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A B S T R A C T   

This paper investigates the control issue of the trajectory tracking of vertical take-off and landing 
(VTOL) unmanned aerial vehicles (UAVs) in the presence of partial propeller fault and external 
disturbance. In particular, a robust passive fault-tolerant control strategy is proposed by intro
ducing a first-order filter based dynamics estimator. First, a bounded force command is exploited 
by employing a new smooth saturation function in the output of the estimator. A sufficient 
condition in terms of a specified parameter selection criteria is provided to ensure the non- 
singularity extraction of the command attitude. Then, a torque command is applied to the atti
tude loop tracking. Since there is merely one filter parameter involved in the dynamics estimator, 
the practical implementation and parameter tuning can be significantly simplified. Stability 
analysis indicates that the proposed control strategy guarantees the semi-globally ultimately 
bounded tracking of VTOL UAVs subject to partial propeller fault and external disturbance. 
Simulation and experiment results with comparison examples are performed to validate the 
effectiveness of the proposed strategy. Experimental results show that the proposed strategy 
achieves the trajectory tracking with a good performance (mean deviation 0.0074 m and standard 
deviation 0.1202 m) in the presence of 35% propeller fault and 4 m/s persistent wind 
disturbance.   

1. Introduction 

Vertical take-off and landing (VTOL) unmanned aerial vehicle (UAV), as a core tool in many military and civil applications, has 
been widely studied in recent decades due to its excellent capabilities like unmanned operation, rapid maneuverability and agile 
maneuverability [1,2]. Typical applications include military surveillance and attack, reconnaissance operation, forest fires prevention, 
etc [3]. In possession of the under-actuated structure, VTOL UAV is relatively sensitive to external disturbance and internal uncertainty 
[4]. Therefore, the control development with high reliability and robustness for VTOL UAV trajectory tracking is considerably sig
nificant but challenging. 

To achieve the trajectory tracking of VTOL UAVs, varieties of control algorithms have been addressed. A thrust constrained 
controller [5] and a neural network based adaptive approach [6] were designed for the model-scaled helicopter tracking, respectively. 
Adaptive control strategies were developed for the quadrotor tracking [7–9]. However, it is not always realistic that the UAV is 
operated without disturbance [5] or with constant disturbance [9]. A robust control strategy was proposed for the quadrotor tracking 
by using a three-loop design structure [10]. By combining a disturbance observer and an extended state observer, a robust controller 
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was designed for the quadrotor tracking [11]. To improve the tracking performance, sigmoid tracking differentiator and extended state 
observer were introduced in the backstepping controller for the quadrotor system [12]. A model based robust control strategy was 
designed to achieve the trajectory tracking of a small helicopter [13]. Besides, a fixed-time adaptive controller was developed for a 
helicopter to achieve the ship landing task [14]. However, the position loop controllers developed in [6]-[8]-[14] are designed without 
the consideration of the singularity issue that arises from the command attitude extraction [3,5]. 

Due to the component degradation, damages, etc, unexpected faults may occur to propellers assembled in VTOL UAVs [1]. Without 
the fault-tolerant mechanism, the tracking performance and the system stability could be degraded. As for the attitude-only control 
problem of multirotor UAVs, adaptive sliding mode [15] and supertwisting-based observer [16] were introduced in the fault-tolerant 
control algorithms. By considering the altitude-attitude tracking of quadrotors, adaptive fault-tolerant strategies were applied [17,18]. 
However, the trajectory tracking of VTOL UAV in possession of an under-actuated property which prevents the direct implementations 
of the controllers provided by [15–18]. For the sake of the high performance trajectory tracking of VTOL UAVs subject to actuator 
fault, varieties of control approaches [19–25] have been employed. For example, observer-based fault estimator [19], adaptive esti
mator [20], and high-gain observer-based estimator [21] were introduced to compensate for the fault signals, and incremental 
nonsingular terminal sliding mode [22] and neuroadaptive [23] control approaches were developed, respectively. However, the 
estimator parameters in [19,21] are chosen based on solving linear matrix inequalities or matrix differential equations which could not 
provide an intuitive selection. Since the controllers in [19–21] are active fault-tolerant mechanism, the fault detection and diagnosis 
algorithms are provided which could increase the online computing burden. Moreover, according to [24,25], the active fault-tolerant 
capability is guaranteed by a sensitive and rapid detection algorithm. Improper detection and diagnosis could fail to provide active 
fault-tolerant capability which could deteriorate the system performance when fault occurs. Besides, the control strategies in [22,23] 
are developed under the hierarchical structure but can not provide the singularity free property that arises from command attitude 
extraction. Despite of the fact that the singularity free trajectory tracking are achieved in [25,26], the fault is considered to be constant 
in [26] which can not be always maintained in practice, and the upper bound of the uncertainty is introduced as the robust 
compensation in [25] which could result in a larger control than that is required. Moreover, fault-tolerant controllers were developed 
for extreme conditions such as one totally failed rotor [27] and insufficient actuator resources [28]. Although the system stabilities 
may be still maintained, the trajectory tracking may not be achieved [27,28]. 

This paper addresses the control development for the trajectory tracking of VTOL UAVs with partial propeller fault and external 
disturbance. The dynamics estimator [29,30] in possession of a simple structure has been shown to be an effective way to compensate 
for the mechanical system uncertainty. Benefit from a single filter parameter, the practical implementation and parameter tuning could 
be simple and easy. To this end, the dynamics estimator is exploited for the compensation for the dynamics uncertainty. Based on the 
hierarchical development, a robust fault-tolerant strategy is proposed such that a force command and a torque command are applied in 
the position and attitude tracking, respectively. It is proved that the proposed control strategy ensures the ultimate boundedness of the 
tracking error. Experiment examples are conducted on a real quadrotor platform to validate the proposed strategy. The main con
tributions are summarized as follows.  

