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Abstract: This study examines the volatility of nine leading cryptocurrencies by market capitalization—
Bitcoin, XRP, Ethereum, Bitcoin Cash, Stellar, Litecoin, TRON, Cardano, and IOTA-by using a
Bayesian Stochastic Volatility (SV) model and several GARCH models. We find that when we deal
with extremely volatile financial data, such as cryptocurrencies, the SV model performs better than
the GARCH family models. Moreover, the forecasting errors of the SV model, compared with the
GARCH models, tend to be more accurate as forecast time horizons are longer. This deepens our
insight into volatility forecast models in the complex market of cryptocurrencies.

Keywords: cryptocurrencies; Bitcoin; GARCH; stochastic volatility

1. Introduction

Understanding the relationships among cryptocurrencies is important for policymak-
ers whose role is to maintain the stability of financial markets as well as for investors
whose investment portfolios contain a portion of cryptocurrencies. Cryptocurrency is a
non-centralized digital currency that is exchanged between peers without the need of a
central government. Bitcoin [1,2], which was the first cryptocurrency, operates with block
chain technology with a system of recording information in a way that makes it difficult
or impossible to change, hack, or cheat the system. Because the prices of cryptocurrencies
have been increased such as speculative investment purposes and/or a digital asset for
real use, they have received growing attention from the media, academics, and the finance
industry. Since the inception of Bitcoin in 2009, over several thousand alternative digital
currencies have been developed, and there have been a number of studies on the analysis
of the exchange rates of cryptocurrency [3]. The degree of the return volatility has been
regarded as a crucial characteristic of cryptocurrencies for investors including them in their
portfolio. The prices of Bitcoin and Ethereum have been rapidly increased so that the last
one-year price of Bitcoin was an almost 400 percent increase to USD 40,406 on 15 June 2021
from USD 9451 on 15 June 2020. Since [4,5], empirical investigations of Bitcoin showed that
Bitcoin is more characteristic of an asset rather than a currency, and Bitcoin also possesses
risk management and hedging capabilities [6]. In order to predict the exchange rates
of the Bitcoin electronic currency against the US Dollar, ref. [7] proposed a non-causal
autoregressive process with Cauchy errors. The volatility of Bitcoin using monthly return
series is higher than that of gold or some foreign currencies in dollars [8].

A number of academic studies have investigated the factors influencing the price
and volatility of cryptocurrencies ([9–12]). Especially, GARCH family models are em-
ployed to estimate the time-varying volatility of cryptocurrencies. Ref. [13] proposed the
AR-CGARCH model to estimate the volatility of Bitcoin by comparing GARCH models.
Ref. [14] looked at the tail behavior of returns of the five major cryptocurrencies (Bitcoin,
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Ethereum, Ripple, Bitcoin Cash, and Litecoin), using extreme value analysis and estimating
VaR and ES as tail risk measures. They found that Bitcoin Cash is the riskiest, while
Bitcoin and Litecoin are the least risky cryptocurrencies. Ref. [15] examined more than
1000 GARCH models and suggest the best fitted GARCH model chosen by back-testing
VaR and ES as well as an MCS procedure. They claim that standard GARCH models
may result in incorrect predictions and could be improved by allowing asymmetries and
regime switching. Ref. [16] employs the BEKK GARCH model to estimate time-varying
conditional correlations between gold and Bitcoin.

For the volatility, previous studies have employed a variation of GARCH models,
while little attention has been paid to methods outside the GARCH family. Refs. [17,18],
examples of a few papers in this area, examine the volatility of cryptocurrencies by hiring
the stochastic volatility model and finding out that the use of fast-moving autocorrelation
function captures the volatility of cryptocurrencies better than smoothly decaying functions.
This study sheds light on other statistical methods for better out-of-sample forecasting
power, in particular, the SV model. Instead of using traditional approaches to interpret
the association and/or causality among the cryptocurrencies, we use the approaches (SV
method) described above because of several advantages. First, financial asset returns
are generally fat-tailed and have negative skewness, and the residuals obtained from
traditional time series analysis such as GARCH and/or VAR may be contaminated by
other explainable portions of the volatility of the return series. Second, it is common that
financial time series volatility is correlated in a non-Gaussian way. Lastly, because of the
occurrence of extreme observations and the complex structure of the dependence among
asset returns, traditional approaches often fail to incorporate the influences of asymmetries
in individual distributions and in dependence. A copula function introduces a function
linking univariate marginal to their multivariate distribution ([19]).

This study contributes to the literature by highlighting the SV model, which shows
superior forecasting accuracy compared with GARCH family models studied in prior stud-
ies. The SV considers two error processes, but the GARCH model considers a single error
term so that the SV model makes a better in-sample fit. The adoption of cryptocurrencies
as an alternative investment asset by institutional investors, such as hedge fund investors,
has increased significantly in recent years. The cryptocurrency market, which has shown
higher volatility than any other assets in the financial market, requires a significant level of
risk management from institutional investors and individuals that incorporate them into
their investment portfolios. The excellence of forecasting power in our SV model provides
implications that it can be used as a better risk management tool than other GARCH family
models. Moreover, the forecasting errors of the SV model, compared with the GARCH
models, tend to be more accurate as forecast time horizons are longer. Another contribution
of our paper to the literature is, rather, to pay attention to the forecasting power of volatility
models using cryptocurrency data than measure volatility itself. Finally, by hiring principal
component analysis (PCA), this study examines whether a smaller number of factors are
able to explain the variation of a large set of cryptocurrencies. This approach may shed
light on which group of cryptocurrencies mainly drives the variation of the daily log-return
of cryptocurrencies used in the paper. As the crypto market has been gradually accepted
into the mainstream of financial markets, the accurate prediction of cryptocurrency return
volatility is in more demand by market participants, financial institutions, and government
agencies. The approach used in this study sheds light on what models are examined for a
more accurate estimate of cryptocurrency volatility.

