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ABSTRACT In this paper, we develop a privacy-preserving UAV system that does not infringe on the privacy
of people in the videos taken by UAVs. Instead of blurring or masking the face parts of the videos, we want
to exquisitely modify only the face parts so that the people in the modified videos still look like humans,
but they become anonymous. Doing so, the semantic information of the videos can be preserved even with
the anonymization. Specifically, based on the latest generative adversarial network architecture, we propose
a deep learning-based face-anonymization scheme so that each modified face part looks like the face of a
person who does not actually exist. The trained face-anonymizer is then mounted on the UAV system we
have implemented. Through experiments, we confirm that the developed privacy-preserving UAV system
anonymizes UAV’s first-person videos so that the people in the video are not recognized as anyone in the
dataset used. In addition, we show that even with such anonymized videos, the perception performance
required for performing UAV’s essential functions such as simultaneous localization and mapping is not
degraded.

INDEX TERMS Privacy infringement, privacy-preserving vision, deep learning, security robot, UAV patrol
system.

I. INTRODUCTION
As one of the most important systems in the 4-th industrial
era, unmanned aerial vehicles (UAVs) are expanding their
use in all directions, ranging from transportation, delivery,
surveillance, security, exploration, military, public safety,
agriculture, and smart factories. In particular, UAV sys-
tems capable of performing missions autonomously have
boundless potential in many applications. The recent rapid
advancement of UAV systems is attributed to recent
deep learning-based computer vision techniques. As UAV’s
cognitive ability has soared, it has become possible to
autonomously find paths, avoid obstacles, and perform
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missions stably in various situations. However, as UAVs
become ubiquitous around us, UAV’s high-performance
vision function may raise serious concerns about privacy
breaches by exposing us to unwanted recordings. The con-
stant recording of UAVs by itself causes public anxiety and
can be easily exploited. In 2015, a Kentucky man shot down
a UAV hovering over his property [1], [2]. He argued that the
UAV was spying on his 16-year-old daughter who was sun-
bathing in the garden. An article reported that a Knightscope
security robot was suspended from its job of patrolling a San
Francisco animal shelter after a few residents complained that
the robot was taking unnecessary pictures of them [3].

A few studies have analyzed privacy concerns due to the
computer vision function of robots [4], and proposed to
resolve the privacy concern by recording videos at extreme
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low resolution [5], [6] or by blurring the face parts of the
recorded videos for anonymization [7]. However, it becomes
very difficult to extract the original facial expression infor-
mation from the deformed video, if we record the video at
extreme low resolution or if we blur or mask the face parts
as suggested by the previous studies. Even removing facial
expressions is not suitable for patrol robot systems because
it can interfere with the perception of someone’s situation
and cause security problems. In [8], the authors endeavor to
convert a whole face part with two aims: i) the converted
face should still look like a human face, and ii) the converted
face should not look like the original face. However, since
the face anonymization method proposed in [8] puts changes
on the pixel values of the original face image, the modified
face could still have the information of the original face.
Therefore, there is a possibility that such technique cannot
completely hide private information in the original image.

Recently, DeepFake has attracted great interest not only
from academia but also from the general public [9]. The
purpose of DeepFake is to make an arbitrary human face that
resembles someone. However, the face anonymizer proposed
in this study is to completely anonymize someone’s identity
by converting someone’s face into the face of a human who
does not actually exist, not in the training dataset.

In this paper, we develop and implement a privacy-
preserving UAV system with deep learning-based face
anonymization. Our proposed face anonymizer is designed
to achieve the following two goals:
• Anonymization: Our proposed face anonymizer should
anonymize faces without observing any pixel value of
the original face images.

• Preservation of the Original Semantic Information: The
transformed face should still look like a human face
while preserving facial expressions as much as possible.

The main features of our proposal are three-fold.
• In the scheme proposed in [8], there is a possibility
that a face part could be transformed to resemble some-
one’s face in the training datasets. We design a face
anonymizer using two generative adversarial networks,
so that the deformed face does not resemble anyone’s
face in training, and design a training structure and loss
function to train our proposed face anonymizer.

• We propose a face-anonymizing approach, where a face
image is transformed to an intermediate image by elim-
inating the privacy-sensitive information, and then the
intermediate image is converted to a photorealistic face
image. Note that unlike in [8] by using the interme-
diate image our anonymization algorithm can create
an anonymized face without observing the pixel values
of the original face. In other words, our anonymiza-
tion method is suitable for privacy-preserving systems
because the anonymizer uses only semantic information
that has no inherent features such as face color, wrinkles,
eyelids, etc.

• We construct a UAV system equipped with the devel-
oped face anonymization feature by using hardware

consisting of Pixhawk4, Nvidia Xavier, and others that
we have chosen for ourselves, and by using open
source-based software such as PX4 and ROS. Exper-
iment results show that the developed UAV system
anonymizes the face parts of its recording sufficiently
well. As an illustrative example, we present that the
developed UAV system performs SLAM well even with
anonymized videos.

II. RELATED WORK
A. REMOVAL OF PRIVACY SENSITIVE INFORMATION
FOR ROBOT SYSTEM
In robot vision areas, privacy infringement has attracted
increasing research attention, which has led to the develop-
ment of methods to eliminate privacy-sensitive information
in images [7], [8], [10]–[13].

Jason et al. [8] developed a method for privacy-preserving
action detection via a facemodifier by using generative adver-
sarial networks (GANs). They proposed pixel-level modi-
fications to change each person’s face with minimal effect
on the action recognition performance. The proposed gen-
erator modifies each pixel in an original face to eliminate
the features of the face. However, the generator observes
the pixels of a face for modification, which implies that the
modified face is generated based on the original face. This
approach still leaves some information of an original face in
the modified face. That is, apart from the ability to anonymize
faces, there is a limitation in methodological aspects for pri-
vacy protection. The authors in [14] investigated the inversion
attacks to a deep neural network, and then revealed that a
deep neural network indeed could have the information of the
training dataset. They also showed that the training dataset
could be extracted from a trained deep neural network. The
training data leakage problem through the inversion attack is
because a neural network is trained to capture the relationship
between the input image and the output image. Hence, if a
neural network is trained to generate an anonymized face
using the original image, the anonymizing neural network can
also have information from the face training dataset and thus
can be subjected to the inversion attack. On the other hand,
our synthesis network generates an anonymized face using a
semantic image, and thus the inversion attack cannot extract
original face images from the synthesis network. In addition,
as in [15], our training approach that does not expose the orig-
inal training dataset directly to a target neural network will be
encouraged in future studies related to privacy protection.

