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Comparison of heavy-ion transport simulations: Mean-field dynamics in a box
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Within the transport model evaluation project (TMEP) of simulations for heavy-ion collisions, the mean-field
response is examined here. Specifically, zero-sound propagation is considered for neutron-proton symmetric
matter enclosed in a periodic box, at zero temperature and around normal density. The results of several transport
codes belonging to two families (BUU-like and QMD-like) are compared among each other and to exact
calculations. For BUU-like codes, employing the test particle method, the results depend on the combination
of the number of test particles and the spread of the profile functions that weight integration over space.
These parameters can be properly adapted to give a good reproduction of the analytical zero-sound features.
QMD-like codes, using molecular dynamics methods, are characterized by large damping effects, attributable to
the fluctuations inherent in their phase-space representation. Moreover, for a given nuclear effective interaction,
they generally lead to slower density oscillations, as compared to BUU-like codes. The latter problem is mitigated
in the more recent lattice formulation of some of the QMD codes. The significance of these results for the
description of real heavy-ion collisions is discussed.

DOI: 10.1103/PhysRevC.104.024603

I. INTRODUCTION

A large variety of phenomena, ranging from the structure
of nuclei and their decay modes up to the life and the proper-
ties of massive stars, are governed by the nuclear equation of
state (EoS), thus giving great importance to dedicated studies.
In particular, the understanding of the properties of exotic nu-
clei, as well as neutron stars and supernova dynamics, entails
the knowledge of the behavior of nuclear symmetry energy,
on which several investigations are concentrating nowadays
[1–9].

In the laboratory, heavy-ion collisions are the primary way
to investigate nuclear matter away from saturation conditions.
States of high density and excitation can be created on short
time scales. However, these are complex nonequilibrium pro-
cesses. The challenge is to connect nuclear matter states of
interest to the final observables, so that information on the EoS
can be extracted. Transport approaches are the main tool to
extract this information. Therefore, the reliability of transport
studies of heavy-ion collisions and the robustness of their
predictions is important in heavy-ion research.

It has recently become apparent that different conclusions
could be drawn from the same data by relying on transport
simulations, e.g., in the investigations of isospin equilibra-
tion in peripheral collisions (isospin diffusion) [10–15], or
in the interpretation of ratios of charged pions [16–21].
These discrepancies could naturally derive from the differ-
ent approximation schemes, adopted in the different transport
models, to deal with the quantum many-body problem or from
differences in various technical assumptions. Indeed, because
of the complexity of transport equations, and in particular of
their dimensionality, they are solved by simulations, which
requires the use of sophisticated algorithms that invoke statis-
tical sampling and finite phase-space resolutions. The impacts
of these numerical details on predictions and conclusions are
often difficult to discern. This situation led to the idea of
a systematic comparison and evaluation of transport codes
under controlled conditions, to eventually provide benchmark

calculations and thus to improve the ability to reach robust
conclusions from the comparison of transport simulations
with experimental data.

Previous studies along this direction were dedicated to
the comparison of transport model predictions for Au+Au
collisions [22,23]. The compared aspects mainly included the
stability of the initialized nuclei, the effectiveness of Pauli
blocking for the final states of nucleon-nucleon (NN) colli-
sions, and predicted flow observables. There were indications
that a large part of the observed differences in the predicted
reaction path and corresponding observables (such as col-
lective flows) resulted from differences in the initialization
of the systems and in the treatment of the collision integral
(mainly Pauli blocking effects). The mean-field dynamics also
seemed to play a role. However, the origins of the differences
were often difficult to pin down unambiguously, since various
effects interplay and propagate.

Significant progress in understanding the behavior of the
different transport codes was made with subsequent studies,
based on box calculations, i.e., simulations of nuclear matter
enclosed in a box with imposed periodic boundary conditions.
In particular, the box calculations have the advantage that
the different aspects of heavy-ion collisions can be isolated
and tested separately, e.g., the description of NN scattering
processes (i.e., two-body correlations) and the mean-field dy-
namics. Whereas features of the collision integral, such as
Pauli blocking effects and meson (pion) production, have been
the object of our recent studies [24,25], the investigation of the
mean-field dynamics is the aim of the present paper.

To test the mean-field dynamics in a box in this work, we
investigate a typical example of collective motion, namely
the zero-sound propagation, i.e., the mean-field propagation
of a disturbance of the single-particle distribution in nuclear
matter. We initialize a disturbance by setting up a standing
wave in density, and by assigning the momenta of the particles
randomly in the local Fermi sphere, as commonly done in
transport codes. This wave is then propagated by the Vlasov
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part of the different transport models using density functionals
that give identical EoS features, and the corresponding results
are compared with each other. This will allow us to see char-
acteristic differences between the different types of transport
codes, as well as the dependence on calculational parameters.

One should notice that, for box calculations, there are in
some cases exact limits available from kinetic theory or Lan-
dau theory, against which the performance of the codes can be
judged, instead of against each other.

However, in comparing the different codes against each
other and against any known limits, one should keep in
mind that (1) there are different families of transport theo-
ries: Boltzmann-Vlasov-type codes [usually referred to under
the name of Boltzmann-Uehling-Uhlenbeck (BUU)] and
molecular dynamics-type codes [usually quantum molecular
dynamics (QMD)]. The two families of codes start from dif-
ferent theoretical frameworks and/or different philosophies in
modeling heavy-ion collisions. Thus, one cannot expect that
they completely agree with each other; (2) basic differences
may be present between exact limits from kinetic theory and
simulations, implying that the exact limit cannot actually be
reached. These may lie, e.g., in unavoidable fluctuations in a
concrete simulation strategy. The effects of numerical fluctua-
tions were already explored in Ref. [24]. However, differences
between codes of the same type and differences with the exact
limits in many cases can suggest improvements of the codes.

While the zero-sound motion is here a specific example for
our investigation of transport codes, it is by itself an interest-
ing phenomenon, which we are able to study in detail. In the
limit of small amplitudes, exact results for the frequency can
be derived from Landau theory, where relativistic effects, or
more generally effects of the effective mass, can be studied.
We also note that mean-field studies have been devoted in
the past to investigate collective motion in finite nuclei, both
with semiclassical transport theories as here and with time-
dependent Hartree-Fock (TDHF) theory [26–30].

Since small amplitudes are not typical for a numerical
study appropriate to heavy ion collisions, we use a large am-
plitude of the initial perturbation. This then leads to nonlinear
effects due to the nonlinear terms in the force and to mode
mixing. Furthermore, the damping of the wave is an important
question, which here is not only due to Landau damping,
i.e., mode mixing, but also due to fluctuations that may arise
from the numerical resolution of the phase space. Thus, the
mean-field analysis presented in this work can be considered
as a valuable test also for the general case of the mean-field
dynamics involved in heavy-ion collisions at intermediate
energies, which is largely influenced by the emergence of
collective phenomena.

For the simulations presented in this work, we employed
the same main protocol as developed in the context of
Refs. [23–25]. Contributors of the participating codes per-
formed specified “homework” calculations. The resulting files
were sent to the writing group for evaluation and preparation
of publication. The results were then discussed in several
meetings (see, for instance, the NuSym series of conferences,
and in particular in Ref. [31]).

The article is organized as follows: a short description of
the two families of transport approaches is given in Sec. II, to

state the main differences between the approaches and clarify
the terminology. The homework specifications pertaining to
this paper are described in Sec. III. Analytical and reference
results relating to the present comparison are presented in
Secs. IV and V. The results of the comparison are described in
following three sections: In Sec. VI, we discuss the coordinate
space evolution, and questions of the global momentum and
energy distributions. We then explore the evolution in wave
number and frequency space via spatial and temporal Fourier
transforms, for selected codes in each of the two families in
Sec. VII, and for all codes in Sec. VIII. Finally, a discussion
of the results, conclusions and an outlook can be found in
Sec. IX.

The participating codes and their contributors are listed in
Table I. The major codes used presently in the interpretation
of heavy-ion collisions are represented, with nine of the BUU
type and five of the QMD type. The codes can be classified
according to their treatment of relativity: nonrelativistic codes,
codes with relativistic kinematics, and codes with relativis-
tic dynamics in a relativistic mean-field (RMF) formulation
(labeled “cov” in Table I). We note that the well-known anti-
symmetrized molecular dynamics (AMD) code [32,59] is not
included in the present comparison, since a box condition in
this code is not comparable to the treatment in the semiclassi-
cal codes.

II. TRANSPORT APPROACHES

The primary methodology for the dynamics of nuclear
collisions at Fermi/intermediate energy are semiclassical
transport theories, such as the Nordheim approach, in which
the Vlasov equation for the one-body phase space distribu-
tion, f (�r, �p; t ), is extended with a Pauli-blocked Boltzmann
collision term [51,52], which accounts for the average effect
of the two-body residual interaction. The thus resulting trans-
port equation, often called Boltzmann-Uehling-Uhlenbeck
(BUU) equation, contains two main ingredients: the self-
consistent mean-field potential and the two-body scattering
cross sections. In order to introduce fluctuations and further
(many-body) correlations in the treatment of the reaction
dynamics, a number of different avenues have been un-
dertaken, which can be differentiated into two classes (see
Refs. [9,53,54] for recent reviews). One is the class of molec-
ular dynamics (MD) models [55–61], while the other kind is
represented by stochastic extensions of mean-field approaches
of the BUU type [62–66].

A. BUU-like models

In BUU-like approaches, the time evolution of the one-
body phase space distribution function, f (�r, �p; t ), follows the
equation(

∂

∂t
+ �∇pε · �∇r − �∇rε · �∇p

)
f (�r, �p; t ) = Icoll(�r, �p; t ), (1)

where ε[ f ] is the single-particle energy, usually derived from
a density functional, and Icoll is the two-body collision in-
tegral, specified by an in-medium cross section dσ med/d�.
Fluctuations of the one-particle density, which should account
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TABLE I. The acronyms, code correspondents for the calculations shown in this paper, dynamical treatment (nonrelativistic, relativistic
kinematics, or covariant), (test) particle features and representative references of the nine BUU-type and five QMD-type codes participating in
the present comparison.

(�x)2 (fm2)a

Type Acronym Code correspondents Rel/Nonrel Particle profiles or l (fm)b Reference

BUU BUU-VMc S. Mallik nonrel triangle 1 [34]
DJBUU Y. Kim cov [1 − (|�r|/�x)2]3 6.25 [35]
GiBUU J. Weil cov Gaussian 1 [36]
IBUUd J. Xu rel triangle 1 [38]
LHV R. Wang rel triangle 2 [27,39]

pBUU P. Danielewicz cov trapezoid 0.92 [40]
RVUU Z. Zhang cov point 0 [21,41]

SMASH A. Sorensen cov triangle 2 [42]
SMF M. Colonna nonrel triangle 2 [43]

QMD ImQMDe Y. X. Zhang rel Gaussian 2 [44,61]
IQMD-BNU J. Su rel Gaussian 2 [46]
IQMD-IMPf Z. Q. Feng rel Gaussian 2 [47]

TuQMD D. Cozma rel Gaussian 2 [48]
UrQMD Y. J. Wang rel Gaussian 2 [49,50]

a�x is the width of the Gaussian wave packet as in Eq. (12).
bl is the half base for test particles with triangular or trapezoid profile. See Refs.[33,40] for more details.
cBUU code developed jointly at VECC and McGill.
dThere is also a new version of this code (IBUU-L) in the comparison [37], explained in Sec. II C.
eImQMD-CIAE in Ref. [23]. There exists also a lattice version of the code, ImQMD-L [45] see Sec. II C.
fAlso known as LQMD in literature.

for the effect of the neglected many-body correlations, can be
introduced by adding to the right-hand side (r.h.s.) of Eq. (1)
a stochastic term, representing the fluctuating part of the col-
lision integral [62–64]. This leads to the Boltzmann-Langevin
(BL) equation, in close analogy with the Langevin equation
for a Brownian motion.