This paper is organized as follows. Section 2 gives an overview of the existing volatility
models, that is, the GARCH and SV methods. Section 3 presents the data analysis and the
discussion and conclusion follow in Sections 4 and 5, respectively.
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2. Materials and Methods

In Section 2, we introduce the two different traditional volatility models used in this
study to compare the relative efficiency of the models we used. Our study conducts the SV
model to forecast unobserved volatility in financial economics; however, there is another
class of models that is frequently used. Refs. [20,21] develop the autoregressive conditional
heteroscedasticity (ARCH) and generalized ARCH (GARCH) models, respectively. We
employ GARCH (1,1) with constant in Mean, Threshold-GARCH (TGARCH) and the
Integrated GARCH (IGARCH) models among the family of the GARCH models. The
standard GARCH model assumes that positive and negative error terms have a symmetric
effect on volatility. It means that good and bad news have the same effect on the volatility
in the standard GARCH model. However, this assumption is easily violated in the financial
stock market, in that the negative change in the stock market has a bigger effect on the
volatility index than a positive change, or vice-versa. Ref. [22] called it a leverage effect.
As such, the asymmetric GARCH models were developed for accommodating a leverage
effect. The SV model allows for two error processes, while the GARCH model considers a
single error term. Therefore, the SV model makes a better in-sample fit ([23]) and thus could
provide a better forecast whereas it potentially involves a heavy computational burden.

2.1. GARCH Models

For a log return series rt = log
(

St
St−1

)
, we let at = rt − Et−1[rt] be the innovation at

time t. All members of the family of GARCH models are obtained from a transformation
of the conditional standard deviation, σt, determined by the transformation f () of the
innovations, at, and lagged transformed conditional standard deviations. In particular, we
employee three transformation models (GARCH, IGARCH, and TGARCH). An extensive
discussion on the nested GARCH models is given in [7].

The mean model is chosen to have ARMA(0,0), and we include a mean-constant so
that we let rt = µ + εt be the innovation at time t where µ is a mean constant. For a log
return series, we let at = rt− Et−1[rt] be the innovation at time t. Then at follows a GARCH
(p,q) with constant in mean model if

at =
√

htet (1)

ht = α0 +
q

∑
i=1

αia2
t−i +

p

∑
i=1

βiht−i (2)

where α0 > 0, αi ≥ 0, βi ≥ 0, and et ~ t-Student distribution, which is explained by its 3
parameters, which are the location, scale and shape parameters in Equation (25) from [24].
The GARCH (p,q) model is stationary with a finite variance if ∑

q
i=1 αi + ∑

p
i=1 βi ≤ 1.

Furthermore, if ∑
q
i=1 αi + ∑

p
i=1 βi = 1, then the GARCH (p,q) process is called IGARCH

model [25] which is either non-stationary or have an infinite variance. In order to model
persistence of higher volatility, we need an IGARCH (p,q) model with q ≥ 1. The TGARCH
model [26] captures the asymmetric effect in the volatility is given by

√
ht = α0 +

q

∑
i=1

αi(|at−i| − ηiat−i) +
p

∑
i=1

βi
√

ht−i (3)

where the coefficient in the leverage term ηi satisfies the condition −1 < ηi < 1.
For the model selection of the GARCH ((p = 1) and (q = 1)) models considered, we

used the Akaike Information Criterion (AIC). In addition, this study also considered the
t-Student errors to take into account the possible fatness of the distribution tails of et.
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2.2. Stochastic Volatility Model

In the standard SV model framework [27,28], the data returns, r, that are generated
from a probability model f (r|g) , where g is a vector of volatilities, and this unobserved
vector g has a probabilistic structure f ( r|θ), where θ is a vector of parameters (see [23,29,30]
for details). In the standard form of the model, volatility is modeled as a Gaussian first-
order linear autoregressive (AR(1)) process with mean µ in terms of a series of white
innovations {Et} as follows;

gt − µ = φ(gt−1 − µ) + Et (4)

where Et v iid N
(
0, hη

)
, independent and identically distributed (iid) as normal, and

|φ| < 1. A useful feature of Gaussian AR(1) processes is that the marginal distribution is
also normal so that

g0 ∼ N
(

µ,
hη

1− φ2

)
(5)

and the returns are given by

rt = β exp
( gt

2

)
et, et ∼ iid N(0, 1) (6)

where {et} are independent and identically distributed (iid) as standard normal distribution.
We denote pt to be spot price of a financial asset at time t and its one-period return is
defined as rt = ln

(
Pt

Pt−1

)
. Let r = (r1, r2, . . . , rn)

T be a vector of returns with mean zero.
The SV model is that each observation rt is assumed to have its own contemporaneous
variance exp(gt/2) =

√
ht which becomes gt = ln ht. The exp(gt) is defined as the latent,

time-varying volatility that follows a stochastic evolution. The SV model in this paper is
given through:

rt|gt ∼ N(0, exp(gt)) (7)

gt

∣∣∣gt−1,µ,φ,ση ∼ N
(
µ + φ(gt−1 − µ), hη

)
(8)

g0

∣∣∣ µ, φ,
√

hη ∼ N
(

µ,
hη

1− φ2

)
(9)

where θ =
(
µ, φ,

√
hη

)
is a vector of parameters so that µ is the level of log-variance, ϕ is

the persistence of log-variance, and ση is the volatility of log-variance. The initial state g0
is distributed according to the stationary distribution of the autoregressive process of order
one.