In [7], the authors proposed a dynamic resolution face
detection architecture to blur faces. The framework detects
faces from extremely low-resolution images via the proposed
deep learning-based algorithm. Except for the detected faces,
other privacy-insensitive pixels are enhanced to high reso-
lution. Hence, in resultant images, only faces are blurred,
which protects privacy-sensitive parts while preserving the
performance of robot perception. However, in the case where
the faces are big in a frame, the privacy protection becomes
not strong enough for complete anonymization even with
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FIGURE 1. The proposed approach for anonymizing faces in a video frame and training architecture for segmentation and synthesis networks.

blurring. More importantly, the initial face detection stage is
often unsuccessful, since it should detect faces at extreme-low
resolution.

In [10], the authors introduced a scene recognition method
from an image. The scheme determines if a person is
in a privacy-sensitive location. If an image is taken in
a privacy-sensitive place, the scheme enables the camera
device to be automatically turned off. However, faces remain
exposed in privacy-insensitive places, and thus this scheme is
not suitable for privacy-preserving UAV visions.

The works [11]–[13] proposed face-regenerating schemes.
In [11], to regenerate a face, the proposed procedure linearly
mixed an input image and a network’s transformed image
with a weight mask. However, this scheme still uses the
pixels of an input image. The works [12], [13] utilized land-
scape features in faces to make regenerated faces. However,
the techniques for self-driving of cars and UAVs exploit
semantic images to recognize objects around cars and UAVs.
Hence, those schemes based on landscape features can be dif-
ficult directly to use with autonomous driving technologies.

B. GENERATIVE ADVERSARIAL NETWORKS
GANs have had impressive success in generating realistic
images [16]. The goal of this learning framework is to train a
neural network to model an image distribution in an unsuper-
vised manner. The trained network can generate a fake image
that is indistinguishable from a real image. This training
approach has been adopted for image-to-image translation
[17]–[25]. Those works learn a mapping from input to output
images, meaning that an input image is translated to an image
in a different image distribution. To construct our training
architecture for obtaining deep-learning networks for our
purpose, we have adopted the latest two works [23], [25].
By using the training framework in [23], we create a generator
that translates a photorealistic image to a segmentation mask,
and [25] is used to train another generator that converts the
resultant segmentation mask into a photorelistic image.

C. SIMULTANEOUS LOCALIZATION AND MAPPING (SLAM)
By using SLAM, in an unknown environment, a robot con-
structs a map around itself and localizes itself in the resultant
map. Hence, in a video frame, the manipulation of a few

pixels could affect the performance of SLAM, since a map
is drawn by extracting feature points of lines, edges, and
corners of objects in images. In this work, ORB-SLAM2
[26] is implemented in our system, which is one of the most
popular algorithms for vision-based SLAM. Via experiments,
it shall be confirmed that our proposal has little effect on the
feature point extraction. Hence, our anonymization method
has no effect on vision-based robot perception.

III. APPROACH, LOSS FUNCTIONS, AND ALGORITHM
This section introduces our approach for anonymizing faces
via neural-type networks. For these networks, we present a
training architecture, where two up-to-date GANs are com-
bined. Then, we describe the loss functions for our purpose.
Finally, we present and explain our face-anonymizing
algorithm.
Approach: Fig. 1(a) illustrates the face-anonymizing

approach for our system. To anonymize faces, a companion
computer has three networks: a face detection network, seg-
mentation network, and synthesis network. The face detection
network operates to detect faces whenever a video frame is
fetched to the companion computer. Through the segmenta-
tion network, the images of the detected faces are converted
to semantic images. Note that the semantic images only have
the outline information of faces with no privacy-sensitive
information. The synthesis network generates photorealistic
images based on the semantic images. Finally, the photoreal-
istic images replace the original faces.

A person’s facial expression is determined by the angle at
which the eyebrows are bent, the position of the corners of the
mouth, and how the person opens his/her mouth and eyes. For
each facial expression, the relationship between the states of
the facial components are actually determined to some extent.
To exploit this relationship for each expression, the proposed
approach utilizes a semantic image that preserves the states
of eyes, eyebrows, mouth, and lips.

Fig. 1(b) presents our training architecture for segmen-
tation and synthesis networks. In order to train these net-
works, we combine CycleGAN and GauGAN, each of which
is a spotlight image-to-image translation framework using
GAN. The CycleGAN is good at translating photorealistic
images to semantic images while the GauGAN is proposed
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for converting semantic images to photorealistic images. The
segmentation network is trained by the CycleGAN, where
the segmentation generator called Generator G generates a
semantic image from a photorealistic image. The synthesis
network is obtained from the GauGAN. Generator Gs makes
a photorealistic image from the output of the segmentation
generator G.

To obtain well-trained networks suitable for anonymiza-
tion, we modify the losses of generators and discriminators
in both GANs.
Training Architecture Model: For our modifications,

we formulate our training architecture in the following
manner.

For training samples, X and Y denote a photoreal-
istic domain and a semantic domain, respectively. For
each domain, training samples are represented by {xi}Ni=1
and {yj}Nj=1. Samples of each domain follow a data distribu-
tion, which is denoted as x ∼ pdata(x) and y ∼ pdata(y). In this
architecture, we have three generators, G, F , and Gs. Each
generator is a mapping function: G : X → Y , F : Y → X ,
and Gs

: Y → X . For the adversarial networks of these
generators, there are discriminators DX , DY , and Ds

X , each of
which distinguishes if an input is from the data distribution or
is generated by the generator. DY , DX , and Ds

X examine the
output of G, F , and Gs, respectively.
Well-Known Basic Definitions: To describe our modifica-

tions, this subsection introduces well-known losses [23], [25].
Adversarial Loss: For each generator and discriminator

pair, the adversarial loss is defined in the following manner.

Ladv(G,DY ,X ,Y ) = Ex∼pdata(x)[log(1− DY (G(x)))]
+Ey∼pdata(y)[log(DY (y))], (1)

where G(x) is a generated image by the generator G with a
image sample x. G tries to make DY as difficult as possible
to distinguish generated samples G(x) from real samples y,
whereas DY must not be deceived by G. The relationship
can be formulated asminGmaxDY Ladv(G,DY ,X ,Y ). Hence,
the generator must actually minimize the following loss.

