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The Bigger Picture

Ever-growing attention to

environmental preservation has

accelerated the global shift

toward renewable energy.

However, complete replacement

of fossil fuel is yet impossible

because of intrinsic intermittency

of renewable energy. Thus, large-

scale energy storage systems with

safety and cost-effectiveness are

necessary to solve this limitation.

Non-aqueous all-organic redox

flow batteries (NORFBs), which

store energy in redox-active
SUMMARY

Redox-active organic materials (ROMs) have recently attracted significant atten-

tion for redox flow batteries (RFBs) to achieve green and cost-efficient energy

storage. In particular, multi-redox ROMs have shown great promise, and further

tailoring of these ROMs would yield RFB technologies with the highest possible

energy density. Here, we present a phenazine-based catholyte material, 5,10-

bis(2-methoxyethyl)-5,10-dihydrophenazine (BMEPZ), that undergoes two sin-

gle-electron redox reactions at high redox potentials (�0.29 and 0.50 V versus

Fc/Fc+) with enhanced solubility (0.5 M in acetonitrile), remarkable chemical sta-

bility, and fast kinetics. Moreover, an all-organic flow battery exhibits cell volt-

ages of 1.2 and 2.0 Vwhen coupledwith 9-fluorenone (FL) as an anolyte. It shows

capacity retention of 99.94% per cycle over 200 cycles and 99.3% per cycle with

0.1 M and 0.4 M BMEPZ catholyte, respectively. Notably, the BMEPZ/FL couple

results in the highest energy density (�17 Wh L�1) among the non-aqueous all-

organic RFBs reported to date.
organic materials (ROMs)

dissolved in non-aqueous

solution, have received massive

attention as promising candidates

for this application. Current

development of NORFBs is

hindered by limited choices and

performances of ROMs. We

present the BMEPZ/FL system

delivering the highest energy

density among NORFBs. We

discuss the redesign of the

catholyte material, BMEPZ, based

on inspiration from biosystems.

Our results of multi-electron redox

material at high potentials with

enhanced solubility provide a

breakthrough in the realization of

high-energy-density RFBs.
INTRODUCTION

With the ever-increasing global demand for the development of greener and sus-

tainable energy sources to mitigate the environmental concerns associated with fos-

sil fuels, renewable energy sources such as solar and wind power are becoming

affordable and broadly deployed. To achieve round-the-clock energy delivery, how-

ever, these power sources must be paired with scalable energy storage systems

(ESSs) owing to the significant mismatch between the energy supply and demand.1,2

Redox flow batteries (RFBs), which utilize redox-active materials dissolved in sepa-

rate electrolytes, are considered some of the most promising ESSs for modern

grid markets, and decoupling the energy and power is regarded facile for RFB sys-

tems.3–8 With the aim of pursuing the development of green energy technology,

research on RFBs has also shifted from conventional metal-based redox-active ma-

terials such as vanadium and zinc to redox-active organic materials (ROMs), which

are naturally abundant and potentially cost effective, safe, and chemically

tunable.9–11 In particular, recent studies on non-aqueous all-organic RFBs (NORFBs)

have demonstrated the great promise for achieving high energy densities in these

systems without the concerns associated with water electrolysis, which typically

limits the working voltage to a narrow range and thus leads to a rather low energy

density in aqueous RFBs.12–17

Despite the great potential of organic RFBs, their practical energy density remains

very low.10 The energy density of ROM-based RFBs is dependent on the following
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three factors: (1) the selection of the anolyte and catholyte and their corresponding

redox potential difference, (2) the amount of ROMs dissolved, and (3) the number

of electrons participating in the redox reaction per ROM. Extensive research in

recent years has led to the identification of various promising ROMs, such as quinone

and viologen derivatives, that can be used as anolytes (i.e., n-type or reduction

type).18–27 For these anolyte ROMs, remarkable performance enhancements in

terms of the solubility and multi-electron redox activity have been

achieved.23,26,28,29 Nevertheless, only a limited number of ROMs have been

reported as promising catholyte materials (i.e., p-type or oxidation type).8,30

Research on these p-type (oxidation type) ROMs is still in its infancy, and high-energy

organic RFBs can only be realized when anolytes are coupled with appropriate

catholytes.12,25,31,32 Moreover, p-type ROMs capable of multi-electron redox reac-

tions are even rarer because their oxidized states, such as dications, are often highly

unstable in a solution.13

Considering a realistic limit of the ROM concentration in non-aqueous media,15,33

exploiting multi-electron redox from a single p-type ROM is indispensable to

achieve high energy density at a given concentration.34 Several attempts have

very recently been made to utilize multi-electron redox p-type ROMs as

catholytes.35–37 For instance, Kowalski et al. demonstrated that the chemical stabil-

ity of the dication state of phenothiazine-basedmolecules can be enhanced by intro-

ducing methoxy groups at the para positions to the nitrogen atom of the phenothi-

azine core. Accordingly, the second redox reaction of the phenothiazine catholyte

can be utilized reversibly in a non-aqueous bulk-electrolysis cell.36 However, critical

challenges in multi-electron redox catholyte ROMs must be addressed, such as their

low solubility (< 0.1 M) and lack of long-term stability in the flow cell.36,37 To realize

high-energy-density RFBs, there is thus an urgent demand for the development of

new p-type ROMs capable of stable and reversible multi-electron redox that exhibit

high solubility.

