were per-
formed using density functional theory (DFT) calculations with
B3LYP [31,32] or CAM-B3LYP [33] functionals. Both functionals
employed the basis set 6-31G(d) and were conducted with and
without a solvent field implemented using a polarized continuum
model [34]. These were implemented with Gaussian 09 DO0.1
(Gaussian Inc, Wallingford, CT, USA) [35]. Scaling factors of 0.975
and 0.95 for B3LYP and CAM-B3LYP, respectively, were applied to
calculated vibrational frequencies as recommended previously
[36]. The vibrational modes were visualized using Molden [37].

Time-dependent DFT (TD-DFT) methods were implemented on
the optimized structures, using both B3LYP and CAM-B3LYP hybrid
functionals to approximate electronic transition energies and
oscillator strengths for each photosensitizer investigated. Molecu-
lar models for calculations have alkyl chains shortened to a methyl
group to simplify the calculation processes.

2.3. Spectroscopic methods

Spectroscopic grade solvents were used for all spectroscopic
measurements. Spectral data was analyzed and manipulated using
GRAMS v9.2 (Thermo Fisher Scientific) and OriginPro v9.0 (Ori-
ginLab Corporation). UV—vis absorption spectra of 2 x 107> M so-
lution in dichloromethane (DCM) were recorded on a UV-2600
spectrophotometer (Shimadzu Corporation, Japan), and a FS5
fluorometer (Edinburgh Instruments, UK), with a Xenon Arc lamp
light source.

FT Raman spectra were obtained with solid KBr-based pellet
samples of the photosensitizers using a MultiRAM spectrometer
(Bruker Optics, Ettlingen, Germany) and a liquid-nitrogen-cooled
Model D418T germanium detector. The system was controlled by
Bruker Opus v7.5 software. A 1064 nm Nd:YAG laser was used with
a power of 150 mW. Spectra were measured with a spectral reso-
lution of 4 cm~! and 1024 scans.

Resonance Raman spectra were collected using a setup
described previously [38]. In summary, the laser beam was focused
on a spinning NMR tube in a 135° backscattering geometry with a
50 um entrance slit. An Innova I-302 krypton ion laser (Coherent
Inc., Santa Clara, CA, USA) was used to provide excitation wave-
lengths of 406 and 413 nm. Solid state diodes provided excitations
wavelengths of 458, 515 (Cobolt, Solna, Sweden), 375 and 448 nm
(Crystalaser, Reno, NV, USA). Notch filters (Kaiser Optical Inc., Ann
Arbor, MI, USA) or long-pass filters (Semrock Inc., Rochester, NY,
USA) matched to these wavelengths were used to remove the laser
excitation line. Laser power ranged between 20 and 30 mW. The
beam was dispersed using 1200 mm™! grating onto a PyLoN 400BR
CCD (Princeton Instruments, Trenton, NJ, USA), cooled with liquid
nitrogen to —120 °C; Winspec/32 software was used to control the
CCD equipment. Sample concentrations were typically 1 x 107> M
and spectra were obtained at 298 K. Spectra were calibrated at each
excitation wavelength, using reference peaks of a 1:1 mixture of
toluene and acetonitrile to within a pixel.

2.4. Quinoidal character based on harmonic oscillator model of
aromaticity (HOMA)

The quinoidal character (Q) of each thiophene ring of the pho-
tosensitizers was evaluated based on the modified HOMA analysis.
The Q was calculated for the ground and excited states of each
photosensitizer as following Egs. [39]:

Materials Today Advances 12 (2021) 100180

Q =1 — aromaticity (1)
. . [0 2
aromaticity =1~ z,: [Raromatici — Ri] @)
1 2]
o= |:E Z [Racromatic,i - uninoidal‘i] :| (3)
i

where Q is the quinoidal character, « is the normalization constant
for the Q, n is the number of the bonds of ring of interest, Raromatic,i iS
the length of bonds i in an aromatic model, Rquinoidal,i is the length
of bonds i in a quinoidal model, and R; is the bond length of the
bonds i of interested molecules. For the calculation of the « con-
stant, the aromatic and quinoidal structures of 2,6-bis(3-
hexylthiophen-2-yl)dithieno[3,2-b:2’,3’-d|thiophene core unit
were considered (Fig. S2), leading to the aromaticity being 1.0 for
the aromatic core and being 0.0 for the quinoidal core. The detailed
calculations are described in the Supplementary Data (Part 6).