Ladv,G(G,DY ,X ,Y ) = Ex∼pdata(x)[log(1−DY (G(x)))]. (2)

where DY (·) is between 0 and 1. As DY (G(x)) is closer to 1,
G(x) looks similar to images from the domain Y . For other
pairs, (F , DX ) and (Gs, Ds

X ), the adversarial loss can be
obtained by replacing (G, DY ) in (1) with (F , DX ) and (Gs,
Ds
X ). In addition, in (1), X and Y are replaced with Y and X .
Cycle-Consistency Loss: This loss [23] is defined as

Lcyc(G,F) = Lcyc,G(F)+ Lcyc,F (G), (3)

where Lcyc,G(F) and Lcyc,F (G) are cycle-consistency losses
for G and F . The losses are defined as

Lcyc,G(F) = Ex∼pdata(x)[‖F(G(x))−x‖1], (4)

Lcyc,F (G) = Ey∼pdata(y)[‖G(F(y))−y‖1]. (5)

This loss is used to induce a sample xi to be mapped to
a desired sample yj. Note that the adversarial loss guarantees

that via a learned mapping function, samples in the domain X
are mapped to samples in the domain Y ; however, the learned
mapping function cannot translate a sample xi to an intended
yj because the adversarial loss can guarantee translation only
between data distributions. Hence, to obtain a mapping func-
tion between individual samples, the cycle-consistency loss
should be used in the training procedure for the generators.
Multi-Scale Discriminators’ Feature Loss: In [25],M mul-

tiple discriminators are trained to distinguish yj and G(xi)
at M different scales, which enables each discriminator to
examine yj and G(xi) from a different view. As the size of yj
and G(xi) becomes smaller, a discriminator has a wider view
of yj and G(xi), as the receptive field sizes of all the discrim-
inators are the same. By using multiple discriminators, for a
generator Gs, a GAN feature matching loss is defined in the
following manner.

LFM,Gs (Ds
X ,1, . . . ,D

s
X ,M )

=

M∑
k=1

1
M

E(y,x)

[ T∑
i=1

1
Ni
‖Ds,i

X ,k (x)− D
s,i
X ,k (G

s(y))‖1
]
, (6)

whereE(y,x) , E(y,x)∼pdata(y,x) for simplicity.M is the number
of discriminators, Ds

X ,k (·) is the k-th discriminator, and Ds,i
X ,k

denotes the i-th layer feature extractor of Ds
X ,k (·). Ni means

the number of elements in each layer, and T is the number
of feature layers. Note that Gs can learn how to translate a
semantic image to a photorealistic image at both coarse and
fine views, since discriminators distinguish x and Gs(y) atM
different views.
VGG Perceptual Loss: The VGG perceptual loss [25], [27]

is obtained by a VGG network, which is defined as

LVGG(ψ, x,Gs(y)) =
∑
i∈SI

‖ψi(Gs(y))− ψi(x)‖1
CiHiWi

, (7)

where SI is the set including VGG’s layer indices, ψ is the
VGG network, and ψi is denoted as the i-th layer of ψ . For
ψi, Ci, Hi, and Wi are the number of channels, the height,
and the width, respectively. By minimizing LVGG(·), Gs can
generate a photorealistic image Gs(y), thereby visually indis-
tinguishable from x in the feature-level perspective.

A. MODIFICATIONS OF LOSS FUNCTIONS
FOR ANONYMIZATION
1) MODIFICATION ON SEGMENTATION GENERATOR’S LOSS
The goal of a segmentation generator G is to make seman-
tic images with which a synthesis generator Gs creates
well-synthesized images.

a: MODIFICATION
In order to consider the performance of Gs in the loss of G,
we define the loss of G as follows:

LG(G,F,DY ,Gs) = Ladv, G(G,DY ,X ,Y )+ λcycLcyc,G(F)︸ ︷︷ ︸
original loss of G

+ λsLGs (Gs,Ds
X ,1, . . . ,D

s
X ,M ,G)+ λdistLdist(G)︸ ︷︷ ︸

newly added term

, (8)
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where Ldist(G) = Ex∼pdata(x)[‖G(x) − y‖1], and Ldist(G)
could further reduce the size of the space of possible map-
ping functions with Lcyc,G(F). LGs is the loss of a synthesis
generatorGs and will be explained in Section III-A2 in detail.
In addition, λcyc, λs, and λdist control the relative importance
of each loss.

By adding LGs (Gs,Ds
X ,1, . . . ,D

s
X ,M ,G), the generator G

is trained to generate a semantic image minimizing the loss
of Gs.

b: OBJECTIVE OF SEGMENTATION LEARNING PART
The complete loss of the segmentation-learning part is
defined as

Lseg(G,F,DX ,DY ,Gs)

= LG(G,F,DY ,Gs)+ LF (G,F,DX )
+Ey∼pdata(y)[log(DY (y))]+ Ex∼pdata(x)[log(DX (x))],

(9)

whereLF (G,F,DX )=Ladv,F (F,DX ,Y ,X )+λcycLcyc,F (G).
The segmentation learning part finds G and F as follows:

G∗,F∗ = argmin
G,F

max
DX ,DY

Lseg(G,F,DX ,DY ,Gs). (10)

2) MODIFICATIONS OF SYNTHESIS GENERATOR’S LOSS
There are two main challenges that hinder the learning of
a face anonymizing synthesis generator. We introduce the
loss of the synthesis generator Gs in [25], and explain each
challenge. Then, to obtain a synthesis generator that works
for the objective of our system, we modify the loss of Gs and
the loss ofDs

X ,k ,∀k . In addition, wemodify themeans to train
the discriminator Ds

X ,k .
In [25], by using (2), (6), and (7), the loss of the synthesis

generator is defined as

LGs (Gs,Ds
X ,1, . . .D

s
X ,M ,G)

= LVGG(ψ, x,Gs(G(x)))+
M∑
k=1

1
M

×

{
Ladv,Gs (Gs,Ds

X ,k ,Y ,X ,G(x))+ LFM,Gs (Ds
X ,k )

}
,

(11)

where we introduce, for simplicity, LFM,Gs (Ds
X ,k ) =

E(y,x)

[∑T
i=1

1
Ni
‖Ds,i

X ,k (x) − Ds,i
X ,k (G

s(y))‖1
]
in (6). Addition-

ally, Ladv,Gs (Gs,Ds
X ,k ,Y ,X ,G(x)) is defined as

Ladv,Gs (Gs,Ds
X ,k ,Y ,X ,G(x))

