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a b s t r a c t 

Classic frameworks of rock-paper-scissors game have been assumed in a closed community that a den- 

sity of each group is only affected by internal factors such as competition interplay among groups and 

reproduction itself. In real systems in ecological and social sciences, however, the survival and a change 

of a density of a group can be also affected by various external factors. One of common features in real 

population systems in ecological and social sciences is population flow that is characterized by popula- 

tion inflow and outflow in a group or a society, which has been usually overlooked in previous works on 

models of rock-paper-scissors game. In this paper, we suggest the rock-paper-scissors system by imple- 

menting population flow and investigate its effect on biodiversity. For two scenarios of either balanced 

or imbalanced population flow, we found that the population flow can strongly affect group diversity 

by exhibiting rich phenomena. In particular, while the balanced flow can only lead the persistent co- 

existence of all groups which accompanies a phase transition through supercritical Hopf bifurcation on 

different carrying simplices, the imbalanced flow strongly facilitates rich dynamics such as alternative 

stable survival states by exhibiting various group survival states and multistability of sole group survivals 

by showing not fully covered but spirally entangled basins of initial densities due to local stabilities of 

associated fixed points. In addition, we found that, the system can exhibit oscillatory dynamics for coex- 

istence by relativistic interplay of population flows which can capture the robustness of the coexistence 

state. Applying population flow in the rock-paper-scissors system can ultimately change a community 

paradigm from closed to open one, and our foundation can eventually reveal that population flow can 

be also a significant factor on a group density which is independent to fundamental interactions among 

groups. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

For the fast decade, since applied to elucidate complex behav- 

ors in real ecosystems [1–5] , there have been greatly challenged 

n population systems of non-hierarchical cyclic competition in 

oth macroscopic and microscopic levels. In general, from the per- 

pective of survival states, biodiversity in cyclic competition sys- 

ems have been interpreted based on a metaphor of rock-paper- 

cissors (RPS) game by exploiting additional interactions includ- 

ng noise [6] , mobility [7–13] , habitat suitability [14] , intraspecific 

ompetition [15,16] , mutation [17–22] , quasi birth and death pro- 

ess [23] , asymmetric niche and interactions [24–27] , and inter- 

atch migration [28,29] by presenting various nonlinear dynamical 

eatures [30–33] . In addition to implementing in ecosystems, rock- 

aper-scissors game has been exploited to understand dynamics in 

ocial sciences [34–37] . 
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Typically, in classic approaches on RPS games, fundamental fac- 

ors to affect a change of a density in each population group are 

nterspecific competition (which is usually regarded by predation) 

nd reproduction to lead the decrease and increase of a density, 

espectively, which imply that the change of population densi- 

ies will depend on intracommunity interactions. Thus the entire 

tructure of interactions among three groups is of a closed hy- 

ercycle. In real systems, however, in addition to such intracom- 

unity interactions, a density of each group can be also affected 

y inflow and outflow of population, i.e., migration of population, 

hich are commonly witnessed by various forms in ecological, 

iological, and social sciences [5,8,38–43] . For example, in mar- 

et communities, those who want to start a business are willing 

o choose one of the promising businesses, and thus the start- 

p of a particular business may increase the size of the business 

tself. In the case of the establishment of the franchise industry, 

his process may increase the number of branches of the industry. 

owever, an increase in the number of branches naturally causes 

https://doi.org/10.1016/j.chaos.2020.110424
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Fig. 1. Schematic diagrams of different community structures on rock-paper- 

scissors game: (a) a closed structure in classic systems and (b) an open structure 

with population flow. Blue straight arrows indicate intergroup competition which 

occurs with a rate 1 in a cyclic manner. In each group, red dashed loop demon- 

strates intragroup competition with a rate p, and green straight and red dashed 

arrows describe the inflow and outflow of populations in each group, respectively. 

(For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 
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ntergroup competition between branches, in which case sales may 

e stopped for branches with poor options. Besides, due to inter- 

al circumstances, it may happen that the store (or branches) will 

ecide to shut down itself and the scale of such business markets 

ay be getting smaller. Thus, in social sciences, such a flow pro- 

ess in groups or populations is a common feature and has a sig- 

ificant impact on the survival of each group. Nevertheless, even 

f there were several effort s to elucidate the effect of population 

ow on biodiversity of cyclic games within the framework of in- 

erpatch migration [28,29] which have been considered between 

nite patches, to the best of our knowledge, as an external factor 

o affect a density of a group in macroscopic levels, there is no at- 

empt to address the population flow in rock-paper-scissors game. 

Motivated from this point and in the perspective of changing 

ommunity paradigm, in this paper, we investigate the effect of 

opulation flow on group diversity where the governing relation- 

hip among groups is the metaphor of rock-paper-scissors game. 

e describe population flow consisting of inflow and outflow in 

ach group by implementing the mechanism of natural birth and 

eath processes in classic Lotka-Volterra system [44,45] , and de- 

elop an analytic theory based on the system of rate equations to 

xplain numerical evidences and provide the effect of population 

ow. Briefly, our main findings are the followings. The first result 

s that, in contrast to previous works of rock-paper-scissors games 

nder the closed community structure, balanced population flow 

an promote persistent coexistence by forming different carrying 

implices which will depend on magnitudes of inflow and outflow. 

he second result is that imbalanced population can exhibit rich 

ynamics of group survivals by exhibiting alternative stable states 

onsisting of various group survival states, emergence of multista- 

ility among single group survivals, and oscillatory dynamics for 

oexistence depending on relativistic interplay of flow magnitudes. 

