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Abstract: A metallic nano-trench is a unique optical structure capable of ultrasensitive detection of
molecules, active modulation as well as potential electrochemical applications. Recently, wet-etching
the dielectrics of metal–insulator–metal structures has emerged as a reliable method of creating
optically active metallic nano-trenches with a gap width of 10 nm or less, opening a new venue for
studying the dynamics of nanoconfined molecules. Yet, the high surface tension of water in the
process of drying leaves the nano-trenches vulnerable to collapsing, limiting the achievable width to
no less than 5 nm. In this work, we overcome the technical limit and realize metallic nano-trenches
with widths as small as 1.5 nm. The critical point drying technique significantly alleviates the stress
applied to the gap in the drying process, keeping the ultra-narrow gap from collapsing. Terahertz
spectroscopy of the trenches clearly reveals the signature of successful wet etching of the dielectrics
without apparent damage to the gap. We expect that our work will enable various optical and
electrochemical studies at a few-molecules-thick level.

Keywords: terahertz; nanoantennas; nano-trenches; critical point drying

1. Introduction

A pair of parallel metallic plates create a uniform electric field between them when
a voltage difference is applied, provided that the separation between them is sufficiently
small compared to the size of the plates themselves. They have not only become the central
building block of electrochemical studies, but also greatly benefitted the field of nanopho-
tonics, as the distribution of electromagnetic fields near a pair of parallel metallic plates
can be expressed analytically and is exactly known. Therefore, metallic gap structures have
provided an ideal testbed for quantitative analysis on light–matter interactions, as well as
enhancing the interactions via strong electromagnetic field enhancements [1–5]. Especially,
negative slot antennas on metallic films were widely employed in enhancing absorption of
light [6–9], improving optical responses from semiconductors [10,11], exclusively probing
surface dynamics separated from the bulk counterpart [12,13], and field enhancement-
aided quantum plasmonics [14,15], etc. As the enhancement of light–matter interactions is
inversely proportional to the gap width, much effort has been made to minimize the width
of the slot antennas, ideally down to a ~1-nm level where a few-molecules-thick regime
can be reached to reveal many exotic physical and chemical phenomena [16].

In such a context, the invention of atomic layer lithography made a huge breakthrough
by making possible the experimental realization of wafer-scale arrays of horizontally
aligned metal–dielectric–metal structures with a dielectric gap as small as 1 nm [17].
Selective wet etching of the dielectric layer afterwards can lead to the formation of ultra-
narrow, empty metallic gaps with giant length-to-width and height-to-width aspect ratios,
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which we shall refer to as “metallic nano-trenches” hereafter [18]. These metallic nano-
trenches have been demonstrated at gap widths as small as 5 nm and have been utilized as
ultrasensitive detectors for liquid molecules and thermally active modulators for terahertz
radiations [18,19]. Yet, for gap widths less than 5 nm, the method has not been very
successful, mostly due to the catastrophic drying process after wet etching. The typical
process for wet etching and drying is depicted in Figure 1a. A potassium hydroxide (KOH)
solution is used to wet-etch alumina, which is the most used dielectric in the atomic layer
lithography process. The solution does a great job in etching the alumina, but the strong
capillary force exerted by the drying aqueous solution can interfere with the now free-
hanging nano-trenches, leading to collapsing of the metallic plates. While well-controlled
capillary collapsing may be utilized in fabricating plasmonic gaps down to 6-nm width [20],
the process requires additional self-limiting geometry for the distance control and is better
suited for point-like gaps, not so much for extended gap structures such as nano-trenches.
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Figure 1. Schematic of the wet-etching process for metal–dielectric–metal gap structure, (a) without
and (b) with the critical point drying (CPD) process. Due to the surface tension of the water, the gap
collapses during the drying process when the gap is smaller than 5~10 nm. Using the CPD technique
replaces the gap-filling material with liquid CO2 and removes the surface tension, thereby enabling
metallic nano-trenches with a gap width as small as 1.5 nm.

In this work, we demonstrate a means to overcome the issue and successfully fabricate
metallic nano-trenches with gap widths as small as 1.5 nm. Here, we use the critical
point drying (CPD) technique, whose working principle relies on replacing liquid water
with liquid carbon dioxide (CO2) and vaporizing the CO2 at its critical point to minimize
the force applied to a system in the drying process (Figure 1b). The CPD technique has
been widely used in the field of biology and microelectromechanical systems (MEMS) for
preventing capillary collapse of small structures including various microstructures [21–24]
and freestanding thin films of semiconductors [25,26]. By applying this method to metallic
nanostructures, we successfully fabricate 1.5-nm-wide metallic nano-trenches, which was
unachievable with the conventional wet-etch and dry process.