= Eŷ∼pdata(y)
[
log(1− Ds

X ,k (G
s(G(x))))

]
. (12)

where ŷ = G(x).

a: CHALLENGE IN VGG PERCEPTUAL LOSS
In the synthesis-learning part, the loss (11) should be mini-
mized in order to train the generator Gs. The minimization
leads to the reduction of LVGG(ψ, x,Gs(G(x))), and thus the
distance between features of x and Gs(G(x)) is also reduced

during the training of Gs. Consequently, the generator Gs

is trained to generate a photorealistic image Gs(G(x)) that
is almost the same as the original image x. This trained
generator should not be used for our privacy-preserving UAV
system.

b: MODIFICATION OF VGG PERCEPTUAL LOSS
To prevent the distance between Gs(G(x)) and x from being
reduced to a very small value, we introduce margins to (7) as

LVGG(ψ, x,Gs(ŷ), ϒ)

=

∑
i∈SI

max
(
0,
‖ψi(Gs(ŷ))− ψi(x)‖1

CiHiWi
− ϒ(m(i))

)
, (13)

where the set ϒ = {ε1, . . . , ε|SI|} includes margins cor-
responding to each VGG’s layer ψi. |SI| is the number of
elements in SI. m(i) is a mapping function to find, for ϒ ,
an index corresponding to the VGG’s layer index i in SI.
Then, εi allows the distance between the i-th VGG layer for x
and Gs(G(x)) to be at least εi. Hence, a photorealistic image
Gs(G(x)) can have different features from features of the
original image x, which couldmakeGs(G(x)) appear different
from x.

c: CHALLENGE IN ADVERSARIAL LOSS AND MULTI-SCALE
DISCRIMINATORS’ FEATURE LOSS
First, we need to comprehend how the discriminator Ds

X ,k
works. Based on the understanding, we describe a hindrance
to the learning of our synthesis generator Gs. Then, we mod-
ify the adversarial losses of Gs and Ds

X ,k , and the multi-scale
discriminators’ feature loss of Gs.
To minimize (12), Gs makes a synthesized face Gs(G(x))

look like a face in the training dataset, and thus tends to
translate G(x) to x, which is not allowed for anonymization.
Specifically, in (12), a discriminatorDs

X ,k examinesGs(G(x))
to determine if Gs(G(x)) is from the training dataset X or is
arbitrarily generated. The generated imageGs(G(x)) contains
an entire face, and thus Ds

X ,k is trained to determine whether
the entire face in Gs(G(x)) is from the training dataset.
Consequently, to deceive Ds

X ,k , G
s is trained to generate

x from G(x), which greatly reduces the size of the space of
possible mapping from the domain Y to the domain X .

d: MODIFICATIONS TO ADVERSARIAL LOSS AND
MULTI-SCALE DISCRIMINATORS’ FEATURE LOSS
In order to preventGs from regenerating the almost same face
as x, we modify the adversarial losses of Gs and Ds

X ,k , which
expands the space of possible mapping. To do it, we limit a
discriminator Ds

X ,k to investigate each facial component and
not the entire face. By applying the idea, the adversarial loss
is rewritten in the following manner.

Lsadv(G
s,Ds

X ,1, . . . ,D
s
X ,M ,Y ,X , Sξ )

=

M∑
k=1

1
M

{
Eŷ∼pdata(y)

[∑
i∈Sξ

1
|Sξ |

log(1−Ds
X ,k (ξi(G

s(ŷ))))
]}

+

M∑
k=1

1
M

{
Ex∼pdata(x)

[∑
i∈Sξ

1
|Sξ |

log(Ds
X ,k (ξi(x)))

]}
, (14)
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where we denote the output of our segmentation generator as
ŷ = G(x), ξi is to extract pixels corresponding to the label
index i, Sξ is the set including extracted labels’ index, and
|Sξ | is the number of elements in Sξ . For example, if i = 2
and the label index 2 indicates the nose in a face, all pixels in
ξ2(Gs(ŷ)) become zero, except for the pixels corresponding to
the nose.

According to (14), our modification enables a discrimi-
nator Ds

X ,k to examine a part of a face instead of observing
all facial parts together. This approach enables discriminators
to learn the distribution of each facial component instead of
learning the distribution of an entire face. That is, a discrimi-
nator attempts to distinguish each part of a face inGs(ŷ) from
the same part of a face in x, which could widen the space
of possible mapping from the perspective of the entire face.
By setting |Sξ | < Nf, where Nf denotes the number of labels
in a face, we make discriminators observe certain parts of an
entire face, and thus the generator Gs could have wider space
for possible mapping of the other parts that are not examined
by discriminators.

In the same vein, the feature loss of the multi-scale dis-
criminators can be also redefined as (15).

Despite our modifications to Ls
adv(·) and LFM,Gs (·), there

is still room for Gs to regenerate x because LFM,Gs (Ds
X ,k , Sξ )

in (15) still compares features of Gs(G(x)) and x. Hence,
we modify (15) to (16), as shown at the bottom of the page.
In (16), Eŷ,x,x̃ , E(ŷ,x,x̃)∼pdata(x,y,x) and x̃ 6= x, but x̃ is
from the same training dataset of x. By the modification,
LFM,Gs (Ds

X ,k , Sξ ) compares features of Gs(G(x)) to features
of x̃, which can help Gs learn to generate a different face
from x.

e: OBJECTIVE OF THE SYNTHESIS LEARNING PART
Based on (13), (14), and (16), our complete objective of the
synthesis-learning part is defined as

Lsyn(Gs,Ds
X ,1, . . . ,D

s
X ,M , Sξ ,G) = LVGG(ψ, x,Gs(ŷ), SI)

+Ls
adv(G

s,Ds
X ,1, . . . ,D

s
X ,M ,Y ,X , Sξ )+ Lcyc,Gs (G)

+LFM,Gs (Ds
X ,1, . . . ,D

s
X ,M , Sξ ), (17)

where Lcyc,Gs (G) = Ex∼pdata(x)[‖G(Gs(G(x))) − G(x)‖1]
enables a synthesized image Gs(G(x)) to maintain the shape

Algorithm 1 Training Procedure for One Epoch
Output: Generators, G∗ and (Gs)∗

for i = 1: Ndata
1) Select x, y, x̃ from dataset X and Y
2) Update G, F , DX , DY with Gs

(9): argmin
G,F

max
DX ,DY

Lseg(G,F,DX ,DY ,Gs)

