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Abstract: With sustainable growth highlighted as a key to success in Industry 4.0, manufacturing
companies attempt to optimize production efficiency. In this study, we investigated whether machine
learning has explanatory power for quality prediction problems in the injection molding industry.
One concern in the injection molding industry is how to predict, and what affects, the quality of
the molding products. While this is a large concern, prior studies have not yet examined such
issues especially using machine learning techniques. The objective of this article, therefore, is
to utilize several machine learning algorithms to test and compare their performances in quality
prediction. Using several machine learning algorithms such as tree-based algorithms, regression-
based algorithms, and autoencoder, we confirmed that machine learning models capture the complex
relationship and that autoencoder outperforms comparing accuracy, precision, recall, and F1-score.
Feature importance tests also revealed that temperature and time are influential factors that affect the
quality. These findings have strong implications for enhancing sustainability in the injection molding
industry. Sustainable management in Industry 4.0 requires adapting artificial intelligence techniques.
In this manner, this article may be helpful for businesses that are considering the significance of
machine learning algorithms in their manufacturing processes.

Keywords: injection molding; quality prediction; regression; decision tree; autoencoder; machine
learning; feature importance; characteristics importance

1. Introduction

Sustainable growth has become important for firms, especially in Industry 4.0. In-
tegration among the physical and digital systems of production is the main concern of
Industry 4.0 [1]. Industry 4.0 also enables continuous contact between machines, people,
products, and even production materials. It is inextricably correlated with the Internet of
Things (IoT), Machine-to-Machine (M2M) technology, and Machine Learning (ML). Among
them, the most optimal solutions are machine learning and deep learning [2]. The results
on a test renewable microgrid show that a machine learning-based structure can solve the
problem with high accuracy [3]. One approach toward sustainable growth is by making
a manufacturing process to shift the overall process to autonomous manufacturing, the
core of which is information accessibility that enables the maintenance of manufacturing
agility [4]. Specifically, automated data collection from machines and applying machine
learning techniques to the collected data for automated quality prediction or fault detection
are two significant factors driving Industry 4.0. By combining novel techniques based
on machine learning or deep learning with manufacturing processes, the performance of

Sustainability 2021, 13, 4120. https://doi.org/10.3390/su13084120 https://www.mdpi.com/journal/sustainability

https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-9735-7385
https://doi.org/10.3390/su13084120
https://doi.org/10.3390/su13084120
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/su13084120
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/2071-1050/13/8/4120?type=check_update&version=1


Sustainability 2021, 13, 4120 2 of 16

the systems is enhanced and can be monitored in real-time, data-driven, and continuous
learning from a more varied range of data sources [5].

One concern of deploying machines or deep learning techniques in manufacturing
fields is the selection of appropriate algorithms. That is, as techniques are very sensitive to
the types of input data and size of the data, appropriate techniques should be selected for a
particular manufacturing type [6]. In other words, it is crucial to choose a manufacturing
business for specific types of algorithms to fully enhance the manufacturing process. In this
respect, this study attempted to employ machine learning and deep learning techniques in
injection molding businesses. Specifically, we used prediction algorithms to verify whether
they are suitable for quality prediction problems.

Injection molding is a complex production system. Injection molds are used as semi-
final or final parts that can be used to produce the end products. Injection molds are
frequently used in manufacturing plastic parts, and these parts are used in various busi-
nesses, such as automobile, shoe, and electronics manufacturing. As the injection molding
industry supplies the base product for other manufacturing industries, it is considered
a “root” industry, and the industry size is growing. With its importance growing every
year, many studies have focused on designing the manufacturing process of injection
molding and how to efficiently test the molding [7]. While the literature on methods to
effectively improve the manufacturing process of injection molding is growing, relatively
little attention has been given to how to employ modern techniques, such as machine
learning or deep learning models, to predict the quality of injection molding products. This
is of particular importance as injection molds are semifinal parts, and the customers of the
molds use the mold parts to produce the final products. If defective molds are delivered to
customers, it is highly likely that they will be dissatisfied.

Using a private injection molding production and quality dataset from Hanguk Mold,
an injection molding company in Ulsan, South Korea, we deployed several machine learn-
ing and deep learning models to empirically test which models are suitable for injection
molding businesses. The company manufactures molding products for car manufacturers,
and the data we obtained from the company were a large manufacturing dataset from
injection machines on one specific item. The injection machine data included injection
time (s), filling time (s), plasticizing time (s), cycle time (s), clamp close time (s), cushion
position (mm), switch over position (mm), plasticizing position (mm), clamp open position
(mm), max injection speed (mm/s), max screw RPM (RPM), average screw RPM (RPM),
max injection pressure (MPa), Max switch over pressure (MPa), max back pressure (MPa),
average back pressure (MPa), barrel temperature (◦C), and mold temperature (◦C).

