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The accretion of a spherically symmetric, collisionless kinetic gas cloud onto a Schwarzschild black hole
is analyzed. Whereas previous studies have treated this problem by specifying boundary conditions at
infinity, here the properties of the gas are given at a sphere of finite radius. The corresponding steady-state
solutions are computed using four different models with an increasing level of sophistication, starting with
the purely radial infall of Newtonian particles and culminating with a fully general relativistic calculation in
which individual particles have angular momentum. The resulting mass accretion rates are analyzed and
compared with previous models, including the standard Bondi model for a hydrodynamic flow. We apply
our models to the supermassive black holes Sgr A* and M87*, and we discuss how their low luminosity
could be partially explained by a kinetic description involving angular momentum. Furthermore, we get
results consistent with previous model-dependent bounds for the accretion rate imposed by rotation
measures of the polarized light coming from Sgr A* and with estimations of the accretion rate of M87*
from the Event Horizon Telescope collaboration. Our methods and results could serve as a first
approximation for more realistic black hole accretion models in various astrophysical scenarios in which
the accreted material is expected to be nearly collisionless.
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I. INTRODUCTION

Accretion of matter is one of the most important
processes in astrophysical systems due to its fundamental
role in the formation and evolution of galaxies, stars and
compact objects. The fact that different types of matter
(e.g., kinetic gases, fluids or scalar fields) have distinctive
features in their corresponding dynamics, makes essential
to take into account the nature of the infalling matter for a
physically correct description of the accretion process (the
features of some of these types of matter can be seen, e.g.,
in Domínguez-Fernández et al. [1] where the dynamics of a
collisionless kinetic gas in a dark matter halo is studied; in
Frank et al. [2] for accretion studies based on fluid
dynamics; or in Barranco et al. [3] where the peculiar
distribution of a scalar field surrounding a black hole (BH)
is described).

The first studies on the phenomenon of accretion were
developed in Hoyle and Lyttleton [4], Bondi and Hoyle [5]
for a star moving at a steady speed through an infinite
pressureless gas cloud. Later on, Bondi [6] studied the
hydrodynamical steady spherical accretion of a gas at rest at
infinity onto a Newtonian star. In these models, effects such
as viscosity, turbulence, self-gravity or magnetic fields are
neglected. Further studies have been undertaken for differ-
ent scenarios in which matter accretion was shown to be
astrophysically relevant, for example in x-ray binaries (e.g.,
Lewin et al. [7]), in gamma-ray bursts (e.g., Popham et al.
[8]), in protoplanetary disks (e.g., Williams and Cieza [9])
or in active galactic nuclei (e.g., Krolik [10]). A great part
of these scenarios involve BHs, because they naturally
appear in the life cycle of massive stars (Penrose [11],
Celotti et al. [12]) and in the core of medium-to-large
galaxies (Kormendy and Richstone [13], Kormendy and Ho
[14]). The radiation emanated from these powerful sources
originates from a region close to the BH’s event horizon,
and therefore the corresponding accretion requires a fully
general-relativistic modeling.
Substantial theoretical and numerical work has been

done on the fluid or hydrodynamical approximation of the
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accreting flow onto BHs. In this context, the first general
relativistic extension of the Bondi model was given by
Michel [15] who studied the steady spherical accretion
flow of simple polytropic gases onto a Schwarzschild BH.
Additional generalizations of these hydrodynamic solu-
tions have been worked out over the years (see [16]
and references therein for recent work providing
a review of the Bondi and Michel solutions and their
generalization to rotating BHs). In particular, recent
numerical works make use of general relativistic magneto-
hydrodynamic (GRMHD) simulations to study different
accretion models (see, e.g., Porth et al. [17]). The fluid
approximation in these models considers that the effective
mean free path for the particles is sufficiently short with
respect to the length over which macroscopic quantities,
such as the particle number density, the bulk velocity or the
temperature vary in a significant way, so that thermal
equilibrium is attained locally. However, there are some
cases in which the hydrodynamical approximation does not
correspond to the nature of the infalling matter. This is the
situation, e.g., for underluminous sources (with respect to
the Eddington luminosity) such as Sgr A*, the super-
massive black hole (SMBH) in the center of our galaxy
(Ghez et al. [18], Gillessen et al. [19], Falcke and Markoff
[20]), andM87*, the SMBH in the galactic center ofMessier
87 (Event Horizon Telescope Collaboration [21,22]), whose
accreting plasmas are in a low-density, high-temperature
regime which makes them effectively collisionless (Event
Horizon Telescope Collaboration [22], Mahadevan and
Quataert [23], Harris et al. [24], Baganoff et al. [25]).
A further important example is the accretion of dark

matter (an exotic entity which is expected to be collision-
less), which has been suggested to play a prominent role in
the formation of SMBHs (see, e.g., Read and Gilmore [26],
Choquette et al. [27], Argüelles et al. [28]). The low
collisionality of these kind of flows makes necessary to take
into account the kinetic approximation in order to correctly
describe the dynamics of the accreting matter.
Analytically, the problem of accretion of kinetic gases

onto BHs is studied using the formalism of the relativistic
Boltzmann equation (see, e.g., Cercignani and Kremer [29].
In particular, the collisionless approximation (also known
as a Vlasov gas) in which the component particles do not
interact directly with each other, has been studied both in
the Newtonian (e.g., Zeldovich and Novikov [30], Shapiro
and Teukolsky [31] and in the general relativistic regimes
(e.g., Rioseco and Sarbach [32,33], Mach and Odrzywołek
[34,35]. Numerically, models of collisionless (or weakly
collisional) plasmas which include some kinetic effects into
the equations of GRMHD flows, have been developed
(Sharma et al. [36], Chandra et al. [37], Foucart et al. [38]).
Nonetheless, modeling a fully 3D kinetic simulation has
been a complex subject due to the high computational
effort of calculating the evolution of the 6D distribution
functions of ions and electrons in the accreting plasma (see
e.g., Kunz et al. [39] where a local shearing-box model

of a collisionless accretion disk is used, and references
therein).1

The analytical hydrodynamic and kinetic models with
spherical symmetry mentioned so far, assume that the
boundary conditions determining the properties of the
gas (temperature and density) are specified at infinity.
However, in practice such properties are measured at a
finite distance from the black hole. Therefore, analytical
modeling should take into account the finite nature of the
accretion phenomenon in order to produce more realistic
models. In the hydrodynamic case, such finite models have
recently been proposed in the context of the “choked”
accretion mechanism (see Aguayo-Ortiz et al. [41], Tejeda
et al. [42], Aguayo-Ortiz et al. [43] and references therein)
in which the gas is injected from a sphere of finite radius,
named the “injection sphere,” with a slight equatorial to
polar density contrast, resulting in an inflow-outflow
configuration.
In this article we present a series of illustrative and

simplified analytic finite models which aim to solve the BH
accretion problem from a kinetic and relativistic standpoint.
To this purpose, we analyze the steady, spherical accretion
flow of a collisionless kinetic gas with negligible self-
gravity from an injection sphere of finite radius R. We study
the case of purely radial infall, in which none of the
particles have angular momentum, as well as the case where
individual particles have arbitrary angular momentum but
the gas as a whole (averaged over the momentum space)
moves in the pure radial direction. In the latter case, we
obtain a general formula for the mass accretion rate which
reduces to previous known results for R → ∞ (see Shapiro
and Teukolsky [31], Rioseco and Sarbach [32]), while for
fixed R one obtains new solutions.
Despite the simplicity of our models, we get reasonable

results when applied to the flows onto Sgr A* and M87*. A
smaller mass accretion rate for these BHs is predicted by
our kinetic approach, which may contribute to the under-
standing of their low luminosity (Baganoff et al. [25],
Di Matteo et al. [44]) and the presence of polarized light at
230 GHz coming from regions near to the BH horizon
(Aitken et al. [45], Kuo et al. [46], Event Horizon
Telescope Collaboration [47,48]). The presence of this
polarization would not be possible for an accretion rate
similar to the predicted from the Bondi model, because
larger mass accretion rates would depolarize the light
through extreme Faraday rotation gradients (see, e.g.,
Quataert and Gruzinov [49], Jiménez-Rosales and Dexter
[50]). The conventional solutions to these problems
involve radiatively inefficient accretion flow (RIAF) mod-
els (Narayan and Yi [51], Quataert and Narayan [52], Yuan
et al. [53]). In these models the low luminosity is explained

1For recent analytic work analyzing the dynamics of a
collisionless gas in the equatorial plane of a (rotating) Kerr
black hole and the phase-space mixing phenomenon, see [40].
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by an inefficiency in the process of energy exchange
between protons and electrons causing the advection of
most of the viscously released energy into the BH’s
horizon. On the other hand, the presence of linearly
polarized light at 230 GHz is explained by allowing a loss
of mass in the inner regions of the flow through convection
and/or outflows, reducing effectively the mass accretion
rate via a dependence of the accretion rate with radius (see
Yuan and Narayan [54] for a comprehensive review of
accretion flow models).
In this work, we derive the kinetic gas mass accretion

formula analogous to the spherical Bondi fluid model. In
the examples provided, we show that the accretion rate in a
fluid model can be similar to the corresponding kinetic gas
one, closing in this way the gap that existed in previous
analysis of both models. This issue is discussed for instance
in Shapiro and Teukolsky [31] where there is a huge
difference between the fluid and kinetic accretion rates. We
also derive the generalizations of the accretion rate pre-
dicted in Zeldovich and Novikov [30] for a finite radius and
show, in the examples presented, that the value of the
accretion rate strongly depends on that radius and the
environment. The expressions obtained in our manuscript
should be ideally suited to be applied also in dark matter
studies in which case the dynamic is expected to be des-
cribed by a totally noninteracting matter. Furthermore,
the obtained equations could be useful for studying the
accretion of hot, low-density matter which is trapped inside
the gravitational potential of a Schwarzschild BH. The
developed formalism and our ideal solutions could serve as
a starting point for more complex scenarios, such as the
nonspherical accretion onto a Kerr BH, and/or the addition
of magnetic fields.
This manuscript is organized as follows: in Sec. II, we

present an overview of the formalism of the general
relativistic Vlasov equation and the definitions of the
physical quantities relevant for the accretion flow; in
Sec. III, we treat the purely radial spherical infall of
particles, both in the nonrelativistic and relativistic limits,
and we apply the resulting equations to particles obeying
monoenergetic and Maxwell-Jüttner distribution functions;
in Sec. IV, we analyze the spherical accretion in which the
assumption of zero angular momentum for the individual
particles is relaxed and we also apply the results to
monoenergetic and Maxwell-Jüttner distribution functions;
in Sec. V, we summarize our results in a concise form
suitable for its immediate application; in Sec. VI, we apply
our results to the accretion flows onto Sgr A* and M87*;
finally, in Sec. VII we give final comments and suggestions
for future research. An additional model which considers a
distribution of particles with fixed angular momentum
which is useful for the interpretation of some of our results
is given in an Appendix. Throughout this work, we use
the signature convention ð−;þ;þ;þÞ for the space-time
metric.