1. In contrast to the control algorithms in [19–23] that are designed regardless of the singularity arising from the command attitude 
extraction, a bounded force command is proposed such that the non-singularity extraction is ensured by a specified parameter 
selection criteria. With such a control development, the system robustness in harsh environment can be enhanced.  

2. Instead of the fault estimators provided by [19–21], a first-order filter based dynamics estimator is introduced as the compensation 
mechanism. A new saturation function is developed to ensure a differentiable property of the designed force command. Since only 
one filter parameter is involved in the estimator, the parameter tuning can be significantly reduced. This could contribute to a 
simple implementation in practical setup. Due to the passive fault-tolerant mechanism, the fault diagnosis development [19–21] 
can be also removed such that the online computing burden can be reduced.  

3. In addition to the numerical simulation validations in [22–25], the proposed strategy is performed on a quadrotor UAV by real 
flight experiments in three different cases. Experimental results show that the nonsingular controller and PID controller fail to 
provide sufficient fault-tolerant capability for the completion of trajectory tracking in cases I and III, respectively, and that the 
proposed strategy can achieve the tracking in case II on the improvement of the mean derivation and standard derivation by 
69.00% and 68.83% with merely 4.15% additional energy consumption, respectively, rather than the conventional PID controller. 

The remaining sections are arranged as follows. The tracking problem to be solved is stated in Section 2. The control development is 
presented in Section 3. The closed-loop stability is analyzed in Section 4. Numerical simulations are provided in Section 5. Experi
mental results are performed and discussed in Section 6. Finally, the conclusions are summarized in Section 7. 

Notations. Rm×n denotes the m × n Euclidean space, | ⋅ | the absolute value of a scalar, and ‖ ⋅ ‖ the Euclidean norm of a vector. For a 

square matrix X ∈ Rn×n, λ(X) and λ(X
)

denote its minimum and maximum eigenvalues, respectively. For x = [x1, x2, x3]
T
∈ R3, the 

superscript × is defined as x× = [0, − x3,x2; x3,0, − x1; − x2,x1,0]. For positive constants a and b, the smooth saturation function F a,b ∈

C is defined as 
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⎛
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2. Problem formulation 

2.1. Dynamics modelling 

In terms of the Euler-Newton formula, the kinematics and dynamics of the VTOL UAV are given by 

ṗ = v, (1)  

v̇ = − gê3 +
T
m

Rê3 +
dt

m
, (2)  

q̇ = P (q)ω, (3)  

Jω̇ = − ω×Jω+ τ+ dτ, (4)  

where p ∈ R3 is the position of the UAV with respect to the center of gravity expressed in the Earth-fixed inertial frame, v ∈ R3 is the 
velocity, g is the local gravitational acceleration, ̂e3 ≜ [0,0, 1]T,T is the applied thrust along ̂e3 expressed in the body-fixed frame, m is 
the mass, dt is the external disturbance force, q = [q0, qT

r ]
T
∈ R × R3 is the unit quaternion representing the attitude of the UAV, 

P

(

q) = 1
2
[
− qT

r ; q×
r + q0I3

]

, ω ∈ R3 is the angular velocity, J ∈ R3×3 is the inertial matrix, τ ∈ R3 is the applied torque, dτ ∈ R3 is the 

disturbance torque, R ∈ SO(3) is the rotation matrix determined by [31] 

R ≜ R
(
q
)
=
(
q2

0 − qT
r qr
)
I3 + 2qrqT

r + 2q0q×
r . (5) 

Let fi(i = 1, 2,⋯,N) be the thrust generated by each rotor which is formulated by the rotational speed of each propeller fi = kωω2
ri, 

where kω is a positive parameter depending on multiple factors such as the air density and the geometric features of the blades, and ωri 

represents the rotational speed of each rotor. By considering the propeller fault, we have fi = (1 − υi)kωω2
ri, where 0 < υi ≤ 1 is the fault 

signal of each propeller which can be time-varying. Then, the force and torque commands subject to fault signals can be determined by 

T = T0 − Tf , τ = τ0 − τf . (6)  

where T0 and τ0 are the force and torque commands free from thruster faults, Tf and τf are the combined force and torque under faulty 
propellers. 

Remark 1. In this paper, we formulate a generalized VTOL UAV model by 1–4 that could characterize a variate of multirotor UAVs 
like hexarotors, quadrotor, etc which are driven by the propellers. To exemplify, we consider a quadrotor subject to propeller fault. The 

faulty model (6) can be illustrated as follows: T0 =
∑4

i=1kωω2
ri, Tf =

∑4
i=1υikωω2

ri, τ0 =

[
lkω
(
ω2

r4 − ω2
r2
)
, lkω

(
ω2

r1 − ω2
r3
)
,Ckω

∑4
i=1( − 1)i+1ω2

ri

]T
,τf =

[
lkω
(
υ4ω2

r4 − υ2ω2
r2
)
, lkω

(
υ1ω2

r1 − υ3ω2
r3
)
,Ckω

∑4
i=1( − 1)i+1υiω2

ri

]T
, where l 

is the distance from the quadrotor c.g. to the rotation axis of each rotor and C is the anti-torque coefficient. 

2.2. Control objective 

Suppose that the full motion information of the VTOL UAV can be obtained by proper measurement devices. Consider the dynamics 
system 1–4, the control objective is to develop force command T0 and torque command τ0 in the presence of propeller fault (6) such 
that the UAV can track a desired reference trajectory. More specifically, given a reference trajectory p0, the objective is to guarantee the 
ultimately bounded tracking with adjustable errors. 