Of numerous machine learning algorithms, we deployed techniques that are frequently
used in the manufacturing industries. Specifically, we used tree-based algorithms and
regression-based and autoencoder models. Tree-based algorithms included random forest,
gradient boost, XGBoost, LightGBM, and CatBoost. Regression-based algorithms included
logistic regression and support vector machine. Finally, we also used an autoencoder model.
Among several models, we find that the autoencoder model performs well in quality
prediction problems in injection molding compared to regression-based and decision tree-
based models. This is largely because of the complexity of the input variables in the
injection model. Autoencoder models generally have strengths in settings with complex
input features. Furthermore, we calculated the feature and characteristics importance of the
predictive models to investigate which covariates are significant factors that determine the
quality of the molding. We report that the models are generally in close agreement with the
most influential predictors. Feature importance tests found that the molding temperature,
hopper temperature, injection time, and cycle time factors were largely influential. Such
common findings imply that the variation in the values of the abovementioned variables is
a major cause of production defects; therefore, we highlight the importance of monitoring
these variables in injection molding production.

This study aimed to apply modern machine learning and deep learning techniques to
the injection molding business. Specifically, focusing on the quality prediction issue, we
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showed that autoencoder models are suitable for such businesses. This study contributes
to the literature and to the future sustainable growth of injection molding businesses. We
contribute to the literature by showing that autoencoder models have high explanatory
power in explaining the quality of injection molds. From our knowledge, this is the first
attempt to employ machine learning algorithms in plastic injection molding businesses and
horserace the performances of models. Our massive comparison among several models
showed that an autoencoder-based model outperforms other machine learning models.
Furthermore, we contribute to on-site manufacturing businesses by showing the key
variables that influence product quality. With over 50 real-time variables collected during
the injection molding process, it is difficult for humans to identify influential variables.
However, with the help of modern techniques, we found that temperature and time are
important features, and such findings may be used by other injection molding companies.
Contributions of the research are similar to the prior studies that apply modern statistical
methods in practical businesses [8].

While injection molding businesses have long desired to figure out the main drivers
that affect the quality of the product, this was not easy as the relationship between variables
is rather complex. Complex relationships are not well captured in classical statistical
models. With this regard, we deployed machine learning techniques to investigate the
causes. This is possible as complexity is not a hurdle for machine learning models. The
findings that molding temperature, hopper temperature, injection time, and cycle time
are major factors are important for businesses’ sustainable growth. Defective items are
costly for both manufacturing companies and the environment. For manufacturers, since
they cannot sell defective items, they waste resources. From an environmental perspective,
such wasted defective items would harm the environment. To reduce the manufacturing
cost and environmental risk, it is critical for businesses to understand the main factors that
cause defects. By monitoring important features suggested in the article, firms may reduce
the defect ratio, which would reduce the manufacturing costs and environmental risks and
would in the end increase their advantages in sustainable growth.

Furthermore, injection molding businesses are facing challenges because the qual-
ity cost is increasing due to the wage increment. Ordinary injection molding firms set
a couple of employees beside each injection machine to check the quality of the manu-
factured product and decide whether the product is defective or not. A medium-sized
injection molding manufacturer that operates around a hundred injection machines has
over two hundred employees that check the quality of products. This generates a huge
cost especially in countries with high income. Therefore, it has long been questioned in
the manufacturing field whether this cost could be minimized by using recent machine
learning algorithms. However, due to lack of data, empiricists found it difficult to analyze
the injection molding data and report whether the machine learning techniques have the
potential to replace human labor, at least in quality monitoring. In this manner, using a large
dataset generated from injection machines, we tried to investigate whether recent machine
learning-based classification algorithms can well classify items by their quality. We found
that an autoencoder-based model outperforms other models and that the performance of
the autoencoder model is suitable to be applied in real injection molding businesses. This
also means that applying machine learning techniques to the manufacturing sites may
potentially reduce quality monitoring costs, which was a big hurdle that holds one back
from sustainable growth.

We begin by presenting a literature review of both the injection molding industry and
modern machine learning and deep learning techniques used in this study in Section 2. We
describe the data and the methodologies used for quality prediction in injection molding
in Section 3. The main results are provided in Section 4, where we also provide descriptive
statistics, model performance comparisons, and feature importance. We then discuss the
findings in Section 5 and, finally, the conclusions in Section 6.
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2. Literature Review
2.1. Injection Molding

Enhancing production efficiency has long been a research question in the injection-
molding industry. Prior studies largely focused on methods to improve the cooling system
of the injection molding process, enhance the energy consumption, alter cavity design, and
improve the scheduling policy.

Temperature is a significant factor in determining the quality of the product. This is
because the injection molding process involves melting the resin and subsequent cooling
of the manufactured product. With its importance underscored, the literature attempted
to enhance the layout design of the cooling system of injection molding. Searching on
the Google Scholar data source, we were able to list related articles. For instance, a
heuristic searching algorithm framework was used to develop the cooling circuits in the
layout designs [9], and convex optimization models were further studied to improve the
energy transfer efficiency [10]. Furthermore, another strand of literature deployed topology
optimization to simplify the cooling process analysis [11]. K. J. Lee et al. (2020) [12]
performed unsupervised probability matching between each instance and output based on
injection molding data in the semiconductor industry to generate a training dataset with
one-to-one relationships and apply k-nearest neighbor (KNN). It performed better than
simply applying supervised learning methods such as support vector machine, random
forest, and KNN.