3) Update Gs, Ds
X ,k ,∀k with G, F , DX , DY

(17): argmin
Gs

max
Ds
X ,k ,∀k

Lsyn(Gs,Ds
X ,1, . . . ,D

s
X ,M , Sξ ,G)

Algorithm 2 Face-Anonymizing Algorithm
Input: Face detector D; Segmentation generator G;
Synthesis generator Gs; Video frame v
Output: Anonymized video frame ṽ
1) D(v)→ fD,Nface // Face detection in v
2) if Nface > 0 then // Faces exist

for k ← 1 to Nface do
- Gs(G(fD(k)))→ fA // Anonymization

- fA ◦ B−1(G(fD)(k))
+fD(k) ◦ B(G(fD(k)))→ fA · · · 1©

- (v− fD(k))+ fA → ṽ // Face’s replacement
end for

else // No faces to anonymize
v→ ṽ

3) Terminate face anonymization in a video frame

and location of each facial part in x. Since (16) compares
features of Gs(G(x)) to those of x̃, the generator Gs can cause
a synthesized image to retain shape and location of each facial
part in x̃ not in x. Hence,Lcyc,Gs (G) helpsGs generate synthe-
sized images to retain the shape and location of facial parts in
x. ByLcyc,Gs (G) and (16),Gs can generate a synthesized face
Gs(G(x)) including the facial features of x̃ while maintaining
the shape and location of facial components in x.

Finally, the synthesis learning part solves (17) as

(Gs)∗ = argmin
Gs

max
Ds
X ,k ,∀k

Lsyn(Gs,Ds
X ,1, . . . ,D

s
X ,M , Sξ ,G).

(18)

B. TRAINING PROCEDURE
The overall training procedure is summarized in Algorithm 1,
where Ndata is the number of data in the dataset X and Y .

LFM,Gs (Ds
X ,1, . . . ,D

s
X ,M , Sξ ) =

M∑
k=1

1
M

E(ŷ,x)

[ T∑
i=1

1
Ni

∑
j∈Sξ

1
|Sξ |
‖Ds,i

X ,k (ξj(x))− D
s,i
X ,k (ξj(G

s(ŷ)))‖1
]

︸ ︷︷ ︸
LFM,Gs (D

s
X ,k ,Sξ )

, (15)

LFM,Gs (Ds
X ,1, . . . ,D

s
X ,M , Sξ ) =

M∑
k=1

1
M

E(ŷ,x,x̃)

[ T∑
i=1

1
Ni

∑
j∈Sξ

1
|Sξ |
‖Ds,i

X ,k (ξj(x̃))− D
s,i
X ,k (ξj(G

s(ŷ)))‖1
]

︸ ︷︷ ︸
LFM,Gs (D

s
X ,k ,Sξ )

. (16)
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FIGURE 2. Composition of the developed privacy-preserving UAV system with face anonymization.

By repeating the training procedure, we obtain the optimized
G∗ and (Gs)∗.

C. FACE-ANONYMIZING ALGORITHM
With the optimized segmentation and synthesis genera-
tors, our face-anonymizing procedure is conducted as in
Algorithm 2. A companion computer conducts Algorithm 2
whenever it receives a video frame. Here, fD denotes box
images of detected faces, Nface is the number of detected
faces, and fA is a box image of an anonymized face. Then,
fD has Nface box images.
In Algorithm 2, B(·) is a function that converts all nonzero

elements of an input semantic image to 0 and all zero ele-
ments to 1. In a semantic image, zero indicates the back-
ground, and thus B(·) is used to extract a background image.
Then, B−1(·) extracts only a face image from a semantic
image. The operator ◦ is the Hadamard product.

Hence, in Algorithm 2, 1© creates an image that mixes
the anonymized face in fA and the background in fD, which
could preserve the background in the original image. In 1©,
the first term generates an image that includes only the
anonymized face in fA and the second term produces an image
that includes only the background in fD.

D. UAV SYSTEM COMPOSITION
In Fig. 2, our face-anonymizingUAVpatrol system comprises
a ground station and a video-recording UAV.

1) GROUND STATION
This component has two roles: (1) commander and (2) viewer.
The ground station is connected to the video-recording UAV
via Wi-Fi. This part runs a command program, and then
controls the location of the UAV. In addition, this ground
station receives anonymized video frames from the UAV, and
then shows these frames via our viewer.

2) VIDEO-RECORDING UAV
This consists of a high-resolution camera, a companion
computer, and a motor control computer; the camera and
motor control computer are connected to the companion
computer. The companion computer fetches video frames

TABLE 1. Parameters used in each learning part.

from the camera, and then anonymizes faces in the received
frames by executing our face-anonymizing networks. Then,
the ORB-SLAM2 is processed in the anonymized videos.

As in Fig. 2, the companion computer is connected with
the UAV control computer, the wireless chipset, and the
high-resolution camera. We utilize ROS to enable all the
components to communicate with each other. The compan-
ion computer communicates with the ground station through
wireless communication. The ground station can transmit a
command message to the companion computer. The compan-
ion computer sends the received message to the UAV control
computer. The UAV continuously records images via the
camera, which are passed to our face-anonymzing networks
implemented in the companion computer. The anonymized
images are sent back to the ground station via the wireless
chipset, and thus we can immediately check the results on the
screen of the ground station. Simultaneously, the anonymized
images are processed by the ORB-SLAM2 algorithm in the
companion computer.

IV. EVALUATION
A. TRAINING DETAILS
In the segmentation learning part, for the segmentation gen-
erator G, we adopt the network architecture in [27] that is
known for powerful neural-type transfer. For the discrimi-
nators DX and DY , we use 70 × 70 PatchGANs [18], [23],
[28], [29]. For our synthesis generator, we use the SPADE
generator in [25]. Table 1 summarizes the parameters used in
each learning part.

We conduct our training procedure with CelebA-HQ
dataset [30]. This dataset contains 30,000 high-resolution
face images with 19 semantic classes. In this work, wemodify
the semantic dataset by extracting 9 main facial components.
In ourmodified semantic dataset, the semantic classes include
skin, nose, eyes, eyebrows, ears, mouth, lip, hair, and neck.
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FIGURE 3. Test results of our face anonymization networks with the CelebAMask-HQ dataset, the Helen, and the FaceScrub.

TABLE 2. De-identification performance.