Following [29,31] specifies a prior distribution for the parameter vector θ choosing
independent components for each parameter, p(θ) = p(µ)p(φ)p

(√
hη

)
where µ follows

the usual normal prior µ ∼ N
(
bµ, Bµ

)
. Ref. [32] notes that the prior of µ is usually

chosen to be rather uninformative, e.g., through setting bµ = 0 and Bµ ≥ 100 for daily log
returns. The persistence parameter φ ∼ (−1, 1) is chosen so that (φ + 1)/2 follows the
beta distribution B(α, β), implying

p(φ) =
1

2B(α, β)

(
1 + φ

2

)α−1(1− φ

2

)β−1
(10)

where α and β are positive hyperparameters and B(α, β) =
∫ 1

0 tα−1(1− t)β−1dt. It is
obvious that the autoregressive volatility process is stationary because the support of the
beta distribution is the interval (−1,1). Its expected value and variance are

E(φ) =
2α

α + β
− 1 and V(φ) =

4αβ

(α + β)2(α + β− 1)
(11)
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ref. [31] chooses hη , the volatility of log-variance, such that hη follows the hyperparameter
Bση

multiplied by χ2(d f = 1). In Section 2.3, we will compare the volatility forecast
predictabilities of the models introduced in Sections 2.1 and 2.2.

2.3. Volatility Forecast Evaluation

In this subsection we carry out empirical exercise to measure predictive accuracy.
The SV and GARCH models with observed returns is initially estimated by using our
in-sample data. Forecasts are generated at horizons of 3, 5, 10, 20, 30, and 44 days. Then,
our out-of-sample data are added to the sample, and the parameters of the model with an
individual approach are estimated. The purpose of considering multiple forecast horizons
is to see whether our new approach improves the predictive ability of a time series model
at all horizons in a large sample. This is done by applying a common loss function which
is a logarithmic version of mean square (prediction) error (MSE):

MSEk ≡
1
n

n

∑
t=1

(
ln σ2

t − ht

)2
, where k = 1, 2 (12)

ht is the estimates of the conditional log-volatility. This loss function with mathematical
simplicity is the popular measure to evaluate forecasting performance in the literature
(e.g., [11]). We consider two alternative ex post proxies for the conditional volatility such
that ln σ2

t = r2
t and ln σ2

t = |rt| which are noted as k = 1, 2, respectively. A smaller average
loss is more accurate and, therefore, preferred.

3. Results

For volatility efficiency comparison, nine cryptocurrencies are applied to the models
introduced in Section 2. Considering the sensitivity of the time period in predicting the
volatility of financial time-series return data such as cryptocurrencies, we examine two
different time periods, short-term and long-term periods. The sample consists of the daily
log-returns of the nine cryptocurrencies over period 1 (19 August 2018 to 27 November
2018) and period 2 (2 January 2018 to 27 November 2018). The log-returns of Bitcoin
(BTC), XRP (XRP), Ethereum (ETH), Bitcoin Cash (BCH), Stellar (XLM), Litecoin (LTC),
TRON (TRX), Cardano (ADA), and IOTA (IOTA) are denoted by LBTC, LXRP, LETH, LBCH,
LXLM, LLTC, LTRX, LADA, and LMIOTA, respectively. We obtain our data from a financial
website (https://coinmarketcap.com/coins/) (accessed on 10 May 2020). Throughout the
year of 2018, BTC’s price fluctuated from USD 17,527.00 (6 January 2018) to USD 3820.72
(27 November 2018). The cryptocurrency market had extremely high volatility during the
period 2. However, during the second half of the year 2018 (period 1), BTC’s price did not
fluctuate from USD 6308.53 (20 August 2018) to USD 3820.72 (27 November 2018) compared
with period 2. We can say that the period 1 was low volatile time period and the period 2
was high volatile time period. It is good to perform the comparison of volatile forecasting
with the GARCH models and SV model for two low and high volatile cryptocurrency data.

The data set consists of the daily historical prices and volumes of the nine cryp-
tocurrencies. Figures 1 and 2 present the plot of the daily prices of the nine cryptocur-
rencies. Figure 1 shows the scatterplots among the nine cryptocurrencies from August
2018 to November 2018 (period 1) and Figure 2 from January 2018 to November 2018
(period 2). According to the figures, each pair of cryptocurrencies studied addresses sim-
ilar results, positive and relatively high correlation regardless of period. For the nine
time series data analyses in this section, daily log-returns in percentage are defined as
rt = 100[ln(pt)− ln(pt−1)].

https://coinmarketcap.com/coins/
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Figure 2. Scatterplots of the nine cryptocurrencies in period 2 (2 January 2018 to 27 November 2018).