II. REVIEW OF THE GENERAL RELATIVISTIC
VLASOV EQUATION

The study of a collisionless kinetic gas interacting with a
central object is based on the one-particle distribution
function. In Newtonian theory, the distribution function f is
a function of time and coordinates ðx;pÞ of the six-
dimensional phase-space, such that fðt;x;pÞd3xd3p rep-
resents the expected number of particles in the phase-space
volume element d3xd3p at time t. In general relativity, the
distribution function can be defined, a priori, on the eight-
dimensional cotangent bundle T�M associated with the
curved space-time manifold ðM; gÞ, that is, the set con-
sisting of pairs ðx; pÞ where x ∈ M is a space-time event
and p is a momentum co-vector at x. Thus, locally the
distribution function can be regarded as a function of
the coordinates ðxμ; pμÞ, μ ¼ 0, 1, 2, 3, parametrizing the
cotangent bundle.2

For a relativistic, collisionless gas, the distribution
function f is required to solve the Vlasov (or collisionless
Boltzmann) equation which can be conveniently written as:

fH; fg≡ ∂H
∂pμ

∂f
∂xμ −

∂H
∂xμ

∂f
∂pμ

¼ 0; ð1Þ

where here H denotes the free particle Hamiltonian

Hðx; pÞ ≔ 1

2
gμνðxÞpμpν; ð2Þ

with gμνðxÞ the components of the inverse metric at x. It
follows immediately from Eq. (1), that any distribution
function f which is only a function of integrals of motion
satisfies the Vlasov equation.
Note that the Hamiltonian itself is an integral of motion;

the corresponding conserved quantity is −ðmcÞ2=2 with m
the rest mass of the particle. For the following, we consider
a collisionless gas of identical particles of positive mass
m > 0, such that f can be restricted on the future mass
shell, the seven-dimensional submanifold of T�M consist-
ing of those points ðxμ; pμÞ for which

pμpμ ¼ −ðmcÞ2; ð3Þ

and pμ is future-directed. The future mass shell can be
parametrized in terms of the coordinates ðxμ; piÞ, with
i ¼ 1, 2, 3, where the time component of the momentum
does not appear as an independent coordinate since it
can be reconstructed from the mass-shell constraint (3).
For further details on the geometry of the relativistic
phase-space we refer the reader to Debbasch and van

2Alternatively, one can work on the tangent bundle TM with
local coordinates ðxμ; pμÞ. Both formulations are equivalent
since the space-time metric provides a natural way to identify
TM with T�M.
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Leeuwen [55], Sarbach and Zannias [56], Acuña-Cárdenas
et al. [57].
Among the space-time observables, the central quantity

in our work describing the most relevant physical proper-
ties of the solution is the particle current density vector
field, defined as (see for instance equation (12.35) in
Cercignani and Kremer [29]):

JμðxÞ ≔ c
Z
Pþ
x ðmÞ

pμfðx; pÞdvolxðpÞ; ð4Þ

where Pþ
x ðmÞ is the future mass hyperboloid consisting of

those future-directed timelike vectors pμ for which (3) is
satisfied and dvolxðpÞ is the Lorentz-invariant volume
element on Pþ

x ðmÞ, defined as:

dvolxðpÞ ≔
1ffiffiffiffiffiffi−gp d3p�

p0
; ð5Þ

where
ffiffiffiffiffiffi−gp

is the square root of the metric’s determinant
and p� ¼ ðpiÞ (with i ¼ 1, 2, 3) refer to the covariant
spatial components of the linear momentum (Debbasch and
van Leeuwen [55]).3

The corresponding invariant particle number density and
mean four-velocity at x are given by:

nðxÞ ≔ 1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−JμðxÞJμðxÞ

q
; ð6Þ

uμðxÞ ≔ JμðxÞ
nðxÞ : ð7Þ

For the following, we assume that the gravitational
potential is dominated by the BH such that the self-gravity
of the gas can be neglected. Omitting the rotation of the BH
for simplicity, we thus consider a spherically symmetric
static background described by the metric:

ds2 ¼ gabðrÞdxadxb þ r2ðdϑ2 þ sin2ϑdφ2Þ; ð8Þ

with ðxaÞ ¼ ðct; rÞ, where c denotes the speed of light in
vacuum, t is the time coordinate, r is the areal radius and
ðϑ;φÞ denote the usual angular coordinates on the two-
sphere. The integrals of motion in this case consist of the
rest mass m ¼ ffiffiffiffiffiffiffiffiffiffi

−2H
p

, the energy E and the angular
momentum vector L associated with the spherical
symmetry.
It can be shown (e.g., Cercignani and Kremer [29])

that for a distribution function f satisfying the Vlasov
equation, Jμ automatically satisfies the continuity equation
∇μJμ ¼ 0, which allows us to define the conserved (rest)
mass accretion rate for the metric in Eq. (8):

_M ≔ 4πr2mJrðxÞ: ð9Þ

Note that this definition is coordinate-independent, since it
is defined in terms of the areal radius r and the contra-
variant r-component of the current density vector field,
which can be written as Jr ¼ drðJÞ ¼ Jμ∇μr.
Finally, it is straightforward to show that in the non-

relativistic limit (juij ≪ c and p0 ¼ mc), the well-known
expressions for the particle number density, the mean radial
velocity and the mass accretion rate are recovered:

nðxÞ ¼
Z

fðx; pÞd3p�; ð10Þ

urðxÞ ¼ 1

nðxÞ
Z

pr

m
fðx; pÞd3p�; ð11Þ

_M ¼ 4πr2mnðxÞurðxÞ ¼ 4πr2
Z

prfðx; pÞd3p�: ð12Þ

In the results presented in this article, the distribution
function f is assumed to depend on ðx; pÞ only through the
integrals of motion,E andL. Due to dispersion and mixing,
it is in fact expected that any gas configuration relaxes in
time to one described by such a distribution function
(Rioseco and Sarbach [32,58]), provided the boundary
conditions specified at the injection sphere are compatible
with it. In addition, we focus on purely spherical accretion
for which the distribution function depends only on the
energy E and the total angular momentum L ¼ jLj of each
particle. We shall use F to denote the distribution function
expressed in terms of E and L.

III. PURELY RADIAL INFALL
FROM A FINITE RADIUS

In this section, we focus on the spherically symmetric
steady radial infall of a Vlasov gas into a central object,
assuming that each individual particle has zero angular
momentum. We assume that the particles are being accreted
from an injection sphere at finite radius with specific
density and energy or temperature which provide the
boundary conditions for the problem. The distribution
function describing this scenario depends only on the
radial coordinate r and its momentum pr, and the corre-
sponding observables only on r. We treat both the non-
relativistic and relativistic limits. The definitions given in
the previous section are specialized in order to describe
adequately the radial accretion process.

A. Nonrelativistic limit

In this limit, the particles are under the effect of a
gravitational central potential ΦðrÞ generated by a mass M
(e.g., ΦðrÞ ¼ −GMm=r), and the injection sphere of the
particles is at radius R, where we specify the particle

3The covariant and contravariant momentum volume elements
can be related through 1ffiffiffiffi−gp d3p�

p0 ¼ ffiffiffiffiffiffi−gp d3p
jp0j.
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number density. We ignore interactions with the surface of
the central object since we are interested in a scenario
analogous to a Schwarzschild BH, where there is no
physical surface. For spherical coordinates and under the
assumption that the particles have zero angular momentum,
the volume element (5) in momentum space can be replaced
by (Domínguez-Fernández et al. [1])4:

d3p�ffiffiffiffiffiffi−gp →
1

r2
dpr; ð13Þ

Thus, from Eqs. (10)–(12), we find that

nðrÞ ¼ 1

r2

Z
pmðr;RÞ

−∞
fðr; prÞdpr; ð14Þ

urðrÞ ¼ 1

r2mnðrÞ
Z

pmðr;RÞ

−∞
prfðr; prÞdpr; ð15Þ

_M ¼ 4πr2mnðrÞurðrÞ ¼ 4π

Z
pmðr;RÞ

−∞
prfðr; prÞdpr; ð16Þ

where pr ¼ pr. Here, the upper integration limit
pmðr; RÞ ≔ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m½ΦðRÞ −ΦðrÞ�p

incorporates the physi-
cal requirement that all the particles in the system are
falling radially from a radius R into the central mass, with
E ¼ ΦðRÞ being the minimum possible energy for the
particles. Note that, if R → ∞, then nðr → ∞Þ ¼ 0 (which
is consistent with the fact that the distribution function
vanishes at infinite radius), and thus we cannot apply the
boundary condition nðRÞ ¼ nR.
A specific scenario, which is directly related with the

analyzed case by Shapiro and Teukolsky [31], is the radial
infall of monoenergetic particles with energy E0 ≥ ΦðRÞ.
The distribution function in this case is

FðEÞ ¼ f0δðE − E0Þ ¼ f0δ

�
p2
r

2m
þΦðrÞ − E0

�
; ð17Þ

where f0 is a constant with units of ½time�−1 (because the
radial distribution function, f ¼ fðr; prÞ, has units of
½length × momentum�−1) and it is related with nR. Next,
we can use the properties of the Dirac delta distribution5 to
rewrite the distribution function as:

fðr; prÞ ¼ f0

ffiffiffiffi
m
2

r
δðpr þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m½E0 −ΦðrÞ�p Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0 −ΦðrÞp ; ð18Þ

where we have used the fact that all particles are falling and
hence they can only have negative momentum. According
to Eqs. (14)–(16) and the boundary condition nR, the
particle density, the average radial velocity and the accre-
tion rate are, respectively:

nðrÞ ¼ f0
r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

2½E0 −ΦðrÞ�
r

; ð19Þ

urðrÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½E0 −ΦðrÞ�

m

r
; ð20Þ

j _Mj ¼ 4πr2mnðrÞjurðrÞj ¼ 4πmf0; ð21Þ
where

f0 ¼ R2nR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½E0 −ΦðRÞ�

m

r
; ð22Þ

which yields

j _Mj
mnR

¼ 4πR2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½E0 −ΦðRÞ�

m

r
; ð23Þ

valid for r ≤ R. If E0 ¼ 0 and the gravitational potential is
due to a central mass such that ΦðrÞ ∼ 1=r, Eq. (20) is
easily recognized as the free-fall velocity. Furthermore, we
see from Eqs. (19) and (20) that the particle number density
and velocity are proportional to r−3=2 and r−1=2, respec-
tively, which is the expected behavior for the fluid limit
(Shapiro and Teukolsky [31]). If we set E0 ¼ ΦðRÞ þ
1
2
mv2R, where vR ¼ urðRÞ is the speed of the particles at the

injection radius with respect to the central object, then
Eq. (23) can be written as the well-known expression:

j _Mj
mnRvR

¼ 4πR2: ð24Þ

Another scenario, similar to the Bondi case, consists of a
stationary cloud of particles with mass m described by a
Maxwell-Boltzmann distribution function (e.g., Binney
and Tremaine [59]), falling radially into a central object
according to the gravitational potential ΦðrÞ generated
by M. This has the form:

fðr; prÞ ¼ A exp

�
−β

�
p2
r

2m
þΦðrÞ

��
; ð25Þ

where as usual β ¼ 1=kBT, with kB the Boltzmann con-
stant, kB ¼ 1.38 × 10−23 m2 kgK−1 s−2, T the temperature
of the cloud and A is a constant with units of ½length ×
momentum�−1. In this case, following Eqs. (14)–(16) and
the boundary condition nR, the particle number density, the
average radial velocity and the accretion rate for r ≤ R are,
respectively:

4There is a 2π difference with the result shown in Domínguez-
Fernández et al. [1] due to a change of variable in the momentum
space done in that work.