In this report, we present a high-energy-density NORFB by exploiting a multi-elec-

tron redox p-type ROM as a catholyte; this ROM was rationally designed by

mimicking the energy transduction in living organisms. This newly synthesized phen-

azine-based molecule, 5,10-bis(2-methoxyethyl)-5,10-dihydrophenazine (BMEPZ),

undergoes double-redox reactions at high redox potentials with enhanced solubility

in non-aqueous media. Its redox mechanism is carefully investigated using spectro-

scopic tools combined with a computational method. Its multi-electron redox reac-

tions are revealed to be remarkably reversible in acetonitrile (MeCN) solution and

highly stable in all redox states. In addition, this molecule outperforms previously re-

ported ROMs in terms of its mass- and charge-transfer kinetics. A full-flow RFB, in

which BMEPZ is dissolved as a catholyte at concentrations of up to 0.4M, is prepared

and it exhibits stable cycle performance, delivering the highest energy densities

(�17Wh L�1) among NORFBs reported thus far. We believe that our material design

can pave the way for the practical use of NORFB by reducing its performance gap

with the state-of-the-art vanadium-based RFBs and aqueous all-organic RFBs

(AORFBs).38–40
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RESULTS AND DISCUSSION

Bio-Inspired Redesign of Catholyte Material

In biosystems, common redox-active molecules are known to undergo multi-elec-

tron redox reactions in the electron transport chains. Among such biological redox

systems, methanophenazine is known to act as a redox mediator in a respiratory
Chem 5, 2642–2656, October 10, 2019 2643
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Figure 1. A New Multi-electron Redox Catholyte Material with Enhanced Solubility, BMEPZ

(A) The rational molecular design strategy of BMEPZ inspired by biological redox systems.

(B) Schematic illustration of all-organic full-flow battery containing BMEPZ/FL electrolytes and CV

curves of the redox couple at a scan rate of 100 mV s�1.
chain of archaea Methanosarcina mazei Gö1.41 The methanophenazine can trans-

port two electrons accompanying translocation of two protons through reversible

reduction reactions (see Figure 1A).42 The redox core structure of the methanophe-

nazine consists of a pyrazine core bearing two imine-like nitrogen (–N=) atoms. By

accepting two electrons with two protons, the pyrazine core is reduced to form a di-

hydrophenazine (see the core structures and details of the redox reactions in Fig-

ure S1A), offering a redox potential of approximately�165 mV versus NHE. Because

of its suitable potential as an anolyte, several derivatives possessing the pyrazine

core were recently utilized as anolytes for AORFBs coupled with a Fe(CN)6 catho-

lyte.43 Pyocyanin, a redox-active molecule involved in the electron-transfer reactions

of Pseudomonas aeruginosa bacteria,44 bears a similar core structure as methano-

phenazine but has a substituent in the core, delivering much higher redox potential

in its deprotonation of NADH (Figures 1A and S1B).45,46 Similar to the pyrazine core,

the methylpyrazinium moiety as a redox core also undergoes a reduction by two

electrons; however, only one proton is involved to form a methyl-hydropyrazine
2644 Chem 5, 2642–2656, October 10, 2019



because the quaternized N can be reduced to a tertiary amine-like N without a pro-

ton. In contrast to the proton compensation for the pyrazine/dihydropyrazine

couple, this methylated-pyrazine-core redox couple (i.e., methylpyrazinium/

methyl-hydropyrazine) can bear a positive charge in its oxidized form.

Comparison of these two bio redox systems led us to speculate that the absence of

the charge-relief process resulting from methylation likely leads to a higher redox

potential (E1/2 = �40 mV versus NHE) of pyocyanin,46 and we anticipated that an

additional methylation on the other imine-like N of the pyrazinium core would further

increase the redox potential. Indeed, we observed that 5,10-dimethyldihydrophena-

zine (DMPZ) could undergo redox reactions at higher potentials (E1/2 = �0.26 and

0.50 V versus Fc/Fc+, �0.40 and 1.16 V versus NHE, see Figure S1C) between a di-

methylpyrazine dication/dimethylpyrazine redox core couple.37,47 Moreover,

because of the increased redox potential, in contrast to methanophenazine and pyo-

cyanin, DMPZ naturally exists in its reduced form (neutral form) and reversibly un-

dergoes two stepwise single-electron oxidations to form a stable dication (i.e.,

p-type redox) and is thus suitable for use as a catholyte. Nevertheless, the intrinsi-

cally low solubility of DMPZ (�60 mM in MeCN) has been a critical bottleneck for

its practical application in RFBs.37 Despite its high redox potential and multi-elec-

tron redox capability, the actual energy densities of RFBs employing DMPZ as a cath-

olyte are far from practical application.

