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graphene/polymer bilayer.44 GET sensors were successfully
applied for electrophysiology, skin hydration, and skin tempera-
ture measurements.44 However, since the previous GET sensors
does not consist of any encapsulation over graphene, wherever it
touches the skin, the average signal will be picked up. This induces
limitation in application of GET for EOG in which the non-localized
measurement is not desirable. We therefore have to modify the
“wet transfer, dry patterning” process to achieve GET EOG sensors.

EOG has various applications including brain and sleep studies,
assistive technology, sleep and mental disorder diagnosis, and
HMIs.45–49 EOG along with electroencephalogram (EEG) and
electromyogram (EMG) are used for patients suffering from neural
system disorders such as progressive neuro-motor degenerative
diseases. However, compared with EEG and EMG, EOG has two
major advantages. First, analysis of the EOG signals is less complex
because the relationship between EOG and eye movement is
linear within a certain range, and the waveform is easy to detect.
Second, EOG signal is more stable.50,51 Conventionally, silver/silver
chloride (Ag/AgCl) gel electrodes are used for EOG measurement
and even currently, most EOG measurements are measured using
commercially available dry or wet silver/silver chloride electro-
des.45,49,52–54 For example, Ubeda et al. measured EOG using dry
silver–silver chloride electrodes and used the signal for controlling
a robotic arm.55 In other works, EOG sensors were mounted on
goggles for wearability.47,56–58 Vehkaoja et al. engineered silver-
coated fibers as flexible EOG sensors, but they should be
moisturized with conductive saline solution to enable recording.59

Although these electrodes are readily available and affordable,
they are thick, stiff, uncomfortable to delicate eye skin, and
noticeable on face. Wet electrodes are known for low
electrode–skin interface impedance and low susceptibility to
motion but gels are irritating to skin and dry out by time resulting

in degrading the quality of the recorded signal. Dry electrodes are
better option for long-term measurements but they suffer from
high electrode–skin interface impedance due to non-conformable
contact to skin and they are susceptible to motion artifact.60

Ultrathin and stretchable tattoo-like EOG sensors based on
filamentary serpentine gold ribbons on polymer substrate have
been reported.22 But gold-based electrodes and interconnects are
very noticeable on prominent area such as human face. In other
reported work, EOG sensor combined with other sensors and
circuit components were integrated in a patch with the thickness
of several millimeter.61 Such a patch is not only obvious, but also
obstructive to facial expression. The GET EOG sensor system
presented here has a thickness of 350 nm, optical transparency of
85% in the visible regime (wavelength from 400 to 800 nm), and
stretchability up to 50%, which is truly mechanically and optically
imperceptible EOG sensor. We found that the GET EOG sensors are
capable of detecting eye movement with a resolution of about 4°.
Connecting the imperceptible GET EOG sensors to an OpenBCI
Cyton board capable of wireless communication, we demonstrate
real-time wireless quadcopter control through eye movements.

RESULTS
GET EOG sensors
The GET EOG sensor was fabricated out of large area graphene
(Gr) grown on copper foil (Fig. 1a, b). Poly(methyl methacrylate)
(PMMA) precursor was first coated and cured over the graphene
to form a 350 nm film of PMMA (Fig. 1c). After etching away the
copper (Fig. 1d), the Gr/PMMA bilayer was rinsed by deionized (DI)
water and transferred onto a piece of commercial tattoo paper
(Silhouette) with graphene facing up (Fig. 1e). To record EOG
signals and interpret eye movement in the up, down, left, and