Another critical research topic in the injection-molding industry is efficient energy
usage. The guideline for characterizing the energy consumption around the injection
molding process consists of five steps [13]. Under these guidelines, we can estimate a
variety of injection molding manufacturing processes and products by considering the
theoretical minimum energy that was computed with part design and process planning.
Thus, studies have largely focused on a variety of perspectives to enhance the efficiency and
sustainability of the injection-molding manufacturing processes. Regarding the literature
on cavities, which constitute a major part of injection molding [14], literature focused on
ways to save manufacturing time. One approach was to exploit the intelligent cavity layout
design system to help injection molding designers in cavity design steps [15]. Another study
examined the parting surface and cavity blocks in a computer-aided injection molding
design system [16].

Recent studies have also investigated how the optimization of the scheduling of in-
jection molding production may enhance manufacturing efficiency. For example, a deep
Q-network was deployed to determine the scheduling policy to minimize the total tardi-
ness [4]. The authors found that the deep reinforcement learning method outperformed
the dispatching rules that are popularly used for minimizing the total weighted tardiness.
Another recent study is transfer learning between different injection molding processes
to reduce the amount of data needed for model training [17]. The authors used different
approaches to ANN models; 16 training samples provided an average R2 value of 0.88 in
this paper.

Ke, K.-C. et al. (2021) [18] filtered out outliers in the input data and converted the
measured quality into a quality class used as output data. the prediction accuracy of the
MLP model was improved, and the quality of finished parts was classified into various
quality levels. The model classified “qualified,” “unqualified,” and “to-be-confirmed” and
added quality assessments to only “to-be-confirmed” products, significantly reducing
quality management costs.

2.2. Machine Learning

Studies on machine learning and its applications are proliferating. Focusing on
its implications for solving issues in manufacturing businesses, research has focused
on predicting failures [6]. Cinar et al. (2020) [14] and Binding, Dykeman, and Pang
(2019) [19] forecasted the downtime of manufacturing machines using real-time prediction
models. They utilized unstructured historical machine data to train the machine learning
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classification algorithms, including random forest, XGBoost, and logistic regression, to
predict machine failures [6]. Qi, X et al. (2019) [20] conducted a study to apply neural
network algorithms to complete additive manufacturing process chains from design to
post-treatment. Yang, He, and Li (2020) [21] employed a machine learning-based approach
to obtain an appropriate estimation model for the power consumption of the mask image
projection stereolithography process. Among stepwise linear regression, shallow neural
network, and stacked autoencoders, stacked autoencoders had the best performance.
Reference [22] researched the quality control of continuous flow manufacturing. The
authors labeled data with random forest-based pseudo-labeling and deployed recurrent
neural network models.

Ruey-Shiang, G et al. (2020) [23] proposed a random forest model to detect the mean
shifts in multivariate control charts during production. The proposed model well detected
the moving average and was able to identify the exact variables. M. Strano et al. (2006) [24]
proposed the logistic regression for the empirical determination of the locus of the principal
planar strains where failure is most likely to occur. They directly derived the probability
of the failure as a function of different predictor variables through the model. Pal, M.
(2005) [25] compared classification accuracy between Random forest and SVM for remote
detection. Zhang, C. et al. (2019) [26] built a two-stage energy-efficient decision-making
mechanism using random forest. The authors selected appropriate control strategies
for different occasions in the manufacturing process. Alhamad, I. M. et al. (2019) [27]
compared the machine learning models that predict faults during the wafer fabrication
process of the semiconductor industries. The combinations of feature selection methods
and four models were k-nearest neighbor (KNN), random forest (RF), Naïve Bayes (NB),
and decision tree (DT). The authors then compared recall, precision, F-measure, and false-
positive rates. Jo, H. et al. (2019) [28] compared machine-learning algorithms for predicting
the endpoint temperature of molten steel in a converter in steel-making processes. Omairi,
A. et al. (2021) [29] proposed machine learning algorithms to detect product defects in
cyber-physical systems in additive manufacturing. The authors argued that the inclusion
of AI frameworks in automated tasks could improve the manufacturing process efficiently.

There has been a recent study to evaluate multi-level quality control based on various
machine learning and blockchain-based solutions [30]. The authors found that XGBoost
performs well by comparing the accuracy, precision, and recall of XGBoost and KNN
algorithms.

Regarding injection molding, a study compared linear and kernel support vector
machine (SVM) classifiers in datasets corresponding to product defects in an industrial
environment around a plastic injection molding machine [31]. The author compared linear
and kernel SVM classifiers in datasets corresponding to product faults in an industrial
environment with a plastic injection molding machine. Another study used images of
injection-molding products and applied deep learning algorithms [32]. The study found
that long short-term memory (LSTM) fitted better than convolutional neural network (CNN)
models in defect classification problems using image data. Although machine learning
techniques based on image data are surging, not much research has been conducted on
applying such methodologies using injection machine data. This research aims to apply
several machine learning algorithms to the data gathered from injection machines.

3. Data and Methodology
3.1. Data

This study used a large injection machine dataset gathered from actual injection
molding production at Hanguk Mold, a company in South Korea. Table 1 provides a
description of all the variables that are available from the injection machine, and Figure 1
provides that process diagram of injection molding. There are over 50 available variables,
and we selected variables that are considered more important in the manufacturing sites.
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Table 1. Variable description.