To this end, we attempted to re-tailor the DMPZmolecules to improve their solubility

while maintaining the reversible and stable redox capability and succeeded in ob-

taining a new derivative, BMEPZ, that bears two flexible 2-methoxyethyl chains

instead of the methyl groups (see step 4 in Figure 1A). It was expected that the flex-

ibility and bulkiness of the alkyl ether chains would not only improve the solubility

but also enhance the stability of the dication form by spatially hindering the

redox-active N atoms from undergoing side reactions.48–50 Synthesis of BMEPZ

was performed starting with the reduction of phenazine using Na2S2O4, followed

by N-substitution of both amino groups with 2-chloroethylmethyl ether. The molec-

ular structure of the synthesized BMEPZ was characterized using nuclear magnetic

resonance (NMR) spectroscopy, high-resolution mass spectroscopy (HRMS), and

elemental analysis (see the Experimental Procedures and Figure S2 for the synthetic

details and reaction schemes). The newly synthesized BMEPZ exhibited enhanced

solubility in MeCN as high as 0.5 M, which is one order of magnitude greater than

that of the original DMPZ. To confirm that the substitution that improved the solubi-

lity did not reduce its original redox capability, we conducted cyclic voltammetry

(CV) measurements of BMEPZ in MeCN solution. As shown in Figure S3, BMEPZ dis-

played two reversible redox peaks at voltages of �0.29 and 0.50 V versus Fc/Fc+,

which are identical to those of DMPZ. The electrochemical properties of BMEPZ

will be discussed in further detail in the following sections.

To construct the all-organic RFB, the commercially available 9-fluorenone (FL) was

employed as a typical anolyte ROM; FL undergoes an n-type redox reaction at

�1.50 V versus Fc/Fc+.12 Because FL is highly soluble and undergoes one-electron

redox reaction with good reversibility in MeCN, we could avoid unnecessary

complexity in evaluating the redox activities of BMEPZ in the flow cell.12 Figure 1C

shows the redox activities of BMEPZ and FL in a mixed electrolyte along with the mo-

lecular structures for the corresponding redox states. In the CV measurement, the

mixed electrolyte showed three reversible redox peaks with redox potentials and

current levels identical to those of the corresponding redox peaks of each material

in the separate electrolytes (Figure S3). Thus, the redox behaviors of the two ROMs
Chem 5, 2642–2656, October 10, 2019 2645



Figure 2. Characterization of BMEPZ

(A) Representative charge-discharge curve for bulk-electrolysis test of BMEPZ.

(B) Coulombic efficiencies and capacities for bulk-electrolysis test of BMEPZ with respect to cycle number.

(C) Linearly fitted Levich plots of limiting current (iL) as a function of the square root of the rotation rate (u�1/2).

(D) Linearly fitted plots of logarithm of kinetics-controlled current (log ik) as a function of overpotential (h).

(E) Comparison of kinetic parameters (kinetic rate constant (k0) and diffusion coefficient (D) of reported redox-active materials in RFB system: this work

(blue stars) and reported RFBs (pink circles).
were unaffected by each other in any redox states in the mixed electrolyte sys-

tem.12,51 According to the CV results, the all-organic RFB exploiting the BMEPZ/

FL redox couple is expected to offer the cell voltages of 1.21 and 2.00 V.
Characterization of BMEPZ Catholyte

We conducted bulk electrolysis and rotating disk electrode (RDE) experiments to

investigate the intrinsic electrochemical properties of the newly synthesized BMEPZ

molecule. Bulk electrolysis was appropriate to investigate the inherent redox ability

and stability of BMEPZ under convection without considering the anolyte in the

actual RFB system. As shown in Figure 2A, BMEPZ exhibits two distinct plateaus

on charge and discharge at potentials consistent with the observations from the

CV measurements. In addition, the measured capacity (1.573 mAh) was remarkably

close to the theoretical value (1.608 mAh), indicating that all the BMEPZ molecules

effectively contributed to the two-step reactions of each single-electron redox.