B. EVALUATION OF FACE-ANONYMIZING GENERATORS
This section presents the evaluation of our face-anonymizing
generators in both qualitative and quantitative perspectives.
In addition, we also show our proposed scheme works well
in the situation of a patrol drone. Our system utilizes a
lightweight but accurate face detector called FaceBoxes [31].
The computing speed is invariant irrespective of the number
of faces in an image.We test our face-anonymizing generators
on several datasets: (1) CelebAMask-HQ, (2) Helen, and (3)
FaceScrub [32], [33]. For CelebAMask-HQ, the test data
is different from the training data. Note that it takes about
120 ms to process one 256 × 256 face image with NVIDIA
GeForce GTX 1080 Ti.

Fig. 3 provides the quality of our face-anonymizing gen-
erators, which confirms that our method produces well
anonymized faces. For each dataset, additional results
are provided in [34]. For quantitative evaluation of our
face-anonymizing generators, we utilize the Siamese network
architecture [35] that is widely used for re-identification [12].
Through this network, we measure how much an original
face is different from its anonymized version. By using
the CASIA-WebFace dataset [36], a Siamese network based
on the inception Resnet [37] is trained to evaluate the
de-identification performance. By using the trained network,
we obtain the standard recall-at-1 (Recall@1) metric for
re-identification [12]. This metric is the ratio of samples
whose nearest neighbor is from the same class, and takes
values between 0 and 100. The closer the metric value is to 0,
the more complete de-identification. In addition, we show the
facial expression comparison, which verifies how well our
proposed scheme and a state-of-the-art (SOTA) preserve the
facial expressions of original images.

For each dataset, Table 2 shows the Recall@1 value of our
proposed scheme and the SOTA CIAGAN method. With a
recall of 2 − 3.5 %, our proposed anonymization algorithm
severely degrades the identification performance. In addition,
with a performance difference of only 1.5 %, the proposed

FIGURE 4. Facial expression comparison of our proposed scheme and the
SOTA CIAGAN.

FIGURE 5. Feature points extracted by ORB-SLAM2 from an original video
frame and our anonymized version obtained by the proposed scheme.

method is competitive with the SOTA CIAGAN method.
Fig. 4 shows the facial expression comparison of our pro-
posed scheme and the SOTACIAGAN. The proposed scheme
using semantic images can better preserve the facial expres-
sions of original images than CIAGAN using landscape fea-
tures. This is because semantic images contain more detailed
shapes of facial components than landscape features, and thus
they can contain more information about facial expressions
than landscape features.

As a result, our anonymization algorithm can indeed make
an anonymized face appear different from the original face,
and thus the generated images are almost unrecognizable by
the famous Siamese-based identification system. In addition,
by using semantic images, the proposed scheme can better
retain facial expressions with limited de-identification per-
formance reduction. In the case of a patrol robot scenario,
it is also important to accurately identify facial expressions in
order to fully understand a person’s situation. Hence, we can
confirm that the proposed scheme is a promising solution
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FIGURE 6. Video frames with varying sizes of a face, taken by the developed UAV system.

FIGURE 7. Feature points extracted by ORB-SLAM2 from the same videos in Fig. 6.

TABLE 3. Products for the customized UAV system.

for the patrol robot scenario that needs to accurately grasp
a human’s situation while protecting individual privacy.

C. EVALUATION OF FACE-ANONYMIZING ALGORITHM IN
REAL-WORLD ENVIRONMENTS
In this subsection, we investigate the performance of our pro-
posed face-anonymizing algorithm under static and dynamic
environments. The dynamic scenario is the UAV scenario
where the UAV records a person, which is our target scenario
while a static scenario is that a person is sitting in front of the
desk. In addition, we also discuss the impact of our proposal
on vision-based robot perception, ORB-SLAM2. Through
both real-world scenarios, we show that our technique can
work well in a variety of environments.

1) STATIC ENVIRONMENT: DESK SCENARIO
Fig. 5 presents frameswith SLAM’s features that are obtained
via ORB-SLAM2. In the resultant images, green boxes are

feature points extracted by ORB-SLAM2. The feature points
indicate corners of objects in an image.

Fig. 5 shows the detected feature points of an original video
frame and our anonymized version obtained by the proposed
scheme, respectively. The extracted feature points of our
anonymized frame are almost the same as those of the original
frame. In addition, it is evident from the figure that the face
is also anonymized well by the proposed scheme. From the
experiments, it is confirmed that our anonymization scheme
is designed not to degrade UAVs’ perception performance
while preserving privacy of the people in the video.

2) DYNAMIC ENVIRONMENT: UAV SCENARIO
We have built a customized UAV system with a ZED stereo
camera. The products selected for the UAV system are sum-
marized in Table 3.

Fig. 6 shows snapshots taken by our UAV system. The
snapshots in the first and second rows are original images and
their corresponding anonymized versions, respectively. The
UAV is hovering in our laboratory, and a person is walking
in front of the UAV. From this experiment, we can confirm
that our system well anonymizes a face with varying size.
Fig. 7 presents the example of SLAM with an original and
anonymized videos. As shown by the results, feature points
are well extracted for various sizes of the face also with
the anonymized videos obtained by the proposed scheme.
Finally, a video example of ORB-SLAM2 by our developed
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privacy-preserving UAV system can be found in the following
link: https://youtu.be/8S5jikJQltc.

V. CONCLUSION
To protect the privacy of people in the recorded video,
we have proposed a privacy-preserving UAV system with
deep-learning-based face anonymization. The proposed
face-anonymizing neural networks generate human faces
based on semantic images without observing the pixels
of original faces. The generated faces are totally different
from the original faces, but preserve the original seman-
tic information and facial expressions. Hence, in the pro-
posed privacy-preserving UAV system, the trained neural
networks transform all original faces in every snapshot to
different faces which are not in any dataset used. Privacy
of the people in every snapshot can be fundamentally pro-
tected. Moreover, the proposed UAV system can preserve
the vision-based UAV’s perception performance even with
anonymized videos. Since the proposed face anonymization
utilizes semantic images of faces, we expect that the proposed
privacy-preserving UAV system can be simply applied to the
autonomous driving techniques using semantic images for
recognizing objects around cars and UAVs.