In Section 2 , we model a rock-paper-scissors game with popula- 

ion flow in the macroscopic framework. In Section 3 , we provide 

ur results within two perspectives according to consideration of 

opulation flows numerically, and are analyzed mathematically in 

ection 4 . Conclusion and discussions are addressed in Section 5 . 

. Model 

Fundamental reactions of rock-paper-scissors games adopting 

ntragroup competition (see Fig. 1 (a)) can be defined by the set 

f following rules [8,9,15,16,46,47] : 

 Y 
σ−→ X ∅ , Y Z 

σ−→ Y ∅ , Z X 

σ−→ Z ∅ , (1)

 ∅ 

μ−→ X X, Y ∅ 

μ−→ Y Y, Z ∅ 

μ−→ Z Z, (2) 
2 
 X 

p −→ X ∅ , Y Y 
p −→ Y ∅ , Z Z 

p −→ Z ∅ , (3)

here ∅ presents vacancies which can allow reproduction (2) . 

For well-mixed population, reactions (1) –(3) can be generally 

escribed by rate equations in the mean-field framework of May- 

eonard limit. Let x (t) , y (t) , and z(t) be the densities of three

roups X, Y, and Z at time t, respectively. Then the determinis- 

ic system of three groups incorporating (1) –(3) can be written by 

he following set of rate equations [8,9,14,16,47] : 
 

 

 

 

 

dx (t) 
dt 

= x (t) 
[
μ{ 1 − ρ(t) } − σ z(t) − p 

2 
x (t) 

]
, 

dy (t) 
dt 

= y (t) 
[
μ{ 1 − ρ(t) } − σ x (t) − p 

2 
y (t) 

]
, 

dz(t) 
dt 

= z(t) 
[
μ{ 1 − ρ(t) } − σy (t) − p 

2 
z(t) 

]
, 

(4) 

here ρ(t) = x (t) + y (t) + z(t) is the total density at time t . 

In classic rock-paper-scissors models, changes of population 

ensities can only occur either decreasing by intergroup competi- 

ion (1) or increasing by reproduction (2) , which means the density 

f each group ultimately depends on internal mechanisms. Thus, 

he entire structure of interplay can be regarded as “closed com- 

unity” (see Fig. 1 (a)). In real systems, however, the population 

ensity can be also affected by population inflow and outflow. For 

xample, in cases of political parties, some nonaffiliated individuals 

ay want to join one of political parties [48] , or defected individu- 

ls may want to join another parties [33] . In this case, a density of

ertain group may increase by joining new members. In addition, 

embers in a group may want to stop their political activities by 

ntragroup competition or changing their political ideologies, and 

ence a group can become shrink by outflow of its members. 

In this regard, considering population flow in each group may 

hange the interplay structure as “open community” which is illus- 

rated in Fig. 1 (b), and we thus wonder how survivorship of com- 

eting groups can change by population flow. To address the ef- 

ect of population flow on group diversity in the cyclic competition 

ystem, we simply implement a similar way to natural birth and 

eath processes in the Lotka-Volterra system [44,45] to describe 

nflow and outflow of populations in each group, respectively. To 

ake an unbiased comparison with previous works which has no 

opulation flow [8,9,16] , we assume σ = μ = 1 . Then Eq. (4) can

e rewritten by: 
 

 

 

 

 

dx 
dt 

= x 
[
(1 − ρ) − z − p 

2 
x + β1 − δ1 

]
, 

dy 
dt 

= y 
[
(1 − ρ) − x − p 

2 
y + β2 − δ2 

]
, 

dz 
d t 

= z 
[
(1 − ρ) − y − p 

2 
z + β3 − δ3 

]
, 

(5) 

here βi and δi (i = 1 , 2 , 3) indicate the inflow and outflow rates

f groups X, Y, and Z. 

Such a description to inflow and outflow of populations by us- 

ng several parameters may be eventually matched to the asym- 

etric rock-paper-scissors model [46] , and may be regarded as 

atural birth and death in each group. Even if two terms for in- 

ow and outflow in each group can be written by a single param- 

ter, we will distinguish two parameters to realize and elucidate 

he effect of population flow in detail. 

. Results 

In this section, we carry out numerical simulations to provide 

lobal aspects on the effect of population flow on biodiversity 

mong three groups from two perspectives, which can be classi- 

ed based on the symmetry of flows: 

a) balanced population flow that all groups have same inflow and 

outflow rates, i.e., βi = β and δi = δ (i = 1 , 2 , 3) , where the two

rates β and δ may be nonuniformly given, and 
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Fig. 2. (a–c) Phase transitions of attractors with different p and (d) maximum and 

minimum values of attractors of Eq. (5) depending on p. Parameters (β, δ) are given 

by (0 . 4 , 0 . 2) for tops and (0.3,0.5) for bottoms. The initial condition is given by 

(0.625,0.128,0.247). (a–d) As p increases, the system exhibits phases transitions from 

asymptotically stable heteroclinic cycles to periodic orbits, and asymptotically stable 

sinks which occurs on different carrying simplices. (d) The phase transition recasts 

in a wide spectrum of p through bifurcation diagram by measuring maximum and 

minimum values of attractors versus p. Regardless of (β, δ) , Eq. (5) always exhibits 

the phase transition between heteroclinic cycles and sinks via p = 1 . 
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Fig. 3. Basins of asymptotically stable heteroclinic cycles(blue) and attrac- 

tors(green) which are distinguished by p = 1 for all cases. The white region in- 

dicates that associated fixed points of P 1 and P 3 are not defined since the exis- 

tence conditions of fixed points are not satisfied. As β increases, the basins move 

from left to right, and sufficiently high δ is required to validate stable existence of 

two states. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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b) imbalanced population flow that all rates of inflow and outflow 

may be given nonuniformly which may indicate that both in- 

flow and outflow rates may differ to each group. 