Moreover, highly stable cycling was observed without any noticeable capacity

fading, as shown in Figure 2B, implying that the multi-redox reactions of BMEPZ

are reversible. The RDE tests revealed the kinetic properties of the BMEPZ and

BMEPZ+ species with respect to the mass-diffusion and charge-transfer rates. In

the linear sweep voltammetry (LSV) curves, the mass-transfer-controlled limiting cur-

rents (iL) increased with increasing rotation rate (u) in the range of 300–1500 rpm

(Figures S4A and S4B). Figure 2C shows that the linear relationship between iL
and the square root of u was well-fitted by the Levich equation;52 the diffusion co-

efficients (D) of BMEPZ and BMEPZ+ were calculated to be 1.02 and 1.12 3 10�5

cm2 s�1, respectively (a detailed description of the calculations is provided in the
2646 Chem 5, 2642–2656, October 10, 2019



electrochemistry section of Experimental Procedures). The kinetic-controlled cur-

rents (ik) at different overpotentials (h) were also determined by extrapolation in

the Koutecký–Levich plots (Figures S4C and S4D).52 The logarithms of the exchange

currents (log i0) were determined to be �3.65 for BMEPZ and �3.28 for BMEPZ+ in

the linearly fitted plots of log ik versus h (Figure 2D), yielding kinetic rate constants

(k0) of 1.18 3 10�2 and 2.77 3 10�2 cm s�1, respectively. Notably, even though

BMEPZ is bulkier than DMPZ, the kinetics of BMEPZ were on par with or even faster

than those of DMPZ (D of 1.58 3 10�5 and 8.82 3 10�6 cm2 s�1, respectively, and k0
of 2.973 10�2 and 5.533 10�3 cm s�1, respectively, for DMPZ and DMPZ+).37 In Fig-

ure 2E, the kinetic parameters for BMEPZ, BMEPZ+, and FL (blue stars) are compared

with those of previously reported materials for RFBs (pink circle dots) on a logarith-

mic scale. It is noteworthy that the BMEPZ/FL redox couple exceeds the others in

terms of both mass- and charge-transfer kinetics, implying that the redox couple

would be favorable for a low-polarization and high-efficiency RFB. In addition, a

scan-rate dependent CV study was conducted to verify the reversibility of BMEPZ/

FL redox couple. As shown in Figure S5, the current ratio between cathodic and

anodic peaks of both BMEPZ and FL was almost unity in the CV curves, implying their

superior reversibility. The redox couple showed the peak separations ranging from

80 to 100 mV with respect to the scan-rate. Furthermore, the Randles-Sevcik

equation was used to determine their diffusion coefficients.53 The diffusion

coefficients of BMEPZ, BMEPZ+, and FL were calculated to be 8.86 3 10�6,

1.16 3 10�5, and 1.05 3 10�5 cm2 s�1, respectively, which are consistent with those

from the RDE study.

Raman spectroscopy and natural population analysis (NPA) were conducted to verify

the redox mechanism of the BMEPZ molecule. In Figure 3A, the reversible changes

of the local bonding of BMEPZ (pink areas) upon charging and discharging are

shown. Notably, the peak changes mainly corresponded to the vibrational modes

of C–N–C and C=C bonds in the reduced diazabutadiene motif (N–C=C–N), which

is consistent with the previous observation for DMPZ (Table S1).37,47 In addition, the

NPA enabled visualization of the changes of the charge distribution of BMEPZ during

the redox reaction. From the results for BMEPZ, BMEPZ+, and BMEPZ2+ (Figure S6),

the change of the charge was plotted for each atom as colors ranging from white to

pink, as shown in Figure 3B. The most drastic color changes were observed at the

nitrogen atoms, followed by the conjugated carbons in the benzene rings, implying

that the redox reaction of BMEPZ mainly occurs in the diazabutadiene motif. This

finding supports the idea that the flexible side chains substituted to elevate the sol-

ubility did not affect the general redox mechanisms.

To explore the origin of the chemical stability of the BMEPZ molecule at all redox

states in the given MeCN-based electrolyte, density functional theory (DFT) calcula-

tions were conducted for BMEPZ, BMEPZ+, BMEPZ2+, and MeCN. It was observed

that the energy levels of the lowest unoccupied molecular orbital (LUMO) of BMEPZ

and the singly occupied molecular orbital (SOMO) of the radical BMEPZ+ were

located above the highest occupied molecular orbital (HOMO) level of MeCN.

More importantly, even the LUMO level of BMEPZ2+ was higher than the HOMO

level of MeCN, indicating that the electron transfer from MeCN to BMEPZ in any

oxidation state during the battery operation is prohibited. Similarly, the electron

transfer from BMEPZ in any oxidation state to MeCN is energetically unfavorable

because the HOMO (or SOMO) levels of BMEPZ and BMEPZ2+ (or BMEPZ+) are lower

than the LUMO level of MeCN. The above theoretical calculations indicate that para-

sitic side reactions based on electron transfer between BMEPZ and MeCN are less

likely to occur during battery operation (Figure S7).
Chem 5, 2642–2656, October 10, 2019 2647



Figure 3. Investigation of Redox Mechanism of BMEPZ

(A) Ex situ Raman analysis for BMEPZ in catholyte, demonstrating the reversible appearance and

disappearance of several peaks.