2. Materials and Methods

Our metallic nano-trenches were fabricated with atomic layer lithography, which
consisted of the following steps as described in Figure 2. Silicon wafers with high resis-
tivity (>1000 Ohm·cm, MTI Korea, Seoul, Korea) were used as substrates because of the
well-developed lithography processes and high transmission of long-wavelength radiation.
We performed photolithography on the substrate to pattern an array of 10 × 40-µm-sized
rectangles, separated from each other by 10 µm. Negative photoresist (image-reversed
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AZ5214E, Microchemicals, Ulm, Germany) was used to ensure smooth lift-off in the follow-
ing steps. We then evaporated a 250-nm-thick gold film on the sample with electron beam
evaporation (Korea Vacuum Tech., Gimpo, Korea). The subsequent lift-off process with
acetone (Duksan Chemical, Incheon, Korea) led to a 250-nm-thick gold film with an array
of 10 × 40-µm-sized rectangular holes separated by 10 µm from each other. The sidewall
angle of the metallic layers should ideally be 90 degrees; in our sample, it was measured
to be about 80 degrees, which was expected to cause a slight decrease in the transmitted
amplitudes of the fabricated nano-trench structures [27]. Then, we conformally covered
both the top and the sidewalls of the gold micropatterns with alumina using atomic layer
deposition (ALD), with which we could control the thickness down to 1.5 nm. After that, a
second layer of gold with 250-nm thickness was deposited on top of the whole structure.
This filled the rectangular holes and defined a laterally aligned gold–alumina–gold struc-
ture at the sidewalls of the metallic layers. The top excess layer of gold deposited on top
of the first gold pattern (i.e., outside the rectangular holes) was subsequently removed by
applying an adhesive tape on top of the sample and peeling it. As the connection between
the excess metallic layer and the rest of the sample was very weak, only the top excess
metallic layer was removed, leaving the gold–alumina–gold structure intact. Next, the
sample underwent argon ion milling at an oblique angle (80 degrees) to flatten the whole
structure and minimize the roughness near the gap exit. This led to the formation of a
horizontally aligned gold–alumina–gold gap structure, with the gap width solely deter-
mined by the thickness of the ALD-alumina. Note that the vertically aligned gap structure
is beneficial for optical measurements, as an optical beam will be incident in a direction
normal to the surface of the substrate. After the alumina-filled gap structure was formed,
we wet-etched the sample by placing it in 1 M KOH (Duksan Chemical, Incheon, Korea)
solution for 10~20 s. The sample was then transferred to a bath of deionized water (DI) to
allow the reactants to diffuse out of the gap. After 24 h, the sample was transferred to a
bath of isopropyl alcohol (IPA, Duksan Chemical, Incheon, Korea) to allow the gap to fill
with IPA. Carefully transferring the sample to a CPD chamber and replacing the IPA with
CO2 led to an empty metallic nano-trench structure. Note that the trenches had a <1:100
width-to-thickness ratio and a <1:6000 width-to-length ratio, which is nearly impossible to
achieve with conventional fabrication tools such as focused ion beam milling or electron
beam lithography.
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The nano-trenches before and after wet etching of the dielectric were analyzed with ter-
ahertz (THz) time-domain spectroscopy. The spectroscopic method can non-destructively
evaluate a gap structure without having to make an electronic contact and, therefore,
prevents unwanted damage to the sample in the measuring process. In detail, we created
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THz pulses with 800-nm optical pulses from a Ti:sapphire oscillator and a DC-biased
gallium arsenide photoconductive antenna. The THz pulses passed through a 1 × 1-mm
rectangular aperture and the sample, subsequently, was incident on zinc telluride crystal
for electro-optic detection. The detected field amplitude was transformed into a frequency
domain spectrum via fast Fourier transform. All the measured spectra were normalized
with respect to transmission spectra of the aperture plus bare silicon substrate, so that
performance of the gap could solely be determined.