5Namely, the composition of the Dirac delta distribution with a
smooth function gðxÞ, is given by δðgðxÞÞ ¼ P

i
δðx−xiÞ
jg0ðxiÞj, where the

sum goes over all the different roots xi of g.
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nðrÞ ¼ A
r2

ffiffiffiffiffiffiffi
mπ

2β

r
e−βΦðrÞ

× ½1 − Erfð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β½ΦðRÞ −ΦðrÞ�

p
Þ�; ð26Þ

urðrÞ ¼ −

ffiffiffiffiffiffiffiffiffi
2

βmπ

s
e−β½ΦðRÞ−ΦðrÞ�

× ½1 − Erfð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β½ΦðRÞ −ΦðrÞ�

p
Þ�−1; ð27Þ

j _Mj ¼ 4πr2mnðrÞjurðrÞj ¼ 4πm
A
β
e−βΦðRÞ; ð28Þ

where ErfðxÞ denotes the error function, and

A ¼ nRR2

ffiffiffiffiffiffiffi
2β

mπ

r
eβΦðRÞ; ð29Þ

corresponding to the injection sphere at a radius R, which
yields

j _Mj
mnR

¼ 4πR2

ffiffiffiffiffiffiffiffiffi
2

πmβ

s
¼ 4πR2

ffiffiffiffiffiffiffiffiffiffiffiffi
2

π

kBT
m

r
: ð30Þ

B. Relativistic case

In the relativistic case one considers a Vlasov gas on a
Schwarzschild background, with metric components
−g00 ¼ 1=grr ¼ αðrÞ2 and g0r ¼ 0 in Eq. (8), where

αðrÞ2 ≔ 1 −
rS
r
; ð31Þ

with rS the Schwarzschild radius defined by rS ≔ 2GM=c2.
The volume element in momentum space, Eq. (5), takes the
form:

dvolxðpÞ ¼
1

r2
dpr

p0
; ð32Þ

with p0 related to the relativistic energy E through

E ¼ αðrÞ2cp0: ð33Þ

With Eqs. (4) and (6) we find:

J0ðrÞ ¼ c
r2

Z
pmðr;RÞ

−∞
fðr; prÞdpr; ð34Þ

JrðrÞ ¼ c
r2

Z
pmðr;RÞ

−∞
fðr; prÞ

pr

p0
dpr; ð35Þ

nðrÞ ¼ 1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½αðrÞJ0ðrÞ�2 − ½JrðrÞ=αðrÞ�2

q
; ð36Þ

where pmðr; RÞ ≔ − mc
αðrÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αðRÞ2 − αðrÞ2

p
(whose defini-

tion reduces to the one used in Eqs. (14)–(16) in the
nonrelativistic limit) originates from the requirement that
all the particles are infalling and have minimum possible
energy equal to E ¼ αðrÞmc2 [see Eq. (38)]. The boundary
conditions are given by the particle number density at the
injection sphere nR, and the energy or temperature as
before.
As an example, we reconsider the Vlasov gas of mono-

energetic particles of mass m, now with relativistic energy
E0 ≥ αðRÞmc2. The expected distribution function is

FðEÞ ¼ f0δðE − E0Þ; ð37Þ

where, again, f0 is a constant with units of ½time�−1 related
to nR. From the general relation (3), we obtain:

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½αðrÞ2prc�2 þ αðrÞ2m2c4

q
; ð38Þ

so that the distribution function is written as:

fðr; prÞ ¼ f0δ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½αðrÞ2prc�2 þ αðrÞ2m2c4

q
− E0

�

¼
f0δ

�
pr þ mc

αðrÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð E0

mc2Þ2 − αðrÞ2
q �

cαðrÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − αðrÞ2ðmc2

E0
Þ2

q ; ð39Þ

where we have used the fact that all the particles have
negative radial momentum. The invariant particle number
density, the average radial velocity and the mass accretion
rate computed from Eqs. (9), (34)–(36) and the boundary
condition nR, yield

nðrÞ ¼ f0
r2c

��
E0

mc2

�
2

− αðrÞ2
�
−1=2

; ð40Þ

urðrÞ ¼ −c
��

E0

mc2

�
2

− αðrÞ2
�
1=2

; ð41Þ

j _Mj ¼ 4πmf0; ð42Þ

valid for r ≤ R, and with f0 given by:

f0 ¼ nRcR2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
E0

mc2

�
2

− αðRÞ2
s

; ð43Þ

which yields

j _Mj
mcnR

¼ 4πR2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
E0

mc2

�
2

− αðRÞ2
s

: ð44Þ

ALDO GAMBOA et al. PHYS. REV. D 104, 083001 (2021)

083001-6



Using Eq. (41), we get the familiar result

j _Mj
mnRurðRÞ

¼ 4πR2; ð45Þ

as follows directly from integrating the continuity equation
for radially infalling dust in which case ρ ¼ mn.
Nevertheless, for our purposes it is convenient to express
the accretion rate in terms of the 3-velocity vR of the gas
particles calculated by a static observer at the shell r ¼ R,
because the injection sphere is static with respect to the
black hole. The relation between vR and urðRÞ is given by
(see, e.g., Crawford and Tereno [60])

urðRÞ ¼ αðRÞvRγ; ð46Þ

where γ ≔ ð1 − v2R=c
2Þ−1=2 is the Lorentz factor associated

with vR, which implies that

j _Mj
mnRvR

¼ 4πR2αðRÞγ: ð47Þ

In the nonrelativistic limit, with vR ≪ c and rS ≪ R, the
previous equations reduce to Eqs. (19)–(24), as expected.
We now consider a distribution function of the Maxwell-

Jüttner-type (Jüttner [61]),

FðEÞ ¼ Ae−βE; ð48Þ

where β ¼ 1=kBT, A is a constant with units of
½length × momentum�−1, the energy is given by Eq. (38),
and T is the temperature of the gas at the injection
sphere.6 The resulting expressions from Eqs. (34)–(36)
have no analytical closed form. Nevertheless, we can
make a change of integration variable from pr to the
relativistic energy E through Eq. (38). In this way, for the
Schwarzschild metric we get:

J0ðrÞ¼ 1

αðrÞ2r2
Z

∞

αðRÞmc2
FðEÞ Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2−αðrÞ2m2c4
p dE; ð49Þ

JrðrÞ ¼ 1

r2

Z
∞

αðRÞmc2
FðEÞdE: ð50Þ

This set of equations can also be applied to the distribution
function in Eq. (37) and the resulting expressions are again
Eqs. (40)–(44). For the distribution function in Eq. (48), we
obtain:

nR ¼ Amc
R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K1ðzÞ2e2z − z−2

p
ez

; ð51Þ

urðRÞ ¼ −
1

βmc
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K1ðzÞ2e2z − z−2
p ; ð52Þ

j _Mj ¼ 4πm
A
β
e−z; ð53Þ

where z ≔ mc2αðRÞβ and K1ðzÞ is the modified Bessel
function of the second kind and first order (see, e.g.,
Abramowitz and Stegun [62]). Note that the previous
expressions are evaluated at r ¼ R; this was necessary to
get an analytical closed form. Eliminating A, we get an
expression for the accretion rate:

j _Mj
mcnR

¼ 4πR2αðRÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½K1ðzÞzez�2 − 1

p : ð54Þ

Finally, considering the nonrelativistic limit mc2 ≫ kBT,
so that z ≫ 1, we obtain:

j _Mj
mcnR

≈ 4πR2αðRÞ
ffiffiffiffiffi
2

πz

r
¼ 4πR2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2αðRÞ
π

kBT
mc2

r
; ð55Þ

which reduces to the expression in Eq. (30) when R ≫ rS.

IV. SPHERICAL ACCRETION WITH ANGULAR
MOMENTUM FROM A FINITE RADIUS

In this section, we generalize the calculations of the
previous section to the case in which individual gas
particles are allowed to have angular momentum; however,
we assume that the averaged quantities describing the gas
(i.e., the space-time observables) are still spherical. For
simplicity, we shall assume a uniform distribution in the
total angular momentum L, and take the same monoener-
getic or Maxwell-Jüttner-like distribution in the energy as
considered in the previous section. The analysis in this
section is performed directly in the relativistic case with the
Schwarzschild BH with mass M as an accretor.
We assume that the injection sphere is located at a radius

R > rISCO ¼ 6GM=c2 larger than the radius of the inner-
most stable circular orbit (ISCO) (it will become clear in a
moment why the restriction R > rISCO is required). As in
the previous section, we impose the particle number density
nR on the injection sphere, and we compute the solution
satisfying this boundary condition and the corresponding
accretion rate.
For the following, it is convenient to express the momen-

tum in terms of orthonormal components ðp0; p1; p2; p3Þ
such that

pμ ∂
∂xμ ¼ p0

1

αðrÞ
∂

∂ðctÞ þ p1αðrÞ ∂
∂rþ p2

1

r
∂
∂ϑ

þ p3
1

r sin ϑ
∂
∂φ ð56Þ

6Strictly speaking, the distribution function described by (48)
does not describe a configuration in thermodynamical equilib-
rium since in this section we restrict all the particles to have zero
angular momentum.
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where as before, αðrÞ2 ¼ 1 − rS
r . In terms of these ortho-

normal components the volume element (5) reads

dvolxðpÞ ¼
dp1dp2dp3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2c2 þ ðp1Þ2 þ ðp2Þ2 þ ðp3Þ2
p : ð57Þ

Expressed in terms of the integrals of motion ðE; LÞ and the
angle χ defined by Lz=L ¼ sin ϑ sin χ, one obtains

ðpσ
�Þ¼

�
E

cαðrÞ ;�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2−VLðrÞ

p
cαðrÞ ;

Lcosχ
r

;
Lsinχ

r

�
; ð58Þ

dvolxðpÞ ¼
dELdLdχ

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −VLðrÞ

p ; ð59Þ

where the � sign in p1 determines whether the particle is
infalling or outgoing and VLðrÞ is the effective potential
describing the radial motion, defined as

VLðrÞ ≔ c2αðrÞ2
�
m2c2 þ L2

r2

�
: ð60Þ

The behavior of the effective potential VL is well-known
but critical for what follows, so we briefly review its main
features (see, e.g., Appendix A in Rioseco and Sarbach [32]
for more details). For L ≤ LISCO ≔

ffiffiffiffiffi
12

p
GMm=c the func-

tion VL is monotonously increasing, which means that any
infalling particle released from r ¼ R whose total angular
momentum lies in this range inevitably falls into the black
hole within a finite amount of its proper time. For L >
LISCO the function VL has a local maximum inside the
interval (3GM=c2, 6GM=c2), which is due to the presence
of the centrifugal term and which gives rise to a potential
well with corresponding minimum lying in the interval
(6GM=c2,∞). Whether or not an infalling particle released
from r ¼ R with L > LISCO falls into the black hole
depends on its energy (see Fig. 1). If E2 is larger than
the maximum of the potential, the particle is absorbed by
the black hole; otherwise it bounces off the centrifugal
barrier and is reflected toward r ¼ R.
Therefore, given L ≥ 0, the relevant energy range

for describing the aforementioned accretion scenario isffiffiffiffiffiffiffiffiffiffiffiffiffi
VLðRÞ

p
≤ E < ∞, with particles being absorbed or reflec

ted depending on whether or not E2 is larger than the
centrifugal barrier of VL. (We do not consider particles with
energies lower than

ffiffiffiffiffiffiffiffiffiffiffiffiffi
VLðRÞ

p
since they correspond to

either bound trajectories whose turning points ri satisfy
rS < r1 < r2 < R, and hence do not affect the value of nR
nor the accretion rate, or to particles emanating at a radius
r < R which are absorbed by the black hole in finite
proper time).
When computing the current density (4) with the volume

form expressed in terms of E, L and χ as in Eq. (59), the
appropriate limits of integration for each variable have to be
taken into account. The range for χ is obviously ð0; 2πÞ,

while 0 ≤ L < ∞ and
ffiffiffiffiffiffiffiffiffiffiffiffiffi
VLðRÞ

p
≤ E < ∞, as we have just

described, where values of E2 exceeding the local maxi-
mum of VL give rise only to incoming particles with
momentum pσ

− and values of E2 less than this maximum
giving rise to both incoming and outgoing particles with
momenta pσ

�.
Since the distribution functions considered in this work

depend only on E, one can perform the integrals over L
explicitly, as shown below. For this, it is necessary to
fix the energy level first and determine the correct limits
for L as a function of E. Thus, the energy range is nowffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VL¼0ðRÞ

p ¼ mc2αðRÞ ≤ E < ∞, while the value of the
total angular momentum L is limited by the requirement
that VLðRÞ ≤ E2, which translates into an upper bound L ≤
LmaxðE;RÞ for L. Furthermore, there is a critical value
L ¼ LcðEÞ, corresponding to the value of L for which the
effective potential has a local maximum equal to E2, such
that particles with L < LcðEÞ are absorbed and particles
with L > LcðEÞ are reflected.
By analyzing the behavior of the two limits

LmaxðE;RÞ and LcðEÞ as functions of E, one finds that
there is a critical energy E ¼ EcðRÞ for which they
are equal, LmaxðEcðRÞ; RÞ ¼ LcðEcÞ. Furthermore, we
have LmaxðE;RÞ<LcðEÞ for mc2αðRÞ ≤ E < EcðRÞ, and
LmaxðE;RÞ > LcðEÞ when E > EcðRÞ. This leads to the
following characterizations in the parameter space ðE; LÞ:

(i) Absorbed particles

�
mc2αðRÞ≤E<EcðRÞ and 0≤L≤ LmaxðE;RÞ;
EcðRÞ<E<∞ and 0≤L<LcðEÞ:

FIG. 1. Plot of the Schwarzschild effective potential VLðrÞ vs r
(with r in units of rS) and L ¼ 4.5GMm=c. We have identified
for the absorbed trajectories the incoming moments by pσ

−, while
for the scattered trajectories the incoming moments are pσ

− and
the outgoing moments are pσþ. Here, the� sign in pσ

� refers to the
same sign appearing in the p1 component of Eq. (58). For more
details on the effective potential see Misner et al. [63], Straumann
[64] and Appendix A of Rioseco and Sarbach [32].
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(ii) Scattered particles

EcðRÞ ≤ E < ∞ and LcðEÞ < L < LmaxðE; RÞ:
ð61Þ

The explicit expressions for Ec, Lmax and Lc are derived in
[32,65] and they are

EcðRÞ ¼ mc2
Rþ rSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RðRþ 3rSÞ

p ; ð62Þ

LmaxðE;RÞ ¼ mcR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2

m2c4αðRÞ2 − 1

s
; ð63Þ

LcðEÞ

¼ 4
ffiffiffi
2

p
GMm3c3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

36m2c4E2 − 8m4c8 − 27E4 þ Eð9E2 − 8m2c4Þ3=2
p ;

ð64Þ

where Eq. (64) is defined for E ≥ EISCO ¼ 2
ffiffiffi
2

p
mc2=3,

which is the energy corresponding to the ISCO.7

After these comments, it is straightforward to compute
the mass accretion rate _M and the particle number density
nR at the injection sphere. Using Eqs. (4) and (58), we
obtain

Jσabsjr¼R ¼ c
Z

EcðRÞ

mc2αðRÞ

Z
LmaxðE;RÞ

0

Z
2π

0

pσ
−FðEÞdELdLdχ
R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − VLðRÞ

p
þ c

Z þ∞

EcðRÞ

Z
LcðEÞ

0

Z
2π

0

pσ
−FðEÞdELdLdχ
R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − VLðRÞ

p ;

ð65Þ

Jσscajr¼R ¼ c
X
�

Z þ∞

EcðRÞ

Z
LmaxðE;RÞ

LcðEÞ

Z
2π

0

pσ
�FðEÞdELdLdχ
R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − VLðRÞ

p ;

ð66Þ

with pσ
� given by Eq. (58). We note from these expressions,

that only the absorbed trajectories contribute to the mass
accretion rate _M, since the terms p1þ and p1

− in Eq. (66)
cancel each other out. In contrast to this, all the trajectories
(absorbed and scattered) contribute to the particle number
density nR. The nonvanishing orthonormal components
yield:

J0absjr¼R ¼
�Z þ∞

mc2αðRÞ
E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2c4αðRÞ2

q
FðEÞdE

−
Z þ∞

EcðRÞ
E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − VcðE;RÞ

q
FðEÞdE

�
2π

αðRÞ3c2 ;

ð67Þ

J1absjr¼R ¼ −
�Z

EcðRÞ

mc2αðRÞ
LmaxðE;RÞ2FðEÞdE

þ
Z þ∞

EcðRÞ
LcðEÞ2FðEÞdE

�
π

R2αðRÞ ; ð68Þ

J0scajr¼R ¼ 4π

αðRÞ3c2
Z þ∞

EcðRÞ
E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − VcðE;RÞ

q
FðEÞdE;

ð69Þ

where we have introduced the shorthand notation
VcðE; RÞ ≔ VLcðEÞðRÞ. Note that by definition, EcðRÞ2 ≥
VcðE; RÞ for all R ≥ rISCO and VLcðEÞðRÞ → m2c4 for
R → ∞; hence only the scattered particles yield a non-
vanishing contribution to Jαjr¼R when R → ∞. Using
Eqs. (9), (67)–(69), and Jr ¼ αJ1abs, one obtains the mass
accretion rate

_M ≔ 4πmR2Jrjr¼R ¼ −4π2m
�Z þ∞

EcðRÞ
LcðEÞ2FðEÞdE

þ
Z

EcðRÞ

mc2αðRÞ
LmaxðE;RÞ2FðEÞdE

�
; ð70Þ

and the particle number density at r ¼ R,

nR ¼ 1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½J0absðRÞ þ J0scaðRÞ�2 − ½J1absðRÞ�2

q
: ð71Þ

In the following, we further analyze these results for the
monoenergetic and Maxwell-Jüttner-type distributions in
the energy.

A. Monoenergetic model

For the monoenergetic model FðEÞ ¼ f0δðE − E0Þ, one
obtains

j _Mj
mcnR

¼ 4πR2αðRÞ ×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

3γ2 þ 1

s
for 1 < γ < γcðRÞ;

ð72aÞ
j _Mj
mcnR

¼ 4πR2αðRÞ

×
hðR; γÞ

½4γ2ð
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1 − hðR; γÞ

p
Þ2 − hðR; γÞ2�1=2

for γ > γcðRÞ; ð72bÞ
7As E increases from EISCO to ∞, LcðEÞ increases from LISCO

to ∞, with LcðEÞ ¼ 4GMm=c for E ¼ mc2.
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where we recall that γ ¼ ð1 − v2R=c
2Þ−1=2 is the Lorentz

factor associated with the 3-velocity of the gas particles
measured by a static observer at the injection sphere (see
Sec. III B), such that the energy E0 is given by8

E0 ¼ mc2αðRÞγ: ð73Þ

Further, γcðRÞ ≔ EcðRÞ=ðmc2αðRÞÞ and h denotes the
function

hðR; γÞ ≔
�
LcðE0Þ
mcR

�
2

¼ 8r2S
R2

1

36α2γ2 − 8 − 27α4γ4 þ αγ½9α2γ2 − 8�3=2 :

ð74Þ

The formulas (72a), (72b) generalize the Bondi-type formula
that can be found, for instance in Shapiro and Teukolsky
[[31], Chapter 14, Sec. 2], to the accretion of amonoenergetic
gas of arbitrary energy E0 > mc2αðRÞ accreting from a
sphere of finite radius R > rISCO.
Using the fact that for E ¼ EcðRÞ one has LcðEÞ ¼

LmaxðE;RÞ, it is simple to verify that j _Mj is continuous at
the transition point γ ¼ γcðRÞ, where it has the value

j _Mj
mcnR

¼ 4πrSRαðRÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2rS

R

q : ð75Þ

In fact, for fixed R, j _Mj is a monotonically increasing
function of γ in the interval 1 < γ < γcðRÞ, while it
decreases monotonically for γ > γcðRÞ. Thus, Eq. (75) is
the maximum accretion rate for the monoenergetic model
with angular momentum. In the limit R → ∞ it follows that
EcðRÞ → mc2 [see Eq. (62)] such that γcðRÞ → 1 and
Eq. (72b) reduces to

j _Mj
mcn∞

¼ πL2
cðmc2γ∞Þ

m2c2γ∞
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2∞ − 1

p
¼ 16πG2M2

c3v∞

�
1þ v2∞

c2
−
v4∞
c4

þO
�
v6∞
c6

��
; ð76Þ

where n∞ ≔ limR→∞ nR, v∞ ≔ limR→∞ vR, and
γ∞ ≔ limR→∞ γR. The leading-order term in v∞=c agrees
with Eq. (14.2.20) in Shapiro and Teukolsky [31].
Comparing Eq. (72a) with the corresponding expression

for the mass accretion rate in the absence of angular
momentum [see Eq. (44)], the difference relies in the factor

ð3γ2 þ 1Þ−1=2 ≤ 1 which implies that for γ < γcðRÞ the
accretion rate is smaller when the angular momentum is
considered. This is expected since the tangential movement
of particles with angular momentum reduces the net infall of
particles. Note that in the nonrelativistic limit γ → 1 and
fixedR one obtains half the value given in Eq. (47) computed
for the purely radial infall. As further analyzed in Appendix,
this is due to the fact thatwhen angularmomentum is present,
the three-velocity contains nontrivial angular components.
A simplified form of Eqs. (72a) and (72b) can be

obtained in the limit when the injection sphere is far from
the horizon: R ≫ rS and for nonrelativistic energies, such
that vR ≪ c. For this, one notices that

γcðRÞ − 1 ¼ 2

�
rS
R

�
2

þO
�
rS
R

�
3

; ð77Þ

and that the denominator of the second factor on the right-
hand side of (74) converges to 2 when αðRÞ → 1 and
γ → 1. Using this, one finds to leading order,

j _Mj
mcnR

¼ 4πR2 ×
vR
2c

for
vR
2c

<
rS
R
; ð78aÞ

j _Mj
mcnR

¼ 4πR2 ×
2c
vR

�
rS
R

�
2 1

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð2cvR

rS
RÞ2

q
for

vR
2c

>
rS
R
; ð78bÞ

which is valid for R ≫ rS and vR ≪ c.
In Fig. 2 we show the behavior of the dimensionless

quantity Γ ¼ j _Mj=ð4πR2αðRÞmcnRÞ as a function of γ for

FIG. 2. The dimensionless quantity Γ¼j _Mj=ð4πR2αðRÞmcnRÞ
vs the Lorentz factor γ ¼ ð1 − v2R=c

2Þ−1=2 for some fixed values
of the injection sphere’s radius R. The solid lines are computed
from Eqs. (72a) and (72b) for different values of R. The black
dashed line shows the same quantity Γ for the case R ¼ 10rS,
using the approximation from Eqs. (78a) and (78b) which is valid
for R ≫ rS and nonrelativistic velocities vR ≪ c.

8The relation between the energy E0 and the speed vR in
Eq. (73) can be computed using the formula jv⃗Rj2

c2 ¼ jp⃗j2
ðp0Þ2, with

jp⃗j2 ≡ ðp1Þ2 þ ðp2Þ2 þ ðp3Þ2, where pi are the orthonormal
components defined in Eq. (58).
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different values of R. As can be observed from this figure,
j _Mj increases with γ for small velocities vR, the quantity Γ
being independent of R, as follows from Eq. (72a). Hence,
in this regime the qualitative behavior of the accretion
rate as a function of vR is similar to the case of purely
radial infall (the only difference consisting of the factor
ð3γ2 þ 1Þ−1=2, as explained above). However, as soon as γ
reaches the critical value γcðRÞ, j _Mj starts decreasing,
converging to a finite (R-dependent value) in the limit
γ → ∞. This can be understood as follows: when
γ < γcðRÞ, all the particles have their energy below the
critical value EcðRÞ and thus all of them are absorbed by
the black hole. This leads to an accretion rate which
increases with vR. However, when γ > γcðRÞ, the particles
have their energy lying above EcðRÞ and hence a fraction
of them (namely, those with angular momentum larger
than LcðEÞ) are scattered off the effective potential, leading
to a smaller accretion rate. As vR increases this fraction
becomes larger which leads to a smaller mass accretion
rate (see Rioseco and Sarbach [33] for a more extended
discussion regarding this effect for a similar model with
R → ∞).