(B) NPA of BMEPZ, BMEPZ+, and BMEPZ2+. The depth of the pink color denotes the extent of the

charge change.

(C) Molecular geometries of BMEPZ, BMEPZ+, and BMEPZ2+.
In addition, the structural changes in the optimized geometries of BMEPZ during the

redox reactions were observed. As shown in Figure 3C, the neutral BMEPZ has bent

conformation with an angle of 144.2� between the two phenyl ring planes. The

radical cation and dication, in contrast, show almost planar geometries with the an-

gles of 171.2� and 175.4�, respectively. It can be speculated that the planar molec-

ular geometries of the radical cation and dication effectively delocalized the addi-

tional charges, leading to the remarkable redox stability of BMEPZ.54,55 It is

noteworthy that many p-type ROMs except BMEPZ tend to be very unstable when

they are oxidized by two electrons, resulting in fast decay of the cycle

performance.13,31

Electrochemical Performance of BMEPZ/FL Flow Cell

Cycling tests of flow cells employing BMEPZ as the catholyte and FL as the anolyte

were performed using a custom flow cell (see the Experimental Procedures section

for further details) to investigate the electrochemical performance in a near-practical

system. Figure 4A presents a representative charge-discharge curve for the dilute

condition of 0.05 M BMEPZ and 0.1 M FL in a supporting electrolyte of 0.5 M bis(tri-

fluoromethane)sulfonimide lithium salt (LiTFSI) in MeCN at a current density of 20

mA cm�2. The flow cell exhibited two well-defined plateaus at cell voltages of 1.2

and 2.0 V, which is consistent with the expectations from the CV curves in Figure 1B.

The plateaus of the same length at each voltage indicate that the two single-electron
2648 Chem 5, 2642–2656, October 10, 2019



Figure 4. Electrochemical Performance of Flow Cell of 50 mM BMEPZ and 0.1 M FL

(A) Representative cell voltage versus time profile at a current density of 20 mA cm�2. The inset

shows the color change of the catholyte as a function of the SOC.

(B) Cycling efficiencies and capacities with respect to cycle number.
redox reactions of BMEPZ contribute equally to the cell capacity in the flow cell sys-

tem. Additionally, we observed the color changes of the catholyte during redox re-

actions, which are presented as a function of the state of charge (SOC) with a step

size of SOC 25 in Figure 4A. The color changes roughly occurred in two distinct

stages, from yellow to green and from green to red, because of the double-redox

reactions of BMEPZ, which could be quantitatively probed using UV-vis spectros-

copy (Figure S8). The cycling efficiencies and capacity retention of the flow cell

are plotted in Figure 4B. The cycling of the flow cell has a Coulombic efficiency

of �96% with an energy efficiency of �70%, which were stably maintained over

200 cycles. Moreover, an initial discharge capacity of 2.08 Ah L�1 was achieved,

which is close to the theoretical capacity of 2.67 Ah L�1 and yields a material utiliza-

tion of�80%. Note that the initial capacity could be retained over 200 cycles (cycling

time of �129 h) with a capacity retention of 99.94% per cycle and 70% of theoretical

capacity could be achieved after 200 cycles (Figure S9). We attribute this highly

robust cycle performance of the cell to the high stability of BMEPZ+ radical cation

in the electrolyte as well as the stable dication form of BMEPZ. Typically, organic rad-

icals are often highly reactive and thus unstable, which is the key obstacle for

improving the cycle performance in an organic flow battery. In contrast, it is note-

worthy that the UV-vis spectra of BMEPZ+ in the electrolyte were virtually unchanged

over 24 h (Figure S10), indicating that BMEPZ+ has superior radical stability.12,56

We next performed a demonstration of the flow cell under the near-saturation con-

dition of BMEPZ to investigate the electrochemical behavior under practical cell con-

ditions. In Figure 5A, additional charge-discharge curves for flow cells using 0.1 M

and 0.4 M BMEPZ are presented. A proportional elevation of the capacity was

observed with respect to the concentration, and stable cycling of 99.94% per cycle

was achieved for the 0.1 M BMEPZ flow cell in Figure 5B. In addition, the 0.4 M

BMEPZ flow cell was successfully demonstrated with a material utilization of �75%

during discharge and a respectable capacity retention of 99.3% per cycle in

Figure 5C. Despite the superior stability of BMEPZ at all redox states, the capacity

decay in concentrated cell was non-negligible. Since longer cycling time was

needed for the concentrated cell at the same current density, more ROM molecules

would cross over through the microporous separator, represented by the low

Coulombic efficiency of 83%. Moreover, during the extended cycling time, the FL

radical anions at the charged state might have more chance to decay because of

their rather short lifetime.12 It can thus be expected that the development of

membrane which can suppress the cross-over issue and using more stable anolyte

material would improve cycle life in the concentrated cell. For comparison of the
Chem 5, 2642–2656, October 10, 2019 2649



Figure 5. Electrochemical Performance of BMEPZ/FL Flow Cell at High Concentrations

(A) Typical charge-discharge curves at different concentrations.