In the present study, we focus on the mean-field propaga-
tion, thus we neglect the r.h.s. of Eq. (1) and any fluctuation
terms. It should be noticed that the BUU theory can more gen-
erally be formulated in a relativistic framework, and actually
most codes in this comparison use a relativistic formulation.
In the relativistic covariant approach, the nucleons are coupled
to momentum-independent scalar and vector fields.

Let us introduce the kinetic momentum p∗μ = pμ − Aμ

and the energy E∗ ≡ p∗0 =
√

�p∗2 + m∗2. Here Aμ represents
the vector field; the Dirac mass, m∗, is given by m∗ = M − �,
with � denoting the scalar field and M the nucleon mass.
The vector field depends on the baryon four-current jμ(�r; t ),
which, in the local density approximation, is given self-
consistently by

�j = 4
∫

d3 p

(2π )3

�p∗

E∗ f (�r, �p; t ) (2)

and

j0 ≡ ρ = 4
∫

d3 p

(2π )3
f (�r, �p; t ), (3)

where ρ(�r; t ) is the nucleon density and the factor 4 is due to
the spin and isospin degeneracies of nucleons in symmetric
nuclear matter considered here. Similarly, the scalar field �

depends on the scalar density ρS (�r; t ), which is defined as

ρS = 4
∫

d3 p

(2π )3

m∗

E∗ f (�r, �p; t ). (4)

The single-particle energy in Eq. (1) simply reads ε = p0 =
E∗ + A0. The specific dependence of the fields on the densi-
ties is detailed in Sec. II A 1.

It is of interest to introduce the energy density, e(ρ, T ),
for nuclear matter at rest, from which the nuclear matter EoS
at the temperature T is directly derived. Considering that the
current �j vanishes, e(ρ) can be expressed as

e(ρ, T ) = 4
∫

d3 p

(2π )3

√
�p2 + m∗2 fFD(p, T )

+
∫ ρS

0
dρ ′

Sρ
′
S

d�

dρ ′
S

+
∫ ρ

0
dρ ′A0(ρ ′). (5)

Here, the function fFD(p, T ) denotes the local Fermi-Dirac
distribution at the temperature considered.

As was mentioned, the transport codes that we consider in
the following can be assigned to three main categories:

(a) Nonrelativistic codes (labeled as “nonrel” in Ta-
ble I). These codes can be framed into the general
scheme illustrated above, if one considers only vec-
tor fields, and neglects the spatial components of the
baryon four-current (�j = 0). Thus the energy E∗ be-
comes E∗ → E =

√
�p2 + M2. Moreover, in this case,

the nonrelativistic limit is taken for E . Thus the
single-particle energy can be written as ε = �p2

2M +
U (ρ) + M, where U (ρ) is the mean-field potential,
which is introduced phenomenologically. A simple
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Skyrme-like form will be employed here: U (ρ) =
a(ρ/ρ0) + b(ρ/ρ0)σ , where ρ0 denotes the saturation
density and the nonlinear term takes into account the
effect of many-body forces.

(b) Codes with relativistic kinematics (labeled as “rel” in
Table I). The same ingredients as in the “nonrel” case
are considered, but in this case the kinematics is rela-
tivistic. Hence, the single-particle energy is expressed
as ε = E + U (ρ).

(c) Covariant codes (labeled as “cov” in Table I). We
place into this category all codes that employ scalar
fields and/or vector fields depending on the baryon
four-current jμ.

1. Ingredients of the covariant codes

In this section, we give more details about the codes of the
latter category, namely the codes labeled as “cov” in Table I.

RVUU: This code follows the scheme of the standard (non-
linear) Walecka model. Denoting by mσ , mω and gσ , gω the
masses and coupling constants of the σ (scalar) and ω (vector)
mesons, respectively, the following relations hold for scalar
and vector fields:

ρS = m2
σ

g2
σ

� + A

g3
σ

�2 + B

g4
σ

�3, Aμ = g2
ω

m2
ω

jμ. (6)

The corresponding energy density, for nuclear matter at rest,
is [see Eq. (5)]

e(ρ, T ) = 4
∫

d3 p

(2π )3

√
�p2 + m∗2 fFD(p, T ) + m2

σ

2g2
σ

�2

+ A

3 g3
σ

�3 + B

4 g4
σ

�4 + g2
ω

2 m2
ω

ρ2. (7)

DJBUU: This code adopts the approximation of neglecting
the spatial components of the baryon four-current (�j = 0), so
that the single-particle energy is given by ε =

√
�p2 + m∗2 +

A0, whereas the nuclear matter energy density keeps the same
expression as in RVUU.

pBUU: In the version of the pBUU model employed for the
homework, only a scalar field is considered, so that the single-
particle energy simply reads ε =

√
�p2 + m∗2. The scalar field

� is defined as

−�(ρS ) ≡ U (ρS ) = a(ρS/ρ0) + b(ρS/ρ0)σ

1 + (
ρS/ρ0

2.5

)σ−1 (8)

The role of the denomimator in Eq. (8) is to prevent supra-
luminous behavior at high densities. The energy density is
calculated from Eq. (5). We notice that the scalar field adopted
here is quite close to the Skyrme parametrization used for the
mean-field potential of categories “nonrel” and “rel.”

SMASH: In the SMASH code, no scalar field is consid-
ered, but a more complex vector field, Aμ = ∑

i Aμ
i (�r; t ) =∑

i Ci( jν jν )
βi
2 −1 jμ, is introduced, leading to an overall at-

tractive potential. Thus the single-particle energy is given as

ε =
√

�p∗2 + M2 + ∑
i Ci( jν jν )

βi
2 −1 ρ. For nuclear matter at

rest, the corresponding energy density reads

e(ρ, T ) = 4
∫

d3 p

(2π )3

√
�p2 + M2 fFD(p, T ) +

∑
i

Ci

βi
ρβi .

(9)
We note that, contrary to SMASH, in RVUU and DJBUU the
linear vector field is repulsive (as in the standard Walecka
model), whereas the scalar field leads to an attractive poten-
tial.

2. Numerical solution of the transport equations

The integrodifferential nonlinear BUU equation is solved
numerically. To this end, the distribution function is repre-
sented in terms of finite elements, so-called test particles (TPs)
[67], as

f (�r, �p; t ) = (2π )3

4NTP

ANTP∑
i=1

G(�r − �Ri(t )) G̃( �p − �Pi(t )), (10)

where NTP is the number of TPs per nucleon (set to 100 in
this work), �Ri and �Pi are the time-dependent centroid coordi-
nates and momenta of the TPs, and G and G̃ are the profile
functions in coordinate and momentum space, respectively,
with a unit norm (e.g., δ functions or normalized Gaussians).
In particular, δ functions are generally adopted in momentum
space. We remind the reader that the degeneracy factor 4 [in
the denominator of Eq. (10)] is to define f (�r, �p, t ) as the spin-
isospin averaged phase space occupation probability, which is
well suited to the case considered here (symmetric matter). It
is also possible to express the distribution function for each
isospin (or spin) state in a similar way. Upon inserting the
ansatz Eq. (10) into the left-hand side of Eq. (1), i.e., without
the collision integral, Hamiltonian equations of motion for the
TP centroid propagation follow:

d �Ri

dt
= �∇Piε and

d �Pi

dt
= −�∇Riε. (11)

The treatment of the collision integral is discussed in detail in
Ref. [24], but this is not of relevance in the present study of
only Vlasov dynamics.

B. QMD models

In quantum molecular dynamics (QMD) models, the many-
body state is represented by a simple product wave function
of single-particle states with or without antisymmetrization
[55,56]. The single-particle wave functions are usually as-
sumed to have a fixed Gaussian shape. In this way, though the
nucleon wave functions are independent (mean-field approxi-
mation), the use of localized wave packets induces classical
many-body correlations both in the mean-field propagation
and two-body in-medium scattering (collision integral), where
the latter is treated stochastically. Hence, this way to introduce
many-body correlations and produce a possible trajectory
branching is essentially based on the use of localized nucleon
wave packets. It has been proven to be particularly efficient
for the description of fragmentation events, where nucleons
are well localized inside separate fragments in the final state
[56]. The time evolution of nuclear dynamics is formulated
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in terms of the changes in nucleon coordinates and momenta,
similar to classical molecular dynamics, which are the cen-
troids of the wave packets. They move under the influence of
nucleon-nucleon interactions, which are usually consistently
accounted for by density functionals. The method can also be
viewed as derived from the time-dependent Hartree method
with a product trial wave function of single-particle states in
Gaussian form

�(�r1, . . . , �rA; t ) =
A∏

i=1

φi(�ri; t ),

φi(�ri; t ) = 1

[2π (�x)2]
3
4

exp

[
− [�ri − �Ri(t )]2

4(�x)2

]
e(i/h̄) �Pi (t )·�ri .

(12)

The centroid positions �Ri(t ) and momenta �Pi(t ) are treated
as variational parameters within the variational principle for
the time-dependent Hartree equation. The widths �x are kept
fixed and thus are not variational parameters, in order for the
wave function to be able to describe finite distance structures,
as observed in the fragmentation of colliding nuclei. This
strategy yields equations of motion for the coordinates of the
wave packets of similar form as obtained for the TPs in BUU.
The QMD codes that we will consider here employ relativistic
kinematics, thus they fall into the “rel” category. This method
has been extended to include anti-symmetrization in the wave
function in the AMD method [32,59], which makes the equa-
tions of motion more complicated but with similar principles.

The main difference between the two methods lies in the
amount of fluctuations and correlations in the representa-
tion of the phase space distribution. In the standard BUU
approach, the phase space distribution function is seen as a
one-body quantity and a smooth function of coordinates and
momenta, which can be approximated increasingly better by
increasing the number of TPs in the representation. In the
limit of NTP → ∞, the BUU equation is solved exactly. In
this limit the solution is deterministic and does not contain
fluctuations. However, as mentioned above, if fluctuations are
considered to be important, suitable stochastic extensions can
be formulated. Of course, numerical fluctuations are present
in practical BUU calculations with a finite number of TPs.

In QMD, nucleon correlations arise from the representation
in terms of a finite number of wave packets of finite width,
leading to enhanced fluctuations of the one-body density.
Thus, in the philosophy of QMD one wants to go beyond
the mean-field approach and include correlations and fluctua-
tions from the beginning. However, these fluctuations, which
are essentially of classical nature, can lead to a loss of the
fermionic character of the system more rapidly than in BUU,
as studied in Ref. [24]. The fluctuations in QMD-type codes
are regulated and smoothed by choosing the parameter �x,
the width of the wave packet, cf. Eq. (12). QMD can be seen
as an event generator, where the time evolution of different
events is solved independently and therefore the fluctuations
among events are not suppressed even in the limit of an infinite
number of events.

The effects of this difference in the amount of fluctuations
between the two approaches will clearly be seen in the com-
parisons that will follow.