Variable Name (Unit) Description

Injection_Time (s) The time it takes the screw to move from the injection start position to the transfer position.
Filling_Time (s) Filling time is an indication of how fast the plastic is injected into the mold.
Plasticizing_Time (s) The time plasticizing the plastic.
Cycle_Time (s) The amount of time it takes to start and end injection molding.
Clamp_Close_Time (s) The time mold is closed.
Cushion_Position (mm) The position of cushion after the mold filling and pack stages of the injection process.

Switch_Over_Position (mm) The quality of the molded part is greatly influenced by the conditions under which it is
processed.

Plasticizing_Position (mm) Plasticizing position; during the cooling time, the molding machine begins plasticizing
material in the barrel to prepare for the next cycle.

Clamp_Open_Position (mm) Clamp position when clamping force is applied to a mold.
Max_Injection_Speed (mm/s) Maximum injection speed when screw to push molten plastic resin into a mold cavity.

Max_Screw_RPM (RPM) Maximum rpm when the screw rotation speed in plastic injection molding is the speed of
rotations of the screw for mixing the pellets.

Average_Screw_RPM (RPM) Average rpm when the screw rotation speed in plastic injection molding is the speed of
rotations of the screw for mixing the pellets.

Max_Injection_Pressure (MPa) Maximum injection pressure when screw to push molten plastic resin into a mold cavity.
Max_Switch_Over_Pressure (MPa) Maximum pressure applied to switch over position.
Max_Back_Pressure (MPa) Maximum pressure applied to back pressure.
Average_Back_Pressure (MPa) Average pressure applied to back pressure.

Barrel_Temperature (◦C) The temperatures that need to be controlled during the plastic injection molding process
about barrel temperature.

Mold_Temperature (◦C) Temperature of the actual mold cavity after it has stabilized.

Figure 1. Injection molding process.

Table 2 provides the summary statistics of the data divided by the quality of the
injection molding. As the defect ratio is relatively low, we oversampled the defect data
using the synthetic minority oversampling technique (SMOTE) method. The summary
statistics comparing the mean value of the injection machine variables for the original
dataset are reported in Panel A, and the oversampled data are provided in Panel B of
Table 2. The univariate comparison result shows that, in general, there is a statistically
significant difference in mold temperature-related measures injection time and plasticizing
time for both original and oversampled datasets. Given that interpreting results from
univariate analyzes have several endogeneity issues, we further deployed machine learning
techniques to capture how the variation in such features can explain the quality of the
product.
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Table 2. Summary statistics.

Panel A. Original data

All Observations
(n = 8149)

Good
(n = 8024)

Defect
(n = 125)

Difference
in Means

Variables Mean Std. Mean Std. Mean Std. t-Test

Injection_Time 9.5780 0.1384 9.5755 0.1156 9.7388 0.6070 3.0076 **
Filling_Time 4.4558 0.1177 4.4532 0.0891 4.6231 0.6067 3.1313 **

Plasticizing_Time 16.6920 0.2930 16.6906 0.2945 16.7842 0.1446 7.0205 ***
Cycle_Time 59.5273 0.2572 59.5254 0.2434 59.6491 0.7068 1.9555

Clamp_Close_Time 7.1163 0.0490 7.1162 0.0493 7.1232 0.0113 1.5765
Cushion_Position 653.4440 0.0770 653.4442 0.0774 653.4279 0.0396 2.3514 *

Plasticizing_Position 68.1365 0.5236 68.1351 0.5257 68.2250 0.3560 1.9040
Clamp_Open_Position 646.7125 27.1532 646.6926 27.3635 647.9900 0.0000 0.5301
Max_Injection_Speed 55.2213 1.2147 55.2365 1.1202 54.2440 3.8437 2.8850 **

Max_Screw_RPM 30.7456 0.1552 30.7458 0.1555 30.7328 0.1337 1.0761
Average_Screw_RPM 88.6168 110.0665 88.6565 110.0928 86.0656 108.7740 0.2611

Max_Injection_Pressure 142.1412 1.3046 142.1388 1.3078 142.2960 1.0683 1.6260
Max_Switch_Over_Pressure 136.1801 1.1938 136.1610 1.1610 137.4056 2.2146 6.2699 ***

Max_Back_Pressure 38.0278 1.3706 38.0073 1.1490 39.3416 6.0211 2.4769 *
Average_Back_Pressure 59.6506 2.3372 59.6349 2.2758 60.6600 4.7719 2.3975 *
Barrel_Temperature_1 276.0697 1.5231 276.0680 1.5339 276.1816 0.4332 0.8278
Barrel_Temperature_2 275.2125 1.2489 275.2129 1.2579 275.1896 0.3217 0.2070
Barrel_Temperature_3 274.9476 1.2199 274.9460 1.2287 275.0496 0.3222 0.9418
Barrel_Temperature_4 270.3618 1.4428 270.3602 1.4507 270.4672 0.7790 0.8228
Barrel_Temperature_5 254.9615 0.7733 254.9617 0.7772 254.9464 0.4665 0.2201
Barrel_Temperature_6 229.9891 0.3167 229.9896 0.3179 229.9576 0.2283 1.1208
Hopper_Temperature 66.2994 2.2812 66.2770 2.2858 67.7360 1.3322 11.9731 ***
Mold_Temperature_3 20.8714 2.7020 20.8306 2.6952 23.4888 1.6493 17.6564 ***
Mold_Temperature_4 22.0258 2.9231 21.9848 2.9179 24.6576 1.8725 15.6655 ***