Table 1 shows the summary statistics of the log returns of the nine cryptocurrencies. In
general, they share the fat-tail distribution, one of the common characteristics found in the
return series of financial assets. Based on the kurtosis statistics, the fat-tailed distribution is
observed in all nine cryptocurrencies, though the degree of the fat-tail is quite different
among them. One of the interesting observations is the change in kurtosis values between
periods 1 and 2. In period 1, the values of the kurtosis of major cryptocurrencies, BTC,
XRP, ETH, and BCH (the top 4 based on market capitalization), are higher than the other
relatively small market-cap cryptocurrencies (XLM, LTC, TRX, ADA, and MIOTA). This
phenomenon is reversed in period 2 where the small-cap cryptocurrencies generally have
higher kurtosis values than the large-cap ones. It suggests that over the period of 2018
(period 1), small-cap cryptocurrencies tend to have more extreme daily returns on both
directions which can be identified by the magnitude of their minimum and maximum
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returns in each period. When we focus on the recent data of period 1, however, this trend
is reversed. The large-cap cryptocurrencies show higher kurtosis. As for the skewness,
all the cryptocurrencies except XRP show lower skewness in the more recent period
(period 1) while XRP displays even higher positive skewness. This is an interesting
observation because most financial asset returns show a negative skewness. Only XRP has
tended to the positively-skewed return series from the negatively-skewed ones while other
cryptocurrencies have enhanced the magnitude of skewness in a negative direction. This
might be explained by the fact that the most recent bull market period in the crypto market,
late 2017 to early 2018, is covered in the data period, and the positive returns during the
period dominate the negative returns before and after the bull market in terms of the
magnitude. XRP, however, is off this trend. It has been observed that in the more recent
period (period 2), a bear market, XRP is the only one which tends to have more extreme
positive returns. This implies that the co- movement of XRP with the cryptocurrency market
is lower than any other cryptocurrencies and thus its systematic risk in the cryptocurrency
market would be low. It might, therefore, attract more attention from potential investors
looking to build a market-portfolio in the cryptocurrency market.

Table 1. Descriptive statistics of nine cryptocurrencies.

Period 1

LBTC LXRP LETH LBCH LXLM LLTC LTRX LADA LMIOTA

Minimum −14.36 −18.80 −20.69 −40.97 −16.14 −14.72 −19.18 −18.41 −19.88
Q1 −0.82 −2.26 −1.82 −3.15 −2.32 −1.84 −2.35 −2.65 −2.31

Median −0.02 −0.21 −0.39 −0.34 −0.40 −0.43 −0.38 −0.57 −0.06
Mean −0.51 0.10 −0.98 −1.12 −0.44 −0.61 −0.59 −1.00 −0.61

Q3 0.74 1.79 1.38 1.47 2.21 1.38 1.86 1.66 2.13
Maximum 4.74 32.20 14.22 15.87 16.27 9.28 15.21 11.90 15.87
Skewness −2.25 1.30 −1.16 −1.89 −0.46 −1.00 −0.56 −0.96 −0.74
Kurtosis 9.70 10.19 6.40 13.50 5.22 4.94 5.24 5.03 5.57

Period 2

LBTC LXRP LETH LBCH LXLM LLTC LTRX LADA LMIOTA

Minimum −18.46 −35.33 −20.69 −40.97 −30.62 −21.19 −32.87 −21.73 −29.15
Q1 −2.02 −3.88 −2.98 −4.20 −3.69 −3.41 −4.47 −4.34 −4.75

Median 0.08 −0.52 −0.30 −0.50 −0.49 −0.46 −0.71 −1.03 −0.56
Mean −0.39 −0.57 −0.59 −0.79 −0.36 −0.61 −0.45 −0.91 −0.81

Q3 1.45 2.22 2.21 2.20 3.41 2.42 2.84 2.51 3.58
Maximum 12.41 32.20 14.22 29.34 46.18 29.06 78.67 32.21 22.50
Skewness −0.59 −0.01 −0.46 −0.55 0.56 0.28 2.00 0.53 −0.32
Kurtosis 5.32 8.00 4.46 7.97 9.30 6.38 18.96 5.84 4.07

Note: The first quartile, Q1, is the 25th percentile and the third quartile, Q3, is the 75th percentile.

Figures 3 and 4 support the arguments by addressing boxplots of the cryptocurrencies
in each period. All cryptocurrencies tend to have extreme log returns on both sides (high
kurtosis) and in Figure 3, XRP shows the positively-skewed distribution in the more recent
period (period 1). Panels A and B in Tables 2 and 3 show the correlations of the nine
cryptocurrencies for each period. We report both Pearson’s and Kendall’s correlation
coefficients. Based on the Pearson’s correlation matrix, the magnitude of correlation
coefficients tends to be higher toward to the recent period (from period 1 to 2) except in
several pairs, especially XRP-related pairs (BTC-XRP from 0.68 to 0.54), which show lower
magnitudes.
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Table 2. Pearson’s and Kendall’s Correlations of the nine cryptocurrencies for Period 1.

