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ABSTRACT: We present a detailed study of the decoherence correction to surface hopping that was recently derived from the
exact factorization approach. Ab initio multiple spawning calculations that use the same initial conditions and the same electronic
structure method are used as a reference for three molecules: ethylene, the methaniminium cation, and fulvene, for which
nonadiabatic dynamics follows a photoexcitation. A comparison with the Granucci−Persico energy-based decoherence correction
and the augmented fewest-switches surface-hopping scheme shows that the three decoherence-corrected methods operate on
individual trajectories in a qualitatively different way, but the results averaged over trajectories are similar for these systems.

■ INTRODUCTION

Trajectory surface hopping (SH) is one of the most widely used
methods to simulate coupled electron−ion dynamics in
molecules.1−4 While using a classical treatment of the nuclear
motion, SH is nevertheless able to capture some quantum
features of correlated electron−ion dynamics such as wave-
packet splitting, lacking in the Ehrenfest method, another widely
used classical-trajectory-based method. SH makes no a priori
assumptions regarding relevant degrees of freedom and,
importantly, is relatively straightforward to implement through
an interface with electronic structure codes that have the
capability to yield excited-state energies and gradients. At the
same time, SH has an unsettling aspect in that there is a
disconnect between how the electrons and nuclei evolve, a
problem commonly referred to as “overcoherence”: at any given
time, the nuclei evolve on a single Born−Oppenheimer (BO)
potential energy surface but can instantaneously hop between
them according to a stochastic algorithm dependent on the
nonadiabatic coupling strengths, while the electronic evolution
remains in a coherent superposition of BO states throughout. To
overcome this inconsistency, several decoherence corrections
have been proposed,4−13 which, like the SH procedure itself, are
somewhat ad hoc, even if physically motivated.
The exact factorization approach,14,15 on the other hand,

opens the possibility of deriving a decoherence correction from

first-principles since it defines equations for a single nuclear
wave function and conditional electronic wave function that
exactly describe the coupled system. Reference 16 developed an
SH scheme with a decoherence correction adopted from the
electronic equation derived from a mixed quantum-classical
treatment of the exact factorization formalism. The resulting
method, SHXF, has been applied to a number of molecules
demonstrating fascinating light-triggered phenomena, like for
example, the photodynamics of molecular motors or the ring-
opening process of cyclopropanone and cyclohexadiene.17−20

The performance of SHXF has not been compared yet with
other decoherence corrections nor with higher-level non-
adiabatic dynamics methods (aside from model systems where
exact results are available16). Such comparisons would need
some care to be meaningful. In particular, the same initial
nuclear geometries and momenta should be chosen, as well as
the same electronic structure method and basis set. Further, it is
strongly preferable that the same electronic structure code is
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used since, for example, different codes utilize different
convergence conditions for self-consistent field calculations
that can yield quite different energies and couplings. This can be
important especially when molecules evolve far from their
equilibrium geometries.
In this work, we study the nature and performance of the

SHXF decoherence correction on three molecules for which ab
initio multiple spawning (AIMS)21,22 results are available. AIMS
serves as a benchmark: it is based on an expansion of the nuclear
wave function in terms of coupled trajectory basis functions
(TBFs) (multidimensional moving frozen Gaussians), which
makes it naturally free from the decoherence issue described in
the SH context while yet remaining a trajectory method.21,23−25

This enables controlled comparisons with SH. Two of the
molecules, ethylene and fulvene, represent two of the recently
introduced “molecular Tully models”,26 while the third is the
methaniminium cation. The latter is chosen because it shares the
features of repeated surface crossings that the third molecular
Tully model of ref 26 has (4-N,N′-dimethylaminobenzonitrile)
but is easier to explore with different methods due to its smaller
size. For each molecule, a comparison is made with AIMS, with
the Granucci−Persico energy-based decoherence correction
(SHEDC)12,13 and with the augmented fewest switches SH (A-
FSSH)5,27 using precisely the same initial conditions and
electronic structure methods. We find that the SHXF, SHEDC,
and A-FSSH decoherence corrections operate in very different
ways on an individual trajectory, but at least for the systems
studied, when averaged over the full set of trajectories, the results
for the electronic populations and nuclear dynamics are similar.
We find that in some cases, the choice of the velocity rescaling
and/or nuclear time step have an equally, if not more, important
role compared to the decoherence correction. Finally,
implications for further developments of mixed quantum-
classical methods are discussed, but first, we begin with a brief
review of the exact factorization and the SHXF method.

■ SHXF

In the exact factorization approach, the full molecular wave
function is represented exactly as a single correlated product,

t t tr R R r( , , ) ( , ) ( , )RχΨ ̲ ̲ = ̲ Φ ̲̲ , where r R,̲ ̲ are al l the
electronic and nuclear coordinates, respectively. The factoriza-
tion is unique up to a gauge-like transformation, where the
nuclear wave function χ is multiplied by an R̲ - and t-dependent
phase, while the conditional electronic wave function RΦ ̲ is
multiplied by the inverse phase, provided the partial normal-
ization condition tr rd ( , ) 1R