Panel B. Oversampled data

All Observations
(n = 13,679)

Good
(n = 8024)

Defect
(n = 5655)

Difference
in Means

Variables Mean Std. Mean Std. Mean Std. t-Test

Injection_Time 9.6083 0.2672 9.5755 0.1156 9.6549 0.3874 14.9568 ***
Filling_Time 4.4888 0.2616 4.4532 0.0891 4.5394 0.3872 16.4397 ***

Plasticizing_Time 16.7333 0.2457 16.6906 0.2945 16.7939 0.1291 27.8563 ***
Cycle_Time 59.5481 0.3795 59.5254 0.2434 59.5804 0.5125 7.4944 ***

Clamp_Close_Time 7.1188 0.0382 7.1162 0.0493 7.1225 0.0076 11.1030 ***
Cushion_Position 653.4374 0.0634 653.4442 0.0774 653.4278 0.0325 15.0889 ***

Plasticizing_Position 68.1746 0.4648 68.1351 0.5257 68.2307 0.3539 12.7079 ***
Clamp_Open_Position 647.2289 20.9667 646.6926 27.3635 647.9900 0.0000 4.2471 ***
Max_Injection_Speed 55.0123 2.0042 55.2365 1.1202 54.6943 2.7864 13.8651 ***

Max_Screw_RPM 30.7365 0.1387 30.7458 0.1555 30.7233 0.1092 9.9524 ***
Average_Screw_RPM 89.0191 110.3241 88.6565 110.0928 89.5335 110.6593 0.4578

Max_Injection_Pressure 142.1346 1.0988 142.1388 1.3078 142.1286 0.7027 0.5910
Max_Switch_Over_Pressure 136.5476 1.4159 136.161 1.161 137.0961 1.5571 38.2802 ***

Max_Back_Pressure 38.3142 2.7955 38.0073 1.149 38.7496 4.0877 13.2907 ***
Average_Back_Pressure 59.8672 2.6853 59.6349 2.2758 60.1969 3.1480 11.4772 ***
Barrel_Temperature_1 276.1513 1.2000 276.068 1.5339 276.2694 0.3477 11.3594 ***
Barrel_Temperature_2 275.2030 0.9780 275.2129 1.2579 275.1891 0.2614 1.6483
Barrel_Temperature_3 275.0023 0.9620 274.946 1.2287 275.0820 0.2926 9.5385 ***
Barrel_Temperature_4 270.4701 1.1922 270.3602 1.4507 270.6261 0.6409 14.5323 ***
Barrel_Temperature_5 254.9644 0.6506 254.9617 0.7772 254.9682 0.4084 0.6298
Barrel_Temperature_6 229.9745 0.2763 229.9896 0.3179 229.9530 0.2011 8.2435 ***
Hopper_Temperature 66.9286 2.0686 66.277 2.2858 67.8531 1.2167 52.1636 ***
Mold_Temperature_3 22.0273 2.6498 20.8306 2.6952 23.7254 1.3275 82.9811 ***
Mold_Temperature_4 23.1947 2.8463 21.9848 2.9179 24.9114 1.5786 75.5214 **

Note: *, **, and *** refer to the statistical significance where p-value < 0.1, < 0.05, and < 0.01, respectively.
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3.2. Regression-Based Model
3.2.1. Logistic Regression

Logistic regression analysis is a representative method for linear-based classification
algorithms. This algorithm is the basis of deep learning. A typical regression model esti-
mates the linear regression equation below by determining the distribution characteristics
of the features.

y = β0 + β1x1 + β2x2 + · · ·+ βnxn (1)

The most important aspect of logistic regression is to model the probability of an
event. Instead of y, the probability of belonging to category 1, p = P(Y = 1) is modeled,
indicating a numeric value between 0 and 1 [33].

p =
1

1 + e−(β0+β1x1+β2x2+···+βnxn)
(2)

Then, the probabilities are categorized using appropriate thresholds. In this study, the
threshold was set to 0.5 to classify good and bad products. However, logistic regression has
basic assumptions that must be met, such as linearity in the logit for continuous variables,
independence of errors, and absence of multicollinearity [34]. Using such model in our
settings, the linear regression that passed the sigmoid function is a non-linear hyperplane.
If we use sensor data to find the optimal hyperplane, we can explain which feature is
important because it is derived by a hyperplane.

3.2.2. Support Vector Machine

A hyperplane is a decision boundary that classifies the data in high dimensions.
Compared to logistic regression, the SVM can classify high-dimensional data that cannot
be classified by linear classification using hyperplanes. Providing a kernel function in
higher-dimensional data allows for a non-linear classification of observations in the original
data [35].

The support vector is the data closest to the decision boundary. The SVM uses a
margin, the distance between these support vectors, to find the optimal decision boundary.
It is very important to select the proper kernel function as it explains the feature space
where the training data will be classified [36].

