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Urinary creatinine varies 
with microenvironment and sex in hibernating 
Greater Horseshoe bats (Rhinolophus 
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Abstract 

Background:  In temperate regions many small mammals including bats hibernate during winter. During hibernation 
these small mammals occasionally wake up (arouse) to restore electrolyte and water balance. However, field data on 
water stress and concentration of bodily fluids during hibernation is scarce. Urinary creatinine concentration has long 
been used to calibrate urinary hormone concentration due to its close correlation with urine concentration. There‑
fore, by investigating urinary creatinine concentration, we can estimate bodily fluid concentration. In this study, we 
investigated changes in urinary creatinine from greater horseshoe bats (Rhinolophus ferrumequinum) hibernating in 
abandoned mineshafts in two regions in South Korea.

Results:  We collected 74 urine samples from hibernating greater horseshoe bats from 2018 to 2019. We found 
that urinary creatinine concentration was higher in February and March and then declined in April. There were also 
indications of a sex difference in the pattern of change in creatinine concentration over the three months. Bats in the 
warmer and less humid mineshaft had higher urinary creatinine concentrations than bats in the colder and more 
humid mineshaft.

Conclusions:  These results indicate that hibernating bats face water stress as urinary concentration increases dur‑
ing winter and that water stress may vary depending on the microenvironment. Sex differences in behaviour during 
hibernation may influence arousal frequency and result in sex differences in changes in urinary creatinine concentra‑
tion as hibernation progresses. Although further behavioural and endocrinal investigations are needed, our study 
suggests that urinary creatinine concentration can be used as a proxy to estimate the hydration status of bats and the 
effect of sex and environmental factors on arousal patterns during hibernation.
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Background
Many small mammals in the temperate zone hibernate 
during winter [1], which enables them to overcome the 
energetic bottleneck caused by scarcity of food items 

and freezing temperatures. However, hibernation is also 
challenging for small mammals in that they have to rely 
mostly on stored body fat or cached food to survive the 
winter [2]. In addition to the limited availability of nutri-
ents, small mammals must manage the water balance of 
their body fluids to survive through hibernation [3, 4]. As 
metabolic water alone is not sufficient for rehydration for 
small mammals, including bats, they adopt various strat-
egies to maintain proper hydration status. For example, 
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thirteen-lined ground squirrels (Ictidomys tridecemlinea-
tus) reduce serum osmolality and suppress thirst, which 
helps them to maintain body fluid water balance during 
several months of hibernation [5]. Some bat species may 
form large clusters during hibernation to reduce evapora-
tive water loss, and may also arouse to drink water inside 
or outside the hibernaculum [6–8]. Some bat species also 
feed on insects during winter, which will increase meta-
bolic water formation and aid rehydration [9–12].

Small mammals also adopt various strategies to reduce 
evaporative water loss and energy expenditure [13, 14]. 
Among them, bats can provide a unique perspectives and 
information to the field of hibernation research [15, 16]. 
Their ability to fly allows bats to move between hiber-
nacula, and can more freely select one with low ambient 
temperature (TA) and high relative humidity (RH) [17, 
18], although such hibernacula are likely to be limited 
[19, 20]. Microclimatic constraints of a hibernaculum 
can be also counterbalanced by behavioural strategies, 
such as drinking and huddling so that sub-optimum 
hibernacula can be used for hibernation [7, 8]. As a 
result, the same bat species in different regions may dif-
fer in activity patterns and physiological parameters dur-
ing hibernation depending upon the microclimate of the 
hibernaculum and the climate outside. Hibernating bats 
may also differ in activity patterns in relation to their sex 
and body condition (amount of fat storage). For exam-
ple, male bats with more fat storage may engage in more 
mating activities during hibernation, which will cause 
shorter torpor bouts for those males [21]. Females may 
adjust torpor and arousal duration to save energy for foe-
tal development after hibernation [22]. These differences 
in reproductive strategies between sexes may also result 
in individual variations in physiological parameters of 
hibernating bats.