2.5. Device fabrication

Thin photoanodes were prepared on fluorine-doped tin oxide
glass (FTO, Nippon Sheet Glass Co., Ltd) by a screen-printing
method. The photoanode films were composed of a 3.5 pm thick
photoactive layer and a 1.5 pm thick scattering layer. These films
were immersed into a 0.1 mM dye solution with 5 mM cheno-
deoxycholic acid as a co-adsorbent in a binary solvent of chloro-
form/ethanol (v/v, 7:3) for 8 h. The dye-adsorbed photoanode films
were assembled with platinum (Pt) counter electrodes, sealed by a
Surlyn film of 25 um thickness (Meltonix 1170—25, Solaronix).
Iodine-based electrolyte was used for devices with the following
composition: 0.025 M Lil, 0.055 M I,, 0.05 M guanidine thiocyanate
(GuSCN), 0.6 M 1,2-dimethyl-3-propylimidazolium iodide, and
0.5 M 4-tert-butylpyridine (TBP) in a binary solvent of acetonitrile/
valeronitrile (v/v, 85:15). Detailed procedure of the device fabrica-
tion is described in the Supplementary Data (Part 2).

3. Results and discussion

3.1. Molecular design and optoelectronic properties of the
photosensitizers

To study the effects of the molecular structure on the CT and
quinoidal properties of the photosensitizers, five photosensitizers
were prepared with different bond types between the triphenyl-
amine (TPA) donor and the DTT w-bridge, and EDGs were intro-
duced at the para position of the TPA donor. These photosensitizers
were labelled as follows: S-D1 (single bond, H-), D-D1 (double
bond, H-), T-D1 (triple bond, H-), T-D2 (triple bond, methoxy-), and
T-D3 (triple bond, N-carbazolyl-) (Fig. 1a). Their experimental and
theoretical optoelectronic properties are summarized in Table 1,
including their electronic transition wavelengths, optical bandgaps,
and changes in their dipole moments.

The UV—vis absorption spectra of the photosensitizers were
measured to investigate their electronic transitions and light har-
vesting abilities. From the absorption spectra, it was apparent that
all photosensitizers exhibited ICT transition bands in the range of
450—-550 nm, and w—7* transition bands in the range of
360—430 nm (Fig. 2). S-D1, D-D1, and T-D1 exhibited ICT peaks at
496, 496, and 491 nm, respectively (Table 1). In addition, among the
different bond types investigated, T-D1 exhibited the highest molar
extinction coefficient (¢) for both the ICT (52,500 M~! cm™!) and
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Table 1
Summary of photophysical and electrochemical properties of the photosensitizers.
Photosensitizer Jabs” [nm] (e M~ ecm™']) Eg, onset” [eV] Atrans’ [NM] dem? [nm)] Auf [D]
S-D1 496 (44,200) 2.08 491 668 4527
387 (36,400) 376
D-D1 496 (49,200) 2.04 519 650 37.48
434 (43,300) 410
T-D1 491 (52,500) 2.12 491 739 48.04
388 (45,400) 389
T-D2 487 (57,100) 2.10 494 769 60.19
401 (50,200) 394
T-D3 491 (39,500) 2.12 474 728 50.64
389 (39,100) 385
@ Jabs is the wavelength of the ICT and 7—n* transition bands.
b Eg, onset is the optical bandgaps of the photosensitizers obtained from the absorption onset.
€ Aurans i the calculated wavelength at which the ICT and 7—m* electronic transitions occur.
9 Jem is the emission wavelength of the photosensitizers in 0.02 mM DCM solution.
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Fig. 2. Absorption spectra of the photosensitizers with different bond type (a) and
EDGs (b) in 0.02 mM DCM solution. The bars are the theoretically calculated oscillator
strengths of intramolecular charge transfer (ICT) and m—* transitions using B3LYP, 6-
31G(d), corresponding to the photosensitizers.

n—m* (45,400 M~! cm™!) transitions, followed by D-D1 (49,200
M~! em~! for the ICT transition and 43,300 M~! cm™! for the m—*
transition) and S-D1 (44,200 and 36,400 M~! cm™"). Furthermore,
the introduction of an EDG also affected the light harvesting ability,
and resulted in T-D2 exhibiting the highest molar extinction coef-
ficient of 57100 M~' cm™! for the ICT transition and
50,200 M~! cm~! for the 7—n* transitions; this was followed by T-

Ap is the dipole moment changes in the photosensitizers at the ground and excited states.