3.3. Tree-Based Model

Another popularly used model in the manufacturing process is the decision tree-based
model. Among several models that use decision trees, we deployed random forest, gradient
boosting, lightGBM, and CatBoost algorithms following prior studies that developed
models for computer numerical control (CNC) machines [26]. The tree model consists of
decision trees, and the advantage of this is we can extract feature importance to figure out
which feature is important for quality prediction. Each of the five algorithms can extract its
own method to extract important features, and we compare every important feature.

3.3.1. Random Forest

Random forest is an important machine learning algorithm for pattern recognition
owing to its low cost. The main principle of the training strategy is bagging. This implies
that the random forest is derived from ensemble sampling without replacement from part
of the dataset [37]. The remaining data are called out-of-bag and are used to evaluate
the model performance [13]. Most boosting or bagging algorithms are based on decision
trees [38]. The initial state of the node creates other nodes that contain features directed
upward. Consequently, many decision trees were used to classify each set of data with
sampling. For this method, individual decision trees can have low accuracy compared to a
decision tree made using the total dataset. Hence, it is better to determine the total result of
each tree because each tree can classify trained data that complement each other [39].
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3.3.2. Gradient Boosting

Boosting is another ensemble method that gradually improves train error by using
the residual of the models. Gradient boosting calculates the residual error that is identical
to the gradient to make a reasonable model [40]. The framework in which the residuals are
calculated is the same as the way the loss of the model is directed in the opposite direction
of the gradient. Hence, this algorithm is called gradient boosting [41].

3.3.3. XGBoost

XGBoost is a helpful approach for optimizing the gradient boosting algorithm by
removing missing values and eliminating overfitting issues using parallel processing.
System optimization in XGBoost is achieved by implementing parallelization, tree pruning,
and hardware optimization [42].

3.3.4. LightGBM

Although XGBoost computing with high parallelism is faster than GBM, a method that
can reduce the training time is required for large datasets [43]. Unlike XGBoost, LightGBM
(LGBM) showed better performance in the case of training time and memory efficiency as
it offers superior performance and parallel computing capabilities for large amounts of
data and more recently supports additional GPUs. LGBM has been developed in a way
that inherits its advantages and complements the disadvantages of XGBoost. However,
applications to small datasets of less than 10,000 are prone to overfitting. GBM is stronger
for the overfitting problem using the level-wise method, but it requires time to balance.
LGBM uses the leaf weight method [44]. Instead of balancing the tree, it continuously splits
leaf nodes with maximum delta loss, expands the depth, and generates asymmetric rule
trees [45]. This method minimizes the predictive error loss compared with the balanced
tree split method as learning repeats.

3.3.5. CatBoost

CatBoost can perform better than other GBM algorithms by substituting the ordering-
principal concept to solve the problem of prediction shift due to traditional data leakage
and pre-processing for category variables with high cardinality [46]. The first advantage is
the reduction in learning time due to improvements in the categorical variable handling
methods. Most GBMs use decision trees as base predicators, but with categorical variables,
training takes a long time. Another advantage is the use of ordered boosting techniques to
calculate leaf values to solve the preference shift problem [47].

3.4. Autoencoder-Based Model

For prediction manufacturing quality, the length of training data is important, and
a deep framework overwhelms other machine learning methods. It means that the deep
learning techniques considered can be applied to establish accurate manufacturing fields.
Similarly, deep feature learning is beneficial to explore sophisticated relationships between
multiple features of manufacturing and quality [48].

An autoencoder consists of an encoder that maps the input to the hidden layer and a
decoder that maps the encoded data back to the reconstruction [49]. First, it compresses
the original input data to a vector of lower dimension and then decodes this vector to the
original representation of the data [50]. A stacked autoencoder is an autoencoder with
multiple hidden layers. As shown in Figure 2, the structure is symmetric with respect to
the middle-hidden layer, and the hidden layers have fewer nodes than the nodes in the
input and output layers. Autoencoder models train from high-dimensional input to low-
dimensional bottleneck intervals by repeatedly compressing and releasing the mapping
process. In this process, an information bottleneck is created, and it automatically learns
the ability to distinguish between important and non-critical features for restoring input
samples. However, the autoencoder model incorporates normal data on developing the
network. If the input data are suitable, the results are often significant. If data projected
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to higher dimensions using a kernel is well classified using a particular hyperplane, the
machine learning model may be more appropriate. Therefore, we hypothesized that
the autoencoder model would perform better because the data are correlated and the
classification results in the high-dimensional kernel are not significant.

Figure 2. Autoencoder explanation.

3.5. Time Complexity and Model Evaluation

The complexity usually depends on the size of the data. It is important to check the
complexity because consuming resources and less time matter in the real world. In other
words, if the results of the model are similar, a model with less complexity is more efficient
in terms of resources and time savings and should be applied in practice, and it is highly
related to the symbiotic relationship between humans and robots [51]. Logistic regression,
a type of linear regression, has the advantage of having no parameters, but there is also no
way to control the complexity of the model. Autoencoder is also a combination of multiple
logistic regression analyses, making it difficult to calculate complexity. In a computable
model of complexity, we put the data consisting of n instances that have m attributes. SVM
has O(n2), and it is considered as time complexity. The model complexity of a decision tree,
one of the basic methods of a tree-based model, is O(mn2) [52]. The complexity of random
forest is O(Mmn log n). Different tree-based algorithms employ methods to reduce the
complexity of their own methods.