Urine analysis has been used to estimate physiologi-
cal conditions non-invasively, e.g., renal function and 
hormonal changes in primates [23]. Urinary creatinine 
is a by-product of metabolism and excreted through 
urine consistently [24]. Its concentration correlates 
with urine concentration, thus it has long been used to 
calibrate concentration of hormones and other compo-
nents in urine [25]. High correlation between urinary 
creatinine and specific gravities has also been con-
firmed in flying foxes [26]. It is also known that urine 
concentration is correlated with blood concentration, 
probably reflecting the hydration status of bats [27]. 
Therefore, by investigating the urinary creatinine con-
centration, we can estimate urine concentration, and 
hydration status of hibernating bats [28]. Creatinine 
measurement is also cost-effective and requires only a 
small volume of urine (less than 10ul), which is crucial 
in the case of small insectivorous bats, as they expel 

only a small volume of urine (less than 40ul [28]). How-
ever, despite such advantages, creatinine measurement 
has rarely been applied in studies of bats, apart from 
flying foxes.

In this study, we analysed urinary creatinine in hiber-
nating greater horseshoe bats (Rhinolophus ferrumequi-
num) in South Korea to investigate urine concentration 
as an indicator of water stress during hibernation. We 
hypothesized that urinary creatinine concentration 
may vary in relation to hibernaculum environment and 
sex. If individual bats become dehydrated during tor-
por, they need to intake water by drinking or by renal 
water reabsorption. As drinking requires body move-
ment, including flight, which increases energy expendi-
ture, renal water reabsorption restored during arousal 
might be an adequate strategy for rehydration during 
hibernation. Renal water reabsorption will result in 
higher concentration of urine and urinary creatinine. 
We therefore predict that urinary creatinine concentra-
tion will be higher during winter than spring. In addi-
tion, water vapor pressure and other abiotic factors, 
such as TA and RH of the hibernaculum may result in 
different degree of water stress for hibernating bats. To 
compensate for environmentally induced water stress, 
hibernating greater horseshoe bats may adjust arousal 
frequency and/or duration. Therefore, bats in a hiber-
naculum with a higher TA and lower RH may have 
higher urinary creatinine concentration. In addition, if 
males and females behave differently to improve their 
reproductive success [22] it could result in sex differ-
ences in urine concentration because of differences in 
metabolic water production.

Greater horseshoe bats arouse once a week on aver-
age during hibernation in the UK [29]. This arousal may 
be related to the need for water or energy intake [29], 
movement between hibernacula [30], or mating behav-
iours [31, 32]. However, the reasons for arousal during 
hibernation have not yet been fully elucidated  from a 
physiological perspective. This study presents a prelim-
inary investigation into whether dehydration faced by 
hibernating bats can be traced through urinary creati-
nine concentrations. We predicted that greater horse-
shoe bats would face dehydration that causes higher 
urinary creatinine concentration during hibernation, 
as in other hibernating bats [3, 7]. We also predicted 
that the creatinine concentration would decrease in 
early spring because of decreasing torpor bout lengths 
alongside increases in ambient temperature [29]. If 
microenvironment or sex differences caused difference 
in energy expenditure or drinking frequency, creatinine 
concentration might vary between different hibernac-
ula or between sexes.
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Results
To investigate the effect of microenvironment varia-
tions of mineshafts, we compared daily mean TA and RH 
(measured hourly and averaged daily) in the two mine-
shafts in Anseong (A1) and Hampyeong (H1), (Fig.  1). 
Bats in A1 used hibernation locations between around 
50 and 150 m in from the entrance. However, in H1 most 
bats hibernated at the point furthest from the entrance 
(ca. 30 m). Since TA and RH data were only available for 
January to April 18 2019, we could not compared TA and 
RH for 2018. The mean TA from January 1 to April 18, 
2019 was 3.9 ± 2.0℃ (0.6 to 8.1℃) in A1 and 5.6 ± 3.4℃ 
(-3.3 to 10.5℃) in H1 (Fig.  2). The mean RH was 
87.0 ± 4.0 % (78.9 to 94.5 %) for A1 and 82.3 ± 10.9 % (55.2 
to 97.0 %) for H1 (Fig. 2). TA was higher in H1 than A1 
(paired t-test; t = 9.00, p < 0.001), and RH was higher in 
A1 than H1 (paired t-test; t = 6.40, p < 0.001). A Levene’s 
test confirmed greater variance of TA (F1,214 = 18.48, 
p < 0.001) and RH (F1,214 = 60.51, p < 0.001) in H1 than A1 
(Additional file 1: Figure S1).