REFERENCES
[1] D. Whiter. (2015). Kentucky Man Arrested for Shooting Down a Drone

Over His Property. [Online]. Available: https://time.com/3977166/drone-
shooting-down-kentucky/

[2] S. Meyer. (2018). Eye in the Sky—Drone Surveillance and Privacy.
[Online]. Available: https://www.cpomagazine.com/data-privacy/eye-in-
the-sky-drone-surveillance-and-privacy/

[3] J. Littman. (2018). 7 Sightings That Prove the Robot Invasion is Already
Here. [Online]. Available: https://www.bisnow.com/national/news/
technology/7-incidents-that-prove-% the-robot-invasion-is-already-here-
85607/?utm_source=CopyShare&utm_medium=B% rowser

[4] E. Zeng, S. Mare, and F. Roesner, ‘‘End user security and privacy concerns
with smart Homes,’’ in Proc. 13th Symp. Usable Privacy Secur., 2017,
pp. 65–80.

[5] M. S. Ryoo, K. Kim, and H. J. Yang, ‘‘Extreme low resolution activ-
ity recognition with multi-siamese embedding learning,’’ in Proc. 32nd
AAAI Conf. Artif. Intell. (AAAI), New Orleans, LA, USA, Feb. 2018,
pp. 7315–7322.

[6] M. S. Ryoo, B. Rothrock, C. Fleming, and H. J. Yang, ‘‘Privacy-
preserving human activity recognition from extreme low resolution,’’ in
Proc. 31st AAAI Conf. Artif. Intell., San Francisco, CA, USA, Feb. 2017,
pp. 4255–4262.

[7] M. U. Kim, H. Lee, H. J. Yang, and M. S. Ryoo, ‘‘Privacy-preserving
robot vision with anonymized faces by extreme low resolution,’’ in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Nov. 2019, pp. 462–467.

[8] Z. Ren, Y. J. Lee, and M. S. Ryoo, ‘‘Learning to anonymize faces for
privacy preserving action detection,’’ in Proc. Eur. Conf. Comput. Vis.
(ECCV), Sep. 2018, pp. 620–636.

[9] F. Juefei-Xu, R. Wang, Y. Huang, Q. Guo, L. Ma, and Y. Liu, ‘‘Coun-
tering malicious DeepFakes: Survey, battleground, and horizon,’’ 2021,
arXiv:2103.00218. [Online]. Available: https://arxiv.org/abs/2103.00218

[10] R. Templeman,M. Korayem, D. Crandall, and A. Kapadia, ‘‘PlaceAvoider:
Steering first-person cameras away from sensitive spaces,’’ in Proc. Netw.
Distrib. Syst. Secur. Symp., 2014, pp. 23–26.

[11] O. Gafni, L. Wolf, and Y. Taigman, ‘‘Live face de-identification in
video,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019,
pp. 9377–9386, doi: 10.1109/ICCV.2019.00947.

[12] M. Maximov, I. Elezi, and L. Leal-Taixe, ‘‘CIAGAN: Conditional identity
anonymization generative adversarial networks,’’ inProc. IEEE/CVFConf.
Comput. Vis. Pattern Recognit. (CVPR), Seattle, WA, USA, Jun. 2020,
pp. 5446–5455, doi: 10.1109/CVPR42600.2020.00549.

[13] Q. Sun, L. Ma, S. J. Oh, L. V. Gool, B. Schiele, and M. Fritz,
‘‘Natural and effective obfuscation by head inpainting,’’ in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Salt Lake
City, UT, USA, Jun. 2018, pp. 5050–5059. [Online]. Available:
https://openaccess.thecvf.com/content_cvpr_2018/html/Sun_Natural_
and% _Effective_CVPR_2018_paper.html

[14] M. Fredrikson, S. Jha, and T. Ristenpart, ‘‘Model inversion attacks that
exploit confidence information and basic countermeasures,’’ in Proc.
22nd ACM SIGSAC Conf. Comput. Commun. Secur., I. Ray, N. Li, and
C. Kruegel, Eds. Denver, CO, USA, Oct. 2015, pp. 1322–1333.

[15] M. Gong, Y. Xie, K. Pan, K. Feng, and A. K. Qin, ‘‘A survey on differ-
entially private machine learning [review article],’’ IEEE Comput. Intell.
Mag., vol. 15, no. 2, pp. 49–64, May 2020.

[16] J. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, ‘‘Generative adversarial nets,’’ in
Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 2672–2680.

[17] X.Huang,M.-Y. Liu, S. Belongie, and J. Kautz, ‘‘Multimodal unsupervised
image-to-image translation,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV),
Sep. 2018, pp. 172–189.

[18] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, ‘‘Image-to-image translation
with conditional adversarial networks,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 1125–1134.

[19] L. Karacan, Z. Akata, A. Erdem, and E. Erdem, ‘‘Learning to generate
images of outdoor scenes from attributes and semantic layouts,’’ 2016,
arXiv:1612.00215. [Online]. Available: https://arxiv.org/abs/1612.00215

[20] L. Karacan, Z. Akata, A. Erdem, and E. Erdem, ‘‘Manipulating attributes
of natural scenes via hallucination,’’ 2018, arXiv:1808.07413. [Online].
Available: https://arxiv.org/abs/1808.07413

[21] M.-Y. Liu, T. Breuel, and J. Kautz, ‘‘Unsupervised image-to-image transla-
tion networks,’’ inProc. Adv. Neural Inf. Process. Syst., 2017, pp. 700–708.

[22] B. Zhao, L. Meng, W. Yin, and L. Sigal, ‘‘Image generation from lay-
out,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2019, pp. 8584–8593.

[23] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, ‘‘Unpaired image-to-image
translation using cycle-consistent adversarial networks,’’ inProc. IEEE Int.
Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2223–2232.

[24] J.-Y. Zhu, R. Zhang, D. Pathak, T. Darrell, and A. A. Efros, ‘‘Toward
multimodal image-to-image translation,’’ inProc. Adv. Neural Inf. Process.
Syst., 2017, pp. 465–476.

[25] T. Park, M.-Y. Liu, T.-C. Wang, and J.-Y. Zhu, ‘‘Semantic image synthesis
with spatially-adaptive normalization,’’ in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 2337–2346.

[26] R. Mur-Artal and J. D. Tardós, ‘‘ORB-SLAM2: An open-source SLAM
system for monocular, stereo and RGB-D cameras,’’ IEEE Trans. Robot.,
vol. 33, no. 5, pp. 1255–1262, Jun. 2017.

[27] J. Johnson, A. Alahi, and L. Fei-Fei, ‘‘Perceptual losses for real-time style
transfer and super-resolution,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV),
2016, pp. 694–711.

[28] C. Li andM.Wand, ‘‘Precomputed real-time texture synthesis withMarko-
vian generative adversarial networks,’’ in Proc. Eur. Conf. Comput. Vis.
(ECCV), 2016, pp. 702–716.