Assumption 1. The reference trajectory and its derivatives are all bounded. In particular, sup(‖p̈0‖)⩽a0 < g, where a0 is a positive 
constant. 

Assumption 2. The external disturbance and faulty signal, and their derivatives are all bounded. In particular, there exists a positive 
constant u satisfying u < g − a0 such that 

⃦
⃦dt/m − Tf Rc ê3/m

⃦
⃦⩽u. 

Remark 2. Assumption 1 is commonly used to ensure the trajectory tracking of VTOL UAVs solvable. The boundedness of Tf can be 
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guaranteed if the designed force command T is naturally bounded, and a differentiable T could ensure a uniformly continuous Tf . As a 
trajectory tracking problem, Assumption 2 provides the controllability and fault recoverability of the VTOL UAV system [25,26]. 
Therefore, u can be determined by considering both the robust performance to the external disturbance and expected fault-tolerant 
capability (for example, total 30% loss of efficiency). This implies that the trajectory tracking may not be achieved if the propellers 
can not generate sufficient control energy. However, the occurrence of too serious fault (for example, one or two rotors totally failed) 
does not imply that the UAV is not controllable [27,28]. At the expense of yaw control, the position system may be still stabilized rather 
than tracking. In this paper, only the trajectory tracking issue is investigated. 

3. Control strategy development 

In this section, we present a robust fault-tolerant control strategy for the trajectory tracking of the VTOL UAV. In particular, by 
introducing a dynamics estimator [29,30], a bounded force command and a torque command are developed for the position and 
attitude loops tracking, respectively. 

3.1. Force command development 

Define p̃ = p − p0 and ṽ = v − ṗ0 as the position and velocity tracking error, respectively. By recalling (1), (2) and (6), we have 

˙̃p = ṽ, (7)  

˙̃v = − gê3 − p̈0 + u0 + uu +
T0 − Tf

m

(

R − Rc

)

ê3, (8)  

where u0 = T0Rc ê3/m = [u0x, u0y, u0z]
T is the force command, Rc is the command rotation matrix and uu = dt/m − Tf Rc ê3/m. According 

to [2], the system 7–8 can be treated as its nominal system 

˙̃p = ṽ, (9)  

˙̃v = − gê3 − p̈0 + u0 + uu, (10)  

perturbed by (T0 − Tf )(R − Rc)ê3/m, and R → Rc and T0 ∈ L ∞ is sufficient to ensure (T0 − Tf )(R − Rc)ê3/m → 0. Define a variable z =

ṽ + K1p̃, where K1 = diag(κ1x, κ1y, κ1z) is a positive definite matrix. Design the following force command 

u0 = gê3 + p̈0 −
K2z
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + zT z

√ −
K2ṽ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + ṽT ṽ

√ − F

(

ûu

)

, (11)  

where K2 = diag(κ2x, κ2y, κ2z) is a positive definite matrix with κ2i, i = x, y, z being positive constants, F (ûu) ≜ F u,Δu(ûu) =

[F u,Δu(ûu1),F u,Δu(ûu2),F u,Δu(ûu3)]
T, Δu is a small positive constant. Moreover, ûu = [ûu1, ûu2, ûu3]

T is the output of the following 
dynamics estimator 

ûu =
ṽ − υv

αp
+ υu, (12)  

where αp > 0 is the filter parameter, υv and υu are the filtered signals by filtering ̃v and gê3 +p̈0 − u0 through the following first-order 
filters 

αpυ̇v + υv = ṽ, (13)  

αpυ̇u + υu = gê3 + p̈0 − u0, (14)  

with initial states υv(0) = 0 and υu(0) = 0. In view of ‖Rc ê3‖ = 1, the applied thrust T0 can be determined by 

T0 = m‖u0‖. (15) 

Substituting (11) into (10), by defining ũs = F (ûu) − uu, gives the following closed-loop position system 

˙̃v = −
K2z
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + zT z

√ −
K2ṽ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + ṽT ṽ

√ − ũs. (16)  

3.2. Command attitude extraction 

Based on the hierarchical framework, the command attitude qc = [qc0, qT
cr]

T
∈ R × R3 is extracted from the force command u0 [2]. A 

feasible extraction algorithm is shown as follows. If the command force u0 is developed such that 
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u0 ∕= U ≜
{

u ∈ R3⃒⃒u = [0, 0, u0z]
T
, u0z⩽0

}
, (17)  

the command quaternion qc can be extracted as qc0 =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(1 + u0z/‖u0‖)/2

√
and qcr = [− u0y, u0x, 0]T/(2

⃦
⃦u0
⃦
⃦qc0). 

Proposition 1. The attitude extraction is singularity free if the control parameter κ2z is chosen as κ2z < (g − a0 − u − Δu)/2. 

Proof. In view of the fact that 
⃒
⃒zz
⃒
⃒/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + zTz

√
< 1 and 

⃒
⃒
⃒ṽz

⃒
⃒
⃒/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + ṽTṽ

√
< 1, it follows from (11) that 

u0z > g − a0 − u − Δu − 2κ2z > 0. (18) 

This ensures the nonsingular condition u0 ∕= U in (17). In addition, recalling (11) gives that 

T0 = m
⃦
⃦
⃦u0

⃦
⃦
⃦⩽T ≜ m

(
g +

̅̅̅
3

√ (
a + u + Δu + 2λ

(
K2

)))
. (19) 

It can be concluded that T0 is naturally bounded. □ 

3.3. Torque command development 

Since the command attitude has been obtained, we next show the torque command development for the attitude loop. Define q̃ =

[q̃0, q̃
T
r ]