Panel A: Pearson’s Correlations for Period 1

LBTC LXRP LETH LBCH LEOS LXLM LLTC LTRX LADA LMIOTA

LBTC 1 0.54 0.84 0.75 0.82 0.75 0.87 0.79 0.81 0.79
LXRP 0.54 1 0.73 0.57 0.7 0.71 0.67 0.7 0.76 0.67
LETH 0.84 0.73 1 0.78 0.91 0.78 0.91 0.89 0.91 0.84
LBCH 0.75 0.57 0.78 1 0.75 0.69 0.8 0.73 0.8 0.73
LEOS 0.82 0.7 0.91 0.75 1 0.77 0.87 0.85 0.89 0.86
LXLM 0.75 0.71 0.78 0.69 0.77 1 0.78 0.78 0.87 0.74
LLTC 0.87 0.67 0.91 0.8 0.87 0.78 1 0.87 0.9 0.86
LTRX 0.79 0.7 0.89 0.73 0.85 0.78 0.87 1 0.9 0.87
LADA 0.81 0.76 0.91 0.8 0.89 0.87 0.9 0.9 1 0.86

LMIOTA 0.79 0.67 0.84 0.73 0.86 0.74 0.86 0.87 0.86 1

Panel B: Kendall’s Correlations for Period 1

LBTC LXRP LETH LBCH LEOS LXLM LLTC LTRX LADA LMIOTA

LBTC 1 0.45 0.65 0.62 0.61 0.46 0.66 0.58 0.57 0.54
LXRP 0.45 1 0.6 0.44 0.5 0.52 0.52 0.47 0.57 0.51
LETH 0.65 0.6 1 0.65 0.66 0.58 0.7 0.66 0.69 0.57
LBCH 0.62 0.44 0.65 1 0.63 0.49 0.65 0.57 0.6 0.55
LEOS 0.61 0.5 0.66 0.63 1 0.52 0.65 0.61 0.65 0.58
LXLM 0.46 0.52 0.58 0.49 0.52 1 0.54 0.52 0.64 0.47
LLTC 0.66 0.52 0.7 0.65 0.65 0.54 1 0.63 0.66 0.6
LTRX 0.58 0.47 0.66 0.57 0.61 0.52 0.63 1 0.67 0.6
LADA 0.57 0.57 0.69 0.6 0.65 0.64 0.66 0.67 1 0.59

LMIOTA 0.54 0.51 0.57 0.55 0.58 0.47 0.6 0.6 0.59 1

Table 3. Pearson’s and Kendall’s Correlations of nine cryptocurrencies for Period 2.

Panel A: Pearson’s Correlations for Period 2

LBTC LXRP LETH LBCH LEOS LXLM LLTC LTRX LADA LMIOTA

LBTC 1 0.68 0.81 0.8 0.69 0.68 0.84 0.63 0.74 0.76
LXRP 0.68 1 0.74 0.66 0.68 0.74 0.71 0.63 0.78 0.73
LETH 0.81 0.74 1 0.79 0.71 0.71 0.83 0.61 0.79 0.8
LBCH 0.8 0.66 0.79 1 0.68 0.64 0.8 0.56 0.7 0.76
LEOS 0.69 0.68 0.71 0.68 1 0.63 0.7 0.58 0.73 0.67
LXLM 0.68 0.74 0.71 0.64 0.63 1 0.66 0.5 0.83 0.68
LLTC 0.84 0.71 0.83 0.8 0.7 0.66 1 0.56 0.73 0.78
LTRX 0.63 0.63 0.61 0.56 0.58 0.5 0.56 1 0.6 0.58
LADA 0.74 0.78 0.79 0.7 0.73 0.83 0.73 0.6 1 0.76

LMIOTA 0.76 0.73 0.8 0.76 0.67 0.68 0.78 0.58 0.76 1

Panel B: Kendall’s Correlations for Period 2

LBTC LXRP LETH LBCH LEOS LXLM LLTC LTRX LADA LMIOTA

LBTC 1 0.55 0.65 0.65 0.55 0.54 0.67 0.55 0.59 0.56
LXRP 0.55 1 0.66 0.57 0.56 0.6 0.6 0.55 0.63 0.58
LETH 0.65 0.66 1 0.68 0.61 0.57 0.69 0.57 0.66 0.61
LBCH 0.65 0.57 0.68 1 0.57 0.53 0.69 0.55 0.59 0.59
LEOS 0.55 0.56 0.61 0.57 1 0.54 0.58 0.55 0.59 0.54
LXLM 0.54 0.6 0.57 0.53 0.54 1 0.54 0.51 0.66 0.52
LLTC 0.67 0.6 0.69 0.69 0.58 0.54 1 0.54 0.61 0.6
LTRX 0.55 0.55 0.57 0.55 0.55 0.51 0.54 1 0.56 0.53
LADA 0.59 0.63 0.66 0.59 0.59 0.66 0.61 0.56 1 0.58

LMIOTA 0.56 0.58 0.61 0.59 0.54 0.52 0.6 0.53 0.58 1

When we look into the results of the Kendall’s coefficients; however, the trends ad-
dressed in the Pearson’s results [33] show the opposite directions. Most correlation pairs in
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the Kendall’s coefficient table were lower from period 1 to 2 (the recent period). However,
with regard to the seemingly contradictory direction between the two types of correlation
coefficients we suggest that Kendall’s reflects the skewed and fat-tailed distribution fea-
ture of the return data of cryptocurrencies. Kendall’s correlation coefficients are the rank
correlation, a non-parametric test that measures the strength of dependence between two
variables, whereas Pearson’s are calculated based on the normality assumption. Principal
component analysis (hereafter, PCA) is an effective multivariate statistical analysis tech-
nique for reducing the dimension of large data sets with minimal loss of information and
extracting their structural features ([2]). It transforms a number of correlated variables into
a series of linearly uncorrelated variables called principal components by projecting the
observation results onto axes to capture the maximum amount of variability in the original
data. The first principal component explains the largest possible variability of the original
data, and each succeeding component in turn explains the highest variability under the
constraint that it is orthogonal to the preceding components. PCA is optimal from the
perspective of minimizing the square distance between the observed values in the input
space and the mapped values in the low-dimensional subspace ([12]).