C. Lattice Hamiltonian and particle propagation

The solution of the (test) particle equations of motion,
Eq. (11), requires the calculation of the local single-particle
energy, which also depends on the local density ρ(Ri, t ). The
latter can be evaluated starting from Eq. (10), with NTP = 1
in the QMD case. Some of the codes (of type “nonrel” or
“rel”) involved in our comparison employ the lattice Hamil-
tonian framework [33]. This method has been proven to be
particularly effective for the numerical solution of the Vlasov
equation, especially as far as energy conservation is con-
cerned. Namely, the coordinate space is divided into cubic
cells (typically of volume �l3 = 1 fm3) and the spatial den-
sity is evaluated at each cell site coordinates, �rα , and given as
ρα = ρ( �rα ). Then, the potential part of the total Hamiltonian
of the system is written as

Hpot = �l3
∑

α

epot (ρα ), (13)

where epot denotes the potential part of the energy density
and ρα = ρ( �rα ). We remind that the density ρα , and thus
the Hamiltonian Hpot, depend on the (test) particle centroids,
�Ri(t ), according to Eq. (10). With �Pi(t ) representing the mo-
mentum of the ith test particle, the equation of motion from
the Hamiltonian is then

d �Pi

dt
= −�l3

∑
α

depot

dρα

�∇Ri Gα = −�l3
∑

α

εpot (ρα ) �∇Ri Gα,

(14)
where εpot denotes the potential part of the single-particle
energy and Gα = G( �rα − �Ri ). The lattice Hamiltonian frame-
work is adopted in BUU-VM, SMF, LHV, and in the lattice
version of IBUU (IBUU-L). In IBUU-L, a triangle profile
function with l = 2 fm is used for the test particles [37]. For
ImQMD, we will also consider a lattice version (ImQMD-L)
that employs a mesh with non-regular intervals, better suited
to deal with Gaussian particle profile functions [45].

III. HOMEWORK DESCRIPTION

The understanding of mean-field effects is essential to
reach a reliable description of the dynamics of nuclear re-
actions. A dedicated homework has been devised to test the
mean-field propagation under controlled situations in the dif-
ferent transport codes. To that purpose, we consider uniform
nuclear matter at zero temperature in a box with periodic
boundary conditions. The system is perturbed by building up
the density profile along one direction (the z axis, in our case).
The initial density perturbation is then propagated by motion
in the nuclear mean-field and the time evolution of the system
is followed until the time tfin. The collision integral is turned
off and rather simple mean-field parametrizations are adopted,
giving the correct saturation properties and a selected value
of the compressibility modulus, K0. This then corresponds to
a pure Vlasov mode for the transport codes. Thus BUU-like
trajectories should be fully deterministic (apart from numer-
ical fluctuations), whereas in the QMD case the presence of
fluctuations is intrinsic to the model.
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As already noticed for the box comparisons involving the
collision integral [24,25], differences are expected in the re-
sults of QMD-like and BUU-like codes, mainly due to the
larger amount of fluctuations and the larger width of the parti-
cle wave packet employed in QMD codes. Indeed, fluctuations
influence the damping of the density oscillations, whereas
the packet width affects the calculations of the mean-field
potential and thus the oscillation frequency.

The goal of the homework is to understand the propagation
of initial sinusoidal perturbations by the nuclear mean-field,
and thus to check the dispersion relation for the mean-field
propagation of density fluctuations (zero-sound propagation).
Thus, the average density in the z direction at different times,
〈ρ(z, t )〉, represents one of the main quantities to be extracted
from the calculations and analyzed. The calculations are av-
eraged over many events to try to understand the average
mean-field behavior, which is the quantity of interest in a
heavy-ion collision. A rather compact and effective represen-
tation of the behavior of the system is provided by the time
evolution of the spatial Fourier transform, ρk (t ). Additional
insight can be obtained by a further Fourier transform in time,
leading to the response function ρk (ω).

The box calculations are performed with periodic boundary
conditions [24,25]. Reflecting boundary conditions are not
used because they could give rise to edge effects, negligi-
ble only in the limit of very large boxes. In contrast, with
periodic boundary conditions the box can be kept relatively
small with no significant finite-size effects. The dimensions
of the cubic box are Lα = 20 fm, α ≡ x, y, z. The position
of the center of box is (Lx/2, Ly/2, Lz/2). In a periodic
box, a particle that leaves the box on one side should en-
ter it from the opposite side with the same momentum.
Once a coordinate α ventures outside of the box, it may
be reset with rα → modulo(rα, Lα ). Similarly, the separation
between two points �ri j,α = ri,α − r j,α must be redefined as
�ri j,α → modulo(�ri j,α + Lα/2, Lα ) − Lα/2. This method is
completely sufficient and will cope with all structures, as long
as the characteristic lengths are short relative to Lα/2.

This periodic box condition applies only to classical or
semiclassical approaches. In quantum mechanical approaches
such as in AMD [32,59], the implementation of a periodic
box calculation is more involved, since now the wave func-
tions have to satisfy the boundary condition, implying that the
momenta become discretized in steps of the order of �p =
2π/Lα ≈ 62 MeV/c, which is not so much smaller than the
Fermi momentum. A special code would have to be written
for this, which would not be comparable to the semiclassical
codes, and would also be very different from the code used
for heavy-ion collisions. However, in this box comparison we
want to change the codes as little as possible from those used
for heavy-ion collisions. Thus results from the AMD code are
not included in this comparison.

A. Details of the homework

We consider symmetric nuclear matter at saturation den-
sity ρ0 = 0.16 fm−3 and zero temperature. For the cubic box
employed (of size Lα = 20 fm), this corresponds to A = 1280
nucleons. The simulations are followed until tfin= 500 fm/c,

TABLE II. Examples of RMF parametrization sets that give the
required nuclear matter properties (see text).

Set m∗/M gσ gω A (fm−1) B

1 0.6 10.047638 12.247145 −1.147188 12.396194
2 0.7 8.652969 10.346869 −10.825788 75.221535
3 0.8 6.645764 7.953129 −43.850479 277.549711
4 0.85 4.884545 6.411573 −85.063619 461.632842
5 0.9 1.609514 4.340011 −74.404620 172.583219

with a recommended time step of either �t = 0.5 or 1.0 fm/c.
A detailed description of the homework is as follows.

1. Initialization

The system is initialized by impressing a sinusoidal distor-
tion with wave number k and amplitude aρ on the density in
the box, along the z direction: ρ(z, t = 0) = ρ0 + aρ sin(kz).
It should be noticed that for QMD-type models, which em-
ploy Gaussian functions of sizable width for the nucleon
wave packets (such as G(�r) ≈ exp[−(�r − �Ri )2/{2(�x)2}], see
Eq. (12)), the specified density distribution can be obtained
by sampling the centroids �Ri of the wave packets accord-
ing to the following density distribution: ρ(z, t = 0)MD =
ρ0 + aρ exp[{(�x)2k2}/2] sin(kz) [68]. Because of the peri-
odic boundary conditions imposed to the system, the wave
number k may take the values k = n 2π/Lα , with n =
1, . . . , Lα/(2 �z), where �z is the spatial step along the z
direction. In the homework, we will test small wave numbers
(n = 1), which are less affected by the surface effects induced
by the finite width of the particle profile functions, and we
adopt aρ = 0.2 ρ0. We note that the amplitude is not small
relative to the nonlinearities of the mean field, so the sinu-
soidal wave is therefore distorted already after a short time
of about 10 fm/c, as seen later. The particle momenta are
initialized randomly in a local Fermi sphere, with the Fermi
momentum defined as a function of the local density of the
initialized density profile.

2. The nuclear interaction

The Coulomb interaction and the nuclear symmetry force
are turned off. The following simplified isoscalar nuclear
force is employed: For the codes of type “rel” and “nonrel”
a standard Skyrme parametrization (without momentum-
dependence) for the single-particle potential is used,

U (ρ) = a(ρ/ρ0) + b(ρ/ρ0)σ , (15)

with the following parameters: a = −105.716 MeV, b =
52.836 MeV, σ = 2.587. The nucleon mass is taken to be
M = 938 MeV. This parametrization leads to the following
nuclear matter properties: compressibility K0 = 500 MeV,
saturation density ρ0 = 0.16 fm−3, and the binding energy
at saturation density E0 = −16 MeV. For the relativistic
“cov” codes RVUU and DJBUU, we employ a nonlinear
σ -ω relativistic mean-field (RMF) parametrization, with M =
938.0 MeV, mω = 783.0 MeV, mσ = 550.0 MeV, and the
parameters gσ , gω, A, and B given in Table II. Since there
are four free parameters, in addition to saturation density (ρ0),
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FIG. 1. (a) Energy per nucleon, as obtained for the adopted
Skyrme-like parametrization (full black line), three RMF
parametrizations adopted for RVUU and DJBUU models, and
for the pBUU model (thick full red line). The lines for the Skyrme,
pBUU, and RMF m∗/M = 0.6 models strongly overlap. (b) The
Dirac mass m∗ as a function of the baryon density for pBUU and the
three RMF parametrizations. (c) The scalar density ρS as a function
of the nucleon density.

energy per nucleon, and compressibility at ρ0, one can also
fix the value of the Dirac mass m∗ at ρ0. The parametrizations
listed in Table II lead to the same values for compressibility,
saturation density, and binding energy as above, but with
different values of the Dirac mass m∗.

In the SMASH code, two contributions to the vector field
are considered: an attractive linear field (β1 = 2) with C1 =
−105.716/ρ0 MeV fm3 and a stiffer repulsive field with
β2 = 3.587 and C2 = 52.836/ρ

β2−1
0 MeV fm3(β2−1). Finally,

in pBUU the following parametrization is employed for the
potential U (ρS ): a = −104.444 MeV, b = 43.0838 MeV and
σ = 3.07326. In both SMASH and pBUU, the model param-
eters have been selected to give the same compressibility,
saturation density, and binding energy as indicated above.

In Fig. 1(a), we show the energy per nucleon, E/N , for
nuclear matter at zero temperature, as given by the adopted
Skyrme parametrization (nonrelativistic kinematics is consid-
ered, but very similar results are obtained in the relativistic
case and for SMASH), the parametrization employed in
pBUU and three RMF parametrizations, namely sets 1, 4, and
5 of Table II. One can see that all the curves shown in the panel
exhibit the same trend around saturation density, as expected.
Moreover, the pBUU curve is very close to the Skyrme one
in the whole density range considered. This is also the case
for the RMF parametrization with m∗/M(ρ = ρ0) = 0.6. For

FIG. 2. The gradient of the mean-field potential, corresponding
to the initial density standing wave (see text), as a function of the
z position, as obtained for the adopted Skyrme-like parametriza-
tion (full black line), three parametrizations for RVUU and DJBUU
models, and for the pBUU model (full red line). The dotted line
corresponds to the Skyrme interaction taken at frozen density (ρ0 =
0.16 fm−3), see text for details. The short-dashed vertical line indi-
cates the central position of the box, where the density is equal to ρ0

and the two Skyrme curves cross.

larger m∗ values, the curves deviate increasingly more from
the Skyrme parametrization away from saturation density.
However, for density variations of about 20%, as considered
here, the differences are not large.

The Dirac mass, m∗/M, is shown as a function of the
density in panel (b), whereas panel (c) shows the density
dependence of the scalar density, ρS . Results are shown for all
parametrizations considered in panel (a), except the Skyrme
interaction, which has no scalar field. One can see that the
Dirac mass remains quite close to the nucleon mass, M, over
the whole density region considered, in the case of pBUU and
of the RMF parametrization with m∗/M(ρ = ρ0) = 0.9.