2∫ ̲|Φ ̲ | =̲ is satisfied. It can be

shown that tR( , )χ ̲ reproduces the density and current density
of the nuclear system, and we refer the reader to refs 14 15, and
28 for more details on the formal properties of the approach,
including the relation to the Born−Huang expansion.
The equations for tR( , )χ ̲ and tr( , )RΦ ̲̲ are, not surprisingly,

at least as hard to solve as the full molecular TDSE;29 however,
they offer a new starting point for approximations. One such
approximation is the coupled-trajectory mixed quantum-
classical (CT-MQC) approximation.30−34 This was derived
from the exact equations in a particular gauge and taking the
classical limit of the nuclear equation; this yields nuclear
trajectories that satisfy classical Hamilton−Jacobi equations in a
Lagrangian frame. Two further approximations are made to
simplify the terms that couple the electronic and nuclear
equations and are well-justified by earlier studies of the exact

terms made on model systems.31,35 This results in a set of
equations that have the form of Ehrenfest plus correction terms
that depend on the nuclear quantum momentum, ∇|χ|/|χ|.
Through these terms, the classical nuclear trajectories “talk” to
each other and result in branching of the electronic coefficients
and splitting of the nuclear wavepacket in a consistent way.
Decoherence, which in a sense can be viewed as dynamics where
the nuclear wavepacket motion is correctly correlated with
nuclear-configuration-dependent electronic coefficients, natu-
rally arises. CT-MQC has been demonstrated and analyzed on
the one-dimensional Tully models,30,31,34 very recently on the
photoisomerization of a retinal chromophore model,36 as well as
on the process of ring opening in oxirane,32,33 where it was
implemented in the CPMD code, interfaced with the density
functional theory electronic structure in a plane-wave basis.
Regarding computational expense, it is in a sense comparable to
SH: on one hand, it is more expensive because the correction
terms involve evolving trajectories and an accumulated force
along any BO surface that ever gets populated, but this is
compensated by needing far less trajectories to converge as it is
not a stochastic method. However, while the SH approach is
somehow embarrassingly paralleleach trajectory can be run
fully independentlythe formalism of CT-MQC imposes to
run the trajectories together, requiring more computational
power at the same time and effectively making it significantly
slower. The quantum momentum requires input from all
trajectories that are being run, that is, it is not an independent
trajectory method. With further computational developments,
this impediment may be able to be removed.
A second mixed quantum-classical approximation, denoted

here as SHXF, was developed in ref 16, in which the electronic
equation has the same form as that in CT-MQC but used within
an SH framework with the nuclear trajectories evolving using
forces from one BO surface at a time, instantaneously hopping
between them according to the fewest-switches hopping
algorithm. The correction term appearing in the electronic
equation brings about decoherence in a similar way as it did in
the CT-MQC algorithm but is calculated using auxiliary
trajectories spawned on nonactive surfaces in order to retain
an independent trajectory framework. Some details of the
algorithm are presented in the following section. As mentioned
earlier, SHXF has been demonstrated on a range of fascinating
processes on complex molecules.17−20

SHXF Equations: Decoherence and Other SH Consid-
erations. In SH methods, an ensemble of classical nuclear

trajectories are evolved, tR ( )J( )̲ , each associated with an
electronic wave function. The equation that the electronic
system satisfies in SHXF is as follows:

C
i

C CRdn
J

n
J

n
J

k
nk
J J

k
J

n
J( ) ( ) ( )

,
( ) ( ) ( ) ( )∑ ∑ ξ̇ = −

ℏ
ϵ − · ̇ +

ν
ν ν

(1)

(with terms all time-dependent), where the last term introduces
decoherence, and its form differs between different schemes; for
SHXF, we have

M
f f C C

1
( )n

J

k t
k

J
n

J
k

J
n

J

R

( )

( )
,

( )
,

( ) ( ) 2 ( )

J( )

∑ ∑ξ
χ

χ
=

∇ | |
| |

· − | |
ν ν

ν
ν ν

̲ (2)

Above, Cn
(J)(t) denotes the electronic coefficient in the

expansion in BO states of the electronic wave function
a s s o c i a t e d w i t h t h e J t h n u c l e a r t r a j e c t o r y ,

t C t tr r( , ) ( ) ( , )J
n

J
n

( )
BO,Φ ̲ = Φ ̲ , while tR( ( ))n

J
n

J( ) ( )ϵ = ϵ ̲ is the
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BO potential energy surface evaluated at the current position of
the nuclear trajectory. In the second term of eq 1,

dnk
J

n k tR,
( )

BO, BO, ( )J( )= ⟨Φ |∇ Φ ⟩|ν ν ̲ is the nonadiabatic coupling
vector (NACV) between BO states n and k with ν labeling the
nucleus. The effectiveness of this coupling in causing an
electronic transition is dependent on its projection along the
nuclear velocity for the νth nucleus, Ṙν

(J). The third term ξ(J)(t)
brings about decoherence and is given in eq 2. This depends on
the quantum momentum as well as the accumulated force, that
is, the difference in force along the BO surfaces integrated along
the trajectory, fk,ν