The TA in the two mineshafts was strongly correlated 
(Fig.  3a), even though they are over 210  km apart. The 
TA was also strongly correlated at each of the weather 

stations nearest to the mineshafts (CA and YG, Fig. 3b). 
In addition, the TA at each of the mineshafts was strongly 
correlated with the TA at the nearest weather stations 
(Fig. 3c and d). These results indicate that the TA inside 
the two mineshafts was influenced by the outside tem-
perature. The RH was also highly correlated between the 
two mineshafts, and between the two weather stations 
(Fig.  4a and b). However, the RH of mineshaft A1 was 
not correlated with the RH at the nearest weather station 
CA, although the RH of H1 was weakly correlated with 
the RH at the nearest weather station YG (Fig. 4c and d). 
In contrast to the TA inside the mineshafts, RH was not 
correlated with the outside RH. These results indicate 
that the RH inside the mineshaft was more independ-
ent from the air flow from outside than the TA inside the 
mineshaft.

In total, we collected 74 urine samples from 33 males 
and 41 females (Table  1). The mean urinary creati-
nine concentrations (± SD) during the main hiberna-
tion (Feb to Mar) and early active period (Apr) were 
0.65 ± 0.32  mg/ml (N = 47) and 0.13 ± 0.06  mg/ml 
(N = 27) respectively. To investigate changes in urinary 
creatinine concentration of bats in the two mineshafts, 

Fig. 1  Sampling locations in South Korea. The distance between mineshaft A1 (Anseong) and mineshaft H1 (Hampyeong) is around 210 km. Maps 
were extracted from google maps
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a b

Fig. 2  Mean daily TA and mean daily RH in the two mineshafts, A1 and H1. Error bars are standard deviations

a b

c d

Fig. 3  Relationship between TA and correlation coefficients: a between the daily TA of two mineshafts, A1 and H1; b between the nearest weather 
stations, CA and YG; c between A1 and CA; d between H1 and YG
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we ran a generalized linear mixed model (GLMM – see 
methods for further details). This showed that creati-
nine concentrations from the urine collected in H1 were 
higher than those collected in A1 (Fig. 5; Table 2). There 

was no sex difference in creatinine concentration. Uri-
nary creatinine concentration was lower in April than in 
February and March. Although, there was an indication 
of a sex difference patterns of change (interaction term 

a b

c d

Fig. 4  Relationship between RH and correlation coefficients: a between the daily RH of two mineshafts, A1 and H1; b between the nearest weather 
stations, CA and YG; c between A1 and CA; d between H1 and YG

Table 1  The number of urine samples and sampling locations

The number of urine samples from males and females are in the table. February 
and March are main hibernation periods (late winter) and April is the early active 
period (spring)

Date Periods Male Female Location Hibernaculum

2018-02-
22

Hiberna‑
tion

4 8 Anseong A1

2018-03-
13

Hiberna‑
tion

5 8 Anseong A1

2018-04-
17

Active 5 7 Hampy‑
eong

H1

2018-04-
18

Active 9 6 Anseong A1

2019-02-
22

Hiberna‑
tion

2 4 Anseong A1

2019-03-
11

Hiberna‑
tion

8 8 Hampy‑
eong

H2, H3

Sum 33 41

Fig. 5  Creatinine concentrations (natural log-transformed) between 
mineshafts A1 (left) and H1 (right). Lines in boxes: the median, the 
top and bottom of boxes: the first and third quartiles, vertical lines 
(whiskers): the maximum (or the minimum) value within 1.5 times 
interquartile range above 75th (or below 25th) percentiles, dots: 
natural log-transformed creatinine concentration of each urine from 
females (circle) and males (triangle)
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in the model) in urinary creatinine between February to 
March, the interaction term did not reach statistical sig-
nificance (Fig. 5; Table 2).