We implement a Runge-Kutta method and symbolic calcula- 

ions on our all numerical simulations to present phase portraits, 

asin structures, and certain probabilities. 

.1. Effect of balanced population flow: persistent coexistence with 

orming different carrying simplices 

According to the analysis which will be explained in Section 4 , 

e can predict that Eq. (5) may exhibit a phase transition between 

symptotically stable heteroclinic cycles and asymptotically stable 

ttractors constituted by an interior fixed point as the parame- 

er p varies, where two states of heteroclinic cycles and attractors 

re noted by P 1 and P 3 , respectively. To be concrete, regardless 

f choices of β and δ, such a phase transition only depends on 

p if parameters β and δ satisfy the common condition δ < β + 1 . 

ince the phase transition can occur whether p exceeds 1 or not, 

e consider p by 0.5, 1, and 1.5. In this regard, for given different 

arameters settings, e.g., (β, δ) = (0 . 4 , 0 . 2) and (0.3,0.5) satisfying

he condition δ < β + 1 , phase transitions and a bifurcation dia- 

ram with respect to the change of p are illustrated in Fig. 2 . 

As shown in Fig. 2 (a–c), Eq. (5) exhibits a phase transition from 

eteroclinic cycles to sinks by showing periodic orbits as p in- 

reases. The interesting feature in phase portraits is the change 

f carrying simplices and invariant manifolds for solutions of the 

ystem. Previous works of rock-paper-scissors game with internal 

nterplay have been depicted without changing the carrying sim- 

lex, and the formation of attractors started from simplex S 3 and 

s changed gradually by intragroup competition. By applying pop- 

lation flow, however, we found that the phases of solutions are 

ormed on different carrying simplices, and the invariant manifold 

or attractors can be also affected. Such a phase transition of at- 

ractors in a wide spectrum of p are depicted concretely by uti- 

izing a bifurcation diagram versus p as shown in Fig. 2 (d), where 

 bifurcation diagram is derived by exploiting the maximum and 
3 
inimum value of the attractor in each p. In particular, similar 

o previous works [16,47,49] , the phase transition can occur as 

q. (5) falls into the class of Hopf bifurcation in which is supercrit- 

cal, and it is a common feature regardless of rates of population 

ow (β, δ) whenever the rates satisfy the condition δ < β + 1 to 

alidate existences of fixed points of P 1 and P 3 , where two states 

re defined by (9) –(11) and (15) in Section 4.1 , respectively. The 

tability of heteroclinic cycles featured in Fig. 2 (a) can be deter- 

ined by a calculation of the saddle value V which is defined 

y [50] : 

 = 

3 ∏ 

i =1 

V i = 

(
2 − p 

p 

)3 

> 1 , ∀ p < 1 (6) 

or all fixed points (9) –(11) of P 1 , and we easily find that the rate

f intragroup competition p is the only parameter to determine the 

tability of heteroclinic cycles (see Theorem 1 in Section 4.1 ). Thus, 

s illustrated in Fig. 2 , controlling p as a bifurcation point can yield 

 common phase transition regardless of (β, δ) : from heteroclinic 

ycles to attractors in which are asymptotically stable accompany- 

ng with periodic orbits. 

In addition, from Fig. 2 (d), we find that the stable coexistence 

an be sensitively affected by both population flow and intragroup 

ompetition. For example, for (β, δ) = (0 . 4 , 0 . 2) , the solution can

e validated for p > 0 . 4 while that with (β, δ) = (0 . 3 , 0 . 5) is de-

ned for p ≥ 0 . In other words, Eq. (5) may not have any fixed
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oints depending on the choice of (β, δ) with respect to p, which 

ay imply that there may be a phase transition of basins of pa- 

ameters for stable fixed points of P 1 and P 3 . To be concrete, such 

hase transitions of basins of parameters consisting of (δ, p) by fix- 

ng β for instance are presented in Fig. 3 where borders among 

istinct basins indicate the thresholds of existence and stability 

onditions of corresponding fixed points of P 1 and P 3 . 

From Fig. 3 , we found that, for the considered range of δ, the

igher inflow rate requires a relatively high outflow rate for vali- 

ating P 1 and P 3 which are indicated by blue and green colors. For 

hite regions in each panel in Fig. 3 , we have no particular indica-

ions of associated dynamical behaviors. In the white regions, fixed 

oints of P 1 and P 3 are not defined, i.e., the existence conditions of 

xed points of two states are not satisfied. In this case, when we 

onsider parameters in the white regions, the system may exhibit 

wo features either (i) the trajectories of solutions of the system 

ill converge to the origin where the interior fixed point of P 3 has 

egative components; or (ii) the total density of three groups ex- 

eeds 1 even if the density of each group is less than 1. 