(J) = −∫ t∇νϵBO,k
(J) (t′)dt′. This term becomes

effective when there is some population on more than one state,
as clear from the dependence on the population factor; for
example, if initially the system begins in an excitation to a single
electronic excited state, the term is zero and only gets turned on
after the system has evolved near a region of nonadiabatic
coupling where some electronic population begins to transfer.
The reader is referred to refs 31 and 34 for details on the
mechanics of how this term leads to decoherence and
wavepacket splitting in model systems.
Turning now to the nuclear equation, we first note that it is the

same whether any decoherence correction is applied or not. For
most of the time, the nuclear trajectory follows classical
equations of motion along a single BO surface, the “active”
surface, but instantaneously switches surfaces (“hops”) accord-
ing to a prescription that depends in some way on the coupling
between the states. The fraction of trajectories in the ensemble
that are evolving on the kth surface at a given time t,

t N t N( ) ( )/k J
N

k
J( )

traj
trajΠ = ∑ , defines an electronic population

distinct from the population obtained directly from the

electronic equation, t t N( ) ( )/kk J
N

kk
J( )

traj
trajρ ρ= ∑ , with ρkk

(J)(t) =

|Ck
(J)(t)|2, and in usual post-calculation analyses, it isΠk(t) that is

ultimately recorded as the electronic population, while ρkk(t) is
disregarded. In the fewest-switches scheme,1 an expression for
the hopping probability algorithmwas developed by considering
the requirement of “internal consistency”: that is, the average
over the ensemble of many trajectories,Πk(t), should be equal to
the average ρkk(t), while minimizing the number of hops.
However, since SH is run with independent trajectories, these
averages are not available, and instead, the expression is applied
in a stochastic sense to the individual trajectories, which breaks
the internal consistency.12 The resulting stochastic algorithm
depends on the hopping probability ζak between the active state
a and another state k

l
m
ooo
n
ooo

|
}
ooo
~
ooo

d
t

R
max 0,

2Re( )
dak

J ak
J

ka
J J

aa
J

( )
( )

,
( ) ( )

( )
ζ

ρ

ρ
= −

· ̇ν ν
*

(3)

where ρak
(J) =Ca

(J)*Ck
(J). Then, a hop from the active state a to state

n is made if∑k=1
n−1ζak

(J) < r≤∑k=1
n ζak

(J), where r is a random number
uniformly distributed in [0, 1].
The violation of internal consistency in pure SH (i.e., eq 1

with ξ = 0) is fundamentally due to combining fully coherent
electronic coefficient evolution with nuclear dynamics that in
contrast evolves on a single surface at any given time, jumping
surfaces stochastically. There is thus a disconnect. The nuclear
trajectory in the electronic equation is the same for the
coefficient associated with any surface, even though the forces as
defined from the gradient of the different surfaces are different.
Further, frustrated hops (see below) exacerbate the problem.
Adding the decoherence correction ξ(t) acts to push the

electronic coefficients to the active state, dampening them on
the nonactive surfaces. As mentioned before, the SHXF
correction can be derived from the exact factorization equations.
We briefly discuss some key aspects of how the SHXF

correction is computed; full details can be found in ref 16. To
retain an independent trajectory description, auxiliary trajecto-
ries are used to evaluate the quantum momentum appearing in
the decoherence term in the SHXF equation.16 For each
independent trajectory, an auxiliary trajectory is generated on
the nonactive surfaces when the population of that surface
becomes nonzero (or above a small threshold). The auxiliary
trajectory is launched with a velocity such that the difference in
potential energy from the active surface is isotropically
distributed in the coordinates, and this velocity then steps
forward the position of the auxiliary trajectory. In this way, the
calculation of gradients of auxiliary surfaces is avoided, aiding in
computational efficiency. In a similar spirit, the accumulated
force along a surface is calculated from directly computing the
change in momentum over a time step. The quantum
momentum is obtained by considering a Gaussian of isotropic
width σ centered at each auxiliary trajectory, from which follows
that the quantum momentum is given by the distance of the
average of the auxiliary trajectory positions, weighted by the
populations, to the actual trajectory’s position.
There is clearly a significant numerical cost reduction in using

auxiliary trajectories to compute the quantum momentum
instead of actually coupling the different surface hopping
trajectories. A price to pay for this is the introduction of the
parameter σ. We avoid empiricism by fixing it to be the width of
the ground-state nuclear wavepacket at the initial equilibrium
geometry.

Other Decoherence Schemes.We will compare the effect of
the SHXF ξ(t) on the dynamics to two widely used decoherence
corrections, SHEDC and A-FSSH, which we now briefly discuss.
The SHEDC decoherence correction has quite a different

form from SHXF, acting directly on nonactive states to damp the
amplitude on them at a rate that depends on the energy gap

t tR R( ( )) ( ( ))n
J

a
J

BO,
( )

BO,
( )ϵ ̲ − ϵ ̲ between the surfaces and the

kinetic energy T of the nuclei.10,12,13,37 It is imposed as an
exponential decay of amplitudes on the nonactive state, which, if
written in the form of eq 2, would correspond to an effective

i
k
jjj

y
{
zzzt

T
C( ) 1n a

J n
J

a
J

n a
J( ),SHEDC BO,

( )
BO,
( ) 1

( )ξ α= −
|ϵ − ϵ |

ℏ
+≠

−

≠ (4)

while for the active state a, the coefficient is adjusted so that the
sum of all coefficients is 1. The parameter α is a constant and
could be adjusted but mostly is fixed as 0.1 H.10 It should be
noted that although the original papers proposed to apply this
decay to the populations, in some versions of widely used codes,
such as the one we use here, the correction is applied to the
coefficients. However, numerical comparisons between the two
approaches for a subset of molecules do not reveal significant
practical differences in the results.26