Figure 2 shows the corresponding gradients of the mean-
field potential, namely the quantity −F (z) = ∂ε/∂z, with ε

being the single-particle energy, calculated analytically for the
initial standing wave impressed on the density profile. We note
that, according to the general definition of the single-particle
energy, the quantity F also depends on the momentum (for
models including a scalar field), thus we take the average of
F over the initial Fermi-Dirac momentum distribution in this
case. Namely, for the RMF parametrizations, we consider the
quantity

−F (z) =
[〈

m∗√
�p2 + m∗2

〉
dm∗

dρS

dρS

dρ
+ dA0

dρ

]
dρ

dz
, (16)

where the average is over momentum space and dρ

dz is the
derivative of the initial sinusoidal perturbation. The same ex-
pression holds for pBUU, but with A0 = 0. In the case of the
Skyrme interaction, namely for codes of type “rel” and “non-
rel,” and for SMASH, one can simply write −F (z) = dU

dρ
· dρ

dz ,
where U (ρ) is the corresponding mean-field potential. As one
can see in the figure, though all parametrizations give the same
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trend for the EoS around saturation density, quite interesting
differences exist for the gradient of the mean-field potential.
This simply stems from the fact that different effective inter-
actions may lead to the same EoS.

Let us comment first the behavior associated with the
Skyrme interaction, which is simpler to interpret. Within the
linear regime, i.e., for very small amplitude density perturba-
tions, one can write −F (z) = dU

dρ
|ρ=ρ0

· dρ

dz , and a cosinusoidal
trend would be obtained (see the dotted line in the figure).
Thus, the behavior observed [full (black) line] can be as-
cribed to the amplitude of the initial perturbation considered,
which is not small and will induce nonlinear effects in the
Vlasov dynamics. As will be discussed in the following, mode
coupling effects are expected to appear. The behavior of the
pBUU curve is very similar to the Skyrme one. Turning to
the behavior of the RMF parametrizations, we observe sig-
nificant differences with respect to the Skyrme interaction.
It is interesting to notice that the parametrizations with large
values of m∗/M exhibit a trend close to the cosinusoidal one,
indicating that the nonlinearities introduced by the scalar field
parametrization do not have large effects on the gradients. It
follows that, within the linear regime, these parametrizations
[especially the one with m∗/M(ρ = ρ0) = 0.9] are close to
the behavior of the Skyrme interaction. The same does not
hold for the parametrization with m∗/M = 0.6. We will show
that in spite of the presence of nonlinear effects, the oscil-
lation frequency of the initial density perturbation is mainly
determined by the features connected to the linear regime and
the pure zero-sound propagation; thus we expect close results
between the covariant codes employing m∗/M(ρ = ρ0) = 0.9
and the other codes. This point will be better illustrated in the
following section.

We note that, in the first formulation of the present home-
work, a mean-field parametrization corresponding to the more
realistic compressibility K0 = 240 MeV was employed, as in
the earlier comparisons of Au+Au collisions in Ref. [23]. The
quite large damping effects observed in this case, especially in
QMD codes, made the analysis of the results not very trans-
parent. In order to get more persistent density oscillations,
the homework was reformulated with the use of a nuclear
potential corresponding to the larger, although unphysical,
compressibility value, K0 = 500 MeV.

3. Details of the simulations and output of the codes

We have considered 10 runs for BUU-like codes, employ-
ing 100 TPs per nucleon and 200 runs for QMD-type codes.
However, we should mention that, to improve the quality of
energy conservation and momentum distribution features, the
TP number was increased for the codes that use pointlike TPs,
or triangles with l = 1 fm, namely BUU-VM, IBUU, and
RVUU (see Table I). In particular, NTP = 1000 was adopted
for IBUU and pBUU, and NTP = 2000 for BUU-VM and
RVUU. For a reduced number of events, we output the (test)
particle coordinates and momenta at certain times in the evo-
lution. The main outputs of these calculations are tables of
the average density 〈ρ(z, t )〉 and of the associated variance,
reported as a function of the z coordinate.

More precisely, a grid along the z direction, of size �z,
is introduced inside the box. We adopt �z = 1 fm. For each
event, the density ρ(z, t ), averaged over the (x, y) plane, is
evaluated on the grid at each time step. Then the density is
further averaged over all events and the associated variance is
also evaluated. In the following, we omit the notation of the
average. For each event, we also calculate the gradient −F (z)
of the mean-field potential along the z direction, but only at
the initial time t = 0.

We will see in the following that the evaluation of the gra-
dient of the mean-field potential is very helpful to understand
the possible sources of discrepancies for the propagation of
the density oscillations among the different codes. We also
emphasize that from such a detailed output, it is possible to
perform a Fourier analysis of the density oscillations, in space
and in time, with sufficient accuracy.

The participating codes in this homework were given in
Table I. The GiBUU code only contributed to the calculations
with K0 = 240 MeV (not shown here), and the DJBUU code
only with K0 = 500 MeV.

4. Fourier transforms

To characterize the density perturbation introduced in the
initial conditions and its time evolution, it is useful to perform
a Fourier analysis of the density oscillations. We define the
Fourier transform of the averaged spatial density as

ρk (t ) =
∫ Lz

0
dz ρ(z, t ) sin(kz), (17)

which gives a more compact representation of the spatial
density oscillations and can be called the strength function
of the mode k. One generally observes damped oscillations
as a function of time for the latter quantity. Ideally at the
initial time, t = 0, only the k value corresponding to the initial
perturbation, kini = n 2π/Lα (with n = 1), leads to nonzero
ρk (t = 0). However, due to fluctuations in the initial config-
uration, small admixtures of other modes can already appear
at t = 0. As time evolves, other k components appear sig-
nificantly. This can be called mode mixing, which is due to
the nonlinear character of the Vlasov equation, but also to
fluctuations. For this reason, it is interesting to introduce also
the Fourier transform of the type

ρ ′
k (t ) =

∫ Lz

0
dz ρ(z, t ) cos(kz), (18)

and finally the quantity ρk,tot (t ) =
√

ρ2
k (t ) + ρ ′

k
2(t ).

A deeper insight into the frequency and the damping of the
density oscillations is obtained from a further Fourier analysis
of ρk (t ) with respect to time, i.e., the response function. Hence
we introduce the quantity

ρk (ω) =
∫ tfin

tin

dt ρk (t ) cos[ω(t − tin )], (19)

where the integration is extended over a time interval �t f i =
tfin − tin, with a suitable choice of the initial time tin (see
Sec. VIII B). It is convenient to parametrize the frequency ω

as ω = nω π/�t f i, where nω is an integer.
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IV. ANALYTICAL EXPECTATIONS FOR ZERO-SOUND
PROPAGATION

In the idealized situation of a box calculation, it is possi-
ble to make analytical predictions for the density oscillation
frequency in the small-amplitude limit, according to the Lan-
dau theory of Fermi liquids as applied to the linearized
Vlasov equation [69]. Within the general relativistic frame-
work introduced above, at zero temperature and density ρ, the
zero-sound dispersion relation, which allows one to determine
the oscillation frequency ωk for the wave number k, reads
[70,71]

1 + F̃0φ(s) = 0, (20)

where an effective Landau parameter, F̃0, has been introduced
and φ(s) is the Lindhard function: φ(s) = 1 − (s/2) ln[(s +
1)/(s − 1)]. The quantity s = ωk/(kv∗

F ) represents the sound
velocity [vs(k) = ωk/k] in terms of the Fermi velocity v∗

F =
pF /E∗

F . The energy E∗
F =

√
p2

F + m∗2, where pF represents
the Fermi momentum, coincides with the Landau effective
mass. Extending the results derived in Refs. [70,71] to the
more general case of nonlinear scalar and vector fields, the
Landau parameter takes the following expression:

F̃0 = E∗
F

3p2
F

[
Kpot − 9Ajρv2

s

]
. (21)

Here, Kpot = 9ρ[ fω − fσ
m∗2

E∗
F

2 (1 + fσ Ã)−1], with Ã =
3(ρS/m∗ − ρ/E∗

F ), is the potential part of the nuclear

matter compressibility, and we have defined fω = dA0(ρ)
dρ

and

fσ = d�
dρS

. The term (9Ajρv2
s ) inside the square bracket in

Eq. (21) originates from the spatial components of the nucleon
four-current, and it is written in terms of Aj = A0(ρ)/ρ for
RVUU and SMASH, and Aj = 0 for all the other models.
Making the approximation vs ≈ v∗

F , the frequency ωk only
appears inside the Lindhard function, thus simplifying the
solution of the dispersion relation.

Equation (20) can be solved for all the models consid-
ered here. In particular, we note that for the models of
the type “nonrel,” i.e., in the nonrelativistic limit (v∗

F =
pF /E∗

F → pF /M ), the Landau parameter is written as F̃0 =
F0 = 3ρ

2εF

dU (ρ)
dρ

, where the Fermi energy εF = p2
F /(2M ) has

been introduced.
Corresponding parameters and solutions for the sound ve-

locity are reported in Table III for the different models. In the
case of RVUU and DJBUU, several possibilities for the Dirac
mass m∗ are included in the table.

The results obtained for the sound velocity, vs = ωk/k,
are closely related to the value of the Landau parameter F̃0

and also of the Landau effective mass E∗
F = pF /v∗

F . For in-
stance, for the models of type “nonrel” and for the mode
that we are considering (n = 1, k = 0.314 fm−1), we have
h̄ωk = 18.65 MeV.

Zero-sound solutions are found only for F0 > 0. The
robustness of the solution, s = ωk/(kv∗

F ), of the dispersion re-
lation increases with F0, i.e., for larger compressibility values,
as expected. Moreover, for a given solution s, a larger sound
velocity is obtained for larger values of the Fermi velocity v∗

F ,

TABLE III. The Dirac mass m∗ (normalized to the nucleon mass
M), the Landau parameter F̃0, the solution of the dispersion relation,
s, the quantity (Mv∗

F )/pF = M/E∗
F (see text), and the sound velocity,

vs = ωk/k, for the models considered in the present work.

Type m∗/M F̃0 s M/E∗
F vs

“nonrel” 1 1.259 1.073 1 0.301
“rel” 1 1.308 1.079 0.963 0.291
“cov”
SMASH 1 1.471 1.099 0.963 0.297
pBUU 0.942 1.208 1.067 1.017 0.304
RVUU 0.6 −0.956 1.510
DJBUU 0.6 0.496 1.005 1.510 0.425
RVUU 0.7 −0.207 1.326
DJBUU 0.7 0.704 1.017 1.326 0.378
RVUU 0.8 0.437 1.003 1.180 0.332
DJBUU 0.8 0.915 1.036 1.180 0.343
RVUU 0.85 0.728 1.019 1.117 0.319
DJBUU 0.85 1.022 1.047 1.117 0.328
RVUU 0.9 1.002 1.044 1.061 0.311
DJBUU 0.9 1.130 1.058 1.061 0.315

i.e., smaller Landau effective mass. From Table III one can see
that for the considered compressibility value, K0 = 500 MeV,
in the case of RVUU, zero-sound solutions are obtained only if
the Dirac effective mass exceeds a threshold value, which is in
the range m∗/M = 0.7–0.8. Moreover, the Landau parameter
F̃0 is always larger in DJBUU than in RVUU. This behavior
originates from the second term inside the square bracket of
Eq. (21), which vanishes in the DJBUU case due to its neglect
of the spatial current �j and is negative in the RVUU case
[A0(ρ) = fωρ there]. However, the sound velocity is similar
in the two models and approaches the values associated with
the other models, if one considers large Dirac mass values;
see in particular the results obtained for m∗/M = 0.9. This
reflects the findings, illustrated in Fig. 2, that for the choice
m∗/M = 0.9, the gradient of the mean-field potential is close
to the trend given by the Skyrme interaction within the linear
regime. Thus, in the following we will mainly consider this
parametrization (set number 5 in Table II).