(B) Cycling efficiencies and capacities for 0.1 M BMEPZ and 0.2 M FL with respect to cycle number.

(C) Cycling efficiencies and capacities for 0.4 M BMEPZ and 0.8 M FL with respect to cycle number.

(D) Energy density plot of typical redox-active materials in organic RFBs. The molar energy density is the volumetric energy density divided by the

cycling concentration.
performance of the BMEPZ/FL flow cell with that of previously reported all-organic

RFBs involving both aqueous and non-aqueous media, the theoretical energy den-

sities of the RFBs at the cycling concentration are plotted in Figure 5D. The energy

densities of the RFBs are presented with respect to the intrinsic activity of the redox

couple (energy per mole) and its concentration in the solvent (energy per volume).

With regard to the dynamic properties of solvents and cost issue, the molar energy

density should be considered because ROMs with high molar energy densities are

advantageous to deliver high energy densities using relatively low concentrations

of ROMs. The figure shows that AORFBs (yellow areas) generally exhibit low intrinsic

energy densities limited by the low cell voltage (<1.4 V); therefore, a high-concen-

tration electrolyte is required to achieve a high volumetric energy density. For

instance, Janoschka et al. demonstrated the high volumetric energy density

(38 Wh L�1), which is comparable to the vanadium RFBs, but it needed 2.0 M solu-

tions of TEMPO derivative and methyl viologen.40 In contrast, a relatively high molar

energy density can be attained for NORFBs (purple areas) because of the wide elec-

trochemical window. Furthermore, NORFBs using multi-redox ROMs present a

promising pathway to realize high volumetric energy density with exceptionally

high molar energy densities, as illustrated in blue areas. However, in practice, their
2650 Chem 5, 2642–2656, October 10, 2019



volumetric energy density rarely exceeds that of aqueous RFBs because of the

relatively low cycling concentration limited by the dynamic properties of non-

aqueous media and the lack of suitable membrane. As the multi-redox capability

is combined with enhanced solubility in the BMEPZ/FL system, the volumetric en-

ergy density (�17 Wh L�1) exceeded that of other NORFBs even at a lower concen-

tration (�0.4 M), showing a great potential of multi-redox NORFB systems. It can be

expected that further engineering to achieve solubility of phenazine derivatives over

1 M and the development of high-performance membrane for the non-aqueous sys-

tem would enable the phenazine-based NORFB to outperform vanadium-based and

aqueous organic systems.

Conclusions

We reported a multi-redox BMEPZ inspired by biosystems as a promising catholyte ma-

terial with the highest energy density demonstrated for organic RFBs. This ROM un-

dergoes two reversible redox reactions at high redox potentials of –0.29 and 0.50 V

versus Fc/Fc+ and exhibits outstanding electrochemical kinetics for the mass- and

charge-transfer processes, retaining high solubility in non-aqueous media. An all-

organic flow cell exploiting the BMEPZ/FL redox couple was successfully prepared

with two well-defined voltage plateaus at 1.2 and 2 V and highly robust cycling owing

to the remarkable chemical stability, delivering one of the highest energy density of re-

ported NORFBs. Although further engineering of ROMs and the development of high-

performance membrane are still needed for practical application of this system, these

findings on a new multi-electron redox material combined with the high solubility pro-

vide a breakthrough in the realization of high-energy-density RFBs.

EXPERIMENTAL PROCEDURES

Preparation of Materials

MeCN (anhydrous) and FL were purchased from Sigma–Aldrich and used without

further purification. The microporous separator (Celgard 4560) and LiTFSI were pur-

chased fromWellcos (Korea) and TCI Chemicals (Japan) and were treated under vac-

uum at 70�C for 24 h to remove moisture. Tetrahydrofuran (THF) was distilled using

sodium and benzophenone before use. All the other reagents and solvents were

obtained from Sigma-Aldrich and Alfa Aesar Co. and used as received without

further purification. All the glassware, syringes, magnetic stirring bars, and needles

were thoroughly dried in a convection oven. The reactions were monitored using

thin layer chromatography (TLC) using commercial TLC plates (silica gel 60 F254,

Merck Co.).