Discussion
Our study is the first to report changes in urinary creati-
nine in wild bats in hibernacula from late winter to early 
spring. As expected, creatinine concentration (urine con-
centration) was higher during the main hibernation (Feb 
to Mar) than in the early active period (Apr). The higher 
concentration of urinary creatinine during hibernation 
(5-times) than spring implies that hibernating greater 
horseshoe bats face dehydration (water stress) that may 
increase renal water reabsorption. By spending longer 
periods in torpor, hibernating bats can reduce the energy 
consumption required for arousal. But as the period in 
torpor gets longer, cumulative evaporative water-loss 
will increase the concentration of bodily fluids [3]. To 
compensate for water loss during longer torpor periods, 
hibernating bats can increase renal water reabsorption 
during arousal, as found in marmots and ground squir-
rels [13, 33]. This will then result in higher urinary creati-
nine in torpid bats during hibernation. Therefore, higher 
urinary creatinine concentration in hibernating bats in 
the current study may reflect high body fluid concentra-
tion from evaporative water loss that might be correlated 
with torpor duration. In contrast, lower creatinine in 
April, may indicate shorter torpor durations in April that 
are related to feeding activities that increase with the out-
side temperature [29].

Previous studies on Myotis velifer demonstrated that 
these bats do not produce hypertonic urine even during 
hibernation [28, 34]. This is different from our findings 
for greater horseshoe bats. If hibernating bats accu-
mulate serum creatinine from metabolism (thermo-
genesis) during torpor, as in ground squirrels [35] and 

dormice [36], the accumulated serum creatinine will be 
secreted to urine during arousal when glomerular fil-
tration rate becomes normal [13]. In such cases urinary 
creatinine concentration in the bladder will be high, 
but may not be correlated with the urine concentration 
(osmolality). If this is the case for greater horseshoe 
bats, torpor bout length and metabolism during torpor 
will be more important determining factors for higher 
urinary creatinine concentration than the evaporative 
water loss that causes dehydration. Further investiga-
tions on serum and urinary osmolality and creatinine 
concentration are necessary to clarify the relation 
between urinary concentration and urinary creatinine 
concentration during hibernation.

The creatinine difference between A1 and H1 may 
reflect differences in the microenvironment between 
the two mineshafts. Although data were only available 
for 2019, the mean and variance of daily TA of H1 were 
greater than A1 (Fig. 2). In contrast, the mean daily RH 
was lower and the variance was greater in H1 than A1. 
Given that these microenvironment parameters were 
consistent with a previous study conducted in the same 
place [30], the higher creatinine concentrations in H1 
might be related with higher TA and lower RH in H1 
that could cause higher evaporative water loss [37]. 
However, we could not rule out the possibility that the 
higher creatinine concentrations in H1 were related to 
frequent or longer arousal that can result in increase of 
glomerular filtration rate and an increase in the accu-
mulation of urinary creatinine in bladder [13]. In addi-
tion, as hibernating greater horseshoe bats can shift 
their roosting location within and between hibernacula 
[30, 38], the urinary creatinine differences between A1 
and H1 might not result solely from microenviron-
ment differences. Further investigation on arousal fre-
quency and metabolic rate between the two mineshafts 

Table 2  The GLMM summary results that investigated the effect of sex, month, and the two mineshafts on urinary creatinine 
concentration (natural log-transformed)

In the model sample collection years (2018 and 2019) were included as a random variable
a Interaction term between sex and month
b Not significant but indicates possible sex-dependent changes in urinary creatinine over months

*: Statistically significant (p < 0.05)

Est SE t P 95 % CI (lower, upper)

(Intercept) − 0.47 0.13 − 3.72 < 0.001* − 0.72, − 0.20

Sex (M) − 0.13 0.22 − 0.61 0.544 − 0.58, 0.29

Month (Mar) − 0.06 0.18 − 0.31 0.757 − 0.42, 0.31

Month (Apr) − 1.89 0.19 − 10.14 < 0.001* − 2.28, − 1.52

Mineshaft (H1) 0.41 0.12 3.42 0.001* 0.15, 0.66

Sex (M): Month (Mar)a − 0.51 0.27 − 1.86 0.067b − 1.03, − 0.03

Sex (M): Month (Apr)a 0.27 0.28 0.98 0.333 − 0.24, 0.81
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will elucidate the reason for the creatinine differences 
between the two hibernacula.

Our results suggest that the creatinine concentration 
decrease may start earlier in males than females, with 
the interaction between sex and month in the GLMM 
approaching significance. The tendency was similar 
across the year as seen in Additional file 1: Figure S3. A 
sex difference in urinary creatinine changes over months 
may be related to activity differences at the end of the 
hibernation period (Mar) [31, 32]. Direct and indirect 
evidence suggests that mating during hibernation is com-
mon in small insectivorous bats, including greater horse-
shoe bats [31, 39, 40]. Males can even mate with torpid 
females [41]. Ovulation in female greater horseshoe bats 
in Korea probably occurs in April [42, 43]. Therefore, 
males may get extra benefit if they can mate with pre-
ovulating females in March. Although we did not witness 
spring mating, if males could mate before the females 
ovulate in spring, they could increase their chances of sir-
ing offspring.