D3 (39,500 M~! cm™! for the ICT transition and 39,100 M~! cm™!
for the m—a* transition), which also contained an EDG. These re-
sults demonstrate that the triple bond and the EDG increase the
light harvesting properties of the photosensitizers for both the ICT
and m—m* transitions. The major electronic transitions, A¢rans, Were
identified using TD-DFT calculations, which were consistent with
the observed UV—vis spectra (Table 1). The first electronic transi-
tions from the highest occupied molecular orbital (HOMO) to the
lowest unoccupied molecular orbital (LUMO) were found to be
located between 474 and 519 nm within the ICT transition band,
while the second transitions from the HOMO to the LUMO+1 were
located between 376 and 410 nm within the m—=* transition band
(Fig. 2, Table 1 and S2).

To understand the change in the charge density in the ground
state according to the molecular modification carried out, natural
bonding orbital (NBO) analysis was performed (Table S3). NBO
analysis presents the group charge densities of the various frag-
ments of the photosensitizers (i.e., the donor, linker, thiophene
adjacent to the donor, DTT, thiophene adjacent to the acceptor, and
acceptor). A positive NBO value indicates an electron-donating
ability, while a negative NBO value denotes a withdrawing ability
[40]. As can be seen from Table S3, the donor and DTT fragments of
the triple bond-containing T-D1 exhibited more positive NBO
values of 0.036 and 0.049 compared to those of photosensitizers
bearing single (S-D1, 0.032 and 0.038) and double (D-D1, 0.025 and
0.033) bonds. These results indicated that the triple bond increased
the electron-donating ability of the donor and DTT fragments.
Furthermore, the methoxy-substituted donor of T-D2 resulted in
the most positive NBO value of 0.050, demonstrating that the
methoxy group on the donor further enhanced the electron-
donating ability of the donor. To further evaluate the charge den-
sity change attributed to photoexcitation, the dipole moment
changes (Au) between the ground and excited states were calcu-
lated using DFT calculations. Due to the fact that the dipole moment
is expressed as the sum of the charge densities, Au indicates any
change in the charge density, and correspondingly, indicates the CT
properties of the photosensitizers [41]. Consistent with its molar
extinction coefficient, T-D1 exhibited a greater Au of 48.04 D
compared to S-D1 (45.27 D) and D-D1 (37.48 D). In addition, T-D2
exhibited the highest Ay of 60.19 D upon the introduction of an
EDG, while T-D3 showed only a slightly higher Au (50.64 D)
compared to T-D1 (48.04 D). Based on these results, we confirmed
that the presence of a triple bond and a methoxy group contribute
to enhancing the CT properties of the photosensitizers by
increasing the value of Au to the greatest extent.



W.-H. Kim, ].I. Mapley, D.-H. Roh et al.
3.2. Resonance Raman spectroscopy of the photosensitizers

RR spectroscopy was implemented to probe the nature of the
electronic transitions of the photosensitizers. In general, the Raman
intensity is enhanced when the corresponding vibrational modes
imitate specific structural changes. These structural changes occur
when the charge density changes for an electronic transition that is
coincident with the excitation wavelength employed [42,43]. Thus,
for the different electronic transitions, the contributions of the
different components of the photosensitizers could be determined
(Fig. 1b). Furthermore, the nuclear coordinates of the excited state,
pertaining to the vibrational mode, must be displaced relative to
that of the ground state for resonance Raman scattering to occur. As
the magnitude of the displacement increases, the degree of reso-
nance is enhanced [44]. Thus, the change in the nuclear coordinates
between the states is a result of a change in bonding, which is
related to a change in the charge density due to an electronic
transition. Consequently, the relative change in this charge density
can be inferred from the intensity enhancement of the RR spectra.

Thus, the RR spectra of the photosensitizers were collected with
a range of excitation wavelength ranging from 375 to 515 nm, and
the non-resonant FT-Raman spectra were also collected for com-
parison (Fig. 3b—f). It was not possible to collect the spectrum of D-
D1 at an excitation wavelength of 515 nm due to the presence of
photoluminescence (PL). Similarly, in the case of T-D3, PL emission
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also precluded the excitations at 448 and 458 nm.