Synthesis

Synthesis of 5,10-dihydrophenazine (1)

The 5,10-dihydrophenazine (1) was prepared following reported procedures.57

Phenazine (3 g, 16.6 mmol) was dissolved in ethanol (75 mL), and the solution was

heated to boiling. An aqueous solution (300 mL) containing Na2S2O4 (30 g, 0.17

mol) was added to the boiling solution. The solution turned purple immediately after

mixing; then, a greenish white precipitate formed. The precipitated solid was

collected by filtration, washed with water, and dried in vacuo to afford 2.7 g of a

greenish white solid. Because of its instability in air, the solid was stored under nitro-

gen without further purification and characterized.

Synthesis of 5,10-bis(2-methoxyethyl)-5,10-dihydrophenazine (2, BMEPZ)

In a flame-dried two-necked 100-mL round bottom flask, 1 (1 g, 5.5 mmol) was dis-

solved in freshly distilled THF (12 mL). To this solution, 1.6 M n-butyl lithium (n-BuLi)

in hexane (9.5 mL, 15.4 mmol) was added dropwise over 30 min at room
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temperature. After an orange precipitate was formed, 2-chloroethyl methyl ether

(3.5 mL, 38.5 mmol) was added. Subsequently, the orange precipitate disappeared,

forming a reddish-brown solution. The solution was stirred overnight, and the reac-

tionmixture was then poured into water and extracted three times with ethyl acetate.

The organic layer was dried over anhydrous MgSO4 and purified using column chro-

matography on neutral alumina with ethyl acetate/n-hexane (1:19 v/v) as an eluent to

give a light-yellow powder. Yield: 78.2% (1.28 g), 1H-NMR (300 MHz, C6D6) d(ppm):

6.60–6.57 (m, 4H), 6.31–6.28 (m, 4H), 3.43 (t, J = 6.3 Hz, 4H), 3.25 (t, J = 6.3 Hz, 4H),

2.99 (s, 6H). 13C-NMR (125 MHz, C6D6) d(ppm): 137.75, 111.84, 69.15, 59.03, 46.35.

Anal. calc. for C18H22N2O2: C, 72.46; H, 7.43; N, 9.39; found: C, 72.42; H, 7.43; N,

9.38; HRMS (EI+): calc. for C18H22N2O2 (M+), 298.1681; found, 298.1684

(Figure S11).

Characterization
1H-NMR and 13C-NMR spectra were recorded on a Bruker Avance-300 and Avance-

500 NMR spectrometer, respectively. HRMS were obtained using a JEOL JMS-700

instrument. Elemental analysis was conducted using a Thermo Fisher Scientific Flash

2000 elemental analyzer.

In the solubility measurement, 30.2 mg of BMEPZ powder was fully dissolved in 2 mL

MeCN to make a 0.05 M solution first. Then, to the solution, the same amount

(30.2 mg) of BMEPZ powder was repeatedly added until it got saturated without

further dissolution.

For the electrochemical measurements, the solutions were prepared and evaluated

in an Ar-filled glove box under an inert atmosphere (<0.5 ppm O2, H2O). CV curves

of DMPZ, BMEPZ, FL, and the mixture of BMEPZ and FL (10 mM each) were obtained

using 0.1 M LiTFSI in MeCN as a supporting electrolyte. A three-electrode system

(a Pt counter electrode, a Ag/AgNO3 reference electrode, and Au working elec-

trode) was employed, and a scan rate of 100 mV s�1 was used. Ferrocene (5 mM)

was used as an internal reference.

For the bulk-electrolysis test, a commercially available bulk-electrolysis cell

(MF-1056) was used. The cycling experiment used an electrolyte consisting of

1 mM BEMPZ and 0.5 M LiTFSI in MeCN (30 mL) and was stirred at 1,400 rpm. A

three-electrode system (a Pt counter electrode, Ag/AgNO3 reference electrode,

and reticulated vitreous carbon working electrode) was employed at a current of

1.608 mA (1C).

For the RDE test, a three-electrode system (a Pt counter electrode, Ag/AgNO3 refer-

ence electrode, and glassy carbon working electrode with 5-mm diameter) was em-

ployed for the LSV tests. The BMEPZ+ solution was prepared by oxidizing the BMEPZ

solution in the bulk-electrolysis experiment under a cut-off voltage of�0.11 V versus

Fc/Fc+. The working electrode was rotated from 300 to 1,500 rpm (in increments of

300 rpm) using a modulated speed rotator (AFMSRX; PINE). The LSV tests were con-

ducted with 1.0 mM ROMs in 0.5 M LiTFSI in MeCN at a scan rate of 5 mV s�1. The

kinematic viscosity (y) of the 0.5 M LiTFSI in MeCN was measured to be 0.59 mm2 s�1

following the standard test method ASTM D445 in Korea Polymer Testing &

Research Institute (Koptri, Korea). Using the slopes of the linearly fitted Levich plots