In another contrasting approach, A-FSSH defines a
decoherence rate based on considering how fast trajectories
evolving on different surfaces move away from each other;27 this
was motivated by a comparison with the quantum-classical
Liouville equation.5 Each trajectory carries with it auxiliary
trajectories evolving on different surfaces, which are propagated
classically, similar to SHXF. In A-FSSH, however, the electronic
coefficient is collapsed to a state in a stochastic manner, as
determined by a decoherence rate computed from

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00346
J. Chem. Theory Comput. 2021, 17, 3852−3862

3854

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00346?rel=cite-as&ref=PDF&jav=VoR


F R d R R R

R
1

2

2 ( )

na

n n an a n n
A FSSH

BO, BO,
2τ

δ δ δ
=

̲ · ̲
ℏ

−
| ̲ · ̇ ϵ − ϵ ̲ · ̇|

ℏ| ̇|‐

(5)

where R R Rn n aδ ̲ = ̲ − ̲ is the position of the trajectory on
auxiliary surface n relative to the position of the trajectory on the
active surface a, F R R( ( ) ( ))n n n a aδ ̲ = −∇ ϵ ̲ − ϵ ̲ν is the difference
in BO forces on surface n and a, and everywhere in the equation,

the dot product implies, for example, d R d Ran an
J J

,
( ) ( )̲ · ̇ = ∑ · ̇

ν ν ν and

R R2 2̇| = ∑ | ̇ |ν ν .
If we were to write this as an effective decoherence term in eq

2, we would have ξn≠a
(J),A‑FSSH =−Cn

(J)/τn≠a
A‑FSSH. However, the rate is

instead used in a stochastic procedure: if dtc/τn≠a
A‑FSSH is larger

than a random number, then the amplitude Cn is collapsed to 0
on state n, while that on the active state is increased so that the
sum of the coefficients remains 1. A separate reset rate is used to
then reset R nδ ̲ to 0.
The three decoherence corrections, exact-factorization-

derived SHXF, the energy-based SHEDC, and the stochastic
coefficient collapse of A-FSSH, could not appear more different!
Indeed, we will find in that in practice, the way that the three
decoherence corrections above act on the trajectories is very
different. Still, after averaging over the SH trajectories, the
populations and geometries (not shown here) are similar for the
systems studied here.
We next turn to some other issues that any SH algorithm,

decoherence-corrected or not, must confront.
Convergence Questions. The stochastic hopping process

implies that several trajectories for each initial condition should
be run, and convergence to a given standard error has to be
monitored carefully. It requires typically tens to hundreds of
trajectories per degree of freedom.1,38 Further, there is the
question of the time step required for convergence: the hopping
probability at a given time step clearly decreases linearly as the
nuclear time step dt decreases; however, the system is
interrogated whether it wants to hop correspondingly more
often so that it is believed that these two effects compensate.
However, for very localized avoided crossings or conical
intersections, the hopping can be missed unless dt is taken too
small to be practical; how many electronic time steps are used
within this dt is also an important factor, including how the
interpolation for the electronic propagation is done within dt.
Using a wave function overlap-based approach with local
diabatization to obtain the couplings can improve the numerical
stability.39−42 Reference 43 very recently showed that the
stochastic algorithm tends to overestimate the hopping rate
when the hopping probability is large, and instead, a modified
scheme based on a cumulative hopping probability rather than
the instantaneous one was proposed that significantly reduces
the sensitivity to the time step, as well as requiring less
trajectories for convergence.
Momentum Adjustment. The SH algorithm in itself lacks a

firm first-principles derivation (although see ref 44 for recent
progress), and as a consequence, there are aspects of the nuclear
dynamics which need to be adjusted in some way. One
important aspect is the velocity adjustment after a hop. It is
asserted that each trajectory should satisfy energy conservation,
where the gain or loss in the potential energy is compensated by
a loss or gain in the kinetic energy, but there is no unique way to
achieve this.45−47 Two common ways are isotropic rescaling and
rescaling along the NACVs between the two states dan. We note
here that in other trajectory-based schemes where the

trajectories are coupled rather than independent, such as in
AIMS or CT-MQC, energy conservation of an individual
trajectory would not be required. In AIMS, the nuclear velocities
of a newly spawned TBF are scaled per default along the NACV.
AIMS was shown to be insensitive to the rescaling process
isotropic rescaling produces similar results to the NACV one.26

In isotropic rescaling, every velocity after the hop is scaled
uniformly such that the total energy is conserved: with ν labeling

the atom, Ṙν → κṘν, where T1 ( )/n kBO, BO,κ = − ϵ − ϵ and

the trajectory hops from surface k to surface n. Rescaling along
the NACV is believed to be theoretically more justified from
semiclassical arguments.48−50 In this case, Ṙν → Ṙν + γdν,kn/Mν

where γ is determined by the quadratic equation resulting from
equating the sum of the nuclear kinetic and potential energies on
surface k to that on surface n.
If the potential energy gain after the hop exceeds the kinetic