[29] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta,
A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, ‘‘Photo-realistic single
image super-resolution using a generative adversarial network,’’ 2016,
arXiv:1609.04802. [Online]. Available: https://arxiv.org/abs/1609.04802

[30] C.-H. Lee, Z. Liu, L. Wu, and P. Luo, ‘‘Maskgan: Towards diverse
and interactive facial image manipulation,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Seattle, WA, USA, Jun. 2020,
pp. 5548–5557.

[31] S. Zhang, X. Zhu, Z. Lei, H. Shi, X. Wang, and S. Z. Li, ‘‘Faceboxes: A
CPU real-time face detector with high accuracy,’’ in Proc. IEEE Int. Joint
Conf. Biometrics (IJCB), Oct. 2017, pp. 1–9.

[32] V. Le, J. Brandt, Z. Lin, L. D. Bourdev, and T. S. Huang, ‘‘Interactive
facial feature localization,’’ in Proc. 12th Eur. Conf. Comput. Vis. (ECCV),
vol. 7574, 2012, pp. 679–692.

[33] H.-W. Ng and S. Winkler, ‘‘A data-driven approach to cleaning large face
datasets,’’ in Proc. IEEE Int. Conf. Image Process. (ICIP), Oct. 2014,
pp. 343–347.

[34] H. Lee, M. U. Kim, Y. Kim, H. Lyu, and H. Jong Yang, ‘‘Privacy-
protection drone patrol system based on face anonymization,’’ 2020,
arXiv:2005.14390. [Online]. Available: https://arxiv.org/abs/2005.14390

[35] K. Gregory, R. Zemel, and R. Salakhutdinov, ‘‘Siamese neural networks
for one-shot image recognition,’’ in Proc. Int. Conf. Mach. Learn. (ICML)
Deep Learn. Workshop, vol. 2, 2015.

VOLUME 9, 2021 132661

http://dx.doi.org/10.1109/ICCV.2019.00947
http://dx.doi.org/10.1109/CVPR42600.2020.00549


H. Lee et al.: Development of Privacy-Preserving UAV System With Deep Learning-Based Face Anonymization

[36] S. L. D. Yi, Z. Lei, and S. Z. Li, ‘‘Learning face represen-
tation from scratch,’’ 2014, arXiv:1411.7923. [Online]. Available:
https://arxiv.org/abs/1411.7923

[37] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolutions,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 1–9.

HARIM LEE received the B.S. degree in electrical
engineering fromKyungpook National University,
Daegu, SouthKorea, in 2013, theM.S. degree in IT
convergence engineering from Pohang University
of Science and Technology (POSTECH), Pohang,
South Korea, in 2015, and the Ph.D. degree
from the School of Electrical and Computer
Engineering, Ulsan National Institute of Science
and Technology (UNIST), Ulsan, South Korea,
in August 2020. From September 2020 to

August 2021, he worked as a Postdoctoral Researcher with the Depart-
ment of Electrical Engineering, POSTECH. Since September 2021, he has
been an Assistant Professor with the School of Electronic Engineering,
Kumoh National Institute of Technology, Gumi, Gyungbuk, South Korea.
His research interests include autonomous UAV systems, privacy-protecting
deep learning, PHY & MAC for the next generation mobile networks, and
embedded systems and robotics, such as licensed assisted access in LTE
(LTE-LAA), wireless networking with deep neural networks, and radar
systems. He received Kwanjeong Educational Foundation Fellowship, from
2013 to 2014.

MYEUNG UN KIM received the B.S. degree
in computer science engineering from Ulsan
National Institute of Science and Technology
(UNIST), Ulsan, South Korea, in 2015, and the
combined M.S. and Ph.D. degree in electrical
engineering from UNIST, in August 2020. From
August 2019 to February 2020, she studied as a
Visiting Student with the School of Computer Sci-
ence, Carnegie Mellon University, Pittsburgh, PA,
USA, supported by the Institute for Information

and Communication Technology Planning and Evaluation (IITP), Seoul,
South Korea. From May 2020 to June 2020, she worked as a Postdoctoral
Researcher at Korea Institute of Science and Technology (KIST), Seoul.
Since July 2020, she has been a Researcher at Korea Aerospace Research
Institute (KARI), Daejeon, South Korea. Her research interests include robot
vision and deep learning.

YEONGJUN KIM received the B.S. degree in elec-
trical engineering from Ulsan National Institute
of Science and Technology (UNIST), Ulsan,
South Korea, in 2016, where he is currently pur-
suing the combined M.S. and Ph.D. degree with
the School of Electrical and Computer Engi-
neering. His research interests include software
defined radio, wireless networking with deep
neural networks, and UAV systems.

HYEONSU LYU received the B.S. degree in
mathematical science and the M.S. degree in
electrical engineering from Ulsan National Insti-
tute of Science and Technology (UNIST), Ulsan,
South Korea, in 2018 and 2020, respectively. He
has been a Ph.D. student in the Department of
Electrical Engineering, POSTECH, since March
2021. His research interests include intelligent
UAV system and optimization theory.

HYUN JONG YANG (Member, IEEE) received
the B.S., M.S., and Ph.D. degrees in electri-
cal engineering from Korea Advanced Institute
of Science and Technology (KAIST), Daejeon,
Republic of Korea, in 2004, 2006, and 2010,
respectively. From August 2010 to August 2011,
he was a Research Fellow at Korea Institute
Ocean Science Technology (KIOST), Daejoen.
From October 2011 to October 2012, he worked
as a Postdoctoral Researcher with the Electrical

Engineering Department, Stanford University, Stanford, CA, USA. From
October 2012 to August 2013, he was a Staff II Systems Design Engi-
neer at Broadcom Corporation, Sunnyvale, CA, USA, where he developed
physical-layer algorithms for LTE-A MIMO receivers. In addition, he was
a delegate of Broadcom in 3GPP standard meetings for RAN1 Rel-12
technologies. From September 2013 to July 2020, he was an Assistant/an
Associate Professor with the School of Electrical and Computer Engineering,
UNIST, Ulsan, South Korea. Since July 2020, he has been an Associate
Professor with the Department of Electrical Engineering, Pohang University
of Science and Technology (POSTECH), Pohang, South Korea. His research
interests include privacy-preserving robot systems, deep-learning theory and
algorithms, and signal processing.

132662 VOLUME 9, 2021