T 
as the attitude error. According to [31], it can be derived by the quaternion product 

q̃ = q− 1
c ⊙ q =

[
qc0q0 + qT

crqr,
(
qc0qr − q0qcr − q×

crqr
)T]T

, (20)  

where operator ⊙ is the quaternion product, and q− 1
c = [qc0, − qT

cr]
T. According to [31], its kinematics satisfies 

˙̃q = P
(

q̃
)

ω̃, (21)  

where ω̃ = ω − R̃
Tωc is the error angular velocity, ̃R = R(q̃),ωc = 4P (qc)

Tq̇c is the command angular velocity. To avoid the complicated 
computing of q̇c, a command filter [32] is employed. In terms of (4) and (6), the attitude error dynamics is derived as 

J ˙̃ω = − ω×Jω+ τ0 − τf + dτ + J
(

ω̃×R̃
T ωc − R̃

T ω̇c

)
. (22) 

Introduce a variable s = ω̃ + κ3q̃r. Taking its derivative gives 

Jṡ = − ω×Jω + τ0 − τf + dτ + J
(

ω̃×R̃
T ωc − R̃

T ω̇c

)
+

κ3

2

(
q̃×

r + q̃0I3

)
ω̃ = ϱr + τ0 + τu, (23)  

where ϱr = − ω×Jω + Jω̃×R̃
Tωc + κ3(q̃×

r + q̃0I3)ω̃/2, and τu = dτ − τf − JR̃
Tω̇c. We design the following torque command 

τ0 = − q̃r − κ4s − ϱr − τ̂u, (24)  

where κ4 is a positive constant. Besides, τ̂u is the output of the dynamics estimator 

Fig. 1. Control flow diagram.  
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τ̂u =
Js − υs

αa
+ υτ, (25)  

where αa > 0 is the filter parameter, υs and υτ are filtered signals generated by 

αaυ̇s + υs = Js, (26)  

αaυ̇τ + υτ = − ϱr − τ0, (27)  

with initial states being chosen as υz(0) = 0 and υτ(0) = 0. Define the estimate error ̃τu = τ̂u − τu. By substituting the torque command 
(24) into (23), we have 

Jṡ = − q̃r − κ4s − τ̃u. (28) 

To facilitate the implementation of the proposed control strategy for the quadrotor trajectory tracking, a flow diagram is shown in 
Fig. 1. 

4. Stability analysis 

In this section, the overall closed-loop stability is analyzed. First, two propositions summarize the stability of the attitude-loop and 
position-loop tracking, respectively. Then, a theorem presents the main result of this paper. 

Proposition 2. If the control parameters are chosen such that κ4 > δaαa,∀δa > 0, the closed-loop attitude error system (28) is ulti
mately bounded. 

Proof. In terms of the design procedure of the dynamics estimator, ̂τu can be regarded as the filtered version of the unknown function 
τu given by αa

˙̂τu + τ̂u = τu. Taking the derivative of ̃τu yields 

˙̃τu = ˙̂τu − τ̇u = −
τ̂u − τu

αa
− τ̇u = −

1
αa

τ̃u − τ̇u. (29) 

Choose the following Lyapunov function candidate 

Vr = (1 − q̃0)
2
+ q̃T

r q̃r +
1
2

sT Js+
1

2δa
τ̃T

u τ̃u. (30) 

Taking its derivative along the closed-loop trajectory (28), together with (21) and (29), yields 

V̇r = q̃T
r

(

s − κ3q̃r

)

+ sT
(

− q̃r − κ4s − τ̃u

)

+
1
δa

τ̃T
u
˙̃τu = − κ3q̃T

r q̃r − κ4sT s − sT τ̃u −
1

δaαa
τ̃T

u τ̃u −
1
δa

τ̃T
u τ̇u⩽ − κ3q̃T

r q̃r −
κ4

2
sT s −

(
1

2δaαa

−
1

2κ4

)

τ̃T
u τ̃u +

αaσ2
r

2δa
,

(31)  

where σr > 0 is an unknown constant satisfying sup(
⃦
⃦τ̇u
⃦
⃦)⩽σr, − sT τ̃u⩽κ4sTs/2+τ̃T

u τ̃u/(2κ4) and − τ̃T
u τ̇u⩽τ̃T

u τ̃u/(2αa)+αa τ̇T
u τ̇u/2 are used. 

Define λr = 1/(2δaαa) − 1/(2κ4). It follows from κ4 > δaαa that λr > 0. Then, (31) can be derived as 

V̇r⩽ − κ3q̃T
r q̃r −

κ4

2
sT s −

λr

2
τ̃T

u τ̃u +
αaσ2

r

2δa
. (32) 

Let ξ = [q̃T
r , sT , τ̃T

u ]
T
. It follows that 

V̇r⩽ − kr

⃦
⃦
⃦
⃦ξ‖2

+
αaσ2

r

2δa
, (33)  

where kr = min(κ3, κ4/2,λr/2). It can be concluded that V̇r⩽0 if ξ is outside of the set D ξ = {ξ
⃒
⃒
⃒

⃦
⃦
⃦ξ
⃦
⃦
⃦⩽σr

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
αa/(2δakr)

√
}. Thus, we have 

Vr ∈ L ∞
1 which further implies q̃r, s, τ̃u ∈ L ∞. Finally, it can be concluded that q̃r and ω̃ ultimately converge to the sets D q̃r

=

{q̃r

⃒
⃒
⃒

⃦
⃦
⃦q̃r

⃦
⃦
⃦⩽σr

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
αa/(2δakr)

√
} and D ω̃ = {ω̃

⃒
⃒
⃒

⃦
⃦
⃦ω̃
⃦
⃦
⃦⩽(1 + κ3)σr

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
αa/(2δakr)

√
}, respectively. 