In the case of SMASH, the second term inside the square
bracket of Eq. (21) is positive (because A0(ρ) is negative),
leading to the large F0 value reported in the Table. However,
since the Landau effective mass is larger than the nucleon
mass in this case (E∗

F /M = 1.038), the sound velocity turns
out close to the one associated with the other models.

To summarize our findings about the sound velocity vs,
one can say that relative to the models of type “nonrel,” the
largest negative deviation is given by the “rel” models (about
−3%), whereas the largest positive deviation corresponds to
the DJBUU model (about 4%, taking the parametrization with
m∗/M = 0.9).

A. Structure of zero-sound modes

In the following, we give more details about the structure
of the zero-sound modes, which can be deduced from the
linearized Vlasov equation. For the sake of simplicity, we
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present the formalism corresponding to the models of type
“nonrel” and “rel,” for which the derivation is straightforward.
After performing a Fourier transform in space and time, the
linearized Vlasov equation can be expressed as [72]

fk ( �p, ω) = ∂ fFD(p, T )

∂ p

dU

dρ

cos(θp)ρk (ω)

v cos(θp) − ω/k
, (22)

where fk ( �p, ω) represents the perturbation of the distribution
function associated with the wave number k and the frequency
ω. The angle θp refers to the angle between the wave propa-
gation direction (namely the z axis) and the momentum �p, and
v = ∂E/∂ p. The self-consistent condition

4
∫

d3 p

(2π )3
fk ( �p, ω) = ρk (ω) (23)

leads to the dispersion relation discussed in the previ-
ous section, from which the collective solutions, ω = ±ωk ,
are derived. The corresponding zero-sound amplitude for a
standing-wave solution of the distribution function at the ini-
tial time can be written as

fk ( �p, t = 0) = 1
2 [ fk ( �p, ωk ) + fk ( �p,−ωk )]. (24)

On the other hand, in the homework calculations (per-
formed at zero temperature), a spherical local Fermi surface is
chosen for the initial condition of the phase-space distribution,
which can be expressed as

f (z, p, t = 0) = θ (pF − p) + f sph(p, t = 0) sin(kz)

≡ θ
(
psph

k (z) − p
)
. (25)

Here the zero-temperature Fermi-Dirac distribution has
been introduced implicitly, fFD(p, T = 0) ≡ θ (pF − p), and
the function psph

k (z) = pF [1 + {ρk sin(kz)}/ρ0]1/3 ≈ pF [1 +
{ρk sin(kz)}/(3ρ0)] describes the local spherical Fermi sur-
face. By Taylor expanding the r.h.s. of Eq. (25), we obtain

f sph(p) = −∂ fFD(p, T = 0)

∂ p

pF

3ρ0
ρk (26)

In this case, the amplitude, ρ̃k , of the resonant density oscil-
lations, associated with the collective zero-sound mode, can
be recovered by projecting the perturbation f sph(p) onto the
auxiliary function,

Qk ( �p, ω) ≡ ω/k

v cos(θp) − ω/k
, (27)

which is recognized as the usual random phase approximation
(RPA) amplitude [72]. Hence, we get

ρ̃k

ρk
= 〈Qk (ωk )| f sph〉

〈Qk (ωk )| fk (ωk )〉 + 〈Qk (−ωk )| f sph〉
〈Qk (−ωk )| fk (−ωk )〉 , (28)

where the inner product stands for an integration over �p. At
zero temperature, the integrals appearing in Eq.(28) can be
solved analytically. We obtain

〈Qk (±ωk )| fk (±ωk )〉 = ρk

(
F0

s2 − 1
− 1

)
(29)

and

〈Qk (±ωk )| f sph〉 = ρk (1/F0 + 1). (30)

Exploiting the values of F0 and s listed in Table III, we find

ρ̃k

ρk
= 2

1/F0 + 1

F0/(s2 − 1) − 1
= 0.49 (31)

for the models of type “nonrel” and 0.51 for the models of
type “rel.” This means that only about half of the initialized
perturbation is actually a pure n = 1 zero-sound mode.

V. EXACT SOLUTION OF THE VLASOV EQUATION:
LOCALLY DEFORMED FERMI SURFACE

While we were able to derive exact limits for the oscillation
frequency of the zero-sound mode in the small amplitude limit
in the previous section, the further evolution of the wave is not
analytic because of the nonlinearity of the Vlasov equation,
even when no fluctuations are present. Hence, it is useful to
have a direct (numerical) exact solution of the kinetic equa-
tion, for the general case of finite amplitude and for the initial
conditions of the homework, which are more general than a
pure zero-sound mode. These calculations are explained in
this section and will be compared, in the following, to the
simulations of the transport codes. Owing to the axial symme-
try of the simplified system that we are considering, and the
Liouville theorem for the given initial condition, the nucleon
distribution function can be represented in terms of axially
symmetric deformations of the local Fermi sphere, which will
be referred to as the deformed Fermi surface (DFS) model in
the following. From the Vlasov equation, a kinetic equation
can be derived for the radius of the deformed Fermi sphere
as described below. For the sake of simplicity, we will limit
our considerations to the case where the single-particle energy
is given as ε =

√
�p2 + M2 + U (ρ) (as in the codes of type

“rel”), which also allows a straightforward extension to the
nonrelativistic approximation in the “nonrel” case.

Similar to the expression given by Eq. (25) for the initial
distribution function, the time-dependent phase-space distri-
bution is written as

f (z, pz, p⊥, t ) = θ (psurf(z, θp, t ) − p), (32)

with tan θp = p⊥/pz and p =
√

p2
z + p2

⊥. The function
psurf(z, θp, t ), which describes the deformed Fermi surface,
remains single valued at least for a while from the initial time.
From the Vlasov equation, the equation is obtained as

∂ psurf

∂t
+ psurf cos θp

E (psurf )

∂ psurf

∂z
− F (z, t )

[
sin θp

psurf

∂ psurf

∂θp
+ cos θp

]

= 0, (33)

which can be easily solved numerically. In the above,

E (psurf ) =
√

M2 + p2
surf reduces to M in the nonrelativistic

approximation. The force is expressed as

F (z, t ) = −dU

dρ

∂ρ(z, t )

∂z
. (34)

In the case of the homework condition, the Fermi surface
psurf(z, θp) becomes multivalued after t ≈ 50 fm/c. To handle
such cases, test particles with positive and negative weights
are introduced, so that the phase-space distribution is now
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FIG. 3. The phase space distribution f in the plane of z and p = | �p|, averaged over the forward angle region 0 < θp < π/16, is represented
at several time instants indicated in the different panels. The distribution f is the sum of the two terms on the right-hand side of Eq. (35), and
the function psurf (z, t ) in the first term is represented by the (red) solid line (for θp = 0).

written as

f (z, pz, p⊥, t ) = θ (psurf(z, θp, t ) − p)

+ 1

4

∑
k

Wkδ(z − Zk (t ))δ(pz − Pz,k (t ))

× δ(p⊥ − P⊥,k (t ))
2π p⊥

(35)

with the weights chosen to be

Wk = ± 1

NTP

(2π )3

L2
, (36)

and NTP = 5000. Thus a test particle corresponds to a small
fraction, ± 1

NTP
of a full nucleon, which spreads uniformly on

a plane perpendicular to the z axis and on an axially sym-
metric ring in the momentum space. At every time step of
�t = 0.25 fm/c, after considering the evolution from Eq. (33)
for the single-valued function psurf and the classical equation
of motion for the existing test particles (Zk, Pz,k, P⊥,k ), the
surface is replaced by its smoothed version, psurf → p̃surf,
and a suitable number of test particles are newly created to
compensate for the change θ ( p̃surf − p) − θ (psurf − p). For
each value of θp, the smoothed version is defined by replacing
the function in the region of z ∈ [z−, z+] (z± = z0 ± 15

32 fm)
around the point z0 of the maximum of |∂ psurf/∂z| with a poly-
nomial fit using the three points at z−, z0, and z+. In a similar
way, the function is further smoothed for the variable θp for
each z. Results for the time evolution of the Fermi surface
deformations, as obtained in the homework conditions, for
the Skyrme interaction, are represented in Fig. 3. The figure
shows the phase space distribution f (z, pz, p⊥, t ) in the plane
determined by z and p = | �p|, averaged for the forward angle
region 0 < θp < π/16. One clearly observes that the Fermi
surface is multivalued, corresponding to breaking waves, and
eventually takes a “millefeuille” shape.

VI. DENSITY OSCILLATIONS IN A BOX:
RESULTS FROM TRANSPORT CODES

After the standing wave has been initialized, it is propa-
gated using the Vlasov part of the various transport codes.
Here we will see significant differences, which to a large part
tie to the fluctuations introduced by the chosen representation
of phase space. As will be seen below, although the system
is initialized as a Fermi system, its character changes in the
evolution, with the degree of the change depending on the
code family and the individual codes. The consequences of
these effects will be studied in the following sections in terms
of Fourier transform coefficients.

A. Coordinate space

The initial average profiles in the z direction for all par-
ticipating codes are shown in Fig. 4. Both BUU-like and
QMD-like codes give a faithful initialization. In the case of
QMD-like codes, the figure also shows the standard devia-
tion of the density ρ(z, t = 0), as obtained from the sample
of the 200 events considered. The average agrees very well
with the average trend associated with the BUU codes. The
standard deviation is reduced by about a factor 10 for the
BUU-like codes and is not shown on the figure. The evolution
of the standing wave profile with time is shown in Fig. 5, for
some representative codes and the DFS model. In particular,
the results of DFS calculations (with relativistic kinematics)
are compared to the evolution of the density profile predicted
by a selected BUU-like model (LHV) and a selected QMD-
like model (ImQMD). In the case of LHV, in addition to the
calculations corresponding to the homework conditions (100
TP per nucleon), we also consider results obtained with a
larger TP number, namely NTP = 2500.

According to the features characterizing zero-sound prop-
agation in nuclear matter, we expect damping effects in the
density oscillations, related to the interplay between the col-
lective response induced by the initial perturbation, the mode
coupling due to the nonlinearity of the Vlasov equation, and
the disordered particle Fermi motion (Landau damping). One
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FIG. 4. Initial profiles of the standing wave as initialized by the
BUU-type codes [panel (a)] and the QMD-type codes [panel (b)].
The result corresponding to a selected BUU-like code (LHV) is also
shown in panel (b) (full line) for comparison.

can appreciate the non-linearity of the system evolution from
the distortion of the original sinusoidal wave form. Moreover,
in each of the simulated events, owing to the finite phase space
mapping, numerical density fluctuations are present on top of
the standing wave initially introduced. These fluctuations act
as an additional (numerical) source of damping. We recall that
the smaller the number of TPs used, the larger the amplitude of
the density fluctuations. Indeed, for a given event, the density
fluctuation variance can be expressed as

σ 2
ρ = ρ̄z/(NTPV ), (37)

with the volume V typically associated with the extension of
the nucleon (or TP) wave packet. In Eq. (37), ρ̄z represents the
density averaged over the cells having position z. The particles
momentum distribution presents a similar kind of statistical
fluctuation.

A quite good agreement is observed between DFS and
LHV calculations with 2500 TP per nucleon (for which
numerical fluctuations are negligible), up to the final time
considered (t = 500 fm/c). A reasonable agreement is seen
also with the calculation adopting 100 TP, though in this
case a quenching of the oscillation amplitude appears at large
times, clearly visible at tfin = 500 fm/c. As expected, damp-
ing effects of the density oscillations are more pronounced in
ImQMD calculations; in this case, the density profile starts to
exhibit a random character already around t = 200 fm/c. As
anticipated above, we conclude that the damping effects ob-
served in LHV and in ImQMD, relative to DFS calculations,
are connected to the amount of fluctuations inherent to the
transport code family.