Although Park et al. in 2000 [29] reported no sex differ-
ence in winter activities of greater horseshoe bats in the 
UK, there were indications of monthly variations in activ-
ity patterns between sexes even in their study (see Fig. 1 
of their study [29]). Therefore, lower creatinine concen-
tration for males in March in the current study may indi-
cate more frequent or longer arousal duration of males 
that entails an increase in body fat metabolism, and con-
sequent increase in metabolic water generation. In addi-
tion, males may alter their arousal frequency or duration 
of arousal to save energy, or to increase energy intake, 
depending on their body condition [29]. For example, 
males with less fat storage at the end of hibernation peri-
ods need to arouse to find prey items, or remain in torpor 
alone in a colder area to decrease metabolic rate. Further 
behavioural and physiological monitoring and hormonal 
investigations are needed to examine these possibilities.

Differences in muscle mass were unlikely to have been 
the cause of the sex difference in creatinine changes over 
the months in this study. Although females were heav-
ier than males during late winter (Feb to Mar) in our 
study population [Kim, unpublished data], as has been 
reported in a UK population [38], no sex-specific pat-
terns in changes of body weight in February and March 
were found [Kim, unpublished data]. Also, as muscle 
mass decreases during hibernation in bats [44], it may 
even counter the increase of creatinine. Therefore, it is 
unlikely that the earlier decrease of creatinine among 
males resulted from a sex difference in body muscle 
mass. However, to clarify this issue there needs to be fur-
ther investigation into the relationship between urinary 
creatinine concentration and body weight during hiber-
nation. This will also allow us to understand better the 

relationship between body condition and energy expend-
iture that may reflect a trade-off between energy saving 
by decreasing basal metabolism rate (BMR) and meta-
bolic water supply by increasing BMR [22, 45].

Conclusions
The current study presents a novel methodological tech-
nique for the quantification of physiological challenges, 
e.g., water stress, energy expenditure and metabolic 
wastes, during hibernation in bats. Although the sample 
size was small, this study has demonstrated the feasibil-
ity of urinary monitoring as a method to trace hydration 
status (water-stress). This study also provided evidence 
of higher urinary creatinine concentration that might 
reflect different water stress depending on hibernaculum 
environment in small insectivorous bats. Although not 
statistically significant, the sex difference in creatinine 
changes between months implies a behavioural or energy 
expenditure difference between sexes during hibernation. 
Further behavioural and endocrinological investigations 
will clarify the effect of the sex and behaviours on urinary 
creatinine concentration.

Methods
Study sites and subjects
We collected urine samples from greater horseshoe bats 
in two regions of South Korea in 2018 and 2019 (Fig. 1). 
Mineshaft A1 in Anseong is about 350 m long and run-
ning water is available throughout the winter. Mineshaft 
H1 in Hampyeong is only about 35  m long and has no 
running water inside from January to February [30]. 
We logged the ambient temperature (TA) and relative 
humidity (RH) in A1 and H1 every hour from January 
1 to April 18, 2019 using EL-USB-2-LCD + dataloggers 
(Lascar Electronics, UK). We were not able to collect TA 
and RH in 2018. We calculated daily mean TA and RH, 
by averaging TA and RH of every hour of the day. The 
microenvironments of the three mineshafts in Hampy-
eong (H1, H2 and H3) are similar during winter and bats 
are known to switch between them [30]. February and 
March were categorized as the main hibernation period 
(late winter) and April as the early active period (spring), 
as mean daily temperature reached 10 ℃ in April in the 
study area (Additional file 1: Figure S3) and the number 
of moths and their activity increase rapidly in April in 
South Korea [46, 47].