B. Maxwell-Jüttner-type distribution function

Next, we analyze the Maxwell-Jüttner-type distribution
(48) which was also considered in Rioseco and Sarbach
[32,33].9 To understand this limit, it is convenient to perform
the variable substitutions E ¼ mc2αðRÞð1þ x=zÞ and E ¼
EcðRÞð1þ y=zÞ in the integrals Eqs. (67)–(69), wherewe set
zðR; TÞ ≔ z ¼ mc2βαðRÞ. This yields

J0 ≔ ðJ0abs þ J0scaÞjr¼R ¼ 2πAm3c4

z3=2
e−zI1ðR; zÞ; ð79Þ

J1 ≔ J1absjr¼R ¼ −
πAm3c4

z2
e−zI2ðR; zÞ; ð80Þ

with the integrals I1ðR; zÞ and I2ðR; zÞ given by

I1ðR; zÞ ¼
Z

∞

0

�
1þ x

z

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2xþ x2

z

s
e−xdx

þ γcðRÞ3e−ΛðR;zÞ
Z

∞

0

�
1þ y

z

�
e−γcðRÞy

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z

�
1 −

Vc½EcðRÞð1þ y
zÞ; R�

EcðRÞ2
�
þ 2yþ y2

z

s
dy;

ð81Þ

I2ðR; zÞ ¼
Z

ΛðR;zÞ

0

�
2xþ x2

z

�
e−xdxþ γcðRÞ

R2
ze−ΛðR;zÞ

×
Z

∞

0

Lc½EcðRÞð1þ y
zÞ�2

m2c2
e−γcðRÞydy; ð82Þ

where we recall the shorthand notation γcðRÞ ≔ EcðRÞ=
ðmc2αðRÞÞ and where we have set ΛðR; zÞ ≔ ðγcðRÞ − 1Þz.
From Eqs. (79) and (80), one obtains the following expres-
sion for the mass accretion rate:

j _Mj
mcnR

¼ 4πR2αðRÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4z½I1ðR;zÞI2ðR;zÞ�

2 − 1
q : ð83Þ

Equation (83), togetherwith the integrals defined inEqs. (81)
and (82), provides an exact expression for the mass accretion
rate as a function of the injection radiusR and the temperature
T. Unfortunately, the integrals involved are rather compli-
cated, and for this reason it is advantageous to obtain
simplified expressions for certain limits. One such expres-
sion can be obtained assuming that the gas temperature is
low, such that kBT ≪ mc2, and that R ≫ rS is much larger
than the Schwarzschild radius of the accreting black hole. In
order to discuss this limit, we first note that

1 −
Vc½EcðRÞð1þ y

zÞ; R�
E2
cðRÞ

¼ −
16r2S

R2 − r2S

y
z
þO

�
y2

z2

�
; ð84Þ

and hence for z ≫ 1 one obtains

I1ðR; zÞ ≈
Z

∞

0

ffiffiffiffiffi
2x

p
e−xdxþ γcðRÞ3e−ΛðR;zÞ

×
Z

∞

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2y

1 − ð3rS=RÞ2
1 − ðrS=RÞ2

s
e−γcðRÞydy: ð85Þ

Now the integrals can be evaluated explicitly which yields,
for z ≫ 1,

I1ðR;zÞ≈
ffiffiffi
π

2

r "
1þγcðRÞ3=2e−ΛðR;zÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ð3rS=RÞ2
1−ðrS=RÞ2

s #
: ð86Þ

Similarly,

I2ðR; zÞ ≈ 2 − 2½1þ ΛðR; zÞ�e−ΛðR;zÞ

þ 4r2S
R2½γcðRÞ − 1�

ΛðR; zÞe−ΛðR;zÞ
αðRÞ2ð1þ 3rS=RÞ

; ð87Þ

for z ≫ 1, where we have used that Lc½EcðRÞ�2=ðmcÞ2 ¼
4r2S=½αðRÞ2ð1þ 3rS=RÞ�. The expressions (86), (87) are
valid when z is much larger than one, independent of the
value of R. When R ≫ rS one can use the expansion (77) to
show thatΛðR; zÞ ≈ 2ðrS=RÞ2z. Therefore,ΛðR; zÞ depends

9Again, one should be careful with associating T with temper-
ature. Although in this section the gas particles are not restricted
to zero angular momentum, the gas is still not in strict thermo-
dynamic equilibrium at finite R because we are not considering
hypothetical incoming particles emanating from the white hole.
See the discussion in Sec. 4 of Rioseco and Sarbach [33].
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on the ratio between the two large quantities z and R2,
implying that it varies over the whole range ð0;∞Þ.
Assuming that R ≫ rS in Eqs. (86) and (87) leads to a
further simplification,

I1ðR; zÞ ≈
ffiffiffi
π

2

r
½1þ e−ΛðR;zÞ�; ð88Þ

I2ðR; zÞ ≈ 2½1 − e−ΛðR;zÞ�; ð89Þ

and introduced into Eq. (83) one obtains the simple expres-
sion

j _Mj
mcnR

≈ R2αðRÞ tanh
�
r2S
R2

z

� ffiffiffiffiffiffiffiffi
32π

z

r
; ð90Þ

which is valid for arbitrary values of R ≫ rS and
z ¼ mc2=ðkBTÞ ≫ 1. In the limit R → ∞ one obtains,
setting z∞ ≔ limR→∞z,

j _Mj
mcn∞

≈
ffiffiffiffiffiffiffiffiffiffiffiffiffi
32πz∞

p
r2S; ð91Þ

which agrees with Eq. (87) in Rioseco and Sarbach [32].
In Fig. 3 we show the dimensionless quantity Γ ¼

j _Mj=ð4πR2αðRÞmcnRÞ as a function of the temperature
T for different values of R. The behavior is very similar to
the one of the monoenergetic model, except that the
function is smooth at the maximum value of the accretion
rate, which is due to the nontrivial velocity dispersion in the
distribution function.

V. SUMMARY OF ANALYTIC MODELS

In this section we provide a summary of the expres-
sions we have obtained for the mass accretion rate in the
different models presented in Secs. III and IV. We restrict
ourselves to the relativistic models which describe the
spherical accretion of a collisionless kinetic gas onto a
Schwarzschild BH. In all these models, the mass accretion
rate can be written in the following general form:

j _Mj ¼ 4πR2αðRÞmcnRΓ; ð92Þ

where R is the areal radius of the injection sphere,
αðRÞ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−rS=R
p

, with rS¼2GM=c2 the Schwarzschild
radius of the black hole, m the mass of the particles and nR
the particle density at the injection sphere. Here, Γ is a
model-dependent dimensionless factor which is defined as
follows.
(1) Purely radial monoenergetic model:

Γ ¼ vR
c

1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2R

c2

q ; ð93Þ

where vR is the magnitude of the three-velocity
measured by static observers at the injection sphere.

(2) Purely radial Maxwell-Jüttner model:

Γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½K1ðzÞzez�2 − 1

p ; ð94Þ

where z ¼ mc2αðRÞ=kBT with T the gas temper-
ature at the injection sphere and where K1ðzÞ is the
modified Bessel function of the second kind of first
order. In the low-temperature limit z ≫ 1 this factor
reduces to Γ ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðπzÞp

.
(3) Monoenergetic model with angular momentum: In

this case, Γ can be read off from Eqs. (72a) and
(72b). However, in the limit R ≫ rS and vR ≪ c this
simplifies to

Γ ≈
vR
2c

; for
vR
2c

<
rS
R
; ð95aÞ

Γ ≈
2c
vR
ðrSRÞ2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð2cvR

rS
RÞ2

q ; for
vR
2c

>
rS
R
: ð95bÞ

(4) Maxwell-Jüttner model with angular momentum:

Γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4z½I1ðR;zÞI2ðR;zÞ�

2 − 1
q ; ð96Þ

where the integrals I1 and I2 are defined in Eqs. (81)
and (82). In the limit R ≫ rS and z ≫ 1 this
simplifies to

FIG. 3. The dimensionless quantity Γ ¼ j _Mj=ð4πR2αðRÞmcnRÞ
vs z−1 ¼ kBT=ðmc2αðRÞÞ for some fixed values of the radius R of
the injection sphere. The solid lines are computed from Eq. (83)
for different values of R. The black dashed line shows the same
quantity Γ for the case R ¼ 10rS, using the approximation
from Eq. (90) which is valid for R ≫ rS and nonrelativistic
temperatures z−1 ≪ 1.
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Γ ≈
ffiffiffiffiffi
2

πz

r
tanh

�
r2S
R2

z

�
: ð97Þ

Note that in the limit z ≫ R2=r2S one obtains
precisely the same result as the low-temperature
limit of the purely radial Maxwell-Jüttner model.
This shows that at very low temperatures the angular
momentum is unimportant which is expected, since
at low temperature most of the particles have low
energy and hence must have low angular momentum
as well.10

VI. APPLICATIONS

In this section, we discuss a couple of astrophysical
scenarios which allow us to point out some important
quantitative differences between the mass accretion rates
predicted by our and previous models.

A. Accretion onto Sgr A* from matter located
near the Bondi radius

In most scenarios, the Bondi accretion can be considered
as a reliable first approximation.11 For a polytropic tran-
sonic accretion flow, the Bondi mass accretion rate _MB is
defined through the following expression (Bondi [6], Korol
et al. [66]):

j _MBj
c∞ρ∞

¼ 4πλr2B; ð98Þ

where c∞ is the sound speed of the fluid at infinity, ρ∞ is the
fluid density at infinity, and λ is a function of the adiabatic
index of the fluid γa (e.g., Bondi [6]). For a monoatomic
adiabatic process, one has γa ¼ 5=3 and λ ¼ 1=4. Note that
we have written Eq. (98) as a ratio in order to keep the same
format that we followed in the previous sections. The Bondi
radius rB in Eq. (98) is defined as

rB ¼ GM
c2∞

: ð99Þ

Note that the adiabatic speed of sound of the fluid is
defined as

cs ¼
�∂P
∂ρ

�
1=2

¼
�
γa
P
ρ

�
1=2

¼
�
γakBT
μmp

�
1=2

; ð100Þ

where the ideal gas equation of state is assumed, P ¼ ρkBT
μmp

,

and μ ¼ hmi=mp is the mean molecular weight which
depends on the ionization state of the gas. The relation
between the particle number density n and mass density is
ρ ¼ nhmi, and the former has a contribution from the
electrons and ions. Therefore it is common to consider the
mean molecular weight separately. In the case of electrons,
the mean molecular weight per electron is μe ≈ 2=ð1þ XÞ,
where X is the hydrogen mass fraction. For example, a fully
ionized purely hydrogen gas has μ ¼ 0.5 and μe ¼ 1.
In practice, one substitutes the values of the particle

number density and temperature obtained from x-ray
observations at a finite radius from the SMBH in the
Bondi accretion rate model given by Eq. (98). In this way,
considering the characteristic parameters for Sgr A*: a
mass of ∼4.3 × 106 M⊙ (Ghez et al. [18], Gillessen et al.
[19]), a flow with temperature of 2.2 × 107 K (1.9 keV), a
sound speed of 550 km s−1 and an electron number density
of 160 cm−3 measured at R ∼ 0.06 pc (e.g., Baganoff et al.
[25], Eatough et al. [67]), the Bondi accretion rate yields

j _MBj ∼ 10−4 M⊙ yr−1
�

M
4.3 × 106 M⊙

�
2
�

ne
160 cm−3

�

×

�
kBT

1.9 keV

�
−3
2

; ð101Þ

where an adiabatic index γa ¼ 5=3, ρ ¼ μempne and μ ¼ 1

and μe ¼ 1 was assumed as in Falcke and Markoff [20]. In
this case, it is implicit that one assumes the selected finite
radius to be a good approximation for the values n∞ and
T∞. Nevertheless, this assumption can lead to an overesti-
mate of the actual mass accretion rate (see, e.g., Korol et al.
[66]. In the past years, accretion models based on numerical
hydrodynamical simulations have estimated a mass accre-
tion rate of order ∼10−6 M⊙ yr−1 at the Bondi radius scales
(e.g., Cuadra and Nayakshin [68], Cuadra et al. [69],
Cuadra et al. [70]).
Another plausible way to estimate the mass accretion

rate in these systems is through rotation measures (RM)
derived from the observed polarized emission as has been
previously done with Sgr A*. The RM is proportional to the
integrated electron density and the parallel component of
the magnetic field to the line of sight.12 Therefore, the
interpretation of the RM relies on a radial model for both
the density and the magnetic field. On the other hand, the
radial dependency changes according to the assumed
accretion model (e.g., Bondi or the various RIAF models).
These model-dependent radial profiles are used in combi-
nation with certain assumptions on the magnetic field, such
as equipartition between the magnetic and gravitational
energy, in order to get upper and lower limits on the mass

10See Eq. (63): Lmax is small if E is close to its minimum value
αðRÞmc2.

11Strictly speaking, the mass accretion rate for the case the
central object is a black hole should be computed by means of a
general relativistic calculation. However, when γa ≤ 5=3 and for
low temperatures (such that kBT∞=ðmpc2Þ ≪ 1), the Newtonian
calculation yields a very good approximation to the general
relativistic case even if the central black hole is rotating [16].