Table 4 shows the PCA [34] results for periods 1 and 2. The proportion of variance
explained by the first principal component in period 1 is 81% whereas it is 75% in period 2.
Figure 5 addresses the factor loadings of the first two main components in panels A and
Band the three main components (panels C and D). ETH, TRX, and XLM are the variables
with high magnitude (an absolute term) of factor loadings in the first component in both
periods. Interestingly, the signs of the factor scores are positive across all factors in period
1. In the second component, BCH, XLM, and BTC, has factor loadings that are influential
on both periods. In period 1, the XRP return series shows the largest factor loading in
an absolute term, around −0.8, in the second component, whereas LTC does the same in
period 2.

Table 4. Principal Component Analysis Results for Period 1 and Period 2.

Period 1

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

Standard deviation 2.70 0.73 0.55 0.52 0.45 0.39 0.32 0.27 0.24
Proportion of Variance 0.81 0.06 0.03 0.03 0.02 0.02 0.01 0.01 0.01
Cumulative Proportion 0.81 0.87 0.90 0.93 0.96 0.97 0.99 0.99 1.00

Period 2

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

Standard deviation 2.59 0.75 0.74 0.53 0.48 0.47 0.42 0.37 0.37
Proportion of Variance 0.75 0.06 0.06 0.03 0.03 0.02 0.02 0.02 0.01
Cumulative Proportion 0.75 0.81 0.87 0.90 0.93 0.95 0.97 0.99 1.00
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Table 5 shows the value of the AIC (Akaike’s information criterion) of different
GARCH models (GARCH, TGARCH, and IGARCH) across nine cryptocurrencies in each
period. We include TGARCH to handle the asymmetric distribution of errors which is
commonly known for cryptocurrencies ([30]). In period 1, the IGARCH model provides the
lowest AIC except for XRP, BCH, and LTC where the TGARCH models have the lowest AIC.
In period 2, however, IGARCH shows the lowest AIC over all of cryptocurrencies. Given
the value of the AIC model selection criterion, this indicates that in general IGARCH is
superior to other GARCH family models. Table 6 shows the reliability of the IGARCH with
ARMA (0,0) with LBTC for Period 1 and Period 2 even though α1 is statistically significant
at the significance level (0.10) for Period 1.

Table 5. The GARCH model comparison by AIC.

Period 1

Model LBTC LXRP LETH LBCH LXLM LLTC LTRX LADA LMIOTA

GARCH 4.8739 6.6063 6.1915 6.7408 6.0758 5.837 6.2866 6.2496 6.3921
TGARCH 4.2663 6.1826 5.7409 6.2895 5.9421 5.6703 6.0792 6.0508 6.101
IGARCH 4.2092 6.1941 5.701 6.233 5.9543 5.6255 6.0474 6.0125 6.0705

Period 2

Model LBTC LXRP LETH LBCH LXLM LLTC LTRX LADA LMIOTA

GARCH 5.5575 6.5704 6.2413 6.7238 6.6179 6.1644 6.9547 6.6813 6.7404
TGARCH 5.3532 6.4055 6.1472 6.5719 6.5485 6.1061 6.8471 6.5956 6.6676
IGARCH 5.3331 6.381 6.1285 6.5465 6.5255 6.0937 6.8272 6.5809 6.6673

Table 6. IGARCH with ARMA(0,0) with LBTC for Period 1 and Period 2.

IGARCH (1,1)

Period 1 Period 2

Coefficient Std. Error p-Value Coefficient Std. Error p-Value

M 0.02596 0.11163 0.81608 −0.03004 0.11346 0.76067
α0 0.06939 0.14897 0.64139 0.00018 0.05485 0.99738
α1 0.10835 0.0649 0.09504 0.06961 0.02047 0.00067
β1 0.89165 NA NA 0.9304 NA NA
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Table 6. Cont.

IGARCH (1,1)

Period 1 Period 2

Coefficient Std. Error p-Value Coefficient Std. Error p-Value

Shape 2.619532 0.24391 0.00000 3.57618 0.38593 0.00000
Log likelihood −208.5649 −875.9657

N 101 330
AIC 4.2092 5.3331

Note: The return equation is: rt = µ + εt. The variance equation is at =
√

htet and ht = α0 + α1a2
t−1 + β1ht−1 where α0 > 0, αi ≥ 0, βi ≥

0, α1 + β1 = 1 (β1 = 1− α1) and et ~t-Student distribution with shape parameter.