(Figure 2C) and the Levich equation (Equation 1), the diffusion coefficients (D) of the

ROMs were calculated (the slopes of BMEPZ and BMEPZ+ were determined to be

1.303 10�5 and 1.383 10�5 A rad�1/2 s1/2, respectively). Using the Koutecký–Levich

equation (Equation 2), Koutecký–Levich plots (Figures S4C and S4D) were obtained
2652 Chem 5, 2642–2656, October 10, 2019



at different overpotentials, and the kinetic rate constants of the ROMs were calcu-

lated using Equation 3.

iL = 0:62nFAD2=3u1=2y�1=6C0 (Equation 1)
1

i
=
1

ik
+

1

0:62nFAD2=3u1=2y�1=6C0
(Equation 2)
i0 = nFAk0C0 (Equation 3)

Here, n is the number of electrons transferred (n= 1), F is the Faraday constant (F =

96; 485 C mol�1),A is the electrode area (A= 0:2 cm2), andC0 is the concentration of

the ROM ðC0 = 1:0 mMÞ.

For the scan-rate dependence CV study, CV curves of BMEPZ and FL (10 mM each)

were obtained using 0.5 M LiTFSI in MeCN as a supporting electrolyte at the

following scan-rates: 25, 50, 100, 200, and 300 mV s�1. Randles-sevcik equation

(Equation 4) was used to calculate the diffusion coefficients of ROM.

ip = 0:4463nFAC

�
nFsD

RT

�1
2

(Equation 4)

Here, A is the electrode area ðA= 7:07 mm2Þ, C is the concentration of the ROM

ðC = 10 mMÞ, and s is the scan-rate, respectively.

Raman spectra (LabRAM HR Evolution, Horiba) were recorded using capillary tubes

(inner diameter of 1.1–1.2 mm) with continuous-wave linearly polarized lasers (wave-

length: 532 nm). The laser beam was focused using a 503 objective lens, resulting in

a spot diameter of approximately 1 mm. The acquisition time and number of accumu-

lations were 10 s and 5, respectively.

For the UV-vis spectroscopy analysis, absorption spectra of the electrolytes in the

positive electrode compartment (diluted in MeCN, 5% v/v) were obtained using a

UV-vis spectrometer (Agilent Technologies, Cary 5000) with an optical glass cuvette

(Quartz; Hellma). Electrolytes containing 10 mM BMEPZ and 20 mM FL in the sup-

porting electrolyte of 0.5 M LiTFSI in MeCN were used.

Computational Details

Spin-unrestricted density functional theory (DFT)-type calculations were performed

using the Gaussian 09 package,58 including geometry optimization, energy evalua-

tion, eigenvalue calculation, NPA calculation, and vibration property prediction for

each molecule. The Becke–Lee–Yang–Parr (B3LYP) hybrid exchange-correlation

functional59–61 and triple-zeta valence polarization (TZVP) basis set62,63 were used

for the entire calculation, which have been demonstrated to reproduce experimental

results well.37,47,64,65 To model the solvation environment of acetonitrile (dielectric

constant = 38.8), the polarizable continuum model (PCM) scheme, implicit solvation

model, was introduced for the entire calculation. The LUMO and SOMO denote the

adiabatic LUMO and SOMO.

Flow Cell Test

A custom flow cell with backing plates (polyethylene-coated fiber glass), flow fields

(polytetrafluoroethylene (PTFE)), and gaskets (PTFE) was fabricated using materials

purchased from ILDO F&C (Korea). The flow cells were assembled with carbon felt

(XF30A; TOYOBO, Korea) as electrodes at both the anode and cathode side with

four pieces of microporous separators (Celgard 4560) sandwiched in between.
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The active size of the flow cell was 2.0-cm wide 3 2.0-cm long (4 cm2), and a nor-

prene tubing (Masterflex) was used. The mixed electrolytes (13 mL in each half-cell

side) containing both BMEPZ and FL with the supporting electrolyte of 0.5 M LiTFSI

in MeCN were flowed through the felt electrodes at a flow rate of 80 mL min�1 using

a pump (ShenChen). In the case of 0.4 M BMEPZ cell test, 0.8 M FL and 1.0 M LiTFSI

were used as the anolyte and the supporting electrolyte, respectively. Flow cell tests

were performed at a current density of 20 mA cm�2 in constant-current mode using a

battery test system (WBCS 3000; WonA Tech, Korea), and free 20 cycles (5 cycles for

0.4 M BMEPZ and 0.8 M FL cell test) were conducted in advance for initial equilibra-

tion of the flow setup. The volumetric energy density was calculated based on the

entire electrolyte volume (26 mL).
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