Two distinct enhancement profiles were observed for the RR
spectra of all photosensitizers collected at excitations of
448—-515 nm and at shorter wavelengths, which is consistent with
the absorbance behavior of the first two electronic transitions, i.e.,
the ICT and the m—=* transitions (Figs. 2 and 3b—3f). In the case of
T-D2, the 448 nm excitation spectrum displays the enhancement
patterns from both the ICT and w—=* transitions, consistent with
the red shift of its 7—=* transition (Figs. 2b and 3e). D-D1 exhibits
an even greater overlap between the ICT and m—=* transitions
compared to those of the corresponding T-D2, with enhancement
from both transitions being observed upon excitation at 458 nm
(Figs. 2a and 3c).

Some prominent vibrational modes for T-D2 are also shown in
Fig. 3a, which indicate resonant Raman enhancement. These modes
are localized on the triple bond (2197 cm™!), the donor
(1599 cm™ "), and the acceptor (1584 cm™!). Other key vibrational
modes are described in Tables S4—S8. At high energy excitations
(375—413 nm), the bands originating from the triple bond and the
donor show greater enhancements than the acceptor band. In
contrast, at low energy excitations (448—515 nm), the acceptor-
based modes exhibit higher intensities. Two-dimensional contour
maps of the Raman intensity (1550—1650 cm™!) show how the
relative intensity of the noted donor (~1600 cm~!) and acceptor
(~1584 cm!) modes change with the excitation wavelength

f é
a Y
A Py 3
b, A
P e o bf " A
4 S oo w%oé A Ay e P b pq 5.3
o o JL < % Y o F Py % %p ' O
- Mt ) ¢ g
1599 cm! - g
| 2197 cm
} l '
<+ o ) <+ o <+ o o~ <+ o o
i 2e 52 ‘Dp 28 89, 28 5 O 28 8
—
S-D1 — — D-D1 —— T-D1 —— N T-D2 —— ~ T-D3 —— ~
375 nm % 375 nm 375 nm 375 nm
o~ L~
g NN Sy /;J\ /¥J\ ng
E‘ W 406 nm ok 406 nm 406 nm 406 nm
= S—— N A i A A
,_d % 413 nm P 413 nm 413 nm 413 nm
E MN— ] — A s o N Y
~ [448 nm 448 nm 448 nm 448 nm
= : S ]
G [4s8m ~ 0 458 0m 458 nm ‘_ 458 nm
5 N e L L]
= [491m 491 nm 491 nm 491 nm 491 om
=
g |s15mm 515 nm 515nm 515 nm i
% FT Raman FT Raman FT Raman FT Raman ‘ FT Raman ‘ i
~ . G L S :
S e e oo booe CL o co o0 Ce0 Ceooo00 O SO0 0000 o000 2SS ESe 2SR
HEEPREE TEF HEIEHEE IR BEYBEEB Ry AEEEEEE I HIEEEEEERY

1

Raman shift (cm™ Raman shift (cm’l)

~
~

S-D1 D-D1 T-D1

I NN
5 = 3
o W X

458

[Z RN
= o
o=

=) =)
154 =
) °

1550
1570
1590

=)
=
)

Excitation wavelength (nm) @

Raman shift (cm™) Raman shift (cm™)

Raman shift (cm™)

Raman shift (cm™)

Raman shift (cm™) Raman shift (cm™)

Normalized
Raman intensity
32

12
0.70
0.35
0.18
0.040
-0.10

T-D2 T-D3

=3
=
')

=3 S o <o 9
2 XN = & wn
= w o o o

1630
1650

Raman shift (cm™)

Raman shift (cm™)