Tables 7–9 demonstrate representative results regarding forecast accuracy for an h-step-
ahead forecast. We report out-of-sample MSE losses in both the SV and GARCH models
with the observed time series data, where the evaluation is based on two different volatility
proxies for the conditional volatility. The forecast losses of the models are systematically
lower over all horizons and across all cryptocurrencies. The results exhibit the superior
forecasting accuracy of the SV method over the GARCH models, especially in volatility
forecasting over longer time horizons. For example, 3 day out-of-sample MSEs (Mean
Squared Errors) (using the variance as a conditional volatility) of the BTC over period 1 are
8.485 and 8.165 for IGARCH and SV, respectively, and those of period 2 are 8.038 and 7.407,
respectively. When the forecasting time horizon is the longest (h = 44), the MSE of the SV
method is 5.761 in period 1, whereas that of the IGARCH is 9.198. Thus, the SV method
has better forecasting accuracy than the IGARCH as the forecasting horizon is longer.

This trend is shown in all other cryptocurrencies, regardless of the conditional volatility
types (MSE1 and MSE2). This difference of MSEs between TGARCH and SV is high in TRX,
ADA, and MIOTA while ETH has almost no difference in period 1 (5.669 for the TGARCH
and 6.625 for the SV method). In general, the SV method shows better forecasting accuracy
than the GARCH models across all the cryptocurrencies, especially in volatility forecasting
over longer time horizons. One plausible reason is that the SV model allows for two error
processes and thus is more flexible for modeling financial time series, while the GARCH
model considers a single error term. In addition to that, the SV model allow us to use
the Bayesian approach to determine the inferences for the volatilities of time series using
simulation algorithms such as the Markov Chain Monte Carlo (MCMC) methods whereas
the GARCH family models have the difficulty of obtaining the maximum likelihood
estimates caused by the complexity of the likelihood function. Therefore, the SV model
offers a better in-sample fit ([3]).

Table 7. Volatility prediction performance of the SV and GARCH models 1.

LBTC LXRP LETH

Forecasting Horizons Period 1 Period 2 Period 1 Period 2 Period 1 Period 2

MSE1 IGARCH SV IGARCH SV TGARCH SV IGARCH SV IGARCH SV IGARCH SV
h = 44 9.198 5.761 8.228 5.946 7.492 4.468 15.385 5.424 5.669 5.625 10.225 6.155
h = 30 6.479 5.067 5.767 4.253 6.144 3.628 11.501 4.371 5.030 4.987 8.124 5.251
h = 20 6.782 4.976 6.074 4.519 5.704 2.958 10.065 3.798 3.991 3.881 8.096 4.621
h = 10 3.973 5.127 3.580 3.047 3.269 1.781 5.035 2.112 2.421 2.341 3.660 2.217
h = 5 6.219 5.738 5.731 4.959 2.891 1.460 4.049 1.788 1.535 1.365 2.393 1.199
h = 3 8.485 8.165 8.038 7.407 0.989 1.116 1.329 0.819 2.010 1.729 1.230 0.995
MSE2 IGARCH SV IGARCH SV TGARCH SV IGARCH SV IGARCH SV IGARCH SV
h = 44 8.928 1.293 7.569 4.080 9.069 3.976 19.382 5.776 2.932 2.831 11.999 4.880
h = 30 7.525 0.989 6.344 3.399 8.270 3.469 15.902 5.147 2.524 2.445 10.327 4.355
h = 20 7.642 1.000 6.500 3.729 8.301 3.430 14.183 5.129 2.653 2.570 10.531 4.699
h = 10 5.832 0.826 4.883 2.960 6.488 2.380 9.507 3.745 1.419 1.459 7.419 3.108
h = 5 6.788 1.154 5.810 4.011 6.154 2.241 7.938 3.537 1.129 1.193 6.669 2.795
h = 3 7.202 1.784 6.252 4.658 4.209 1.207 5.185 2.102 0.683 0.776 5.299 2.036

1 This table shows the performance of the volatility prediction using the daily log-returns over the period (28 November 2018 to 10 January
2019) of Bitcoin (BTC), XRP (XRP), and Ethereum (ETH) which are denoted by LBTC, LXRP, and LETH, respectively, with training data
(periods 1 and 2).
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Table 8. Volatility prediction performance of the SV and GARCH models 1.

LBCH LXML LLTC

Forecasting Horizons Period 1 Period 2 Period 1 Period 2 Period 1 Period 2

MSE1 TGARCH SV IGARCH SV TGARCH SV IGARCH SV IGARCH SV IGARCH SV
h = 44 11.408 11.373 15.203 12.152 7.671 5.557 10.698 6.924 3.859 3.247 4.223 3.264
h = 30 13.736 13.693 17.193 14.353 5.851 4.454 7.796 5.255 4.384 3.380 4.663 3.591
h = 20 12.554 12.433 16.338 13.276 3.597 2.606 4.893 3.060 4.043 3.079 4.039 3.188
h = 10 21.747 21.510 27.494 23.089 2.818 2.156 3.426 2.286 4.471 3.798 4.135 3.641
h = 5 37.270 36.627 49.146 40.633 2.707 1.433 3.222 1.936 2.493 1.769 2.063 1.666
h = 3 0.135 0.959 1.112 0.148 3.690 2.346 4.067 2.876 1.929 1.811 1.576 1.479
MSE2 TGARCH SV IGARCH SV TGARCH SV IGARCH SV IGARCH SV IGARCH SV
h = 44 5.171 5.025 12.692 7.230 8.318 3.811 12.786 6.900 5.424 1.779 6.317 3.580
h = 30 5.677 5.462 12.948 7.612 7.309 3.087 10.744 5.902 6.058 1.979 6.506 3.883
h = 20 5.613 5.250 12.963 7.530 6.494 2.356 9.142 5.022 6.171 1.816 6.033 3.683
h = 10 8.941 8.194 17.094 10.910 6.266 2.035 7.865 4.550 6.501 1.803 5.484 3.572
h = 5 15.764 14.319 26.754 18.301 7.027 2.240 8.011 4.946 6.322 1.329 4.727 3.068
h = 3 1.677 0.571 7.042 2.189 7.478 2.543 8.092 5.242 5.864 1.125 4.050 2.686