B. Momentum distribution and energy conservation

In Fig. 6 we show the distribution of the absolute value
of the particle momentum, f (p) = (2π )3n(p)/(4Vps), where
n(p) is the number of nucleons with momentum p and
Vps represents the phase-space volume: Vps = Vbox(4π p2)�p.
Vbox = L3

α denotes the volume of the box and we adopt �p =
5 MeV/c. Results are shown in panels (a) and (b) for BUU
codes and in panels (c) and (d) for QMD codes. The distribu-
tion is shown for the initialized configuration in panels (a) and
(c), and for the final configuration in panels (b) and (d). At the
initial time, for homogenous matter at saturation density this
would be a step function at the Fermi momentum of about
265 MeV/c. As observed for the BUU-like codes, there is a
slight smearing, due to the impressed standing wave. For the
QMD-like codes, a considerably larger smearing is observed,
corresponding to the larger intrinsic initial density fluctuations
(generating a wider range of local Fermi momenta). It should
be noticed that all QMD codes have employed exactly the
same input for the initialization.

The results obtained by adopting the extreme choice of
NTP = 10000 in LHV calculations show that the initial mo-
mentum distribution should be approximately preserved in
time. Indeed the final configuration is very close to the initial
one. However, it is seen that in general the momentum dis-
tribution changes by amounts that depend on the code. Most
BUU codes reasonably well preserve the quantum-statistical
behavior.

The QMD-like codes in panel (d) are seen to deviate signif-
icantly from the Fermi statistics at the final time, approaching
the classical Maxwell-Boltzmann distribution. This behavior
can be ascribed to the larger fluctuations inherent to the QMD
approach.

These features are better illustrated in Fig. 7, which shows
the results of selected BUU- and QMD-like codes, com-
pared to DFS calculations and to the trend associated with
the Fermi-Dirac and Boltzmann distributions at the temper-
ature value corresponding to the system total energy, in the
fermionic (T = 2.9 MeV) and classical (T = 15.3 MeV)
cases, respectively. As shown by the exact DFS calculations,
and also by LHV calculations employing NTP = 10 000, the
Vlasov dynamics does not bring the system towards the finite
temperature Fermi-Dirac distribution, as one would instead
observe in the presence of two-body collisions. Features
connected to the multivalued structure of the Fermi surface
psurf (z, θp, t ) induced by nonlinearities (see the discussion of
DFS calculations in Sec. V and Fig. 3) appear in the high
momentum tail of f (p). The signatures of the “millefeuille”
structure shown in Fig. 3 are clearly visible also in LHV
calculations employing NTP = 10 000, which indeed exhibit
noticeable similarities with the DFS calculations. In LHV cal-
culations with NTP = 100, the system moves slightly towards
a classical behavior, as indicated by the fact that the dis-
tribution function takes values slightly larger than f (p) = 1
(see also Fig. 6), with the overall shape of the momentum
distribution reasonably well preserved. The high momentum
structures are smeared out in this case.

On the other hand, as already discussed above, significant
deviations from the fermionic behavior are observed for the
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FIG. 5. Density for the initialized standing wave at several instants of time, indicated in the panels in fm/c. The results are shown for DFS
calculations (black full line), LHV calculations with 2500 TP per nucleon (dot-dashed magenta line) and 100 TP per nucleon (blue dashed
line), and ImQMD calculations (full line with dots).

QMD codes, which tends to approach the Boltzmann distribu-
tion.

Finally, we mention that the total energy is conserved in
all codes, within 1% in the worst case. The violation of
energy conservation results from the numerical solution of
Eq. (11) in the coding process. Mostly, the Euler’s method, the
fourth-order Runge-Kutta method, and the leapfrog method

are applied in the different transport codes. In principle, the
numerical error is reduced when employing a higher-order
method. To investigate the impact of the aforementioned nu-
merical methods on the calculations considered in this work,
the fourth-order Runge-Kutta method (default method) and
the Euler’s method have been tested within the UrQMD
model. It is found that UrQMD with the default method

FIG. 6. Momentum distributions in the different codes at initial [(a) and (c) panels] and final [(b) and (d) panels] times: BUU-like in panels
(a) and (b) and QMD-like in panels (c) and (d). The QMD codes have used an identical initialization of the nucleon positions and momenta.
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FIG. 7. Momentum distributions, in logarithmic scale, at the final
time t = 500 fm/c, as obtained in LHV calculations with NTP =
100 (homework conditions, dashed blue line) and NTP = 10000
(dot-dashed magenta line), DFS (full black line), and ImQMD calcu-
lations (full line with dots). The lines with (green) crosses and (red)
open dots represent the Fermi-Dirac and Boltzmann distributions,
respectively, at the temperature value corresponding to the system
total energy.

and UrQMD-Euler lead to convergent predictions, which are
almost completely overlapping and thus not shown in the
figures. However, it should be noticed that the excellent agree-
ment between the two methods is favored by the quite low
excitation energy characterizing the system considered.

VII. ILLUSTRATIVE RESULTS FOR SELECTED CODES

As discussed in Sec. III A 4, the damping and frequency
effects can be more compactly seen in the Fourier trans-
form coefficients with respect to coordinate space, called the
strength function, and with respect to time, called the response
function. These depend not only on the dynamical features
of the Vlasov equation but also on the implementation in the
specific codes, as we already saw in Sec. VI. To illustrate these
effects and their dependence on the type of transport code,
we will in this chapter compare in detail results of a selected
BUU code of type “nonrel,” namely SMF, a selected BUU
code of type “rel,” namely LHV, and a selected QMD-type
code, namely ImQMD. As a reference, DFS results will also
be shown. We will, in particular, study how the results depend
on approximations and calculational parameters of the codes.
In the following section, we will then make this comparison
for all participating codes.

A. Strength function

The frequency of the oscillation and the damping of the
amplitude can be compactly seen in the behavior of the first
Fourier transform coefficient, ρk (t ), i.e., of the mode strength
[Eq. (17)]. This is shown in Fig. 8, where DFS calculations
(with and without relativistic kinematics) are compared to
SMF and LHV calculations. In order to simulate the behavior
of transport codes, in DFS the density ρ(z, t ), calculated by
integrating f (z, pz, p⊥, t ) over the momentum, is smeared by

FIG. 8. The Fourier transform coefficient, ρk (t ), for the node
number n = 1 is displayed as a function of time. LHV and SMF re-
sults are compared to DFS calculations with and without relativistic
kinematics.

a triangular distribution (extending to ±2 fm) and the deriva-
tive ∂

∂z is replaced by a finite difference (of the two points at
±1 fm).

We note that the value of the Fourier transform coeffi-
cient ρk (t ) at the initial time t = 0 is equal to ρk (t = 0) =
(Lz/2) aρ = 0.32 fm−2. The early strong reduction of the os-
cillation amplitude seen in Fig. 8 corresponds to the projection
of the momentum distribution of the initial perturbation on the
zero-sound mode, as discussed in Sec. IV A. The subsequent
behavior reflects damping and mode-coupling effects, as dis-
cussed below.

An excellent agreement with the density oscillation trend
predicted by DFS, both for the nonrelativistic and the rela-
tivistic version, is observed until t ≈ 250 fm/c. At later times
more pronounced damping effects, of numerical origin, are
seen in the simulations. However, it is interesting to notice
that, when 2500 TP are employed in LHV, the simulations are
very close to the DFS-rel results up to the final considered
time of t = 500 fm/c.

Now we move to discuss in more detail the impact of the
main numerical ingredients of BUU- and QMD-like codes
on the Vlasov dynamics. In Fig. 9, we show in the upper
panel results obtained from SMF calculations with different
TP numbers and in the lower one from ImQMD calculations
with different wave packet widths.

When employing 100 TPs in the SMF calculation, the
statistical fluctuations according to Eq. (37) are quite sup-
pressed, and the numerical damping remains limited. On the
other hand, one can nicely observe that, owing to fluctuations,
the damping increases strongly when using a smaller number
NTP in the calculations (see the behavior for NTP = 10 and
NTP = 2). At the same time, the oscillation frequency is seen
to slightly increase. It is also interesting to observe that SMF
results with NTP = 1 are different from molecular dynamics
calculations, as reported in the figure for the ImQMD results.
In the following, we will explore the reasons for this behavior
in more detail.
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FIG. 9. The first Fourier transform coefficient, ρk (t ), as obtained
for an initial sinusoidal perturbation with node number n = 1, as a
function of time. In panel (a), SMF calculations are shown employing
different numbers of TPs, as indicated in the legend. Moreover,
standard ImQMD calculations are represented. In panel (b), ImQMD
and ImQMD-L calculations are shown employing different Gaussian
wave packet widths, and for comparison the SMF calculations with
100 and 1 TP per nucleon.

The influence of fluctuations in the context of QMD-like
models is investigated by considering ImQMD calculations
that employ, in addition to the standard value of the Gaussian
width (�x = √

2 fm), another choice, namely �x = 0.9 fm.
This Gaussian width has been selected to fit the width of the
triangular profile employed in SMF (see Table I). Moreover,
also the lattice version of ImQMD (ImQMD-L) is considered.
The corresponding results are shown in the lower panel of
Fig. 9.

Comparing the (black) dot-dashed and full (with circles)
lines, one can see that reducing the Gaussian width in ImQMD
(approaching the width value employed in SMF) leads to quite
quenched oscillations, thus increasing the discrepancy with
the corresponding SMF results with 1 TP, contrary to what
might have been expected. On the other hand, quite interesting
results are seen for ImQMD-L: in this case, calculations with
the reduced width, �x = 0.9 fm, are quite close to SMF
results with NTP = 1. Moreover, employing the standard value

of �x = 1.4 fm, the strength function exhibits an oscillation
frequency similar to standard SMF calculations (i.e., with
NTP = 100), though with more pronounced damping effects.
The results presented so far demand clarifications concerning
the relation between the oscillation frequency and the wave
packet width in QMD-like approaches, or the test particle
number in BUU-like approaches, which will be given in the
next subsection.

B. Gradients of mean-field potential

The oscillation frequency crucially depends on the gradi-
ents of the mean-field potential that the particles feel, and
on the interplay with fluctuations. Indeed, the gradients de-
termine the change of the momenta of nucleons (or TPs)
according to the equation (for codes of type “nonrel” and
“rel”)

∂

∂t
Pz,i = −∂ε/∂Zi = −∂U/∂Zi, (38)

where ε is the single-particle energy. As already discussed
in Sec. III A 2, the gradient can be calculated analytically at
the initial time according to the perturbation impressed on the
system:

(∂U/∂z)t=0 = 1/ρ [a(ρ/ρ0) + bσ (ρ/ρ0)σ ][aρk cos(kz)].
(39)

In the simulations, we have evaluated, for each event, the gra-
dient, ∂U/∂z, of the mean-field potential along the z direction
at the initial time t = 0. The codes calculate this quantity for
each TP or nucleon. Then, for each cell of the z grid (with side
equal to 1 fm), this quantity is averaged over all nucleons (or
TPs) having the z coordinate inside the grid (i.e., within 1 fm
of interval) for any value of the (x, y) coordinates. Finally, we
average over all events considered. A plot of these gradients
is shown in Fig. 10: in panels (a)–(c) for SMF for the two-
and many-body parts and the total gradients with different TP
numbers, respectively, and in panel (d) for ImQMD for the
two versions of the code and for different wave packet widths.
One clearly observes that the gradients depend on the number
of TPs employed (for SMF) and on the Gaussian width (for
ImQMD). In particular, as shown by the first two panels of
Fig. 10, the gradient associated with the linear (aρ) term of
the mean-field potential is not influenced by the TP number
adopted, whereas a dependence on the number of TPs is seen
for the stiffer (many-body) bρσ term. This can be understood
as follows: the gradient ∂U/∂Zi can be written as

∂U

∂Zi
≈

∫
d3r U (ρ)

∂G(�r − �Ri )

∂Zi
= ∂Hpot

∂Zi
, (40)

where

Hpot =
∫

d3r

[
a

2
(ρ2/ρ0) + b

σ + 1

(
ρσ+1/ρσ

0

)]
. (41)

We consider the average of the middle part of Eq. (40), by
summing over the different cells with the same position on
the z axis.