For the binary model evaluation, we set four different elements to check the perfor-
mance of the models. True positives (TPs), true negatives (TNs), false positives (FPs),
and false negatives (FNs). True elements are those that the model classifies correctly, and
false are those not classified correctly by the model. Accuracy is the most intuitive metric
because it does not require statistical interpretation.

Accuracy =
TP + TN

TP + FP + TN + FN
(3)

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)
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F1 score = 2 × (Precision × Recall)
(Precision + Recall)

(6)

Generally, finding a defective item is more important than a good item. Therefore, we
place the defect item to class ”1” and the good item to class ”0” for proper model evaluation.
These data are very imbalanced as the ratio of defective items is less than 1.5%. Therefore,
we need an additional model metric because, if our model cannot classify anything and
every item is 0, then its accuracy is 98.5. Therefore, precision, recall, and F1-score usually
check model performance in the case of imbalance and binary. Precision is the ratio of good
items that the model predicts as actual good items [37]. Recall is the ratio of actual good
items to the sum of actual good items and factual good items. Generally, precision and
recall have a tradeoff as it is a different view of the model evaluation metric. The F1-score is
the harmonic mean of precision and recall complementing when it comes to imbalance [53].

4. Main Results

With that said, we employed several machine learning algorithms to observe and
compare the performances of models. Specifically, we employed logistic regression, support
vector machine, random forest, XGBoost, CatBoost, LightGBM, and autoencoder models.
Those models can be categorized as regression-based models, tree-based models, and
autoencoder-based models.

The model results are presented in Table 3. Panel A reports the results for the
regression-based models. Because logistic regression is a method of classifying the results
of the linear regression through a sigmoid function, four statistical assumptions—linearity,
homoscedasticity, independence, and normality—must be satisfied. However, in the case of
manufacturing data, variables are highly multicollinear, and some features are not invariant
because of their unique characteristics. Consequently, the statistical assumption is difficult
to satisfy owing to its unique characteristics, and thus the F1-score is remarkably poor.
Unlike tree algorithms, recall was better in regression models. This implies that regression
models detect 90% of defective items but also highly misclassify good items as bad items.
This is the result of SMOTE because, when we train the model using oversampled data,
SMOTE sets a 50:50 ratio of defective items and good items. Therefore, we note almost
90% recall but less than 1% precision. The linear SVM is almost the same because finding
a hyperplane that classifies good and bad items is challenging owing to poor statistical
assumptions. Further, it is difficult to find a good linear hyperplane, while good and bad
items are mixed in high dimensions.

Panel B of Table 3 provides the results of the tree-based models. We found that the
random forest of the bagging method outperforms the boosting-type method. In non-
parametric data, sampling without replacement is better than that based on residuals for
model update. It seems that, using manufacturing data, non-parametric methods are better
than parametric methods. However, in the image classification problem, the human error
was set at 5%. This is not applicable to the actual industry.

The autoencoder model results are presented in Panel C of Table 3. The stacked
autoencoder classified most of the products accurately without misclassification. In the
case of 5617 quality data, 70% were used for training and 30% for testing (1605). It has
different characteristics compared to machine learning algorithms in that the network is
trained only as a good item. As a result of classifying 1605 quality data and 125 defective
data, the F1-score was 0.9727. The reason why the autoencoder is better than the others is
non-parametric and is not significantly affected by the distribution between features. It
detects every defect item; therefore, the recall score is 1 and the precision is 0.9469, and thus
it can be highly compared to human error (i.e., 5%). Another advantage of this method is
that only good items are trained; thus, all defective items can be used for model evaluation.
Because many manufacturing data are imbalanced, a sampling method is necessary to
create a model. However, it can skip this process, and thus it is more accurate and easier to
use for classification.
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Table 3. Model results.

Panel A. Regression-based models

Accuracy Precision Recall F1-Score

Logistic Regression 0.8449 0.0833 0.8947 0.1521
Support Vector Machine 0.8642 0.0961 0.9210 0.1741

Panel B. Tree-based models

Accuracy Precision Recall F1-Score

Random Forest 0.9918 0.7647 0.6841 0.7222
Gradient Bootsing 0.9862 0.5576 0.7638 0.6444

XGBoost 0.989366 0.6761 0.6052 0.6388
CatBoost 0.9905 0.6923 0.7105 0.7012

LightGBM 0.9914 0.7575 0.6578 0.7042

Panel C. Autoencoder model

Accuracy Precision Recall F1-Score

Autoencoder 0.9959 0.9469 1.0000 0.9727

5. Discussion

This paper finds that autoencoder-based models outperform tree-based models. In the
tree-based models, there are two main ways of developing models: bagging and boosting.
Bagging focuses more on how to organize the data well before building the model, and
boosting focuses more on sensor values in terms of developing the model with updates
of the residuals for which feature. Referring to Table 3, gradient boosting has the highest
value, 0.7638. It means the model is classifying 76% of defective products. However, only
55% of the results determined by the model to be defective products were accurate. It is
important to find out which product is a defective item because of cost. Therefore, we
applied a stacked autoencoder. It is a method for anomaly detection through differences
between input and output data in the process of learning and restoring networks that
reduce the dimension of the original data. The advantage of this is that the model does
not need any defective items. It is useful in low-cost injection molding to let the model
be sustainable. This is because the labeling cost is high in the process of obtaining data
to make the model. Since the network is learned only from good items, labeling costs are
reduced, and results are very good as shown in Panel C of Table 3. In other words, in
injection molding, there is a stable pattern in the case of good products, and in the case of
defective products, there is a difference so it can be classified well.