Fig. 3. (a) Vibration modes of T-D2 which are assigned to vibration of the acceptor, the donor, and the triple bond at 1584, 1599, and 2197 cm ™, respectively. (b—f) RR spectra of the
photosensitizers in DCM solutions. Non-resonant FT-Raman spectra are given at the bottom as reference spectra. From bottom to top, the excitation wavelengths get shorter from
515 to 375 nm. The Raman shifts (cm ) of the vibration modes for the acceptor, the donor, and the triple bond are presented at the top of the RR spectrum for each photosensitizer.
(g) Two-dimensional contour maps of the Raman intensity in the range from 1550 to 1650 cm ™" in the RR spectra normalized to the Raman intensity of the band at 702 cm™!
corresponding to DCM. The Raman intensities were mapped along the wavenumber depending on the excitation wavelength.
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(Fig. 3g). This indicates that the low energy excitations
(448—515 nm) exhibit notable CT to the acceptor, while the high
energy excitations (375—413 nm) have more m—n* transition
character centered on the donor and the DTT core. This is consistent
with the DFT calculation results (Fig. S1 and Table S2). In addition,
comparing the vibrational modes common to all the photosensi-
tizers to that of the solvent band, it was shown that T-D1 exhibited
a greater intensity for the acceptor mode (1584 cm™!) compared to
the cases of S-D1 and D-D1, which resulted from a greater change in
the charge density caused by the triple bond. Furthermore, T-D2,
which possesses a triple bond and a methoxy group, showed the
greatest resonance enhancement for the donor, indicating that the
incorporation of these structural features enhanced the CT
properties.

3.3. Quinoidal properties of the photosensitizers

Upon photoexcitation, a change in the electronic structure from
an aromatic to a quinoidal structure can drive the CT process by
generating a diradicaloid, which consequently enhances the CT
properties (Fig. 4) [45,46]. Thus, the quinoidal properties of the
photosensitizers containing different bond types and EDGs were
investigated using two geometric indices of aromaticity; the Q
based on a HOMA and bond length analyses (Table 2 and Figs. 4 and
5)[39,46,47]. The Q at the ground (Sp) and first excited (S ) states of

Aromatic structure

CeH13 CeHi3

Fig. 4. Aromatic and quinoidal structures of the photosensitizers examined.
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the thiophene rings assigned to a—c were obtained using Egs.
(1)—(3), and their values are summarized in Table 2 and S10.

As indicated in Table 2, all thiophene rings of the w-bridges
exhibited an increase in their Q after transition from the Sg to the S;
state, corresponding to the ICT transition. This result indicates that
the photosensitizers possess increased quinoidal properties in the
excited state. In particular, T-D1 showed greater changes in Q (AQ)
for the individual thiophene rings “a—c” and higher averaged AQ
values than S-D1 and D-D1, indicating that the triple bond is more
effective in promoting the quinoidal properties than single and
double bonds. Therefore, the strong quinoidal properties in the Sq
state of T-D1 relative to the Sp state contributes to the strongest CT
properties. The introduction of EDGs was also found to further
affect the Q. More specifically, T-D3 exhibited a more significant AQ
for thiophene rings “a—c” than the corresponding T-D1. However,
T-D2 exhibited the greatest AQ only at thiophene ring “c”, which
was adjacent to the acceptor. This result demonstrates that T-D2,
which bears the strongest EDG, exhibited quinoidal properties
adjacent to the acceptor and the donor groups, which corresponds
to the RR spectroscopic result discussed above (Fig. 3). Based on the
AQ analysis, it became apparent that the presence of a triple bond
and an EDG can enhance the quinoidal property of an aromatic
photosensitizer after photoexcitation, resulting in CT enhancement.
Moreover, HOMA analysis confirmed this observation (Table S9).
Such AQ analysis could be applicable to other series of photosen-
sitizers containing an identical core unit (e.g., zinc-porphyrin), as
demonstrated in the Supplementary Data (Part 7).

In addition, the bond lengths between the Sg and S; states were
also compared to analyze the degree of the quinoidal property at
the S; state (Fig. 5b and c, representing the bond lengths of the -
bridge and the donor, respectively). All photosensitizers exhibited
alternative changes in their bond lengths, which is a typical phe-
nomenon when the quinoidal structure exists [46,48—51]. Among
the various photosensitizers with different bond types, T-D1
exhibited the largest changes in the m-bridge bond length, followed
by S-D1 and D-D1 (Fig. 5b), which is consistent with the RR spec-
troscopic results and the AQ analyses described above. For the
photosensitizers bearing different EDGs (Fig. 5c), T-D2 exhibited
the largest changes in bond length on the TPA donor, followed by T-
D3 and T-D1, which is again consistent with the RR spectroscopic
results and the AQ analyses (Fig. 3g and Table 2). Based on these
results, we confirmed the effect of the triple bond and the EDG on
the enhancement of the quinoidal properties.