12RM ¼ 0.81
R
neBkdl radm−2, with ne in units of cm−3, B in

μG and dl in pc.
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accretion rate in the vicinity of the BH horizon (Bower
et al. [71], Marrone et al. [72,73]).
In these polarimetry observations, a low mass accretion

rate near Sgr A*’s horizon is inferred from the RM of a few
×105 radm−2 at 230 GHz (Marrone et al. [72], Bower et al.
[74]). The inferred mass accretion rate lies in the range of
10−9–10−7 M⊙ yr−1, or even lower depending on the
assumed inner and outer radii enclosing the polarized
emission (see Fig. 4 in Marrone et al. [72], and Marrone
et al. [73]). The polarized emission is variable in time and
as a consequence, there is variability on the RM. This RM
variability can then be translated into a specific radius
from which one takes the RM to originate, i.e., the observed
RM comes from a wide range of radii. At very large
radii, the RM inferred and extrapolated mass accretion
rate is at least one order of magnitude smaller than the
∼10−5–10−4 M⊙ yr−1 rate estimated from x-ray measure-
ments at a few ×105 rS (see Bower et al. [71]). At such
radii and assuming a magnetic field strength of ∼1 mG, the
RM should be of the order of ∼103 radm−2, which is two
orders of magnitude smaller than what is obtained in
observations. In principle this suggests that the observed
RM is produced at distances much smaller than 105 rS.
Nevertheless, Bower et al. [74] more recently carried out a
careful study on the RM variability of Sgr A* where they
found that the variability remains consistent with the
average long-term RM value. Based on this long-term
variability result, the authors suggest that the magnetic
configuration at large radii could be stable and therefore,
they support the interpretation of the observed Faraday
rotation to arise mainly from∼103–105 rS (see more details
in Bower et al. [74]). This means that overall, RM
observations favor models predicting low mass accretion
rates in the vicinities of Sgr A*’s horizon.

In the following,we estimate themass accretion rate of Sgr
A* for our different models. One variable needed for our
estimates is thevelocity of the particles at the injection radius,
vR. Although this velocity is not known a priori, it is
reasonable to suppose that it is of the order of the fluid
sound speed or to assume that its value is of the order of the
wind velocity from knownmassive stars (O-type stars and/or
WolfRayet (WR) stars) that are embedded within the dilute
accretion flow toward Sgr A*. These wind velocities are of
the order of∼450–3000 km s−1 depending if they areO-type
stars (e.g., Allen et al. [75], Puls et al. [76], Repolust et al.
[77]), or WR stars (Paumard et al. [78], Martins et al. [79]).
The accretion flow of Sgr A* from stellar winds has been
extensively studied using hydrodynamical numerical simu-
lations. For example, results from simulations of wind-fed
accretion from WR stars have been shown to be consistent
with observational constraints such as x-ray luminosities and
RM (Cuadra and Nayakshin [68], Cuadra et al. [69], Ressler
et al. [80,81], Calderón et al. [82]).Knowing that these stellar
winds could be the main contributors of the accretion toward
Sgr A*, we will assume an infall velocity that lies within the
aforementioned velocity range.
In our models, we use the same temperature for the cases

described by a Maxwell-Boltzmann or Maxwell-Jüttner
distribution, whereas in the monoenergetic cases we con-
vert this temperature to a velocity by choosing vR such that
mpv2R matches 2kBT in a first approximation. This yields
vR ¼ 600 km s−1, which lies within the velocity range of
stellar winds. Furthermore, we also use this vR to compute
the mass accretion rate for the Shapiro-Teukolsky model
for monoenergetic particles (Eq. (14.2.20) in Shapiro and
Teukolsky [31]) and the same temperature for the Rioseco-
Sarbach model (Eq. (87) in [32]). We show the compar-
isons in Table I. The mass accretion rates are obtained at the

TABLE I. Mass accretion rate inferred for Sgr A* at R ¼ 0.06 pc for the models studied in this work and results from the literature. We
assume m ¼ mp ¼ 1.67 × 10−27 kg, the characteristic values of M ¼ 4.3 × 106 M⊙, T ¼ 2.2 × 107 K and nR ¼ 160 cm−3 as
mentioned in the text. We consider an infall velocity of vR ¼ 600 km s−1 at the radius R for the monoenergetic models. The Bondi
model result is taken from Eq. (101). In the monoenergetic models we have used E0 ¼ 1

2
mpv2R − GMmp=R for the nonrelativistic case

and E0 ¼ mc2αðRÞγ for the relativistic case. Note that in the latter case with angular momentum it turns out that γ > γcðRÞ, and since
both conditions R ≫ rS and vR ≪ c are met, one can use the corresponding approximation (78b). “Nonrel” and “rel” stand for the
nonrelativistic and relativistic cases, respectively.

Accretion model Approximation Distribution function j _Mj½M⊙ yr−1� Reference

Bondi Nonrel (Perfect fluid) ∼10−4 Falcke and Markoff [20]
Zeldovich-Novikov Nonrel Monoenergetic ∼1.29 × 10−9 Zeldovich and Novikov [30]
Rioseco-Sarbach Rel Maxwell-Jüttner ∼1.48 × 10−9 Rioseco and Sarbach [32]
Radial infall Nonrel Monoenergetic ∼1.09 × 10−4 This work, Eq. (24)
Radial infall Nonrel Maxwell-Boltzmann ∼6.22 × 10−5 This work, Eq. (30)
Radial infall Rel Monoenergetic ∼1.09 × 10−4 This work, Eq. (44)
Radial infall Rel Maxwell-Jüttner ∼6.22 × 10−5 This work, Eq. (55)
Infall with angular momentum Rel Monoenergetic ∼1.23 × 10−9 This work, Eq. (78b)
Infall with angular momentum Rel Maxwell-Jüttner ∼1.38 × 10−9 This work, Eq. (90)
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fixed finite radius R ¼ 0.06 pc for the different models
studied in this work. Note that in this case we have
considered the observational approach and assumed that
the values of n∞ or nR correspond to the measured electron
number density ne at R ¼ 0.06 pc as is regularly done
when applying the Bondi model.
We see from Table I that our models predict signifi-

cantly different mass accretion rates depending on
whether or not the infalling particles have angular
momentum. The results from the purely radial infall in
the kinetic description, both in the relativistic and non-
relativistic cases, agree in order of magnitude with those
of the hydrodynamical Bondi model. In contrast to this,
the models with angular momentum predict a signifi-
cantly lower mass accretion rate (by about ∼4–5 orders
of magnitude) than the Bondi formula, and have rates
similar to the ones from the Zeldovich-Novikov model
[30,31], where the infall is assumed to start from infinity,
clearly indicating that the angular momentum is a
decisive parameter in determining the magnitude of the
mass accretion rate.
To shed some light on these results, we first note that

in the scenario considered in Table I, the parameter
z ≈mc2=kBT ≈ 0.5 × 106 is still smaller than the ratio
ðRrSÞ2 ≈ 2.1 × 1010, and thus the results for Maxwell-
Jüttner model with or without angular momentum differ
significantly.13 Next, we note that the ratio between the
Bondi radius and the radius of the injection sphere is about
rB=R ≈ 1.02. Furthermore, we observe that the models
describing a pure radial infall can be written in the form
(taking into account the aforementioned relation 2kBT ¼
mv2R which yields vR=c ≈

ffiffiffiffiffiffiffi
2=z

p
):

j _Mj
mnRvR

¼ 4πλL¼0R2; ð102Þ

with the factor λL¼0 ¼ αðRÞΓc=vR being of order unity.
This has the same form as the Bondi formula (98) with the
Bondi radius rB replaced with R and the sound speed c∞
replaced with vR. Since in our example R ≈ rB and vR is
comparable with c∞, it follows that the mass accretion rates
yield similar results. In contrast, the models with angular
momentum in the limit z ≪ ðR=rSÞ2 relevant for our
example have

j _Mj
mnRvR

¼ 4πλL>0r2Sz; ð103Þ

with λL>0 ¼ R2αðRÞΓc=ðvRr2SzÞ a numerical factor of
order one. Accordingly, the mass accretion rate is sup-
pressed by a factor of ðrS=rBÞ2z ∼ 2.4 × 10−5 compared to
the Bondi rate.
As mentioned in the Introduction, a longstanding prob-

lem is that the measured luminosity of Sgr A* (and other
underluminous sources such as M87*) is way lower than
that expected from the Eddington luminosity. Since the
luminosity of the accreting flow of BHs is proportional to
the mass accretion rate, there have been mainly two
proposed solutions to explain the observed low luminosity:
(1) a Bondi accretion rate with a very low radiative
efficiency or (2) a much lower mass accretion rate than
the Bondi rate. In the literature, various RIAF models have
been proposed to solve this problem by taking into account
one or both of these solutions.
Comparing the results from Table I, we conclude

that part of the solution to the low luminosity problem
of Sgr A* could be that the mass accretion rate should
be inferred from the accretion of a kinetic gas at a finite
radius, taking into account the angular momentum of the
individual particles. In this case, our mass accretion rate
estimates for the models with angular momentum are of
the order of the mass accretion rates bounds inferred from
RM. Note, however, that these bounds are supposed to
be for the vicinity of the BH horizon. Therefore, there is
a significant difference in the results of the hydrodyna-
mical and kinetic approaches for the wind accretion at
R ∼ 0.06 pc, at least for our simplified models with angular
momentum. A more complete theoretical kinetic treatment
and future kinetic simulations of this accretion scenario
could explain this difference, by confirming the important
disparity between the accretion rates, or by endowing the
kinetic flow with an accretion rate-reduction mechanism as
a consequence of the more complex modelling of the
problem. We note that our explanation of the low lumi-
nosity problem relies solely in the assumption that the
luminosity is proportional to the accretion rate, not in the
mechanism of radiation of a collisionless kinetic gas, which
we do not study here.

B. Accretion in the vicinity of Sgr A* and M87*

As a second example, we also cautiously apply our
models to the vicinity of Sgr A*’s event horizon. The
values of temperatures and densities near the BH are
estimated from the results of GRMHD simulations for a
two-temperature plasma of electrons and ions (e.g.,
Mościbrodzka et al. [83], Mościbrodzka and Falcke
[84]). The accretion in these simulations proceeds through
a geometrically thick, optically thin hydrodynamical flow,
coming initially from a weakly magnetized torus in hydro-
dynamic equilibrium, orbiting a Kerr BH. Despite the
significant physical differences with the more realistic
case studied in the GRMHD simulations, we apply our
models of the Maxwell-Jüttner distribution function as an

13The only way the role of the angular momentum could be
neglected is to have z ≫ ðRrSÞ2. This means that only at very low
temperatures (of the order of the cosmic microwave background,
T ∼ 2.73 K or lower), the models with and without angular
momentum yield comparable mass accretion rates for the ratio
between R and rS considered in our example.
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illustrative first approximation for the kinetic scenario.14

In particular, we take the values of density and temperature
of a two-temperature radial inflow–outflow hydrodyna-
mical model near Sgr A* with self-consistent feeding and
conduction presented in Shcherbakov and Baganoff [85];
we assume a fully ionized plasma so that there is an
equality between electron and proton densities, ne ¼ np,
and we take R ¼ 5rS, nR ¼ ne ¼ 2 × 106 cm−3 and T ¼
Tp ¼ 30Te ¼ 1.2 × 1012 K. Furthermore, since the proton
mass is much greater than the electron mass, we assume
m ¼ mp. The accretion rates calculated are shown in
Table II. We found consistency with the values of the
RM constraints for the vicinity of Sgr A*. Moreover, the
radial infall in our models produces a greater mass
accretion rate by a factor of ∼3. Thus, the role of angular
momentum is not significant close to the BH horizon. This
is consistent with the well-known fact that particles fall
almost radially as they approach to the ISCO (see e.g.,
Chandrasekhar [86], Núñez and Degollado [87]). It is
important to note that we took values of temperature and
densities from hydrodynamical models as a first approxi-
mation,
due to the lack of model-independent estimations of the
conditions near the SMBHs.
Finally, another interesting scenario to study with our

models (with the same caveats as in the Sgr A* case), is the
vicinity of the galactic centre of M87*. Recently, the Event
Horizon Telescope Collaboration (EHTC) has provided
results for the mass accretion rate due to the plasma around
this SMBH. They report an estimated average number
density of ne ∼ 2.9 × 104−7 cm−3, an electron temperature
Te ∼ ð1–12Þ × 1010 K, and an inferred mass accretion rate
forM87* of ð3–20Þ × 10−4 M⊙ yr−1 froma simple one-zone
emission model (Event Horizon Telescope Collaboration
[22,47,48]). For the specific isothermal sphere model, they
estimate the plasma number density ne ≃ 2.9 × 104 cm−3

and the electron temperature Te ≃ 6.25 × 1010 K, for an
emission radius assumed to be r ≃ 5rS=2. In Table III we
present the mass accretion rates obtained from these values,
assuming a fully ionized hydrogen plasma (nions ¼ ne) and
assuming thermal equilibriumbetween the ions and electrons
(T ions ¼ Te) as a first approximation. Furthermore, we
impose these values at radius R ∼ 5rS, as in the example

of Sgr A*.15 In this case, we got similar mass accretion rates
for the models with and without angular momentum.
Therefore, angular momentum does not play an important
role, just like the case of the vicinity of Sgr A*’s event
horizon. Despite our crude approximation for the accretion
flowofM87*, the inferredmass accretion rates are consistent
with the reported bounds by the Event Horizon Telescope
Collaboration [48].