The final structure of our nano-trenches was an array of 1.5-nm-wide coaxial apertures
with a rectangular perimeter of 10 × 40 µm, with separation of 10 µm from both sides, as
depicted in Figure 3a. The polarization of the incident THz radiation was perpendicular
to the long axis of the rectangle, which enabled efficient accumulation of charges at the
gap via capacitive coupling. The coaxial apertures supported a fundamental TEM mode
at a frequency determined by the perimeter of the aperture and the effective index inside
the gap, which will be discussed later. Figure 3b,c show the scanning electron microscope
(SEM, JEOL Ltd., Akishima, Japan) and transmission electron microscope (TEM, JEOL Ltd.,
Akishima, Japan) images of the sample before etching, respectively. While the roughness of
the metallic layers was in the order of 10 nanometers or larger, the alumina layer deposited
with the atomic layer deposition technique could completely cover the sidewalls of the
metal, even at a thickness of 1 nanometer [17]. Therefore, the optical properties of the gap
structure were still defined by the thickness of the alumina layer sandwiched between the
two metallic layers. On the other hand, at the exit side of the gap, the small corrugations
of the metallic layers may cause local collapsing of the trenches even with the smallest
perturbation applied to the structure, which will then perturb the waveguide mode and
lead to a strong modulation in the optical properties of the nano-trenches [28,29].
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Figure 3. (a) Overview of the fabricated nano-trench array on Au film on a silicon substrate. In our
sample, w = 1.5 nm, px = 20 µm, py = 50 µm, lx = 10 µm, ly = 40 µm, h = 250 nm. Polarization is
perpendicular to the long side of the rectangular ring (ly). (b,c) Top-view SEM and cross-sectional
TEM images of the metal–insulator–metal gap structure, respectively. Scale bar: (b) 50 nm; (c) 20 nm.

3. Results

The measured THz transmission spectra of the nano-trench samples before and after
etching are summarized in Figure 4a. Before etching, the nano-trench sample shows a
resonance peak at 0.4 THz with a transmitted amplitude of 0.3 (normalized with respect
to the transmission of a bare silicon substrate). Note that the corresponding resonance
wavelength of 750 µm is much longer than the perimeter of the nano-trenches (100 µm);
this is due to an increased effective index of the gap caused by gap plasmon modes, as will
be discussed later. Furthermore, following Kirchhoff’s integral formalism of diffraction,
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the measured transmission is directly related to near-field enhancement at the gap exit by
the following equation [30]:

FE = t/β. (1)

where FE denotes electric field enhancement at the gap, t is the transmitted amplitude
measured at far field, and β is ratio of the gap area with respect to the total sample area.
In our sample, β is in the order of 10−4, and therefore, the field enhancement at the gap
reaches over 2000 at resonance, finding great potential in nonlinear optical studies or
sensing applications.
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Figure 4. (a) Measured terahertz (THz) transmission spectra of 1.5-nm-wide nano-trenches before
etching (black line), after wet etch and blow dry (red line), and after wet etch and CPD drying
processes (blue line). Reduced transmission with no change in resonance frequency indicates damages
in the gap, while increased transmission with a blueshift in the resonance shows successful removal
of the dielectric between the two metallic layers. (b) Corresponding theoretical spectra calculated
with coupled mode method. (c) Effective mode indices within a 1.5-nm-wide gap as a function
of permittivity of the gap-filling material. The real (imaginary) part of the effective index induces
frequency shift (amplitude change) of the resonance peak.

When the gap undergoes the normal wet etching and blow dry process, we observe
a significant decrease in transmission or equivalently decreased near-field enhancement
in the nano-trenches (red line). As metallic nanogaps incorporate field enhancement via
capacitive accumulation of charges [1], the decrease in field enhancement indicates that a
conductive channel is formed between the two metallic layers, or that the gap has collapsed
partially. Meanwhile, when CPD is used in the drying process, we see a completely
different trend and observe an increase in the transmitted amplitude along with a blueshift
of resonance (blue line). This indicates that the gap-filling dielectric has been removed
successfully without any apparent damage to the nano-trenches, leading to a decrease
in the permittivity inside the gap and a subsequent decrease in effective indices within
the gap.