Proposition 3. If the control parameters are chosen such that κ2z < (g − a0 − u − Δu)/2 and αp < γ2λ
(
Γ
)/(

2η2δp

)
,∀δp, γ > 0, where 

Γ =

⎡

⎣
K2 K2
K2 K1 + K2

⎤

⎦ and η = λ(I3 + K1K− 1
2 ), the closed-loop position error system (16) is ultimately bounded. 

1 
L ∞ = {f(t)|esssupt∈R+ ‖f(t)‖ < ∞}. 
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Proof. The boundedness of ũs is first shown. Define ũu = ûu − uu. Choose a Lyapunov function Vu = ũT
u ũu/2. Its derivative can be 

derived as 

V̇u = ũT
u

(

−
1
αp

ũu − u̇u

)

⩽ −
1
αp

Vu +
αp

2
σ2

t , (34)  

where σt⩾sup(‖u̇u‖). It then follows that 
⃦
⃦
⃦ũu(t)

⃦
⃦
⃦⩽

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(

⃦
⃦
⃦ũu(0)

⃦
⃦
⃦ − α2

p σ2
t )e− t/αp + α2

p σ2
t

√

. It can be concluded that ũu(t) exponentially 

converge to 
⃦
⃦ũu
⃦
⃦⩽αpσt. From the definitions of F (ûu), ũu and ̃us, we have F (ûui) = ûui when − u⩽ûui⩽u,i = 1,2,3. It follows that ̃usi =

ũui. When ûui > u, we have F

⎛

⎝ûui) = u + Δu

⎛

⎝1 − e
− 1

Δu(̂uui − u

)
⎞

⎠. Define a function y(ûui) = ûui − F (ûui). It follows that 

∂y(ûui)

∂ûu1
= 1 − e

− 1
Δu

(

ûui − u

)

> 0, ∀ûui > u. (35) 

This implies that ûui > F (ûui), ∀ûui > u. It further follows that ũui > ũsi > 0. Based on the same analysis, we have ũui < ũsi < 0,
∀ûui < − u. By summary, it can be concluded that |ũsi|⩽|ũui| for any ûui. Therefore, we have that ũs is bounded by ‖ũs‖⩽‖ũu‖. 

Next, define an expected region of attraction as follows 

A ζ = {ζ|‖ζ‖ < ζ, ζ > 0}, (36)  

where ζ = [zT , ṽT
]
T. It is trivial to show that there exists a positive constant γ ≜ γ(ζ) such that γ⩽1/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + ζ2
√

. This implies that 

γ
⃦
⃦
⃦ζ
⃦
⃦
⃦⩽
⃦
⃦
⃦ζ
⃦
⃦
⃦/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + ζTζ

√
, for ζ ∈ A ζ. Choose a Lyapunov function candidate 

Vt =
∑

r=z,̃v

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + rT r

√
− 1
)
+

1
2
ṽT K1K − 1

2 ṽ+
1

2δp
ũT

u ũu. (37) 

It follows that Vt is upper bounded by 

Vt⩽
η
2

⃦
⃦
⃦
⃦ζ‖2

+
1

2δp

⃦
⃦
⃦
⃦ũu‖

2
. (38) 

Taking the derivative of (37) along the closed-loop trajectory (9), (16) and (34) gives 

V̇ t =
zT

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + zT z

√ ż +

(
ṽ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + ṽT ṽ

√ + K − 1
2 K1ṽ

)T

˙̃v +
1
δp

ũT
u
˙̃uu =

zT K1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + zT z

√ ṽ +

(
z

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + zT z

√ +
ṽ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + ṽT ṽ

√ + K − 1
2 K1ṽ

)T

×

(

−
K2z
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + zT z

√

−
K2ṽ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + ṽT ṽ

√ − ũs

)

+
1
δp

ũT
u
˙̃uu⩽

−

(
z

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + zT z

√ +
ṽ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + ṽT ṽ

√

)T

K2

(
z

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + zT z

√ +
ṽ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + ṽT ṽ

√

)

−

(
z

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + zT z

√ +
ṽ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + ṽT ṽ

√ + K − 1
2 K1ṽ

)T

ũs −
1

δpαp
ũT

u ũu −
1
δp

ũT
u u̇u⩽

− λ
(

Γ
)⃦
⃦
⃦
⃦

ζ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + ζT ζ

√ ‖
2
−

1
2δpαp

ũT
u ũu +

̅̅̅
2

√
η
⃦
⃦
⃦
⃦ζ
⃦
⃦
⃦
⃦

⃦
⃦
⃦
⃦ũu

⃦
⃦
⃦
⃦+

αpσ2
t

2δp
.

(39) 

In terms of 
̅̅̅
2

√
η
⃦
⃦
⃦ζ
⃦
⃦
⃦

⃦
⃦
⃦ũu

⃦
⃦
⃦⩽λ

(
Γ
)

γ2
⃦
⃦
⃦ζ‖2

/2 + η2
⃦
⃦
⃦ũu‖

2
/
(

γ2λ(Γ
))

, together with γ
⃦
⃦ζ
⃦
⃦⩽
⃦
⃦ζ
⃦
⃦/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + ζTζ

√
, it follows that 

V̇t⩽ −
λ
(

Γ
)

γ2

2

⃦
⃦
⃦
⃦
⃦
⃦

ζ‖2
−

⎛

⎝ 1
2δpαp

−
η2

γ2λ
(

Γ
)