Fig. 1 Schematics of the fabrication process for imperceptible GET EOG sensor system. a Growing graphene on copper foil using atmospheric
pressure chemical vapor deposition (APCVD). b As-grown graphene on copper foil. c Spin coating and curing 350-nm-thick PMMA on
graphene. d Copper etching and rinsing graphene/PMMA (Gr/PMMA) with DI water. e Transferring Gr/PMMA bilayer on a tattoo paper with
graphene facing up. f Covering Gr/PMMA by a shadow mask. g Spray coating liquid bandage over the exposed interconnect area. h Removing
shadow mask and carving Gr/PMMA into serpentine-shaped patterns using a mechanical cutter plotter. i Pealing off extraneous Gr/PMMA. j
Transferring GET EOG sensor on skin surface just like wearing a temporary tattoo
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right directions, a minimum of four EOG sensors are needed
around the eyes. Each GET EOG sensor consists of three parts, (1) a
disk-shaped electrode where graphene is exposed to make direct
contact with the skin to capture the EOG signals, (2) an exposed
rectangular graphene terminal pad to connect to flexible gold
connector, and (3) an encapsulated serpentine-shaped intercon-
nect linking parts (1) and (2). To encapsulate the serpentine
interconnects, we applied a shadow mask made by a desktop
mechanical cutter plotter (Silhouette) to cover the electrode and
the terminal pad (Fig. 1f), followed by spray coating liquid
bandage (Nexcare) to cover the exposed interconnects (Fig. 1g).
Within 10–15 s, the liquid bandage solidified into an insulating
polymeric layer of roughly 2 µm thickness (Fig. S2). Encapsulating
interconnects allow for localized EOG measurement from the
exposed disk-shaped electrodes right next to the eyes. After the
encapsulation, we removed the shadow mask and used the same
mechanical cutter plotter (Silhouette) to carve Gr/PMMA with pre-
designed patterns (Fig. 1h). To show the necessity of encapsula-
tion layer on interconnect for localized EOG measurements, we
placed two electrodes on the top of an eyebrow of a human
subject. One was placed vertically above an eyebrow (location B in
Fig. S1a) and the other one at the inclined top, where GET
interconnect normally passes through (location A in Fig. S1a).
These electrodes work as two separate positive terminals of two
channels of our recording system. We then placed another
electrode at the bottom of the same eye (Fig. S1a), which acts as a
shared electrode connected to the negative terminal of both
channels. Then, we measured EOG signals simultaneously using
both channels during eyes moving up and down. If EOG signal is
naturally localized, there should be no recorded signal using the
electrode placed in location A. However, clearly there is the
nonzero EOG signal measured at location A as it is shown in Fig.
S1b. The EOG recorded at location A is in phase with but has
smaller amplitude than that measured at location B. Therefore,
covering interconnects with encapsulation layer is necessary for
localized EOG measurements. The GET EOG sensors were
designed in the serpentine-shaped ribbons to enable stretch-
ability. The stretchability of the GET was measured in our previous
to be about 50%.44 In the last step of EOG GET fabrication,
extraneous Gr/PMMA was carefully peeled off, leaving GET EOG
sensors on the tattoo paper (Fig. 1i). A layer of water-soluble
adhesive comes with the tattoo paper can facilitate the release of
GET EOG. To laminate GET EOG around the eyes, the tattoo paper
was placed on skin with GET EOG facing the skin, followed by

wetting the backside of the tattoo paper and then carefully
peeling the paper off the skin, leaving open-mesh GET EOG
sensors on the skin (Fig. 1j and Supplementary Video VS1).

The GET EOG sensors formed steady contact with human skin
without any tape or adhesive (Fig. S3), as predicted by our
previous analytical models.32 Photos of GET EOG applied around
eyes under different facial expressions are displayed in Fig. 2a–d. It
is evident that the GET is hardly visible in all cases. Under extreme
facial expressions, neither delamination nor cracking of the GET
EOG was observed and the subject did not perceive the GET
sensors at all. To study the effect of extreme facial expression on
sensor electrical characteristics, the end-to-end electrical resis-
tance of one laminated electrode around the eye was measured
before and after extreme face expressions. We found negligible
change (<0.5%) after a short period (2 min) of extreme facial
expressions. However, after an hour of speaking and abundant
facial expressions, including laughing, frowning, sour face, and
surprise, the electrical resistance increased by 4%.

EOG measurement
EOG reflects the potential difference between the retina and the
cornea of human eyes, which can be modeled as a dipole with a
positive potential on the cornea and a negative potential on the
retina. EOG signals can be measured by placing electrodes around
the eyes as illustrated by Fig. 2e. Two GET sensors were placed
next to the outer corner of each eye for the measurement of the
lateral motion of the eyes. Another pair of GET sensors were
placed at the top (above eyebrow) and bottom of one of the eyes
to measure the vertical eye movement. Reference electrode was a
gel electrode placed over the mastoid bone behind the right ear.
A GET sensor located at the corner of the left eye was connected
to the positive terminal of one channel of our recording system
(OpenBCI) and the other one located at the corner of right eye was
connected to the negative terminal of the same channel (Fig. 2e).
This channel was used to record horizontal (i.e., left and right) eye
movements. The other pair of electrodes located above the
eyebrow and below the eye (Fig. 2e) was connected to another
channel of OpenBCI system for recording vertical (i.e., up and
down) eye movements. Figure 2f is a schematic drawing of
representative EOG signals for eye movement in different
directions. When the eyes move from the center toward one of
the electrodes, a positive potential from the cornea is captured by
the electrode closest to it and a negative potential of the retina is
captured by the opposite electrode. This means if the eyes move