Starting from the definition of the mean-field potential,
U (ρ), it is easy to realize that one has to deal with the average
value of ρ and ρσ . Thus, the linear (aρ) term of the potential is
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FIG. 10. Gradient of the mean-field potential. Panels (a)–(c) correspond to SMF calculations, with several options for the TP number,
from two-body (2-b), many-body (m-b) and total contributions, respectively, with the legend given by the left panel on top of the figure. Panel
(d) corresponds to ImQMD and ImQMD-L calculations using several options for the Gaussian width, with the legend given by the right panel
on top of the figure. The analytical curve corresponds to the dashed (green) line.

not affected by the fluctuations, whereas for the second (bρσ )
term one can write 〈ρσ 〉 = ρ̄σ

z + σ (σ−1)
2 ρ̄σ−2

z σ 2
ρ . Exploiting

the expression of the variance, Eq. (37), this quantity can be
rewritten as 〈ρσ 〉 = ρ̄σ

z [1 + σ (σ − 1)/(2ρ̄zV NTP)]. Thus the
average gradient of the many-body term is affected by the
presence of fluctuations, which affect the repulsive part of
the nuclear effective interaction. In particular, the presence
of fluctuations induces larger gradients (in absolute value)
with respect to the analytical predictions. This effect clearly
appears in SMF calculations when decreasing the number of
TPs, as shown in Fig. 10(b).

In particular, when using NTP = 100 or even NTP = 10,
fluctuations are quite reduced and the average gradient follows
the analytical predictions. On the other hand, considering just
one TP per nucleon, the gradient gets larger values. Similarly,
in the case of ImQMD [panel (d)], smaller values of the
Gaussian width (i.e., larger fluctuations) lead to larger density
gradients. Confronting SMF calculations with NTP = 1 with
ImQMD results of similar width (�x = 0.9 fm), one can see
that the latter gives a smaller gradient (which is accidentally
close to the analytical curve).

This result can be connected to an approximation, often
employed in QMD-like codes, to evaluate the gradients as-
sociated with the many-body term of the Skyrme interaction.
Within QMD-like approaches and employing Gaussian func-
tions for the nucleon wave packet, the first term of the nucleon
potential energy can be written as

H2body,QMD
pot = a

2ρ0

∑
i

ρ̃i, (42)

where ρ̃i is defined as

ρ̃i = [4π (�x)2]−3/2
∑

j

exp[−( �Ri − �Rj )
2/{4(�x)2}]. (43)

Whereas the combination of Eqs. (42) and (43) yields the
exact two-body contribution to the Hamiltonian, a similar
combination,

H3body,QMD
pot = b

(σ + 1)ρσ
0

∑
i

ρ̃σ
i , (44)

does not yield the exact result for the stiffer repulsive term of
the potential energy.

The approximation (44) leads to a reduction of the strength
of the latter term and seems to be the origin of the results
observed in Fig. 10(d) for ImQMD. It will be seen below that
this is also the case for the other QMD-like codes involved
in the comparison. However, it should be noticed that the
lattice formulation of ImQMD (ImQMD-L) is free from this
problem, thanks to the exact calculation of the many-body
term [45].

This explains the results shown in Fig. 10(d) that “stan-
dard” ImQMD calculations, with �x = √

2 ≈ 1.4 fm, give a
smaller gradient than the analytical predictions. This is due to
the approximation discussed above for the gradient and to the
Gaussian width amplitude, which introduces smearing effects.
Reducing the width to �x = 0.9 fm, the gradient increases
(dot-dashed curve on the figure) and becomes (accidentally)
closer to the analytical value. In the case of ImQMD-L, owing
to the different treatment of the stiff term of the nuclear
potential, the choice of �x = 1.4 fm yields results that co-
incide with the analytical curve. On the other hand, with
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FIG. 11. Absolute strength |ρk (t )| of different modes n as a function of time: n = 1 (black full line), n = 3 (red dashed line), n = 5 (green
line with shading below). Results are shown for DFS calculations with relativitic kinematics [panel (a)] and LHV calculations with 2500
TP [panel (b)], and 100 TP [panel (c)] per nucleon, initialized with mode n = 1. The (c) panel also shows results from standard ImQMD
calculations for n = 1 (black line with dots).

�x = 0.9 fm, the trend approaches SMF results with 1 TP,
as expected. These findings explain why, as seen in Fig. 9,
ImQMD-L calculations with �x = 0.9 fm give density os-
cillations pretty close to the SMF results with 1 TP, whereas
ImQMD-L calculations with �x = 1.4 fm yield results close
to the SMF calculations with 100 TP. Indeed, the gradient
of the mean-field potential in the latter case is similar to the
analytical prediction. On the other hand, the smaller gradient
corresponding to ImQMD with �x = 1.4 fm explains the
lower oscillation frequency observed in this case. However, it
is interesting to notice that, in spite of the fact that a gradient
close to the analytical value is recovered in ImQMD for �x =
0.9 fm, oscillations are quite quenched in this case. This trend
can be attributed to the dominance of the damping effects
associated with the large fluctuation amplitude stemming from
the smaller Gaussian width. In SMF calculations with 1 TP
and in ImQMD-L, this effect is counterbalanced by the larger
value of the potential gradient [see Figs. 10(c) and 10(d)].

C. Mode coupling

To understand the behavior observed for the strength of
the initialized mode (n = 1) already seen in Fig. 5, one has
to consider the important coupling effects with other modes
(with n > 1), inducing anharmonicities. These effects are con-

nected to the nonlinear character of the Vlasov equation. This
is shown in Fig. 11, which displays the absolute value of
the strength of different modes as a function of time. DFS
calculations in the relativistic formulation are represented in
panel (a). In particular, the figure shows the oscillations of
the modes with n = 3 and n = 5, which are not present in
the initial conditions but arise over time from the coupling to
the n = 1 mode. The amplitude of these oscillations and their
time evolution is quite sensitive to the details of the mean-field
potential and its gradient. We also observe that the coupling
to the other modes induces damping effects in the n = 1
mode, as also evident in Fig. 8. The DFS results are compared
to LHV calculations with 2500 and 100 TP per nucleon in
panels (b) and (c) of Fig. 11, respectively. A nice agreement
is observed for the calculations with 2500 TP, especially for
the dynamics of n = 1 and n = 3 modes. Employing 100 TP
per nucleon, one can see that the dynamics of the n = 1 mode
is reasonably well preserved, whereas n = 3 and especially
n = 5 oscillations start to be dominated by a chaotic behavior
attributable to numerical fluctuations. The (c) panel of Fig. 11
also shows standard ImQMD calculations for the mode n = 1.
One can clearly appreciate the stronger damping and the loss
of harmonicity at late times, as already discussed above. The
modes with n = 3 and n = 5 (not shown) are rather chaotic in
this case.
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FIG. 12. The value of the strength ρk,tot (see text), for calculations initialized with mode n = 1, as a function of the mode number n. The
different panels correspond to the average of ρk,tot over the time interval indicated on the top. Calculations are shown for DFS calculations
with relativistic kinematics (green shaded histogram), LHV calculations with 2500 TP (magenta full line) and 100 TP (blue dashed line) per
nucleon, and standard ImQMD calculations (full line with dots). The inset in the first panel shows the distribution corresponding to the initial
time t = 0.

A deeper insight into mode coupling effects is obtained
from Fig. 12, which shows the quantity ρk,tot (see Sec. III A
4), averaged over the time interval indicated on the top of each
panel, as a function of the node number n. We recall that the
system is initialized with n = 1. The decreasing trend with
mode number n exhibited by DFS calculations is well repro-
duced by LHV calculations with 2500 TP. When employing
100 TP, damping effects are visible at late times for the lower
n numbers. The overestimation, with respect to DFS results,
observed for the mode numbers n � 4–5 can be connected to
numerical fluctuations already present in the initial conditions
(see the inset in the first panel). In ImQMD calculations, the
amplitude of the modes n � 2 remains similar to the initial
value represented in the inset of the first panel, which is due
to numerical density fluctuations. The quenching of the modes
with large n can be attributed to the density smearing effects
associated with the Gaussian width. The mode n = 1, which is
excited in the initial conditions, is considerably damped, and
approaches the amplitude associated with statistical density
fluctuations [see Eq. (37)] already at t ≈ 200 fm/c.

VIII. RESULTS OF ALL PARTICIPATING CODES

In this section we compare results of all the participating
codes, using the numerical parameters recommended in the
homework specification or chosen by the code owners. The
focus is therefore on the more systematical similarities and
differences between the different types of codes and within
each family.

According to arguments given above, we expect that the
oscillation strongly depends on the behavior of the poten-

tial gradients as calculated in the codes. We therefore first
show in Fig. 13 the average gradients in the z direction for
all the codes, at time t = 0. The BUU codes give gradients
close to the respective analytical results (note the different
analytical prediction in the case of RVUU and DJBUU, as
already explained in Sec. III A 2). The QMD codes also give
consistent results within this family, since they are using a
common initialization, but generally lower than the analytical
expectation. As discussed in Sec. VII B, this is due to the
approximation used in evaluating the nonlinear repulsive term
of the force. This gives rise to generally lower frequencies of
the oscillation for the QMD codes. In the case of ImQMD-L,
which is free from this approximation, the potential gradient is
larger (in absolute value) and becomes close to the analytical
prediction.

A. Strength function

The time evolution of the n = 1 mode of the Fourier trans-
form of the density oscillations, namely the strength function
ρk (t ), is displayed in Fig. 14 for all BUU-like [panel (a)] and
QMD-like [panel (b)] codes participating in the comparison.
For the BUU-like codes, three main groups can be discerned
(best visible around t = 400 fm/c): slower oscillations are
seen for the codes of type “rel,” namely IBUU, IBUU-L,
and LHV, compared to the codes of type “nonrel” (SMF
and BUU-VM), in line with the analytical expectations. The
covariant code SMASH exhibits similar oscillation frequen-
cies, as compared to the codes of type “nonrel,” whereas
a slightly larger frequency is seen for pBUU, RVUU, and
DJBUU. These features also reflect the analytical predictions
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FIG. 13. The gradient of the mean-field potential, at time t = 0, in the BUU-like [panel (a)] and QMD-like [panel (b)] codes, in comparison
to the respective analytical result. The QMD codes have used an identical initialization; the error bars represents the variance. The dotted
vertical line in panel (a) indicates the central position of the box.