Under balanced population flow, we found that the interplay 

etween inflow and outflow of the population which is affected 

y intraspecific competition can lead to stable coexistence. While 

he asymptotically stable heteroclinic cycle which is constituted by 

hree absorbing fixed points of P 1 can be appeared by the extinc- 

ion state on spatially extended systems [8,14,16,32] , it may indi- 

ate a weak coexistence because solutions of Eq. (5) are eventually 

raveling near the cycle. Nevertheless, it is obvious that the bal- 

nced flow can facilitate persistent coexistence of all groups. 

.2. Rich dynamics by imbalanced population flows 

.2.1. Basin structures of parameters of imbalanced flow for diverse 

urvival states 

We now explore dynamical features with imbalanced popula- 

ion flow. In a similar approach to the balanced flow, we can obtain 

hat the Eq. (5) with imbalanced (nonuniform) population flows 
ig. 4. Basin structures for nonuniform inflow rates with fixed nonuniform outflow rates

ifferent survival states. According to the symmetry-breaking of inflow rates, Eq. (5) can

xhibit multistable states as shown in (a). On the other hand, if the total population inflo

4 
an also possess three types of survival states, Q 1 , Q 2 , and Q 3 for 

escribing survival of only one group, existences of two interacting 

roups, and coexistence of all groups, respectively, which are de- 

ned by the number of surviving groups (see the detailed form of 

ssociated fixed points in Appendix A ). 

Since there are several unknown parameters to be considered, 

nfortunately, it is quite difficult to gain overall dynamical features 

imultaneously. To handle this issue, we may imagine the following 

ituation: For example in social sciences, in a particular business 

ituation, when competition among groups in similar fields is ac- 

ive and each group is growing well, the influx of new participants 

o join (or invest) each group can sometimes overheat while the 

utflow may differ from group to group by characteristics [51–54] . 

n this case, it is possible to restrict excessive inflow into groups 

verall. Based on such a plausible situation, we may assume that 

he inflow rates in all groups may be restricted within a certain 

evel, which means the total amount of inflow rates may be given 

y a constant: 
∑ 3 

i =1 βi = �, where the initial outflow rate in each 

roup is given nonuniformly. In this pursuit, based on the linear 

tability analysis of fixed points of three distinct survival states Q 1 , 

 2 , and Q 3 , the overall dynamics of group diversity by population 

nflow can be presented on a triangular phase space of inflow rates 

hich are illustrated in Fig. 4 . 

Fig. 4 shows the basin structure for each stable state in 

q. (5) for the given nonuniform outflow rates (δ1 , δ2 , δ3 ) = 

0 . 1 , 0 . 3 , 0 . 4) . According to the combination of βi ( i = 1 , 2 , 3 ),

q. (5) exhibits various dynamical features on survival states which 

re defined by the number of surviving groups while the balanced 

opulation flow can only lead to persistent coexistence. In particu- 

ar, the imbalanced population flow can yield survival states of any 

wo interacting groups on cyclic dominant relationships which are 

ot observed in the balanced population flow in Section 3.1 . In this 

ase, we found that (a) the basin structure on the phase space does 

ot present all states of Q 2 , and (b) any one of survival states can 

nly appear at moderate rates of inflows and intragroup competi- 

ion, which may imply that the survival states will be sensitively 
 (δ1 , δ2 , δ3 ) = (0 . 1 , 0 . 3 , 0 . 4) . In each panel, colors indicate basins of parameters for 

 possess various survival states which can be well-defined by both p and �, and 

w exceeds a certain level, the system does not show any survival state. 
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Fig. 5. Degree of multistability P M among fixed points of Q 1 in combination with 

� and p. In the given outflow rates, when the strength of intragroup competition 

is quite weak, Eq. (5) can exhibit multistable states of any two points in Q 1 with 

respect to inflow rates at small ranges, i.e., an inflow rate βi of each group is quite 

small. 

Fig. 6. Phase portraits and corresponding basins of initial conditions for the multi- 

stability in Q 1 with (�, p) = (0 . 5 , 0 . 5) associated to Fig. 4 (a). In each figure, a trian- 

gle and a bullet indicate the initial condition and one of fixed point of Q 1 , respec- 

tively. Basins of initial conditions for corresponding fixed points are presented by 

different colors. (a) For parameters (β1 , β2 , β3 ) = (0 . 0055 , 0 . 476 , 0 . 0185) satisfying 

� = 0 . 5 , solutions of Eq. (5) starting from different initial conditions can converge 

to one of fixed points either Q 1 ( X ) or Q 1 ( Y ) . (b) Similar to (a), the system exhibits 

multistable states of Q 1 ( X ) and Q 1 ( Z ) depending on the initial condition where the 

parameter set of inflow rates is given by (β1 , β2 , β3 ) = (0 . 214 , 0 . 003 , 0 . 283) . 

t

s  

c

c  

f
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i

t

e

3

fl

u

t

i

T

w

p

etermined by the combination of interaction rates. In each given 

p, the almost of inflow rates of a small amount of � may validate 

he existence of one of the survival states. As � increases, however, 

he portion of basins for stable survival states are decreasing and 

ertain values of � relatively larger than p do not yield any type of 

asin structures as shown in Fig. 4 (e) and (j). The reason why sta-

le survival states are decreasing with the increase of � may be 

redicted by linear stability analysis of corresponding fixed points 

nd sensitive interplay between intergroup and intragroup compe- 

ition. Thus, specific types of fixed points can be defined for the 

iven parameter setting on outflows. 