VII. SUMMARY AND CONCLUSIONS

Low collisionality is a general property expected in
underluminous flows near BHs due to the conditions of
high temperatures and low densities. Thus, a kinetic
approach is needed in order to explain correctly the
accretion process onto these BHs. Additionally, most
previous analytic studies treat the problem of spherical
mass accretion specifying boundary conditions at infinity,
both in the fluid and the kinetic approximations, whereas in
many situations of interest the gas is accreted from a region
of finite radius.
In this work, we presented several analytic models and

their corresponding steady-state solutions for the mass
accretion of a spherically symmetric, collisionless kinetic
gas cloud onto a Schwarzschild BH. The novelty of this
article consists in specifying the properties of the kinetic
gas (its particle density nR and mean velocity or temper-
ature) at an injection sphere of finite radius R. The models
we have discussed include the simple case of purely radial
infall, in which all the particles have zero angular momen-
tum (both in the Newtonian and relativistic regimes) and
the case of a kinetic gas with a uniform distribution in the
angular momentum, such that individual gas particles may
rotate about the BH, yet the gas configuration as a whole is
spherically symmetric. Regarding the energy distribution,
we considered the monoenergetic case in which all particles
have the same energy E (or associated three-velocity vR at
the injection sphere) as well as the Maxwell-Boltzmann
(nonrelativistic case) and Maxwell-Jüttner distribution with
corresponding temperature T, assuming that the gas is
accreted from a reservoir of particles in thermodynamic
equilibrium. In each model, the mass accretion rate depends
linearly on nR which is a direct consequence of our test
field approximation (we have neglected the self gravity of

TABLE II. Mass accretion rate inferred for Sgr A* at R ¼ 5rS, for the Maxwell-Jüttner models. We have used
m ¼ mp, M ¼ 4.3 × 106 M⊙, T ¼ 1.2 × 1012 K and nR ¼ 2 × 106 cm−3 (see Shcherbakov and Baganoff [85]).

Accretion model Distribution function j _Mj½M⊙ yr−1� Reference

Radial infall Maxwell-Jüttner ∼1.92 × 10−7 This work, Eq. (54)
Infall with angular momentum Maxwell-Jüttner ∼5.77 × 10−8 This work, Eq. (83)

14In this case, we do not consider the monoenergetic models
due to their more idealized nature.

15The reason for not choosing R ¼ 5rS=2 is that this value is
smaller than the ISCO radius of a Schwarzschild BH assumed in
our model.
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the kinetic gas) while its dependency on R and vR or T is
more intricate and is summarized in Sec. V.
We have checked that for fixed positive values of nR, vR,

and T, our models with angular momentum have the
property that their mass accretion rates converge to the
corresponding expressions of previously known results
(Zeldovich and Novikov [30], Shapiro and Teukolsky
[31], Rioseco and Sarbach [32]) in the limit R → ∞, while
the models with purely radial infall have associated to them
a mass accretion rate which diverges as R → ∞. This
means the latter do not possess well-defined Bondi-type
formulas which relate the mass accretion rate to the
properties of the gas at infinity. This is analogous to the
case of accretion of pure dust in spherical symmetry, in
which the only steady-state solution has vanishing mass
density at infinity (Chaverra and Sarbach [89]). In fact, our
monoenergetic model with purely radial infall does corre-
spond precisely to this simple dust model, since its velocity
dispersion is exactly zero.
However, for the more realistic case of an injection

sphere of finite radius R it turns out that the purely radial
infall models may lead to similar accretion rates than those
predicted from the well-known Bondi model for a hydro-
dynamic flow. In particular, we have shown that for
boundary conditions corresponding to nonrelativistic
velocities or temperatures, the mass accretion rates in both
models yield comparable results, provided R is of the same
order as the Bondi radius. Regarding our models with
angular momentum, their mass accretion rate behaves
qualitatively similarly to the purely radial infall models,
and it increases with increasing values of vR or T as long as
they lie below a critical value. However, above this critical
value the mass accretion rate reverses its behavior and
decreases with increasing vR or T until it reaches a finite
value. As we have explained, this reversal is due to the fact
that as the particle’s energy increases above a certain
threshold, not all the particles are absorbed by the BH,
and the fraction of absorbed particles becomes smaller as
the energy increases, leading to a diminishing mass
accretion rate.
Finally, we calculated the mass accretion rate onto the

SMBHs Sgr A* and M87* with our models, estimating the
condition of the gas at different radii based on recent
observations. Our results, which are summarized in
Tables I, II, and III, are of the order of the model-dependent
RM bounds for the mass accretion rate of Sgr A* and the

bounds estimated for M87* by the Event Horizon
Telescope collaboration. We found that our kinetic models
can overall predict lower mass accretion rates than the
Bondi fluid model. The above suggests that a complete
kinetic treatment to the accretion problem could explain
some of the current questions associated with underlumi-
nous sources such as Sgr A* or M87*.
There are several ingredients which, for simplicity, we

did not take into account in our models. In particular, we
restricted ourselves to spherical steady accretion onto a
Schwarzschild BH, instead of the more realistic nonspheri-
cal and unsteady accretion onto a (rotating) Kerr BH.
Furthermore, we did not included the effects of radiative
processes, magnetic fields, the consequences of outflows,
convection currents or jets nor the effects due to net angular
momentum of the gas. We intend to generalize our models
to include some of these effects in future work.
Despite its simplicity, the presented models could serve

as reference for more generic kinetic models, and they
could be useful as a starting point to describe other physical
scenarios where the assumptions of very low collisionality
or quasispherical symmetry are approximately satisfied.
This is the case, for example, in the BH accretion of dark
matter, which is expected to be very weakly interactive, or
in the accretion of low-luminosity active galactic nuclei
whose corresponding flows are in a hot and low-density
state. Thus, future generalizations of the presented formal-
ism could be a key step in understanding accretion
processes.
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TABLE III. Mass accretion rate inferred for M87* at R ¼ 5rS, for the Maxwell-Jüttner models. We have used
m ¼ mp, M ¼ 6.5 × 109 M⊙, T ¼ 6.25 × 1010 K and nR ¼ 2.9 × 104 cm−3 (see Event Horizon Telescope
Collaboration [48,88]).

Accretion model Distribution function j _Mj½M⊙ yr−1� Reference

Radial infall Maxwell-Jüttner ∼1.526 × 10−3 This work, Eq. (54)
Infall with angular momentum Maxwell-Jüttner ∼1.521 × 10−3 This work, Eq. (83)
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APPENDIX: FIXED-L-MODELS

The main purpose of this Appendix is to shed some light
on the difference between the accretion rates predicted by
the monoenergetic model in the pure radial case [see
Eq. (47)] and the same model in the presence of angular
momentum [see Eq. (72a)]. As we have discussed below
Eq. (76), in the nonrelativistic limit vR ≪ c the latter case
yields an accretion rate that is smaller (by a factor of 2)
compared to the purely radial case. In contrast, there is not
such difference for the Maxwell-Jüttner type model when
the low temperature limit is taken [cf. the comments
below Eq. (97)].
In order to illustrate the role played by the angular

momentum in this behavior, we consider the following
simple model:

FðE;LÞ ¼ fðEÞ δðL − L0Þ
L0

; ðA1Þ

in which all the particles have the same angular momentum
L0 > 0 and are subject to the energy distribution fðEÞ
which we specify later. Assuming that L0 is small enough
such that L0 < LcðEÞ for all E > mc2αðRÞ (which is
guaranteed to be the case if L0 < LISCO), one obtains from
Eqs. (65) and (66) the expressions

Jσabsjr¼R ¼ c
Z

∞ffiffiffiffiffiffiffiffiffiffiffi
VL0

ðRÞ
p

Z
2π

0

pσ
−fðEÞdEdχ

R2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − VL0

ðRÞ
q ; ðA2Þ

Jσscajr¼R ¼ 0; ðA3Þ

from which one immediately obtains

J0absjr¼R ¼ 2π

αðRÞR2

Z
∞ffiffiffiffiffiffiffiffiffiffiffi
VL0

ðRÞ
p

fðEÞEdEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − VL0

ðRÞ
q ; ðA4Þ

J1absjr¼R ¼ −
2π

αðRÞR2

Z
∞ffiffiffiffiffiffiffiffiffiffiffi
VL0

ðRÞ
p fðEÞdE; ðA5Þ

and J2absjr¼R ¼ J3absjr¼R ¼ 0, where we have introduced the
shorthand notation VL0

ðrÞ ≔ VLðrÞjL→L0
. For the mono-

energetic model with fðEÞ ¼ f0δðE − E0Þ and E0 ¼
mc2αγ this yields [assuming VL0

ðRÞ < E2
0 or, equivalently,

L0 < LmaxðE0; RÞ]

j _Mj
mcnR

¼ 4πR2αðRÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2

1þ κ2
− 1

s
; ðA6Þ

where we have defined κ ≔ L0=ðRmcÞ. In the limit L0 → 0
one recovers the result from Eq. (47) which has been
derived directly with the assumption that all the gas
particles have vanishing angular momentum. If instead
of L0 → 0 one sets L0 ¼ Rjv⊥j with v⊥ the angular
components of the velocity, one obtains in the limit
jvRj ≪ c,

j _Mj
mcnR

≈ 4πR2αðRÞ vrad
c

; ðA7Þ

where vrad ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2R − jv⊥j2

p
denotes the radial component of

the three-velocity of the particles. For purely radial infall
vrad ¼ vR and this result agrees precisely with Eq. (24).
However, when angular momentum is present, the accre-
tion rate is suppressed by a factor of vrad=vR. This
illustrates why the accretion rate is smaller for models
with angular momentum when nR and vR are fixed at the
injection sphere.
It is also interesting to apply the model described in

Eq. (A1) to the Maxwell-Jüttner-type distribution function.
Inserting fðEÞ ¼ Ae−βE into Eqs. (A4) and (A5) yields the
following nonvanishing components of the current density

J0absjr¼R ¼ 2πA
αðRÞR2β

zκK1ðzκÞ; ðA8Þ

J1absjr¼R ¼ −
2πA

αðRÞR2β
e−zκ ; ðA9Þ

where we have set zκ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ κ2

p
z and z ¼ mc2αðRÞβ, as

defined below Eq. (53). This in turn leads to the mass
accretion rate

j _Mj
mcnR

¼ 4παðRÞR2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½K1ðzκÞzκezκ �2 − 1

p ; ðA10Þ

which converges to the same expression as in Eq. (54) in
the limit L0 → 0. Whereas the leading-order behavior of
the mass accretion rate given in Eq. (A6) for vR ≪ c and
κ ≪ 1 depends on the relation between vR=c and κ, the
limit of the right-hand side of Eq. (A10) for z ≫ 1 and
κ ≪ 1 always yields 4αðRÞR2

ffiffiffiffiffiffiffiffiffiffi
2π=z

p
, regardless of the

relation between z and κ. This explains why in the
Maxwell-Jüttner case the accretion rate for the models
with and without angular momentum agree with each other
in the low temperature limit.
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Alcubierre, E. Montoya, and D. Núñez, Description of
the evolution of inhomogeneities on a dark matter halo with
the Vlasov equation, Gen. Relativ. Gravit. 49, 123 (2017).