Urine sampling and analysis
We conducted urine sampling just once a month to 
minimize disturbance to the bats. The numbers of urine 
samples were inconsistent between months and years 
because of fluctuating numbers of bats in the mineshafts. 
Most bats in A1 were out of hand’s reach in 2019, so we 
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could only collect six samples in February, and none in 
March. We tried additional sampling in H1 in March 
2019 to compensate for no sampling from A1. However, 
this was also not successful due to the small number of 
bats present, so we collected additional urine samples 
from H2 and H3. We could not collect urine in either of 
the two regions in April 2019 because most of the bats 
were roused by our presence.

  To collect urine, one researcher took a hibernating or 
torpid bat gently in a gloved hand and held it for up to 
a few minutes until they urinated. If it had not urinated 
after 5 min, we put it back in the place it had been taken 
from. We banded sampled bats with a 35mm metal ring 
on the forearm, but this was done only in February and 
April 2018 (online repository data [48]) to keep the time 
we spent in the hibernacula to a minimum. When they 
urinated, we collected their urine directly from their gen-
italia using a 1.5ml micro-tube. We temporarily stored 
urine samples in an icebox at the field sites then stored 
them in a -80℃ deep-freezer until analysis. The maxi-
mum storage period in the deep-freezer before urinary 
analysis was 7 months. We used a creatinine kit (Abcam 
ab204537; Jaffe reaction based [49]) to measure urinary 
creatinine concentration. As the amount of urine was 
small (usually less than 25  µl), we diluted samples 20 
times with deionized water. One particularly small sam-
ple was diluted 29.5 times. Before dilution, all samples 
were centrifuged 6000 rpm (3381rcf ) for 1 min to remove 
any suspended matter. The intra-assay coefficient of vari-
ation (CV) of the creatinine analysis was 5.30 % (online 
repository data [48]).

Statistical analysis
We investigated microenvironment variations between 
A1 and H1, by comparing daily mean and variance of TA 
and RH using a paired t-test and Levene’s test respec-
tively. To investigate the effect of microenvironment on 
urine concentration we compared creatinine concen-
tration between mineshafts and sexes over months by 
building a generalized linear mixed model (GLMM). In 
the model, urinary creatinine concentration (natural 
log-transformed) was the response variable. Sex (males 
and females), month (Feb, Mar, and Apr) and location of 
mineshafts (A1 and H1) were the explanatory variables in 
the model. Year of urine collected (2018 and 2019) was 
included as a random variable in the model given the 
strong correlations between the inside temperature and 
outside temperature (Figs.  3 and 4). We used the “sum-
mary” function in R to further investigate the model 
coefficients. To calculate confidence interval, we used the 
“confint” function in R. Samples were considered inde-
pendent as individuals were very unlikely to have been 
sampled twice. This is because there were hundreds of 

bats were present in A1 (the only site that was sampled 
more than once) and all bats sampled in February and 
April were banded (online repository data [48]).

All statistical tests and graphics were done in R 4.0.2, 
using “lme4 [50]”, “lmerTest [51]”, “car [52]”, “ggplot2 
[53]” packages. All assumptions of the GLMM were 
examined by using statistical tests (Shapiro-Wilk) and 
visual inspections (Q-Q plot) of the error (residuals) 
distribution. There was no violation of the assumptions. 
The maximum value of generalized variance inflation 
factor (GVIF) was 2.14 which indicates no serious mul-
ticollinearity between independent variables.
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TA: Ambient temperature; RH: Relative humidity; A1: Mineshaft 1 in Anseong; 
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Generalized Linear Mixed Model; BMR: Basal metabolism rate.
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Additional file 1: Figure S1. Daily ambient temperature, TA (a) and 
relative humidity, RH (b) of A1 and H1 in 2019. Figure S2. Ambient 
temperature (top) and relative humidity (bottom) at the nearest weather 
stations in Cheonan (CA) and Yeonggwang (YG) in 2018 and 2019. The 
nearest weather station to A1 (Anseong) is 17.6km away in Cheonan 
(N36°45’45.576” E127°17’33.071), and for H1 (Hampyeong), it is 18.2km 
away in Yeonggwang (N35°17’1.932” E126°28’39.071”). Temperature data 
were collected by the automatic weather system (AWS) managed by 
the Korean Government (https://​data.​kma.​go.​kr/). Figure S3. Creatinine 
concentrations in 2018 and 2019 (N = 74). Lines in boxes: the median, 
the top and bottom of boxes: the first and third quartiles, dots: creatinine 
concentration of each urine from females (circle) and males (triangle).
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