Figure 4b shows the theoretical spectra calculated with the coupled mode method [31,32],
which have been successfully implemented in simulating nanostructures in long-wavelength
regimes [33–35]. We modeled collapsing of the gap as an increase in imaginary permittivity
of the gap material, i.e., an increase in conductivity, due to formation of metallic bridges
in the gap. The results are in good agreement with the experimental data, supporting
the validity of our analyses. It is worth noting that etching the alumina between the
gap leads to an increase in amplitude as well, even though the absorption coefficient of
alumina is negligible in THz frequencies. We attribute this to excitation of gap plasmon
modes, which is a hybridization of two surface plasmon modes for the two closely placed
metallic surfaces [36]. As the mode profile extends into the metal as well, ohmic losses
from the metal may lead to an absorptive mode propagation even when the dielectric
has no absorption [35]. Thus, both real and imaginary parts of effective indices decrease
upon etching the dielectric, i.e., reduction in permittivity inside the gap, which is why we
observed an increase in both the amplitude and frequency of the resonant mode of the
nano-trenches upon the wet-etching (Figure 4c).
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We also observed that the performance of the fabricated sample depends strongly
on the etching time, i.e., the amount of time the sample stays in the wet etchant. This
may be inferred from the fact that the alumina spacer exists not only between the metallic
layers but also underneath one of the layers, which leads to a possible collapse of the
nano-trenches upon complete etching of the underlying alumina layer (Figure 5a). Such a
trend is observed in Figure 5b, where the transmission spectrum of an over-etched sample
shows a drop in amplitude compared to a successfully etched sample, indicating formation
of conducting channels like the case in Figure 4. The optimal etching time was found to
be 10~20 s (Figure 5c); for etching times of 25 s or longer (not shown), both the resonance
frequency and the transmitted amplitude decrease, indicating shrinkage and collapsing of
the structure.
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Figure 5. (a) Schematic of an over-etched sample. As there is a layer of alumina not only between
but also beneath the metallic layers, etching for a longer time leads to undermining of the whole
structure and partial collapsing of the nano-trenches. Note that the figure is not in scale and the
vertically aligned portion of the dielectric (250 nm) is much smaller than that of the underlying
layer (10 µm). (b) Spectra of the nano-trenches fabricated with proper wet etching time (blue line)
and longer etching time (red line). (c) Transmitted amplitude and frequency at the resonance of the
nano-trenches, fabricated with different etching times. Wet etching time of longer than 25 s leads to
partial collapsing of the structure (shaded area).

4. Discussion

The overall yield of our etching and CPD process is 90 percent for the 1.5-nm gap
width and is limited by occasional damage to the sample caused by the turbulent flow of
liquid CO2 inside the CPD chamber. Therefore, proper design of the sample holder and
careful handling of the samples can further improve the yield of our process. Furthermore,
as 1.5 nm is the smallest gap width achievable with our facilities, and since a smaller
gap is much more prone to capillary collapses, we expect even higher success rates for
nano-trenches with larger gap sizes. We briefly mentioned here that we also successfully
applied our method on 5-nm-wide nano-trenches (data not shown), and the result was
consistent with a previous report where 5-nm-wide nano-trenches were fabricated without
the CPD process.

It is worth discussing the relatively short etching time of ~20 s for the nano-trench
sample, considering that the gap width is only 1.5 nm wide and water or etchant molecules
are expected to enter the gap very inefficiently. This can be understood in two aspects.
First, the chemical reaction between KOH and alumina is extremely favored, which can
be inferred from the reported etch rate of >2500 nm/min [37]. Therefore, the alumina in
the gap is expected to attract the water molecules and ions into the gap. This situation is
dramatically different from the case where the gap is empty and water molecules will be
under a strong surface tension which blocks them from moving into the gap. Second, while
we took the sample out of the KOH solution in ~20 s, the actual time that the gap-filling
alumina reacts with KOH will be longer due to the finite diffusion coefficient of hydroxide
ions in water. Therefore, the etching process is expected to continue to some extent even
after the sample has been transferred to the DI bath. This implies that there might be better
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choices of etchant and etching time for higher throughput and smaller achievable widths,
which is a topic of our future study.

Our scheme could also be improved by further optimization of the fabrication pa-
rameters. For instance, using a negative photoresist instead of image-reverse resist will
simplify the procedure and may lead to better control over the geometry of the metallic
layers. Furthermore, one could use electroplating instead of lift-off to achieve a steeper
sidewall angle of the metallic layer, which can improve the optical properties and me-
chanical stability of the fabricated nano-trench structure. Such improvements may lead
to realization of nano-trenches with even smaller gap widths and stronger field enhance-
ment, which could open a new venue towards strong interaction of terahertz waves with a
single-molecule-thick layer.

In summary, we developed a method for fabricating high-aspect-ratio metallic gaps,
or nano-trenches, as narrow as 1.5 nm. This was achieved by fabrication of a metal–
dielectric–metal gap structure and subsequent wet etching of the gap-filling dielectric.
We found that the CPD technique efficiently eliminates the surface tension of water in
the drying process, which, if present, leads to collapsing of the nanostructure. Successful
etching or collapsing of the nano-trenches could be non-destructively determined with
THz spectroscopy, as the optical properties of the gap structure are very sensitive to the
formation of conducting channels. Unlike other spacer-based metallic gap structures, the
nano-trenches have no filling material within the gap, which means that the optical hot spot
is freely accessible to various types of materials. Therefore, the nano-trenches could find
numerous potential applications in ultrasensitive molecular detection, nonlinear optics,
and electrochemical studies.
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