Furthermore, with the significant results of machine learning methods in predicting the
quality of injection molding, the variables that drive such results are also important. That
is, among dozens of injection machine variables, what are the main important features that
lead to quality problems in injection molding businesses. We employ feature importance
tests for each model used in the analysis.

Figure 3 shows the combined feature importance graph. Regardless of the models
used, we found that molding temperature, hopper temperature, injection time, and cycle
time are important variables commonly selected by machine learning techniques. These
findings contribute to manufacturing sites. With over 50 control variables on injection
machines, workers find it difficult to efficiently control each variable. Using important
features selected by machine learning algorithms may reduce the worker’s time controlling
machines and consequently increase the production level.
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Figure 3. Feature importance of models.

This study contains two limitations. The first limitation is the limitation of data. Threats
to validity are an important category to be discussed in machine learning studies [54,55].
Among several categories of threats to validity, this paper is mostly concerned with external
validity. That is, the findings may limit the ability to generalize the results beyond the
experiment setting. As the results are from the plastic injection molding business, our find-
ings may be different in other molding businesses. As the data are from a manufacturing
company that is known for plastic injection, data might be biased. That is, the data may
contain plastic injection molding characteristics that may not be applicable in other types of
molding. Another limitation of the research is the insufficient knowledge on investigating
clear reasons what caused the defect. Second, in manufacturing, the results of the model
such as accuracy, recall, precision, and F1-score are important, but the explanation of the
results is often more important. Finding causes for the outcome in the business is needed,
but the current study may not have sufficiently performed it. Feature importance is a
test to find important variables according to the “classification” of the model, and it is
another problem whether they are actually important. To solve this problem, there are three
methods: combining an explainable model or changing the structure of deep learning to
understand which active functions’ reaction results affect the results or using an explainable
model. In the future, another example applied with different injection machine data will
be needed, and a model structure that focuses on the cause rather than on the outcome of
the model through explainable models will need to be in place.

6. Conclusions

Quality issues have long been a critical concern in injection-molding businesses. Such
technical issues became more important for firms’ sustainable growth, especially in the
Industry 4.0 era. We believe that important innovations that would keep the manufacturing
industries as leading roles in the market are an adaptation process to the new environment.
With many artificial intelligence models introduced every day, manufacturing industries
should also try to be more innovative by applying such modern techniques in their current
manufacturing processes. Furthermore, quality efficiency is an important concern for
manufacturing businesses for sustainable development, and this is also very much related
to issues of energy efficiency [56,57]. If enterprises want to reduce cost and find or retain
clients, they should offer the products with the highest quality and reasonable prices.
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Hence, injection molding firms attempt to improve their production efficiency and
enhance the quality of prediction, monitoring key variables that influence the quality
of injection molding and are the main drivers. As the manufacturing environment is
becoming more dynamic with an increased number of products, not responding to the
environment with agility causes customers’ dissatisfaction and, therefore, causes a negative
influence on the companies’ competitiveness in the market [4]. Therefore, intelligent
solutions that may solve such complex problems are required, and many prior studies have
examined the importance of Industry 4.0 for enterprises in a changeable and innovative
environment [58–60].

Injection molding manufacturing consists of complex production systems because
many parts are combined, and the specifications of each mold are different. Moreover,
mold products have different processes, and all these factors increase the complexity
of the dynamic of the manufacturing environment. From the perspective of the data
gathered during the process, this also implies non-linear and complex relationships among
variables. Therefore, employing statistical methods based on linearity assumptions may
not be effective. Using quality prediction as a testing ground, this study performed a
comparative analysis of various methodologies in the machine learning architecture. At
the upper level, we demonstrated that machine learning methods can help improve the
understanding of quality problems in the injection molding industry. Using the large real
production dataset gathered from the injection machines, we found that machine learning
models are generally useful for quality prediction. Autoencoder and random forest are the
best performing methods. Specifically, we showed that the autoencoder model outperforms
other tree-based machine learning algorithms in terms of accuracy and F1-score.

We also tracked down the advantages of these machine learning algorithms to ac-
commodate non-linear interactions that are often missed in other classical methods. The
injection molding process is a combination of numerous variables, such as temperature,
pressure, and velocity, and the relationship between these variables is not linear. Thus,
methods that have comparative advantages in handling non-linear relationships are neces-
sary.

In addition to the prediction results of several machine learning methods, we tested
which factors are key variables that influence the quality of injection molding products. We
found that molding temperature, hopper temperature, injection time, and cycle time are
important variables commonly selected by machine learning techniques.
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