Fig. 2 Imperceptible GET EOG sensors worn around human eyes. a Without facial expression. b Sour face. c Laughing. d Frowning. No
delamination nor crack was observed in GET after extreme facial expressions. e A schematic for the locations of GET EOG sensors laminated on
face. A Ag/AgCl gel electrode was placed behind the right ear as the reference electrode. f A schematic of representative EOG signals
corresponding to different types of eye movement and blinking
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to the left, the pair of horizontal electrodes would be able to
capture a positive potential, and a negative potential appears by
moving the eyes toward the right. Eyes moving upward produces
a positive potential and looking downward results in a negative
potential; blinks would be recorded as sharp positive peaks. The
amplitude of EOG signals varies from case to case and is reported
to be between 5 and 20 µV per degree of eye movement and in
the low-frequency range up to 30 Hz.56 The cause of the blink
signal is different from the EOG signal. EOG originates from
potential difference between retina and cornea but blinks are due
to activity of the levator palpe-brae superioris and the orbicularis
oculi muscles located around the eyes. Blinks that start with upper
eyelid moving downward followed by the orbicularis oculi muscle
activity has the duration of 300–550 ms.52,62

To acquire EOG, GET sensors were connected to an OpenBCI
Cyton Biosensing board, which can perform data acquisition
(DAQ) at a sampling rate of 250 Hz and then wirelessly transfers
EOG data to a laptop for signal processing and quadcopter
control. Figure 3a shows a schematic of the complete HRI system.
Flexible gold/polyethylene terephthalate (Au/PET) ribbons were
fabricated by mechanically cutting and patterning commercially
available Au/PET sheets (Rotex Tech.) to connect GET EOG sensors
to thin lead wires fed into the OpenBCI (Figs. S4a–S4e). To reduce
mechanical motion, the lead wires were fixed around ears using
two earbud hooks (Fig. S4f). Figure 3b–d shows pictures of the
wireless EOG sensor system worn by a subject. To guide the eye
movement, we placed a signaling board with five individually
controllable light-emitting diodes (LEDs) in front of the subject
(Fig. S5). The distance from the board was adjusted to provide 45°
of eyeball movement from center toward every direction (up,
down, left, and right). To measure the EOG of a specific eye
movement, the subject was asked to move his eyes toward the
only LED that was on at a given time. The EOG signals recorded by
GET EOG sensors during eye movement are shown in Fig. 3e, f.
The amplitude of EOG signal recorded using GET was 17.7 ± 1.5 µV
per degree in the horizontal direction and 12.8 ± 0.5 µV in the
vertical direction, which are consistent with those reported in

literature.56 We have observed clear voltage steps for successive
eye movement of 4° in both horizontal and vertical directions as
shown in supplementary Fig. S6.

Human–robot interface demonstration
The EOG signal during eye movement was utilized for
human–robot interface. The flowchart of MATLAB coding used
for EOG signal processing and classification of EOG signals for
quadcopter control is shown in Fig. 4a. Prior to classification,
baseline drift removal and data averaging were implemented. The
baseline drift removal process involves averaging a sliding
window of 250 samples to predict the drift, then removing that
average value from the next data point of the window.63 To
smooth out the signal, every ten samples were averaged. Rises
and falls in the electric potential representing the right/left and
up/down movement of the eyes can then be easily detected. Five
separate thresholds were used in order to discretely detect blink
(500 µV), right (400 µV), left (−400 µV), up (400 µV), and down
(−400 µV) movement. The blink signals with amplitude higher
than 500 µV were registered as Stay command. EOG signals due to
up, down, left, and right eye movement were registered as
commands to be sent to the quadcopter (Qualcomm Snapdragon)
if their magnitudes were between 400 and 500 µV. During real-
time quadcopter control, the maximum angle of eye movements
in the vertical direction was about 70° and in the horizontal
direction about 50°, as convenient for the human subject. The
classification was performed by first computing the number of
samples passing each unique threshold. The threshold met most
frequently was given a unique label corresponding to that
threshold. The label that occurred most often in a set of 1000
labels was chosen and transmitted to the robot-operating system
(ROS). The label was converted to a command, and the command
prompts the corresponding change in the position of the
quadcopter. Figure 4b–f displays photos of a subject controlling
a quadcopter by looking up, down, left, and right. The quadcopter
followed the eye movement to fly up, down, left, and right. The