⎞

⎠

⃦
⃦
⃦
⃦
⃦
⃦

ũu‖
2
+ c, (40)  

where c = αpσ2
t /(2δp). Define λt = 1/

(
2δpαp

)
− η2/

(
γ2λ(Γ

))
, where λt > 0 given the fact that αp < γ2λ

(
Γ
)/(

2η2δp

)
. In terms of (38), 

we further derive (40) as follows 

V̇ t ⩽ −
λ
(

Γ
)

γ2

2

⃦
⃦
⃦
⃦
⃦

ζ‖2
− λt

⃦
⃦
⃦
⃦
⃦

ũu‖
2
+ c⩽ − ktVt + c, (41) 
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where kt = min
(

λ
(
Γ
)

γ2,2λt

)/
max

(
η,1/δp

)
. It follows that Vt(t)⩽(Vt(0) − c/kt)e− kt t + c/kt. It further follows that ̃p,ṽ,ũu,ũs ∈ L ∞. It can 

be concluded that Vt exponentially converges to the set D Vt = {Vt |Vt⩽c/kt}. Next, it follows from (41) that V̇t⩽0 if ζ is outside the set 

D ζ =

{

ζ
⃒
⃒
⃒
⃒

⃦
⃦
⃦
⃦ζ
⃦
⃦
⃦
⃦⩽

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2c/λ(Γ
)√ }

. Thus, we know that ζ eventually converges to the set D ζ. From the definitions of ζ and z = ṽ + K1p̃, we 

have that p̃ and ṽ ultimately converge to the sets D p̃ =
{

p̃
⃒
⃒
⃒

⃦
⃦
⃦p̃
⃦
⃦
⃦⩽2c/

(
λ
(
Γ
)

λ(K1)
2
)}

and D ṽ =
{

ṽ
⃒
⃒
⃒

⃦
⃦
⃦ṽ
⃦
⃦
⃦⩽2c/

(
λ(Γ
))}

, respectively.  

□ Therefore, the main result can be summarized by following theorem. 

Theorem 1. Consider the VTOL UAV dynamics expressed by 1–4. Suppose that Assumptions 1–2 hold. The proposed force command 
(11) and torque command (24) with dynamics estimators (25) and (12) guarantee that the ultimately bounded trajectory tracking is 
achieved. 

Remark 3. In this paper, a dynamics estimator is employed to compensate for partial propeller fault and external disturbance 
simultaneously. This not only ensures high robustness to the control system but also provides simple parameter tuning and practical 
implementation. A novel smooth saturation function is introduced to provide a differentiable ability of the force command. Careful 
analysis indicates that sufficient small Δu could result in a high accuracy approximation to the standard saturation function. A larger u 
could provide a higher expected robust performance and fault recoverability. Nevertheless, a feasible compromise is inevitable with 
the non-singularity condition. 

Remark 4. It is interesting to note that the selection of control parameters remains simple and intuitive despite of several parameters 
involved in the stability analysis. According to the design procedure, the parameters of the controller and estimator can be designed 
and tuned separately. From the definition of D q̃r

, it is trivial to show that larger κ3 and κ4 and smaller αa could contribute to a smaller 

D q̃r
. In terms of λ(Γ

)
, it can be also concluded that larger K1 and K2 and smaller αp could contribute to a smaller D p̃. However, due to 

the selection criteria κ2z < (g − a0 − u − Δu)/2,K2 can not be chosen arbitrarily large. D p̃ can be assigned arbitrarily small by merely 
increasing K1. In practice, a suitable tradeoff among control requirements such as maximum control magnitude, environment 
disturbance, fault recoverability, etc, is also necessary. 

5. Numerical simulations 

In this section, numerical simulations are performed to show the effectiveness of the proposed strategy, where the disturbance 
observer [11,18,33] based control is also implemented in the same tracking scenario. To provide a fair comparison, both controllers are 

Table 1 
Simulation: Fault Coefficient.   

0⩽t < 40s  40s⩽t < 100s  t⩾100s  

υ1  0 0 0 
υ2  0 0 0 
υ3  0 35% 10% 
υ4  0 0% 30%  

Fig. 2. Simulation: Trajectory of the UAV.  
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Fig. 3. Simulation: Tracking error.  

Fig. 4. Simulation: Estimation of system uncertainty.  

Fig. 5. Simulation: Actual control signal.  
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tuned well based on the same control energy cost. The system parameters of the quadrotor UAV are set as m = 1.045kg and J =

diag(0.0064,0.0064,0.0128)kgm2. The reference trajectory is chosen as p0 = [5cos(0.2t),5sin(0.2t), 5(1 − e− 0.1t)]
Tm. The system states 

are initialized as p(0) = [0, − 2, 0]Tm and γ(0) = [20,0, 0]Tdeg. The initial states of the estimator and observer are all zero. The wind 
disturbance is injected in the simulation and its model can be found in our previous work [34]. The fault signals of the rotors are shown 
in Table 1. The control parameters of the proposed strategy are chosen as κ1 = κ2 = 0.8, κ3 = κ4 = 0.4,αp = 0.25 and αa = 0.25, and 
the observer based control (labeled by ’Observer’) are κ1 = κ2 = 0.8, κ3 = κ4 = 0.4, Lp = 0.6 and La = 2. Simulation results are pre
sented in Figs. 2–5. 

Fig. 2 presents the trajectory of the UAV driven by each controller. Fig. 3 shows the time history of the tracking error in each 
direction. Fig. 4 provides the estimations of both algorithms. Fig. 5 collects the actual control signals. It can be observed that the 
proposed strategy ensures a better tracking performance with the same energy cost and that the dynamics estimator provides a faster 
response and higher accuracy. Table 2 summarizes the control performance of each strategy, where the mean deviation (MD) and 
standard deviation (SD) of the steady state are calculated from 10s, the mean time (MT) is the average computational time in each 
control step, and the energy consumption (EC) index is calculated by using 

∑4
i=1
∫ T

0 fi(t)dt/T. It can be seen from Table 2 that the 

Table 2 
Simulation: Tracking performance comparison.  