It has been generally accepted that moderate or strong intra- 

roup competition can promote coexistence of cyclic competing 

hree groups [16,32,47,49] which associates to Q 3 in our model. 

owever, even if for p = 1 , Fig. 4 shows that no survival state in-

luding Q 3 is defined. To be concrete, for the large amount of in- 

ow rates such as � = 2 . 5 , the system does not present any sur-

ival state on the phase space of parameters for p = 1 . On the con-

rary, for p = 1 . 5 which is shown in Fig. 4 (o), the level � = 2 . 5 still

xhibit basins of states Q 1 , Q 2 , and Q 3 , even if basins of Q 1 and Q 2 

re very small. Based on the basin structure, we may find that the 

trength of intragroup competition can increase as the total level of 

nflows increases, and address that the viability of groups can be 

ensitively affected by both population flow and intragroup com- 

etition. 

.2.2. Emergence of multistability among sole survival states 

Even if basins are quite narrow, the feature to focus on the 

asin structure in Fig. 4 is the emergence of multistability. To 

e concrete, Fig. 4 (a) exhibits two basins of parameters to lead 

ultistable states between two fixed points in Q 1 : Q 1 ( X & Y ) and 

 1 ( X & Z ) . From the phase transition of basin structures as � in- 

reases, we may expect that the lower � may also yield multista- 

ilities among fixed points of Q 1 . Since it is still ambiguous of the 

ultistability of different types of fixed points, to investigate the 

mergence of multistability in detail by considering cases consti- 

uted by fixed points of different classes for the given parameter 

or outflow, we measure the probability P M 

that how multistabil- 

ty state can arise frequently depending on the flow mechanism, 

here P M 

is defined by [33,47,49,55] : 

 M 

= 

n { (β1 , β2 , β3 ) | ∃ multistable among Q i (i = 1 , 2 , 3) } 

n 

{ 

(β1 , β2 , β3 ) 

∣∣∣∣ 3 ∑ 

i =1 

βi = �, ∀ βi ≥ 0 

} , (7) 

nd the P M 

exhibits that the multistability can only emerge be- 

ween any two fixed points of Q 1 for specific ranges of � and p

s presented in Fig. 5 (a)–(c). In our model, there is no possibility 

o observe the multistable states of all fixed points of Q 1 as shown 

n Fig. 5 (d). 

For the given outflow rates, we find that, specific cases of mul- 

istable states between two states in Q 1 , in particular Q 1 ( X & Y ) and 

 1 ( X & Z ) , can be revealed more frequently. In particular, for two 

tates Q 1 ( X & Y ) and Q 1 ( X & Z ) , phase portraits of solutions and cor-

esponding basin structures of initial conditions under specific pa- 

ameter settings are presented in Fig. 6 . 

The emergence of multistability among sole group survivals in 

ystems of evolutionary dynamics has been already reported in 

efs. [31,33] , where the interplays in the proposed systems are 

lightly changed either bidirectional competition or transferring in- 

ividuals among groups. The interesting feature on multistability in 

ur model is the formation of basins of initial conditions for multi- 

table states. While the phase space of initial conditions has been 

ully covered by any one of basins for sole states when the mul- 

istability of extinction occurs in previous works, we observe that, 

ccording to the multistable state, basin structures can be discon- 
5 
inuous depending on inflow rates. To be concrete, for the given 

etting of inflow rates, as depicted in Fig. 6 (b), two basins of initial

onditions for Q 1 ( X ) and Q 1 ( Z ) are spirally entangled and do not 

over the phase space S 3 entirely while those for Q 1 ( X ) and Q 1 ( Y )

ully cover the phase space S 3 and are distinguished into two re- 

ions as shown in Fig. 6 (a). Thus, we can conclude that multistabil- 

ty emerges among the sole group survivals and is more sensitive 

o the initial densities of the three groups under population flow, 

specially at low levels of inflow. 

.2.3. Characterizing robustness of coexistence by interplay between 

ow and intragroup competition 

Even if the effect of imbalanced flow is explored through Fig. 4 , 

nderstanding balance of flows according to intragroup competi- 

ion is still ambiguous since Q 3 can be stable sensitively depend- 

ng on both flows and intragroup competition as shown in Fig. 4 . 

o be concrete, when a rate of intragroup competition p is fixed 

hich is sufficiently large to yield stable coexistence, the basin of 

arameters (β , β , β ) for coexistence is shrinking and may dis- 
1 2 3 
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Fig. 7. The probability S coex (8) in a combination with � and � for different p. (a-c) For lower p associated to weak intragroup competition, there is no parameter combina- 

tions of population flow to yield stable coexistence. (d) As p increases, population flow can affect coexistence even if small amounts of sets are constituted. (e-h) For p ≥ 1 , 

the flow can strongly lead stable coexistence with weak levels of � and � . Each panel may be classified by four regions of parameters with respect to the sensitivity of 

coexistence on population flow. In each panel, the red bullet indicates the threshold of � that Q 3 is not defined which also increases as p increases. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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ppear as the amount of � increases. In this regard, to predict the 

table coexistence and characterization of the robustness of coexis- 

ence when it occurs stably, it is necessary to explore the interplay 

etween population flow and intragroup competition. Characteriz- 

ng the interplay and robustness may be evaluated by the number 

f components of all rates for stable coexistence, referred to as the 

ensitivity of coexistence S coex , which can imply the degree of co- 

xistence based on the basin area. To implement the sensitivity, 

e assume that both inflow and outflow can vary at certain lev- 

ls: 
∑ 3 

i =1 βi = � and 

∑ 3 
i =1 δi = �, respectively. In this regard, sim- 

larly to P M 

(7) , the sensitivity of coexistence can be calculated by 

31,33,47,49,55] : 

 coex = 

n { (β1 , β2 , β3 , δ1 , δ2 , δ3 ) | ∃ stable coexistence } 

n 

⎧ ⎨ 

⎩ 

(β1 , β2 , β3 , δ1 , δ2 , δ3 ) 

∣∣∣∣
3 ∑ 

i =1 

βi = �, 

3 ∑ 

i =1 

δi = �, 

∀ βi , δi ≥ 0 . 