Fig. 3 Illustrations of GET EOG system worn by a subject and actual EOG signals recorded by GET EOG sensors. a A schematic of the GET EOG
sensors connected to an OpenBCI board, which performs DAQ and wirelessly transmits EOG data to the laptop. The laptop performs data
classification and wirelessly sends commands to the quadcopter. Photos of b front view, c side view and, d back view of the GET EOG sensor
system worn on a subject. EOG signals recorded by GET sensors during the following repeated eye movement: e looking straight, right, and
left each for few seconds, f looking straight, down, and up each for few seconds, g repeated intentional blinks
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flying distance of the quadcopter was pre-set in the ROS to be
independent from the angle of eye movements. We only used the
EOG signal to control the direction of the flight. Supplementary
Video VS2 offers a real-time example of how the GET EOG sensor is
used for HRI. We found the accuracy of our classifier to be 92 ± 2%.

DISCUSSION
The results presented here is the proof of concept for ultrathin,
ultrasoft, imperceptible GET sensors for recording EOG from the
face and their potential application in HRI. The wearability of the
GET sensor is considerably higher, and the manufacturing cost is
significantly lower than existing e-tattoos with similar function-
ality. The primary consequence of the low thickness of GET is the

conformal contact with skin texture and as a result, the improved
SNR and decreased susceptibility to motion. Our previous work
reported that the SNR of the signal measured recorded by the GET
(15.22 dB) is slightly higher than the SNR of the signal recorded by
commercial gel electrodes (11 dB).44 Flexible connectors and DAQ
systems used in this work could be further improved. For example,
using transparent conductive materials instead of gold/PET as the
flexible connectors can further reduce the visibility of the system.
Replacing commercially available OpenBCI board with customized,
miniature-printed circuit board (PCB) that can directly commu-
nicate with the quadcopter will make the system even more
mobile. Other 2D materials can potentially be integrated into the
current GET platform for multimodal sensing, and on-tattoo signal
amplification/processing.

Fig. 4 Flowchart of the human–robot interface (HRI) used to control the quadcopter via eyeball movement. The EOG signals captured by
sensors are sampled and transmitted to a laptop by the OpenBCI board. The raw data are first averaged and then passed onto the threshold
detector to determine the eyeball movement direction and issues a command accordingly. From the command and the current location
obtained from the motion capture system, the path planner calculates and sends a sequence of waypoints that the quadcopter needs to
follow to the on-board position controller, which in turn sends attitude commands to the attitude controller (both controllers are part of the
PX4 stack). The attitude controller then tilts the quadcopter so that it moves to the target waypoint which is then detected by Vicon motion
capture system movement. b Quadcopter stayed stationary if subject did not move his eyes or if he blinked, c flew upward by looking up, d
down by looking down, e right by looking toward the right and, f left by looking to the left. The insets in Fig. 4b to 4f show magnified photos
of the human subjects eyes looking in different directions to control the flying of the quadcopter.
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METHODS
Graphene growth and fabrication: Graphene was grown using atmospheric
pressure chemical vapor deposition system (APCVD) on copper foil (OAK-
MITSUI, 99.4%). The growth was done at ~1030 °C by flowing hydrogen at
10 sccm for 15 min, followed by flowing methane at 2 sccm and argon with
300 sccm for 10 min. Poly(methyl methacrylate) (PMMA 950 A4, MICRO-
CHEM) was spin-coated on the graphene at 3000 rpm and cured at 180 °C
for 2 min. After etching the copper using copper etchant (Transene
Company INC.), Gr/PMMA was transferred on Silhouette tattoo paper.
Using shadow mask, some area of Gr/PMMA was covered and then a
Nexcard liquid bandage was sprayed on graphene (interconnect were
formed from the area of graphene covered with liquid bandage). After
liquid bandage was dried out shadow masks were removed. Then EOG GET
was cut out of Gr/PMMA using Silhouette Cameo mechanical cutter plotter
into pre-designed stretchable patterns. The extraneous area was then
peeled off manually, leaving GET EOG sensor on the tattoo paper.

All experiments were conducted under approval from the Institutional
Review Board at the University of Texas at Austin (protocol number: 2015-
05-0024)

Data availability
All relevant data are available upon request.

Data acquisition system: OpenBCI’s Cyton Biosensing Board consists of
an 8-channel neural interface, a 32 bit-processor, and a Bluetooth
(RFduino) module. The board houses a PIC32MX250F128B microcontroller
at the core, and the ADS1299 24-bit analog-to-digital converter with eight
differential input channels. OpenBCI Cyton is actually one Python node in a
larger collection of Python nodes, which work together in an ROS-based
system.
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