Strategy MD, m SD, m MT, s EC, Ns 

Proposed 1.3193× 10− 4  0.0255 2.1616× 10− 4  10.9094 

Observer 7.0984× 10− 4  0.1375 2.1712× 10− 4  10.9161  

Table 4 
Tracking performance comparison.  

Strategy MD, m SD, m CT, s EC, Ns 

Proposed 0.0060 0.1004 3 7.2922 
PID 0.0194 0.3222 8 7.0009  

Fig. 6. Experiment setup.  

Fig. 7. Experiment workflow.  
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proposed control shows a better performance with higher accuracy. Besides, compared with the measurement and sensing frequency 
(attitude loop 200 Hz and position loop 120 Hz) in the experiment, the computational time of the proposed control can be neglected. 
(see Table 4). 

6. Experimental validations 

To validate the effectiveness of the proposed control strategy, experimental examples under different conditions are conducted on a 
quadrotor UAV platform which consists of an F330 DJI quadrotor, a motion capture system and the control center PC (refer to Fig. 6). 
The model parameters of the quadrotor are m = 1.045kg, J = diag(0.0064, 0.0064, 0.0128)kgm2, l = 0.225m, and C =

0.083Nms2/rad2. The maximum output of each propeller is 5.4N. The attitude and angular velocity are measured by using an onboard 
inertial measurement unit (IMU) module, and the position and linear velocity are obtained by the motion capture system. The attitude- 
loop and position-loop are operated at 200 Hz and 120 Hz, respectively, where the Pixhawk provides the onboard flight control 
computer. Fig. 7 formulates the workflow of the experiment. 

6.1. Parameter tuning 

Before move on, the parameter tuning procedure of the proposed control strategy on real flight experiment is given. According to 
the separation principle, the controller and dynamics estimator parameters can be chosen individually. Based on the linearized model 
of the attitude-loop system around equilibrium q̃r = ω̃ = 0, the nominal closed-loop can be approximately [33] derived as 

2J¨̃qr = −
(

1+ κ3κ4

)
q̃r −

(
2κ4 + Jκ3

)
˙̃qr, (42)  

where ω̃ ≈ 2 ˙̃qr is used. Its characteristic polynominal is given by 

2Jis2
i +
(
1+ κ3κ4

)
si +

(
2κ4 + Jiκ3

)
= 0, i = 1, 2, 3. (43) 

The parameter selection criteria is that all the solutions to (43) have negative real parts. Next, as a prior selection of the position 
controller parameter, κ2z can be determined by first considering the nonsingular condition κ2z < (g − a0 − u − Δu)/2 as well as desired 
trajectory, fault recoverability and robust capability. By linearizing the closed-loop error position system around equilibrium ̃p = ṽ =

0 

˙̃v = − K1K2p̃ − 2K2ṽ, (44)  

we have its characteristic polynominal 

Table 3 
Fault Coefficient.   

0⩽t < 10s  10s⩽t < 20s  t⩾20s  

υ1  0 0 30% 
υ2  0 0 0 
υ3  0 10% 0 
υ4  0 15% 0  

Fig. 8. Trajectory of quadrotor in CaseI. (∘ represents the initial position and * represents the final position.).  
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Fig. 9. Position of quadrotor in CaseI. (∘ represents the initial position and * represents the final position.).  

Fig. 10. Attitude of quadrotor in Case I.  

Fig. 11. Estimate in position loop in Case I.  
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s2
i + 2κ2isi + κ1iκ2i = 0, i = x, y, z. (45) 

By choosing κ1i and κ2i such that all the solutions to (45) have negative real parts. Then, based on this principle and the parameters 
from numerical simulations, the nominal controller can be implemented after a satisfied performance is obtained by trail and error. 
Besides, simple tuning of estimator parameters can be obtained due to the fact that there is merely a single parameter involved. Small 
filter parameter could contribute to high estimate accuracy but possible control chattering since it is introduced as the denominator in 
the estimator. An initial choice can be made by using the value in the numerical simulation. Then, after simple tuning by increasing the 
filter parameter, a good performance can be obtained when the UAV does not show any chattering phenomenon. 

6.2. Experimental results 

6.2.1. Case I. The proposed strategy vs nonsingular strategy 
To highlight the robustness and fault tolerant capability of the proposed control strategy, comparison experiment is also imple

mented by the nonsingular strategy without dynamics estimator. The desired trajectory is assigned as p0 =

[0.5cos(0.5t),0.5sin(0.5t), 1 − e− 0.5t ]
Tm. The fault coefficient of each propeller is injected based on Table 3. The control parameters of 

the proposed strategy are chosen as K1 = 4I3, K2 = diag(0.1, 0.1, 0.15), κ3 = 7, κ4 = 5, αp = 4, αa = 0.2, u = 5, and Δu = 0.1. 
Experimental results of the quadrotor trajectory tracking under propeller fault are presented in Figs. 8–12. 

An overall description of the trajectory tracking under different controllers is summarized in Fig. 8. The position and horizonal 
trajectory of the quadrotor are shown in Fig. 9. It can be observed that the tracking operation is achieved by the proposed strategy with 
a good performance while the mission is failed without dynamics estimator after the fault is injected. Despite of the transient response 
after the propeller fault occurs, the high performance trajectory tracking can be recovered quickly by the proposed strategy. Moreover, 
it can be seen from Fig. 10 that the proposed strategy achieves a better attitude tracking. The output of the dynamics estimator in 
position loop is drawn in Fig. 11. The control commands of propellers are collected in Fig. 12. It can be observed that all the signals 

Fig. 12. Control command of each rotor in Case I.  