[2] J. Frank, A. King, and D. J. Raine, Accretion Power in
Astrophysics, 3rd ed. (Cambridge University Press, Cam-
bridge, 2002).

[3] J. Barranco, A. Bernal, J. C. Degollado, A. Diez-Tejedor, M.
Megevand, M. Alcubierre, D. Nunez, and O. Sarbach, Are
black holes a serious threat to scalar field dark matter
models?, Phys. Rev. D 84, 083008 (2011).

[4] F. Hoyle and R. A. Lyttleton, The effect of interstellar matter
on climatic variation, Proc. Cambridge Philos. Soc. 35, 405
(1939).

[5] H. Bondi and F. Hoyle, On the mechanism of accretion by
stars, Mon. Not. R. Astron. Soc. 104, 273 (1944).

[6] H. Bondi, On spherically symmetrical accretion, Mon. Not.
R. Astron. Soc. 112, 195 (1952).

[7] W. H. G. Lewin, J. van Paradijs, and E. P. J. van den
Heuvel, X-ray Binaries (Cambridge University Press, Cam-
bridge, 1995).

[8] R. Popham, S. E. Woosley, and C. Fryer, Hyperaccreting
black holes and gamma-ray bursts, Astrophys. J. 518, 356
(1999).

[9] J. P. Williams and L. A. Cieza, Protoplanetary disks and
their evolution, Annu. Rev. Astron. Astrophys. 49, 67
(2011).

[10] J. H. Krolik, Active Galactic Nuclei: From the Central
Black Hole to the Galactic Environment (Princeton Uni-
versity Press, Princeton, 1999).

[11] R. Penrose, Gravitational Collapse and Space-Time Singu-
larities, Phys. Rev. Lett. 14, 57 (1965).

[12] A. Celotti, J. C. Miller, and D.W. Sciama, Astrophysical
evidence for the existence of black holes, Classical Quant.
Grav. 16, A3 (1999).

[13] J. Kormendy and D. Richstone, Inward bound—the search
for supermassive black holes in galactic nuclei, Annu. Rev.
Astron. Astrophys. 33, 581 (1995).

[14] J. Kormendy and L. C. Ho, Coevolution (or not) of super-
massive black holes and host galaxies, Annu. Rev. Astron.
Astrophys. 51, 511 (2013).

[15] F. C. Michel, Accretion of matter by condensed objects,
Astrophys. Space Sci. 15, 153 (1972).

[16] A. Aguayo-Ortiz, E. Tejeda, O. Sarbach, and D. López-
Cámara, Spherical accretion: Bondi, Michel, and rotating
black holes, Mon. Not. R. Astron. Soc. 504, 5039 (2021).

[17] O. Porth, H. Olivares, Y. Mizuno, Z. Younsi, L. Rezzolla, M.
Moscibrodzka, H. Falcke, and M. Kramer, The black hole
accretion code, Comput. Astrophys. Cosmol. 4, 1 (2017).

[18] A. M. Ghez et al., The first measurement of spectral lines in
a short-period star bound to the galaxy’s central black hole:
A paradox of youth, Astrophys. J. 586, L127 (2003).

[19] S. Gillessen, F. Eisenhauer, S. Trippe, T. Alexander, R.
Genzel, F. Martins, and T. Ott, Monitoring stellar orbits
around the massive black hole in the galactic center,
Astrophys. J. 692, 1075 (2009).

[20] H. Falcke and S. B. Markoff, Toward the event horizon—the
supermassive black hole in the galactic center, Classical
Quant. Grav. 30, 244003 (2013).

[21] Event Horizon Telescope Collaboration, First M87 event
horizon telescope results. I. The shadow of the supermassive
black hole, Astrophys. J. Lett. 875, L1 (2019).

[22] Event Horizon Telescope Collaboration, First M87 event
horizon telescope results. V. Physical origin of the asym-
metric ring, Astrophys. J. Lett. 875, L5 (2019).

[23] R. Mahadevan and E. Quataert, Are particles in advection-
dominated accretion flows thermal?, Astrophys. J. 490, 605
(1997).

[24] W. E. Harris, G. L. H. Harris, and D. E. McLaughlin, M87,
globular clusters, and galactic winds: Issues in giant galaxy
formation, Astron. J. 115, 1801 (1998).

[25] F. K. Baganoff et al., Chandra x-ray spectroscopic imaging
of sagittarius A* and the central parsec of the galaxy,
Astrophys. J. Lett. 591, 891 (2003).

[26] J. I. Read and G. Gilmore, Can supermassive black holes
alter cold dark matter cusps through accretion?, Mon. Not.
R. Astron. Soc. 339, 949 (2003).

[27] J. Choquette, J. M. Cline, and J. M. Cornell, Early formation
of supermassive black holes via dark matter self-
interactions, J. Cosmol. Astropart. Phys. 07 (2019) 036.

[28] C. R. Argüelles, M. I. Díaz, A. Krut, and R. Yunis, On the
formation and stability of fermionic dark matter haloes
in a cosmological framework, Mon. Not. R. Astron. Soc.
502, 4227 (2021).

[29] C. Cercignani and G. Kremer, The Relativistic Boltzmann
Equation: Theory and Applications (Birkhäuser, Basel,
2002).

[30] Y. B. Zeldovich and I. D. Novikov, Relativistic Astrophys-
ics. Vol. 1: Stars and Relativity (University of Chicago
Press, Chicago, 1971).

[31] S. L. Shapiro and S. A. Teukolsky, Black Holes, White
Dwarfs, and Neutron Stars: The Physics of Compact
Objects (Wiley, New York, 1983).

[32] P. Rioseco and O. Sarbach, Accretion of a relativistic,
collisionless kinetic gas into a Schwarzschild black hole,
Classical Quant. Grav. 34, 095007 (2017).

[33] P. Rioseco and O. Sarbach, Spherical steady-state accretion
of a relativistic collisionless gas into a Schwarzschild black
hole, J. Phys. Conf. Ser. 831, 012009 (2017).

[34] P. Mach and A. Odrzywołek, Accretion of the relativistic
Vlasov gas onto a moving Schwarzschild black hole: Exact
solutions, Phys. Rev. D 103, 024044 (2021).

[35] P. Mach and A. Odrzywołek, Accretion of Dark Matter onto
a Moving Schwarzschild Black Hole: An Exact Solution,
Phys. Rev. Lett. 126, 101104 (2021).

[36] P. Sharma, G.W. Hammett, E. Quataert, and J. M. Stone,
Shearing box simulations of the MRI in a collisionless
plasma, Astrophys. J. 637, 952 (2006).

[37] M. Chandra, C. F. Gammie, F. Foucart, and E. Quataert, An
extended magnetohydrodynamics model for relativistic
weakly collisional plasmas, Astrophys. J. 810, 162 (2015).

[38] F. Foucart, M. Chandra, C. F. Gammie, E. Quataert, and A.
Tchekhovskoy, How important is nonideal physics in
simulations of sub-Eddington accretion on to spinning
black holes?, Mon. Not. R. Astron. Soc. 470, 2240 (2017).

[39] M.W. Kunz, J. M. Stone, and E. Quataert, Magnetorota-
tional Turbulence and Dynamo in a Collisionless Plasma,
Phys. Rev. Lett. 117, 235101 (2016).

ACCRETION OF A VLASOV GAS ONTO A BLACK HOLE FROM … PHYS. REV. D 104, 083001 (2021)

083001-19

https://doi.org/10.1007/s10714-017-2286-8
https://doi.org/10.1103/PhysRevD.84.083008
https://doi.org/10.1017/S0305004100021150
https://doi.org/10.1017/S0305004100021150
https://doi.org/10.1093/mnras/104.5.273
https://doi.org/10.1093/mnras/112.2.195
https://doi.org/10.1093/mnras/112.2.195
https://doi.org/10.1086/307259
https://doi.org/10.1086/307259
https://doi.org/10.1146/annurev-astro-081710-102548
https://doi.org/10.1146/annurev-astro-081710-102548
https://doi.org/10.1103/PhysRevLett.14.57
https://doi.org/10.1088/0264-9381/16/12A/301
https://doi.org/10.1088/0264-9381/16/12A/301
https://doi.org/10.1146/annurev.aa.33.090195.003053
https://doi.org/10.1146/annurev.aa.33.090195.003053
https://doi.org/10.1146/annurev-astro-082708-101811
https://doi.org/10.1146/annurev-astro-082708-101811
https://doi.org/10.1007/BF00649949
https://doi.org/10.1093/mnras/stab1127
https://doi.org/10.1186/s40668-017-0020-2
https://doi.org/10.1086/374804
https://doi.org/10.1088/0004-637X/692/2/1075
https://doi.org/10.1088/0264-9381/30/24/244003
https://doi.org/10.1088/0264-9381/30/24/244003
https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.3847/2041-8213/ab0f43
https://doi.org/10.1086/304908
https://doi.org/10.1086/304908
https://doi.org/10.1086/300322
https://doi.org/10.1086/375145
https://doi.org/10.1046/j.1365-8711.2003.06232.x
https://doi.org/10.1046/j.1365-8711.2003.06232.x
https://doi.org/10.1088/1475-7516/2019/07/036
https://doi.org/10.1093/mnras/staa3986
https://doi.org/10.1093/mnras/staa3986
https://doi.org/10.1088/1361-6382/aa65fa
https://doi.org/10.1088/1742-6596/831/1/012009
https://doi.org/10.1103/PhysRevD.103.024044
https://doi.org/10.1103/PhysRevLett.126.101104
https://doi.org/10.1086/498405
https://doi.org/10.1088/0004-637X/810/2/162
https://doi.org/10.1093/mnras/stx1368
https://doi.org/10.1103/PhysRevLett.117.235101


[40] P. Rioseco and O. Sarbach, Phase space mixing in the
equatorial plane of a Kerr black hole, Phys. Rev. D 98,
124024 (2018).

[41] A. Aguayo-Ortiz, E. Tejeda, and X. Hernandez, Choked
accretion: From radial infall to bipolar outflows by breaking
spherical symmetry, Mon. Not. R. Astron. Soc. 490, 5078
(2019).

[42] E. Tejeda, A. Aguayo-Ortiz, and X. Hernandez, Choked
accretion onto a Schwarzschild black hole: A hydrodynam-
ical jet-launching mechanism, Astrophys. J. 893, 81 (2020).

[43] A. Aguayo-Ortiz, O. Sarbach, and E. Tejeda, Choked
accretion onto a Kerr black hole, Phys. Rev. D 103,
023003 (2021).

[44] T. Di Matteo, S. W. Allen, A. C. Fabian, A. S. Wilson, and
A. J. Young, Accretion onto the supermassive black hole in
M87, Astrophys. J. 582, 133 (2003).

[45] D. K. Aitken, J. Greaves, A. Chrysostomou, T. Jenness, W.
Holland, J. H. Hough, D. Pierce-Price, and J. Richer,
Detection of polarized millimeter and submillimeter emis-
sion from sagittarius A*, Astrophys. J. Lett. 534, L173
(2000).

[46] C. Y. Kuo et al., Measuring mass accretion rate onto the
supermassive black hole in M87 using Faraday rotation
measure with the submillimeter array, Astrophys. J. Lett.
783, L33 (2014).

[47] Event Horizon Telescope Collaboration, First M87 event
horizon telescope results. VII. Polarization of the ring,
Astrophys. J. Lett. 910, L12 (2021).

[48] Event Horizon Telescope Collaboration, First M87 event
horizon telescope results. VIII. Magnetic field structure near
the event horizon, Astrophys. J. Lett. 910, L13 (2021).

[49] E. Quataert and A. Gruzinov, Constraining the accretion rate
onto sagittarius A* using linear polarization, Astrophys. J.
545, 842 (2000).
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