1 This table shows the performance of the volatility prediction using the daily log-returns over the period (28 November 2018 to 10 January
2019) of Bitcoin Cash (BCH), Stellar (XLM), and Litecoin (LTC) which are denoted by LBCH, LXLM, and LLTC, respectively, with training
data (periods 1 and 2).

Table 9. Volatility prediction performance of the SV and GARCH models 1.

LTRX LADA LMIOTA

Forecasting Horizons Period 1 Period 2 Period 1 Period 2 Period 1 Period 2

MSE1 IGARCH SV IGARCH SV IGARCH SV IGARCH SV IGARCH SV IGARCH SV
h = 44 16.159 6.082 9.827 7.943 9.422 3.953 6.049 4.688 16.957 8.462 12.658 9.737
h = 30 16.762 7.006 11.074 9.239 9.446 4.509 6.744 5.406 17.327 10.830 14.268 11.891
h = 20 17.646 7.727 12.330 10.444 9.058 4.706 7.007 5.700 8.469 4.833 6.904 5.311
h = 10 3.379 2.465 2.151 1.928 8.040 5.904 7.345 6.417 9.816 5.502 8.700 6.706
h = 5 3.563 3.970 2.825 2.941 13.804 9.954 13.054 11.433 3.998 2.208 3.806 2.513
h = 3 1.894 5.587 1.759 2.798 12.428 10.271 12.213 11.091 2.567 2.735 2.660 2.084
MSE2 IGARCH SV IGARCH SV IGARCH SV IGARCH SV IGARCH SV IGARCH SV

h = 44 19.763 3.760 11.030 7.828 14.335 3.158 8.669 5.747 18.503 3.887 12.473 7.478
h = 30 18.551 4.234 11.245 8.380 13.214 3.470 8.795 6.120 16.598 4.339 12.149 7.800
h = 20 17.746 4.734 11.694 9.012 12.065 3.643 8.800 6.298 12.097 2.492 9.308 5.598
h = 10 7.929 1.292 5.441 3.723 9.620 3.667 8.106 5.894 11.491 3.135 10.186 6.494
h = 5 5.965 1.260 4.818 3.271 11.809 5.863 10.958 8.419 7.827 1.756 7.854 4.508
h = 3 2.750 0.290 2.460 1.337 9.948 5.230 9.684 7.385 5.860 1.256 6.455 3.406

1 This table shows the performance of the volatility prediction using the daily log-returns over the period (28 November 2018 to 10 January
2019) of TRON (TRX), Cardano (ADA), and IOTA (IOTA) which are denoted by LTRX, LADA, and LMIOTA, respectively, with the training
data (periods 1 and 2).

4. Discussion

During period 1 (low volatile period) and period 2 (high volatile period), our finding
is that the SV method shows better forecasting accuracy in terms of volatility. It indicates
that institutional investors and individuals adopting cryptocurrency in their investment
portfolios may better prepare for future risk management by utilizing SV models. Recently,
the prices of cryptocurrency have been decreased by about 50 percent from the highest
price in the early of April 2021. Investors are experiencing another round of high volatility
time regarding cryptocurrency. The unexpected abrupt change of price of cryptocurrency
may not be able to prepare well for the risk management to institutional investors even by
employing neural network based volatility models because of the lack of the investment
environment information training data about the cryptocurrency. Under this financial
situation such that a sudden increase in the volatility of portfolio can bring tremendous
risks including an increase in currency hedging costs, an increase in damage to loans
for institutions, and a decrease in the value of beneficiary certificates, we can strongly
recommend the investors to use the SV method which are confirmed by our finding with
the low and high volatility time series data.
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5. Conclusions

Understanding the volatility of the most popular cryptocurrencies is important to
both investors and policymakers. In this study, we discussed the volatility of nine cryp-
tocurrencies by using the GARCH and SV models. While previous studies have employed
a variation of GARCH models, we introduced another statistical method for better out-of-
sample forecasting power, the SV model. Our results provide strong empirical evidence
that when we deal with extremely volatile financial data, such as cryptocurrencies, the
SV method has better forecasting accuracy power than the GARCH models in terms of
volatility, and this tendency is stronger as the forecasting horizons are longer. Finally,
our SV model sheds light on the significance of a risk management tool for extremely
volatile assets such as cryptocurrency. In this study, we only used ten cryptocurrency
coins to compare the SV and GARCH models for volatility forecasting. In our future
study, we will use more than 30 numbers of cryptocurrency coins to compare the neural
network-based volatility model to the SV model with the recent cryptocurrency time series
data. For forecasting the price of cryptocurrency, we are going to use a recurrent neural
networks and long short-term memory models with traditional time series models such
as the autoregressive integrated moving average model and ETS (Error, Trend, Seasonal)
models.
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