Fig. 13. Trajectory of quadrotor in Case II. (∘ represents the initial position and * represents the final position.).  
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Fig. 14. Position of quadrotor in CaseII. (∘represents the initial position and * represents the final position.).  

Fig. 15. Attitude of quadrotor in Case II.  

Fig. 16. Control command of each rotor in CaseII.  
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remain bounded and the dynamics estimator could provide the fault compensation for the control command of the faulty propeller. 
Without any compensation mechanism, the nonsingular strategy fails to complete the trajectory tracking. 

6.2.2. Case II. The proposed strategy vs PID control: comparison 1 
In this case, the tracking performance of the quadrotor simultaneously subject to propeller fault and wind disturbance is presented, 

where a well-tuned PID controller is also implemented for comparison experiment. The control parameters of the proposed strategy, 
propeller fault and desired trajectory are chosen as the same as that in Case I. The parameters of the PID controller for position loop are 
selected as KP1 = diag(0.95,0.95,1),KP2 = diag(0.09,0.09,0.2),KI = diag(0.02,0.02,0.05) and KD = diag(0.01, 0.01, 0), and for the 
attitude loop are KP1 = 7I3,KP2 = 0.15I3,KI = 0.05I3 and KD = 0.003I3. Moreover, a large electrical fan is employed to generate the 
persistent wind with a 4 m/s velocity with respect to the trajectory center. Figs. 13–16 summarize the experimental results under 
propeller fault and wind disturbance. 

Fig. 13 describes the trajectories of the quadrotor driven by the proposed and PID controllers. Fig. 14 draws the position and the 
horizonal trajectory. Fig. 15 compares the attitude tracking performance by showing the time history of the quaternion. It can be 
observed that the proposed strategy ensures a better tracking performance despite of the propeller fault and persistent wind distur
bance. Table 2 collects the mean deviation (MD), standard deviation (SD), convergence time (CT) and energy consumption (EC) of the 

Table 5 
Fault Coefficient of Example 1 in CaseIII.   

0⩽t < 10s  10s⩽t < 20s  t⩾20s  

υ1  0 0 Example 1: 35%(Example 2: 30%) 
υ2  0 0 Example 1: 0(Example 2: 15%) 
υ3  0 10% 0 
υ4  0 15% 0  

Fig. 17. Position of quadrotor of Example 1 in CaseIII. (∘represents the initial position and * represents the final position.).  

Fig. 18. Position of quadrotor of Example 2 in CaseIII. (∘represents the initial position and * represents the final position.).  
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trajectory tracking during the experiment, where EC is calculated by using 
∑4

i=1
∫ T

0 fi(t)dt/T. It can be calculated from Table 2 that, in 
contrast to the PID controller, the proposed strategy can achieve the tracking by improving the MDE and STDE by 69.00% and 68.83% 
with merely 4.16% additional energy consumption. This further indicates that the proposed strategy achieves a higher tracking ac
curacy. It can be seen from the control commands in Fig. 16 that the dynamics estimator also works well to provide robust 
compensation under wind disturbance. Therefore, it can be concluded from experimental results that the proposed strategy achieves 
the trajectory tracking of the quadrotor with a better performance than the PID controller while showing a better robustness to the 
propeller fault and harsh wind condition. 

6.2.3. Case III. The proposed strategy vs PID control: comparison 2 
In this case, two examples are conducted by the proposed strategy and PID control in the same experimental scenario. To show the 

advantage, more serious fault conditions are introduced. The fault coefficients of Examples 1 and 2 are injected based on Table 5, 
respectively. The persistent wind with a 4 m/s velocity with respect to the trajectory center is also employed. 

Fig. 19. Control command of each rotor of Example 1 in CaseIII.  

Fig. 20. Control command of each rotor of Example 2 in CaseIII.  

Table 6 
Tracking performance comparison of the proposed strategy in CaseIII.  

Eample MD, m SD, m CT, s EC, Ns 

1 0.0073 0.1202 3 7.2353 
2 0.0141 0.2361 3 7.5490  
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It can be observed from Figs. 17 and 18 that the proposed strategy achieves both trajectory tracking scenarios and the PID control 
fails to provide the suitable compensation when larger fault occurs at 20s. Figs. 19 and 20 present the command control signal of each 
rotor in each Example. It can be seen that the saturation phenomena appear in rotor 1 when the faults are injected at 20s. The PID 
control strategy fails in this case is because of that the rotors can not provide enough control force and torque to compensate for the 
desired acceleration. Despite of the fact that the proposed control strategy completes the trajectory tracking in this case, however, it 
also fails when we rise the fault up to 45% of rotor 1. This implies that the trajectory tracking may not be achieved if the faulty rotor can 
not generate enough control. Besides, the quantitative evaluation is also summarized in Table 6 that shows a good performance in the 
presence of serious propeller fault and harsh wind condition. 

7. Conclusion 

In this paper, we propose a robust passive fault-tolerant control strategy for the trajectory tracking of the VTOL UAV subject to 
partial propeller fault and external disturbance. A force command and a torque command are exploited for the position and attitude 
loops tracking, respectively. To compensate for the system uncertainties, a first-order filter based dynamics estimator is employed. A 
novel smooth saturation function is introduced in the force command to guarantee its boundedness and differentiability. The ultimate 
boundedness of the overall closed-loop system is proved. In addition, the explicit and simple selection criteria of control gains and 
estimator parameters are analyzed. Simulation and experiment results with comparison examples demonstrate that the proposed 
strategy achieves the trajectory tracking of the quadrotor and guarantees the robustness to propeller fault and wind disturbance. 
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