Table 2
Changes in quinoidal characters (AQ) between Sp and S; states of the photosensitizers, corresponding to the ICT transition.
EDG
EDG
NC
CeHis CeHis
Photosensitizer AQ (%) Averaged AQ (%)°
a b c
S-D1 13.2 11.0 11.2 11.8
D-D1 14.5 9.8 10.3 115
T-D1 16.2 15.5 12.5 14.7
T-D2 6.8 9.1 134 9.8
T-D3 16.1 203 153 17.2

2 AQ (%) = (Quinoidal character at S; — Quinoidal character at Sp) x 100.
b Averaged AQ (%) is average of AQ for a, b, and c rings.
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3.4. Photovoltaic performances of the DSSCs

The photovoltaic performances of the five photosensitizers in
the DSSCs were then evaluated to confirm their CT and quinoidal
properties. More specifically, the five photosensitizers were applied
to DSSCs containing thin photoanode films (3.5 pm) and an iodine
electrolyte. Table 3 shows the obtained results for the various de-
vices in terms of the short-circuit photocurrent density (Jsc), the
open-circuit voltage (Voc), the fill factor (FF), and the PCE (). Fig. 6
presents the current density—voltage (J—V) curves of the devices
under 1 sun illumination (AM 1.5G). As indicated, the PCE and Jsc
values of the photosensitizers were largely affected by the CT
properties of the photosensitizers. Among the photosensitizers
studied, T-D2 exhibited the highest PCE (n = 7.6%) and Jsc
(13.2 mA cm~2), followed by T-D3 (5 = 7.1%, Jsc = 12.3 mA cm2), T-
D1 (n = 63% Jsc = 137 mA cm?), S-D1 ( = 64%,
Jsc=12.3 mA cm~2), and D-D1 (5 = 5.6%, Jsc = 10.6 mA cm~2). Thus,
the higher Jsc of T-D1 compared to those of S-D1 and D-D1 confirms
the superior CT properties achieved upon introduction of the triple

Table 3

Photovoltaic parameters of DSSCs in iodine electrolyte under AM 1.5G.
Photosensitizers 1 [%] Jsc [mA cm™?] Voc [VI] FF
S-D1 6.4 12.3 0.73 0.72
D-D1 5.6 10.6 0.71 0.75
T-D1 6.3 13.7 0.70 0.66
T-D2 7.6 13.2 0.77 0.75
T-D3 71 123 0.76 0.76
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bond into the structure. In addition, T-D2 gave a higher PCE than T-
D1, thereby providing further evidence for the previously reported
electron-donating effect of the methoxy group [18]. Furthermore,
T-D2 exhibited the highest Voc among the photosensitizers, and
this was attributed to the fact that enhancement of the dipole
moment by the methoxy group induces an upward shift of the TiO,
conduction band [18,52,53]. Overall, T-D2 exhibited the best per-
formance among the various materials studied, thereby confirming
that the introduction of the triple bond and the presence of the
methoxy groups on the para position of the donor can improve the
Jsc and PCE of the DSSCs by enhancing the CT properties of the
photosensitizer.

4. Conclusions

Five donor—m-bridge—acceptor (D—m—A)-structured photosen-
sitizers containing different bond types and electron donating
groups (EDGs) on the donor were investigated to explore their
charge transfer (CT) properties. For this purpose, resonance Raman
(RR) spectroscopy and density functional theory calculations were
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employed. The RR spectra revealed that the presence of a triple
bond and an EDG enhanced the CT properties of the photosensi-
tizers in terms of the intramolecular charge transfer and 7—m*
transitions. A quinoidal character based on a harmonic oscillator
model of aromaticity and bond length analyses demonstrated that
the triple bond effectively induced the quinoidal property to
greater extent than single and double bonds, while EDGs enhanced
the quinoidal property, especially for the thiophene spacer adjacent
to the acceptor, resulting in improved CT properties. Upon the
application of these photosensitizers to dye-sensitized solar cells
(DSSCs), T-D2, which contains a triple bond and a strong EDG,
exhibited the highest power conversion efficiency of 7.6%, owing to
the enhanced CT and quinoidal properties. We therefore confirmed
that the CT and quinoidal properties are enhanced by the intro-
duction of a triple bond and an EDG, thereby elucidating the rela-
tionship between the molecular structure and the CT properties.
This research is expected to contribute to establishing molecular
design strategies to obtain photosensitizers with superior CT
properties, which will result in breakthrough DSSC performances.
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