energy, then the hop is rejected. In this case, some works argue
that the nuclear momentum should then be reversed, but other
works argue that it should be kept as is.38,39,45,51 There are
generally more rejected (a.k.a. frustrated) hops when rescaling
along the NACV is done since only the kinetic energy along the
NACV is available, and this can result in a poorer internal
consistency; moreover, the NACV is not always accessible from
the electronic structure code being used. On the other hand, a
disadvantage of isotropic scaling is that it is size-extensive: even
if the dynamics involves just a few atoms of a large molecule or
cluster, the rescaled velocity unphysically depends on the entire
kinetic energy even of atoms that are not involved in the process.
These factors suggest a third rescaling procedure: scale via
NACV, and when the hop is forbidden, then apply isotropic
scaling. We refer to this as “NACV + iso” in the following
sections (in fact, the rescaling option denoted as “NACV” in the
Newton-X code does NACV + iso, while the corresponding
option in SHARC, which we use in this work, does NACV).
It is well-worth noting that there is an SH scheme with

interacting trajectories, consensus surface hopping,52 where the
hopping probabilities are determined by collective input from
the entire ensemble of trajectories, which avoids the somewhat
ad hoc momentum adjustment needed in usual SH as well as not
needing decoherence corrections. An approximate version of
this, quantum trajectory surface hopping,53 uses independent
trajectories, while still avoiding momentum rescaling.

■ COMPUTATIONAL DETAILS

With SH and SHXF, calculations are performed with the code
PyUNIxMD (UNIversal eXcited state Molecular Dynamics).54

The current capabilities include BO, Ehrenfest, SH, and SHXF
dynamics, interfaced with a range of electronic structure
programs. Since the main objective of the present work is to
compare the effect of the decoherence correction derived from
exact factorization with SHEDC, A-FSSH, and against the high-
level AIMS method which we consider in this work as a
reference, we keep other aspects of the calculations the same as
much as possible. In particular, for the electronic structure, we
use CASSCF implemented in MOLPRO55 for our calculations
on ethylene (SA(3)-CASSCF(2/2)), the methaniminium
cation (SA(2)-CASSCF(6/5)), and fulvene (SA(2)-CASSCF-
(6/6)) with the 6-31G* basis set. The SHEDC and A-FSSH
computations are done with the code SHARC 2.0 (surface
hopping including arbitrary couplings).56−58

The initial conditions for the nuclear coordinates and
velocities are taken exactly the same as in the AIMS
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calculations,26 which is Wigner-sampled from uncoupled
harmonic oscillators of frequencies determined from the
optimized ground-state geometry of the molecule. For ethylene
and the methaniminium cation, both geometries and momenta
were sampled from this distribution, while for fulvene, just the
geometries were Wigner-sampled and initial momenta were set
to 0. Every trajectory was averaged using different random seeds
to enable the convergence of the FSSH stochastic process; the
total number of trajectories for each molecule is detailed below.
The nuclear time step is taken as dt = 0.5 fs unless otherwise

stated. We have checked that decreasing the time step does not
alter the results except for the case of fulvene; the convergence is
generally better for the decoherence-corrected schemes than for
uncorrected. As will be discussed, the dynamics in fulvene is
somewhat sensitive to the choice of time step. The large slope of
the crossing region implies that a large number of trajectories
encounter the sharp and localized nonadiabatic coupling.
For SH and SHXF, the explicit NACVs were used in the

equation of motion, while for A-FSSH and SHEDC, they were
obtained from wave function overlaps by default in SHARC.59

We checked that there is little difference in the results when
using these two approaches, except for the fulvene molecule
where the convergence with respect to time step is better using
the wave function overlap scheme, as mentioned earlier. An
isotropic velocity adjustment was performed after a surface hop
unless otherwise stated.
The population traces for AIMS were taken from ref 26 for

ethylene and fulvene. For the methaniminium cation, AIMS
dynamics was performed with the MOLPRO/FMS90 inter-
face60 using an adaptive time step of 20 a.u. (5 a.u. in regions of
nonadiabatic coupling) and an SA(2)-CASSCF(6/5)/6-31G*
level of theory for the electronic structure (mirroring the
electronic structure used for the mixed quantum/classical
methods). The AIMS parent TBFs were started from the same
set of initial conditions as the other nonadiabatic methods.

■ RESULTS
Our main objective is to compare the effects of the decoherence
correction arising from the exact factorization to the widely used
SHEDC and A-FSSH.
Ethylene. As discussed in ref 26, dynamics after photo-

excitation to the S1 state represents a molecular Tully-1 system
since it proceeds through a single nonadiabatic event through a
conical intersection. This represents a cis−trans-like isomer-
ization of the molecule through a twisted and pyrimidalized
geometry.21,61 The importance of having consistent initial
conditions and electronic structure methods in comparing
different dynamics methods for this molecule are emphasized in
ref 26, and here, we use the same 66 initial conditions,
geometries, and momenta used there from the Wigner-sampled
ground-state geometry. We ran 10 trajectories for each initial
condition, but note that the results were essentially converged
even with 5 trajectories per initial condition. The width of the
Gaussian, σ, is obtained from the initial distribution of the
nuclear trajectories of the CC double bond and set to 0.05 a.u.
In Figure 1, we plot the S1 populations as determined by both

the fraction of trajectories and the electronic populations,
computed from the SH, SHXF, SHEDC, and A-FSSH
simulations. For this system, the fraction of trajectories
predicted by uncorrected SH is very close to the reference
AIMS, but we see that there is a notable internal consistency
error, as expected. Averaged over trajectories, the SHXF
decoherence correction from exact factorization and SHEDC