FIG. 14. The strength function ρk (t ) for mode number n = 1 is
displayed as a function of time. Results are shown for BUU-like
calculations [panel (a), including ImQMD-L calculations for com-
parison] and QMD-like calculations [panel (b)].

of Table III, as will be better illustrated in the next subsection.
The amplitude of the oscillations at late times reflects the
damping effects associated with the number of test particles
(NTP = 100) employed in the calculations. The oscillations
are less quenched for the codes which employed a larger
number of test particles in order to preserve a good quality
for the momentum distribution (such as BUU-VM, IBUU, and
pBUU).

As a general feature, the QMD-like codes in the lower
panel show a stronger damping, which is consistent with the
larger fluctuations in these codes, and also generally a smaller
frequency, with respect to the analytical expectation (codes
of type “rel”), especially at early times, which is consistent
with the reduced gradients in QMD, as seen in Fig. 13. The
frequency is higher for ImQMD-L, which is free from the
approximation employed to evaluate the many-body term of
the force in QMD. In this case, the early behavior of the
Fourier transform coefficient is close to the results of the
BUU-like codes, as one can appreciate from panel (a), where
ImQMD-L results are also included.

B. Response function

A compact presentation of the dynamical properties of
the mean-field propagation is given by the response function,
ρk (ω), which was introduced in Sec. III A 4 as the Fourier
transform of the strength function with respect to time. This
quantity is shown in Fig. 15 for all the codes participating
in the comparison. As the initial time, tin, we consider the
time instant of the first minimum of the Fourier transform
coefficient ρk (t ) for each code. This choice is motivated by
the fact that, as explained above, the amplitude of the ini-
tial density perturbation impressed to the system is quickly
quenched, by about a factor 2, to reach the amplitude of
the zero-sound collective mode. Thus zero-sound oscillations
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FIG. 15. Response function ρk (ω), i.e., Fourier transform with
respect to space and time, of the averaged density distribution from
BUU-like and two QMD-like calculations. Results are shown also
for DFS calculations with relativistic kinematics. The vertical lines
indicate the analytical zero-sound energies for the different code
types, downshifted by 2% (see text).

are more properly investigated starting from the second peak
in the time evolution (i.e., the first minimum). To make the
Fourier transform with respect to time more meaningful,
the function ρk (t ) is multiplied by the smearing function
cos2[π (t − tin )/(2(tfin − tin ))], so that at the final time the
resulting product function goes to zero. More details about
the sensitivity of the response function to tin, and to smearing
effects, are given in the Appendix.

The response function should have a peak centered at the
energy of the mode, and the width of the peak is a measure
of the damping. Here the three groups of BUU-like codes
already evidenced in Fig. 14 are nicely visible: for the codes
of type “nonrel,” i.e., BUU-VM and SMF, the peak energy is
close to the one of pBUU and SMASH (these four codes are
denoted by full lines); the codes of type “rel,” namely LHV,
IBUU-L, and IBUU, have smaller frequency (dashed lines);
the covariant codes RVUU and DJBUU (dot-dashed lines)
exhibit a larger peak energy. This trend is in agreement with
the analytical predictions given in Table III, though the peak
energies extracted from Fig. 15 are slightly smaller than the
zero-sound energies. For instance, for codes of type “nonrel”
one would expect a peak at the energy E = h̄ω = 18.65 MeV,
which is slightly larger than the results of SMF (18.32 MeV)
and BUU-VM (18.17 MeV). In the figure, this is evidenced
by the four vertical segments, which indicate the analytical
zero-sound solutions corresponding (from the left to the right)
to codes of type “rel,” codes of type “nonrel,” RVUU, and
DJBUU. The lines have been shifted down by 2% (to fit
the DFS peak energy). This effect is mainly due to mode
coupling; indeed it is observed also in the case of the exact
DFS calculations. The larger difference seen for RVUU could
originate from the more significant deviation from the Fermi
statistics, with respect to the other BUU-like codes, as shown
in Fig. 6.

The width of the response function reflects mode coupling
and damping effects already discussed in the previous section.
In some cases, a shoulder is observed at energies larger than
the peak energy, which can be attributed to the presence of
nonlinearities. Indeed, the latter effects tend to increase the
oscillation frequency, because of the coupling to modes with
larger wave numbers. However, it should be noticed that the
width is also affected by numerical ingredients, such as the
final time considered and the smearing function introduced to
evaluate the response function (see the Appendix).

Since all QMD codes lead to an almost identical behavior
for the time evolution of ρk (t ), we show here only the results
obtained for ImQMD and ImQMD-L. We clearly observe
the quite large damping effects associated with the QMD-
like codes. The strength is larger in the case of ImQMD-L,
owing to the stronger driving force in this case (i.e., to the
larger gradient of the mean-field potential), that also leads
to a higher peak energy, as compared to ImQMD. The peak
energy observed for ImQMD is close to the BUU codes of
type “nonrel,” indicating that the reduced mean-field gradi-
ent values (see Fig. 13) mainly affect the early evolution
of the system, that is excluded in our evaluation of the
response function.

IX. DISCUSSIONS AND CONCLUSION

This paper continues evaluations of the robustness of
transport-model predictions for heavy-ion collisions. One di-
rection of these studies have been calculations in a periodic
box, where ingredients of transport codes can be studied in
separation and against results that are exact or that can be
calculated more accurately with other methods. After box in-
vestigations of elastic collisions with Pauli blocking [24] and
inelastic collisions without Pauli blocking [25], yielding Delta
resonances and pions, we study here mean-field dynamics in a
box, without collisions. The system is initialized in terms of a
standing density wave and the system evolution is followed
with different participating codes using energy functionals
that are made identical or similar. Major transport codes from
the two basic families, BUU and QMD, are included in this
study, which also partly account for relativistic effects in
different approximations. We compare outcomes between the
codes and to exact results in the small-amplitude limit and to
numerical results for the evolution obtained in a more direct
and accurate manner. The comparisons include those of the
strength function characterizing mode evolution and response
function revealing how frequencies are tied to the modes.

We find that we can generally understand consistencies and
differences between the results of the codes. The differences
among the codes and relative to near-exact results that persist
include (1) relativistic effects that yield observable effects in
the frequency of collisionless mode; (2) approximations to the
calculation of the non-linear terms of the force used in QMD
codes that lead to noticeable differences in the frequency of
the density oscillations even at early times, which can, how-
ever, be avoided in a lattice evaluation scheme; and (3) the
importance of damping effects generated by statistical or nu-
merical fluctuations. Indeed, the most noticeable differences
in the results of the codes arise from the fluctuations inherent
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in the coarse phase space representation, which are charac-
teristically different in BUU and QMD codes. They lead to
a considerable damping of the modes, and in extreme cases
also to frequency changes. We could show that by extremely
extending the test particle number in BUU codes, we can
come close to the near-exact results, as is to be expected.
But already with more moderate numbers of test particle, as
commonly used in heavy-ion calculations, the results compare
well against the near-exact results. In QMD codes the damp-
ing is much stronger than in BUU, affecting also slightly the
frequency. These findings do not make a statement about the
validity of the two approaches, since the physical modeling
is different: QMD codes attempt to put a reasonable amount
of fluctuation already into the ansatz for the representation,
while in BUU these would have to be included by an extra
fluctuation term in the Langevin framework.

The findings for the long-term behavior are relevant to the
uses of semiclassical transport in the studies of oscillations
of isolated finite nuclei, including comparisons to quantum-
mechanical calculations in TDHF and RPA [26,29]. Most of
these studies have been carried out on a case-by-case basis,
rather than systematically.

In the context of heavy-ion collisions, it should be noted
that we employ here unrealistically stiff equations of state
(K = 500 MeV), overemphasizing the strength of mean-field
back-reacting forces and yielding more robust oscillations.
For more realistic incompressibilities, the oscillations would
have been slower and far more strongly damped. Here we have
investigated the oscillations for the rather long time span of
500 fm/c, which contains many cycles. For a realistic heavy-
ion collision, probably the time interval where the maximal
density is reached, of the order of a quarter or half of the
cycle in Fig. 14 is relevant at intermediate energies. Over
such times, the results of the different codes are not so much
different, as seen in Fig. 14, and thus not too large effects from
differences in mean-field integration are expected. Perhaps
the stronger damping, and, in most cases, also the weaker
forces of the QMD codes could lead to a weaker response
and to systematically reduced flow effects, see for instance
the comparative heavy-ion study of Ref. [23]. However, in
realistic studies of heavy-ion collisions momentum-dependent
forces have to be used, unlike the forces used here, which
could lead to larger differences in the mean-field propaga-
tion [73,74]. The impact of momentum-dependent forces is
presently investigated in comparative studies of box calcula-
tions and heavy-ion collisions.
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APPENDIX: DETAILS OF CALCULATION
OF RESPONSE FUNCTION

Here we want to illustrate the sensitivity of calculation of
the response function to some technical choices mentioned
in Sec. VIII B: the time integration interval and the use of a
“smearing function.” In Fig. 16 we show the results for the
response function for the DFS calculation with relativistic
kinematics, in panel (b) for tfin = 500 fm/c (the standard
choice) and in panel (a) for tfin = 1000 fm/c. In each panel we
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FIG. 16. Response function ρk (ω), i.e., Fourier transform with respect to space and time of the averaged density distribution, from DFS
calculations with relativistic kinematics. Results are shown for different choices of the time interval used for the Fourier transform with respect
to time, and of the use of a smearing function or not. Results with the standard final time of tfin = 500 fm/c are shown in panel (b), and for
tfin = 1000 fm/c in panel (a). Curves with the standard choice of the initial time (first minimum of the oscillation) are given by solid (black)
curves, and those with tin = 0 by the dashed (red) curves. Results using the smoothing function are given by the thin curves (with shading
below), and those without smearing (“w/o s”) by the thick curves.

plot the results for our standard choice for tin [first minimum in
the time evolution of ρk (t )] (black solid curves) and for tin = 0
(red dashed curves), and with smearing (standard choice, thin
lines with shading below) or without smearing (thick lines,
notation “w/o s” in the legend). Thus the thin (black) line
corresponds to our standard choice, and the one in panel (b) is
the same curve as the one shown in Fig. 15 for DFS-rel.

One sees that all curves have a main peak, which is the
peak of interest in Fig. 15 and can be compared to the fre-
quency of the zero-sound oscillation. The position of the main
peak is essentially unaffected by the various choices of the
time interval and the smearing. Thus the conclusions of our
response function analysis in Sec. VIII B are robust against the
choices for these technical parameters. However, it may still
be of interest to investigate the consequences of these choices
on the shape of the response function, which is done in this
Appendix.

Without the smearing function the time dependence of
the strength function is cut off abruptly at the final time.
Then we expect the appearance of structures at frequencies
ωn = nπ/(tfin − tin ), with n an integer. Indeed, we see these

structures in the thick curves, which have half the spacing for
the doubled time interval. Including the smearing function,
the strength function smoothly goes to zero at the final time.
Correspondingly these structures are smoothed out in the thin
curves.

As discussed in Sec. IV A, with our choice of the initial
momenta of the (test) particles, namely randomly in the local
spherical Fermi surface, we do not initialize the proper mo-
mentum distribution of the physical zero-sound mode. Then
the initial evolution of the system is characterized by a fast
quenching (by about a factor 2) of the initial density pertur-
bation, which feeds low-frequency components. Indeed we
see in both panels that low-frequency modes are excited when
taking tin = 0, and this is the more so if the total time interval
is shorter, i.e., the fewer modes there are.

Finally one can observe that the asymmetry of the response
function is due to the admixture of higher modes, which is
mainly due to the nonlinearity of the mean-field potential.
These higher mode admixtures are clearly resolved without
the smearing, and are mostly smoothed out with the standard
choice of tfin = 500 fm/c in panel (b).
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