⎫ ⎬ 

⎭ 

, (8) 

here � and � range on 0 ≤ �, � ≤ 3 for the given p ≥ 0 , and

he landscapes of S coex with different p are illustrated in Fig. 7 . 

From the landscape of S coex in Fig. 7 , we found that stable co-

xistence is sensitively affected by population flow and intragroup 

ompetition. In particular, the classification of robustness of sta- 

le coexistence can be captured by oscillatory dynamics of solu- 

ions depending on total magnitudes of inflow and outflow which 

as been also featured in other frameworks of mathematical mod- 

ls [56,57] . For the weak intragroup competition, as shown in 

ig. 7 (a)–(c), there is no attempt that all groups can coexist for any

requency of population flow. The stable coexistence, i.e., the Q 3 

ecomes a stable attractor, can be possible as p increases even if 

mall amounts of parameter sets can validate which are detected 

y low probability as in Fig. 7 (d). As illustrated in Fig. 7 (e)–(h),

uch stable behavior can similarly appear as p increases, and small 

evels of λ and � in each p with p ≥ 1 can yield the robust co- 

xistence which corresponds to S coex = 1 . The interesting point is 

he transition of a critical � (which is indicated by the red bul- 

et) that the degree S coex becomes 0. To be concrete, for p ≥ 1 , the

ritical point increases at the same time as p increases. Even if a 

mall area of parameters of � and � can validate Q , the coexis- 
3 

6 
ence can appear sensitively depending on imbalanced flows with 

ow probabilities overall as intragroup competition is intensified. 

Intrinsically, if population outflows are more frequent than in- 

ows, all groups will not be able to coexist, and we found that, 

y S coex , the phenomenon occurs even if intragroup competition is 

oderate or strong. The landscape of S coex provide that coexistence 

an be sensitively affected by population flow considering intra- 

roup competition, and in particular, strong (robust) coexistence 

an be only promoted for the weak level of inflow and outflow 

verall. 

In the absence of population flow either balanced or imbal- 

nced, the system which can be defined by (4) can only exhibit 

hree distinct phases without showing multistabilities among dis- 

inct survival states, and the overall feature are similarly obtained 

o the case of balanced flow. However, the survival states of three 

roups can be strongly changed under imbalanced flow of popu- 

ations by exhibiting various survival states, multistability among 

ingle group survivals, and oscillatory behaviors for coexistence de- 

ending on relativistic relations between flow magnitudes. 

. Analysis 

We now provide theories based on linear stability analysis to 

upport our numerical findings. Within two perspectives of popu- 

ation flow either balanced or imbalanced case, the linear stability 

nalysis for fixed points are similarly obtained for all cases. Thus, 

e provide the analysis in detail for the case of balanced popu- 

ation flow, and focus on the emergence of multistability and sur- 

ival of two interacting groups for imbalanced flow. 

.1. Balanced population flow 

Under the uniform consideration of each inflow and outflow 

ate to yield balanced flow, direct calculations d x/d t = d y/d t =
 z/d t = 0 can yield that Eq. (5) can possess three distinct survival

tates which can be classified by the number of surviving groups. 

roposition 1. Under the condition β + 1 > δ with β, δ > 0 , Eq. 

5) possesses three types of fixed points which can be defined with 

dditional conditions: 
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a) P 1 for the survival of only one group: (
2(β − δ + 1) 

p + 2 

, 0 , 0 

)
, (9) 

(
0 , 

2(β − δ + 1) 

p + 2 

, 0 

)
, (10) 

(
0 , 0 , 

2(β − δ + 1) 

p + 2 

)
, (11) 

for 2(β − δ) ≤ p, 

b) P 2 for survivals of any two interacting groups: 

( ̃  x , ̃  y , 0) = 

(
2 p(β − δ + 1) 

p 2 + 4 p − 4 

, 
2(p − 2)(β − δ + 1) 

p 2 + 4 p − 4 

, 0 

)
, (12) 

(0 , ̃  y , ̃  z ) = 

(
0 , 

2 p(β − δ + 1) 

p 2 + 4 p − 4 

, 
2(p − 2)(β − δ + 1) 

p 2 + 4 p − 4 

)
, (13) 

( ̃  x , 0 , ̃  z ) = 

(
2(p − 2)(β − δ + 1) 

p 2 + 4 p − 4 

, 0 , 
2 p(β − δ + 1) 

p 2 + 4 p − 4 

)
, (14) 

which are defined by p > 2 , and 

c) P 3 for coexistence of all groups: 

(x ∗, y ∗, z ∗) = 

2(β − δ + 1) 

p + 8 

(1 , 1 , 1) , (15)

for 6(β − δ) − 2 ≤ p. 