yield very similar results, increasing the population transfer
compared to the uncorrected SH and correcting the internal
consistency of the uncorrected SH (the electronic populations
are practically on top of the fraction of trajectories in both cases).
They appear to agree less well with AIMS but do not deviate too
far and would lie within the standard error of AIMS.26 A-FSSH is
closer to AIMS, but it shows worse internal consistency than
SHEDC and SHXF.
The close agreement of SHXF, SHEDC, and A-FSSH is not

obvious, given the different structure of the corrections
discussed earlier. Indeed, on an individual trajectory level,
their behavior is quite different. In Figure 2, we show the
populations and active state for four randomly chosen
trajectories in the SH, SHXF, SHEDC, and A-FSSH simulations.
The SHEDC correction damps down the populations after a hop
in a mostly (but not entirely) monotonic way, while SHXF tends
to be typically nonmonotonic, showing more oscillations, and
generally takes longer to decohere. The stochastic nature of the
A-FSSH decoherence correction is clearly evident in the plots
and suggests, for this molecule, a longer decoherence time than
the other methods. The appendix provides an analogue to this
figure for the AIMS calculations, including a discussion
highlighting essential differences between SH methods and the
AIMS approach.
The different behavior on an individual trajectory level is

reflected in an average over all trajectories of the decoherence

indicator,30−32 defined as t C C N( ) /J
N

S
J

S
J

10
( ) ( ) 2

traj
traj

1 0
ρ = ∑ | | (see

Figure 3). The SHXF dynamics grows to a larger coherence and
takes a longer time to decohere than SHEDC, but the overall

Figure 1. Population dynamics in ethylene: SHXF compared with SH,
SHEDC, and A-FSSH, all with isotropic velocity adjustment, along with
the reference AIMS results (from ref 26). The top panel shows the
fraction of trajectories ΠS1(t) in the S1 state. The lower panel
demonstrates the internal consistency of the SH methods, with the
solid lines showing ΠS1(t) again, compared with dashed lines showing

the S1 electronic populations ρS1,S1(t).
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structure is similar. The coherence peak around 17 fs reflects a
small number of trajectories that reach a conical intersection
earlier than those associated with the second peak around 30 fs.
On the other hand, as clear from the sample trajectories, A-
FSSH remains coherent longer. Although in the present case,
this difference does not affect the overall population dynamics
very much nor the nuclear geometries (not shown), it opens the
question of whether the different behavior results in other
systems.
Finally, the importance of the choice of velocity adjustment is

evident in Figure 4, where the top panel shows the results of
uncorrected SH with three different ways of velocity adjustment
and the lower panel shows the SHXF case. The spread in the
results shows that in this case, the choice of velocity adjustment
has just about as much effect on the dynamics as the
decoherence correction. In particular, while the internal
consistency is very well corrected by the decoherence correction
when using isotropic scaling, errors remain when scaling along
NACV is performed, consistent with the expectation from the
earlier discussion on velocity adjustment.When isotropic scaling
is used as a “back-up” to scaling along the NACV in the NACV +
iso approach, the error in the internal consistency is again small
when the decoherence correction is applied; the results are close
to the isotropic scaling case for this molecule.

Methaniminium Cation. Despite its apparent similarity to
ethylene (isoelectronic and planar but here with a CN double
bond), the dynamics of the methaniminium cation after
photoexcitation to S1 is quite different: following initiation of
the photoisomerization after the excitation, the methaniminium
cation typically meets another region of nonadiabatic coupling
in a different region of configuration space, displaying
recrossings with S1 before decaying to S0.

62 The molecule
tends to show torsional motion, and the initial transfer of
population to S0 occurs once the system rotates around the CN
bond from 0 to 90° (this contrasts with the photodynamics
obtained by exciting the molecule to the S2 electronic state,
where bond elongation couples with rotation62). Here, we use
70 initial conditions, each repeated 4 times. Preliminary
trajectory runs indicate that a time step of 0.25 fs leads to
converged results with respect to time step. The parameter σ is
set to 0.056 a.u., which is the uniform variance obtained from the
initial distribution of the CN bond of the nuclear trajectories.
Figure 5 shows the population dynamics in SHXF as

compared with SH, SHEDC, and A-FSSH, all using isotropic
velocity adjustment, along with the reference AIMS. After some
fast transfer around 10 fs, where the molecule initiates a direct
photoisomerization to S0, the populations then plateau with
recrossings back to S1 before then steadily transferring to S0, as
mentioned earlier.
The poor internal consistency of the uncorrected SH is

evident after the first transfer and especially at later times. The
overcoherence of uncorrected SH impacts the populations at
later times, yielding less transfer to S0 than AIMS and the
decoherence-corrected SH methods. The decoherence-cor-
rected methods correct this, with SHXF in particular giving
the best overall agreement with AIMS. The SH methods all
transfer at a similar but slightly greater rate than AIMS initially,

Figure 2. Comparing population dynamics in ethylene for four
trajectories with the same initial conditions, SH, SHXF, SHEDC, and
A-FSSH, with isotropic velocity adjustment. Continuous lines show the
populations ρS1,S1(t), while the correspondingly colored symbols
indicate the active state. Top panels show the electronic energies
during SHXF dynamics. The appendix gives an AIMS analogue for this.

Figure 3. Decoherence indicator in ethylene: SH, SHXF, SHEDC, and
A-FSSH.

Figure 4. Comparison of different velocity adjustments in ethylene.
Top panel: uncorrected SH, ΠS1(t) and ρS1,S1(t), with velocity
adjustments of isotropic, NACV, and NACV-iso; lower panel: the
same with SHXF. AIMS is shown as a reference.
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and then, SHXF matches AIMS very closely after a greater S0→
S1 population transfer around 25 fs in the second interaction
region, while SHEDC and A-FSSH hesitate in their steady
transfer to S0. At longer times, A-FSSH overshoots the
population transfer.
Again on an individual trajectory level, the decoherence

corrections act in different ways on the electronic populations, as
evident from the sample of trajectories shown in Figure 6, and
this is again reflected in the trajectory-averaged quantity, the
decoherence indicator, shown in Figure 7. Again, SHXF shows a

similar coherence structure to SHEDC but reaches larger values,
while A-FSSH is somewhat different and takes longer to
decohere. Figure 6 also highlights further how the recrossings
between S0 and S1 states lead to a more severe deviation of SH
from internal consistency (Figure 5) than for ethylene, affecting
the population transfer as noted earlier.

Fulvene. Fulvene represents a challenging case: after
photoexcitation to the S1 state, there are two possible pathways
for an ultrafast internal conversion to the ground state.26,63,64

One involves a peaked conical intersection reached by a twist of
the CCH2 bond, while the other involves a strongly sloped
conical intersection reached by the stretch of the CCH2
bond.26 The latter results in a transfer to S0 and subsequent
reflection back toward the same nonadiabatic region and
population transfer back to the S1 state. This second pathway
resembles the Tully model III, and as in ref 26, we choose the
initial conditions to favor this. The σ parameter is chosen as
0.065 a.u., which corresponds to the variance of initial
distribution of CC double bonds of the nuclear trajectories.
The sharply sloped conical intersection gives a large

dependence on the time step dt since the interaction region
can bemissed. We see that as dt decreases from 0.5 to 0.25 to 0.1
fs, SHXF predicts more population during the initial event
(Figure 8, top panel) but that the dt = 0.05 fs result is closer to
the dt = 0.25 fs result than to the dt = 0.1 fs result; the results are
thus not fully converged with respect to the time step. To some
degree, this dependence can bemitigated by using wave function
overlaps to compute the coupling terms, with a local
diabatization scheme. The SHEDC calculations in SHARC
utilize this scheme, and we see in the top figure that although
SHEDC predictions with dt = 0.5 fs (green dash-dot line)
plateau to a different level after 15 fs (and is closer to the AIMS
result) from that predicted with the dt = 0.1 and 0.25 fs
calculations, the results do appear converged with dt = 0.25. This
example highlights the need to check for convergence with
respect to the time step in these cases. As mentioned earlier, the
recent method of ref 43 is promising in this regard. We note that
AIMS uses an adaptive time step and so does not have such
sensitivity.
In the lower panel, we see that both decoherence-corrected

schemes increase the population transfer compared to pure SH,
with good internal consistency. Both SHEDC and SHXF agree
quite well with each other, despite their different operation
mechanisms.
Finally, it was observed in ref 26 that the dynamics heavily

depends on the choice of velocity adjustment. Isotropic scaling
gives results notably worse than scaling along the NACV for this

Figure 5. Population dynamics in the methaniminium cation: SHXF
compared with SH, SHEDC, and A-FSSH, all with isotropic velocity
adjustment, along with the reference AIMS result. The top panel shows
the fraction of trajectories ΠS1(t) in the S1 state. The lower panel
demonstrates the internal consistency of the SHmethods, with the solid
lines showing ΠS1(t) again, compared with dashed lines showing the S1
electronic populations ρS1,S1(t).

Figure 6. Comparing population dynamics in the methaniminium
cation for four trajectories under the same initial conditions, SH, SHXF,
SHEDC, and A-FSSH, with isotropic velocity adjustment. Continuous
lines show the population ρS1,S1(t), while the correspondingly colored
symbols indicate the active state. Top panels show the electronic
energies during SHXF dynamics.

Figure 7. Decoherence indicator in the methaniminium cation: SH,
SHXF, SHEDC, and A-FSSH.
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molecule, which might be explained due to the larger size of the
molecule, since the problem with unphysical redistribution of
the kinetic energy in the isotropic method becomes more
important. The results shown in Figure 8 used scaling along the
NACV.

■ CONCLUSIONS
Overall, the results show that SHXF provides a useful
improvement over uncorrected SH in comparison with the
reference AIMS and that it gives a similar behavior for
observables as SHEDC and A-FSSH. We have found that the
three decoherence corrections suggest strikingly different
mechanisms on an individual trajectory level. This was clear in
both the form of the corrections and their demonstrated
behavior on the molecular systems. For the systems studied,
although there are some small differences when more than one
interaction region is encountered, the different decoherence
mechanisms nevertheless on the whole yielded similar
population dynamics once averaged. This appears unlikely to
be true generically, given their different modes of operation.
Whether one can somehow predict when the differences will
lead to significantly different observables and why they were
similar here is a question for future research.
Several ad hoc aspects of the SH approach itself, arising from

the fact that SH itself is not an algorithm derived consistently
from first-principles, make it difficult to give a definitive and
unambiguous assessment of the corrections themselves, and in
some cases, issues such as velocity scaling procedures, for which
different procedures have been argued to be the best, give larger
differences than the decoherence corrections themselves;
indeed in some cases, SH without decoherence performs

similarly. Similar observations have been independently made in
two very recent papers studying the traditional decoherence
methods.47,65 Further, the SH scheme is unable to correctly
describe situations where several surfaces are parallel while
others are not such that the (de)coherence should be considered
in a state-pairwise scheme rather than as an overall correction
per state.66 Thus, in parallel to further exploring SHXF and its
capabilities, especially for large systems given its computational
efficiency, further developments of CT-MQC and alternative
practical mixed quantum classical methods from the exact
factorization are an avenue for future work.