Proof. Since we easily obtain fixed points of forms above by 

irect calculations, we here only prove the existence condition of 

ach fixed point. 

We first investigate the stability of fixed points (9) –(11) . Accord- 

ng to the form of the fixed points, we may easily find the exis- 

ence condition which satisfies the followings: 

0 ≤ 2(β − δ + 1) 

p + 2 

≤ 1 

⇒ 2(β − δ + 1) ≤ p + 2 

⇒ 2(β − δ) ≤ p, 

here the border defined by p = 2(β − δ) . 

For the fixed points (12) –(14) of P 2 , the components among 

hree points are circulant, and thus, due to the symmetry, we in- 

estigate the stability of P 2 by employing the fixed point (12) : 

 ̃

 x , ̃  y , 0) = 

(
2 p(β − δ + 1) 

p 2 + 4 p − 4 

, 
2(p − 2)(β − δ + 1) 

p 2 + 4 p − 4 

, 0 

)
. 

or p ∈ R + , the sign of denominator p 2 + 4 p − 4 changes either

egative for 0 < p < −2 + 2 
√ 

2 or positive for p > −2 + 2 
√ 

2 . For

he parameter p on 0 < p < −2 + 2 
√ 

2 , since the value ˜ x should

e positive, we obtain the condition p > 0 and β − δ + 1 < 0 . At

he same time, since ˜ y should be also positive, we obtain p > 2 

hich contradicts to the assumption 0 ≤ p < −2 + 2 
√ 

2 . Thus, the

oint (12) is not defined for 0 < p < −2 + 2 
√ 

2 . However, for p >

2 + 2 
√ 

2 , both coordinates become positive if β − δ + 1 > 0 and

p > 2 . Thus we obtain the existence condition of (12) as 

p > 2 , β − δ + 1 > 0 . (16) 

We finally investigate the existence condition of the interior 

xed point P 3 (15) , which naturally yields existence conditions 

− δ + 1 > 0 and p ≥ 6(β − δ) − 2 since the total sum of three

pecies should not exceed 1. �
The stability of each fixed point can be investigated by linear 

tability analysis. Here, we define 

f 1 = x 

[ 
1 −

(
1 + 

p 

2 

)
x − y − 2 z + β − δ

] 
, 
7 
f 2 = y 

[ 
1 − 2 x −

(
1 + 

p 

2 

)
y − z + β − δ

] 
, 

f 3 = z 

[ 
1 − x − 2 y −

(
1 + 

p 

2 

)
z + β − δ

] 
, 

nd the Jacobian matrix J of the equation system is 

 = 

⎡ 

⎣ 

∂ f 1 (x,y,z) 
∂x 

−x −2 x 

−2 y ∂ f 2 (x,y,z) 
∂y 

−y 

−z −2 z ∂ f 3 (x,y,z) 
∂z 

⎤ 

⎦ , (17) 

here 

∂ f 1 (x, y, z) 

∂x 
= 1 − (p + 2) x − y − 2 z + (β − δ) , 

∂ f 2 (x, y, z) 

∂y 
= 1 − 2 x − (p + 2) y − z + (β − δ) , 

∂ f 3 (x, y, z) 

∂z 
= 1 − x − 2 y − (p + 2) z + (β − δ) . 

From the Jacobian matrix (17) , we obtain associated eigenvalues 

or the fixed points (9) –(11) of P 1 as: 

λ1 = δ − β − 1 , λ2 = 

p(β − δ + 1) 

p + 2 

, 

λ3 = 

(p − 2)(β − δ + 1) 

p + 2 

, (18) 

here all points of P 1 have same eigenvalues. 

Since β − δ + 1 > 0 , we find that λ1 in (18) is negative, and

2 is positive for p ∈ R + . Thus, the fixed points (9) –(11) are al-

ays unstable, but they can constitute heteroclinic cycles in which 

re asymptotically stable when λ3 is negative, i.e., p < 2 . To be 

oncrete, the heteroclinic cycle can be asymptotically stable when 

p < 1 as proven in Theorem 1 . 

heorem 1. Three absorbing fixed points (9) –(11) can constitute het- 

roclinic cycles in which are asymptotically stable for p < 1 when the 

oints are defined. 

roof. To identify the exact condition for the stability of the hete- 

oclinic cycles, we need to calculate the saddle value V : [50] 

 = 

3 ∏ 

i =1 

V i = 

3 ∏ 

i =1 

(
−λs 1 

λu 

∣∣∣∣
i 

)
, (19) 

here eigenvalues satisfy λu > 0 > λs 1 > λs 2 . Since β + 1 > δ, we 

ave 

3 − λ1 = 

(p − 2)(β − δ + 1) 

p + 2 

− (δ − β − 1) 

= 

(
p − 2 

p + 2 

+ 1 

)
(β − δ + 1) 

= 

2 p 

p + 2 

(β − δ + 1) > 0 , 

or p < 2 , which yields λ3 > λ1 , and hence V i at each point of P 1 
an be calculated by 

 i = −λs 1 

λu 
= −λ3 

λ2 

ince λu = λ2 which is always positive for p > 0 . According to the 

efinition of V (19) , we obtain V as a form: 