■ APPENDIX: ANALYSIS OF AIMS RUNS FOR
ETHYLENE

We present here an AIMS analogue of Figure 2 for ethylene. In
AIMS, the nuclear wave function for each BO state is described
by a linear combination of frozen Gaussians, the so-called TBFs
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J
k( ) ( ) ( ) ( )αχ γ̃ ̲ ̲ ̅ are multidimen-

sional Gaussians, each associated with a time-dependent
complex coefficient CJ

(k)(t), where J labels a specific TBF,
evolving in electronic state k. The phase-space center of each

multidimensional Gaussian function is given by tR ( )J
k( ) and

momentum tP ( )J
k( ) . The matrix α̲ contains the widths (the same

for all TBFs and independent of the electronic state), and γ̅J
(k)(t)

is a phase. The TBFs evolve along classical trajectories, and the
spawning algorithm will increase the size of the TBF basis when
nonadiabatic regions are encountered (see ref 23 for additional
details on AIMS).
An AIMS calculation starts with one parent TBF, assigned to a

selected electronic state and with a given set of initial conditions
for the nuclear positions and momenta. One can follow the
electronic energy of the driving state along the dynamics of the

parent TBF. This is given by a plain gray line, noted as 1
(S )1χ in

Figure 9 (J = 1 as it is the first TBF and k = S1). The dashed line
with the same color represents the electronic energy for S0 along
the TBF evolving on S1. When the TBF reaches a region of
strong nonadiabaticity, a new TBF is spawned onto the coupled
state, here S0, and evolves with nuclear forces given by the

electronic ground state (noted as 2
(S )0χ in Figure 9). In other

words, the second TBF will have its own dynamics in S0 and
deviate from that of the parent TBFcompare the dashed gray

line (S0 energies on the support of 1
(S )1χ ) with the plain purple

line (S0 energies on the support of 2
(S )0χ ). We stress here that the

parent TBF 1
(S )1χ still exists and carries on its dynamics on S1, as

seen from the plain gray curve. The spawning process will be
repeated every time a TBF reaches a region of strong
nonadiabaticity, increasing the number of TBFs (NT

k (t)) to
describe the nuclear wave function in S0 and S1.
The previous paragraph described how the TBFs evolve on

the different PESs, in other words, how the moving adaptive grid
spreads over time. We now need to discuss how the TDSE is
solved on the support of these TBFs. This is achieved by solving
the TDSE in the basis of the TBFs, leading to coupled equations
of motion for the complex coefficients CJ

(k)(t). At the beginning

Figure 8. Fulvene populations. The top panel shows the convergence of
ΠS1 with respect to the nuclear time step dt = 0.05, 0.1, 0.25, 0.5. Lower

panel: choosing dt = 0.1, we plot the fraction of trajectories ΠS1 along

with ρS1,S1 (dashed) for SHXF, SHEDC, and SH against the AIMS
reference.
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of the dynamics, the parent TBF 1
(S )1χ is assigned a complex

coefficient C t( ) (1.0 0.0)1
(S )

0
1 = . Following a spawn, the newly

created TBF 2
(S )0χ carries initially a complex coefficient

C t( ) (0.0 0.0)2
(S )

entry
0 = (tentry is the time when the parent TBF

originally triggered the spawning mode, when the nonadiabatic
couplings crossed a certain predefined threshold). The
coefficients are coupled via the TDSE and can exchange nuclear
amplitude, as observed in Figure 9. We note that the population
of a given electronic state is not equal to the summation of the
population on each TBF evolving on this state due to the
nonorthogonality of the multidimensional Gaussians. Instead,
one can get the actual AIMS population in state S0, PS0, by

calculating the expectation value of the projector

S S S1 1 1
̂ = |Φ ⟩⟨Φ | using the AIMS molecular wave function
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In eq 7, SJ I,
S S1 1 is an overlap matrix element between TBFs J and I.

The AIMS populations are given by thick lines in Figure 9.
Figure 9 also highlights the conceptual difference between

AIMS and SH. As every newly created TBF evolves
independently, decoherence is naturally accounted for. In
addition, AIMS assures at the individual trajectory level a
much smoother population transfer as it does not rely on
instantaneous hops but merely on Gaussians that will interact
and have the possibility to transfer population between each
other continuously. Indeed, all initial conditions show a stepwise
deactivation process in AIMS, where multiple spawns are
required. Interestingly, in one of the cases (top right plots of
Figure 9), a small repopulation of the S1 state can be observed,
mediated by back spawns to that state. In contrast, such effects
are not reproduced in the corresponding SH trajectories as these
are just minor population transfers that only a sufficiently large
swarm of SH trajectories would capture.
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Figure 9. Comparing the AIMS population dynamics in ethylene for
four different initial conditions (the same as those presented in Figure
2). The top panels show the electronic states of all TBFs, where the bold
line shows the electronic energy of the BO state in which the TBF
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