 = 

3 ∏ 

i =1 

V i = 

3 ∏ 

i =1 

(
−λ3 

λ2 

)
= 

(
−λ3 

λ2 

)3 

= 

(
2 − p 

p 

)3 

, 

nd V > 1 for p < 1 , which implies the heteroclinic cycles are

symptotically stable. Otherwise, we obtain V ≤ 1 and thus the 

eteroclinic cycles are unstable (see Fig. 8 ). �
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Fig. 8. The value V as a function of p. 
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For the fixed points (12) –(14) of P 2 , corresponding eigenvalues 

an be found from the Jacobian argument with J as followings: 

λ1 = δ − β − 1 , λ2 = 

p(2 − p)(β − δ + 1) 

p 2 + 4 p − 4 

, 

λ3 = 

(p 2 − 2 p + 4)(β − δ + 1) 

p 2 + 4 p − 4 

, (20) 

heorem 2. Three fixed points (12) –(14) of P 2 are always unstable. 

roof. According to the conditions (16) , we easily find that λ1 

nd λ2 in (20) are always negative. Thus, the stability will be 

andled by controlling λ3 in (20) , but the λ3 is always positive 

ince p 2 − 2 p + 4 = (p − 1) 2 + 3 > 0 for p > 2 . Therefore, we con-

lude that three fixed points (12) –(14) of P 2 do not exist as stable 

tates even if the points are well-defined. �

The linear stability with J yields eigenvalues associated to the 

nterior fixed point (15) as 

1 = δ − β − 1 , λ2 , 3 = 

(β − δ + 1)(1 − p ± √ 

3 i ) 

p + 8 

, (21) 

here real and imaginary parts of λ2 , 3 are identified by: 

e (λ2 , 3 ) = 

(1 − p)(β − δ + 1) 

p + 8 

, 

m (λ2 , 3 ) = 

√ 

3 (β − δ + 1) 

p + 8 

. 

(22) 

From the condition β + 1 > δ in Proposition 1 , it is obvious that

1 is always negative. Since λ2 , 3 are complex eigenvalues, the sta- 

ility of the interior fixed point (15) ultimately depends on the 

ign of Re (λ2 , 3 ) . Since β + 1 > δ, we easily find that Re (λ2 , 3 ) < 0

f p > 1 , and thus the point (15) is asymptotically stable when it is

efined. Thus we obtained the following theorem. 

heorem 3. The interior fixed point (15) of Eq. (5) is asymptotically 

table for p > 1 . 

.2. Imbalanced population flow 

Likewise balanced population flow, most of stability analysis of 

xed points are easily obtained by eigenvalues of Eq. (5) . Thus, we 

riefly provide the analysis for Q 2 which is not derived under the 

alanced flow. Since we have several unknown parameters even if 

e fixed rates of outflows, we here provide analysis numerically 

y showing basins of parameters. To be concrete, we analyze the 

xed point ( ̃  x ∗, ̃  y ∗, 0) associated with Q 2 ( XY ) with components: 

 

 

 

 

 

˜ x ∗ = 

2(2 β1 − 2 β2 − 2 δ1 + 2 δ2 + p(1 + β1 − δ1 )) 

p 2 + 4 p − 4 

, 

˜ y ∗ = 

2(2 β2 − 4 β1 + 4 δ1 − 2 δ2 − 2 + p(1 + β2 − δ2 )) 

p 2 + 4 p − 4 

, 

(23) 
8 
here the associated eigenvalues are 

λ1 = 

1 

p 2 + 4 p − 4 

[ 12(β1 − δ1 ) − 4(β2 − δ2 ) − 4(β3 − δ3 ) 

−2 p(β1 − δ1 ) − 4 p(β2 − δ2 ) + 4 p(β3 − δ3 ) 

−2 p + (β3 − δ3 + 1) p 2 + 4 

]
, 

2 , 3 = 

1 

2(p 2 + 4 p − 4) 
[ 4(β1 − δ1 ) − 2 p(β2 − δ2 + 1) 

−p 2 (β1 + β2 − δ1 − δ2 + 2) + 4 ±
√ 

A 

]
, (24) 

ith the quantity A : 

 = (β1 − δ1 ) 
2 (p 4 + 16 p 3 + 88 p 2 + 64 p − 112) 

+(β2 − δ2 ) 
2 (p 4 + 12 p 3 + 52 p 2 + 32 p − 64) 

+2(β1 δ2 + β2 δ1 − β1 β2 − δ1 δ2 ) 

×(p 4 + 14 p 3 + 52 p 2 + 72 p − 96) 

+4(β1 − δ1 )(p 3 + 18 p 2 − 4 p − 8) 

+4(δ2 − β2 )(p 3 + 20 p − 16) + 4(3 p − 2) 2 . 

Under the given parameter (δ1 , δ2 , δ3 ) = (0 . 1 , 0 . 3 , 0 . 4) used in

ection 3.2 , the fixed point (23) can be defined by: 

20(β1 − β2 ) + (10 β1 + 9) p + 4 

5(p 2 + 4 p − 4) 
, 

20(β2 − 2 β1 ) + (10 β2 + 7) p − 22 

5(p 2 + 4 p − 4) 
, 0 

)
(25) 

nd the eigenvalues are rewritten by 

λ1 = 

1 

5(p 2 + 4 p − 4) 
× [ 20(3 β1 − β2 − β3 ) − 11 p 

−10 p(β1 + 2 β2 − 2 β3 ) + (5 β3 + 3) p 2 + 28 

]
, 

2 , 3 = 

1 

10(p 2 + 4 p − 4) 
× [ 10(2 β1 − β2 ) 

−{ 5(β1 + β2 ) + 8 } p 2 − 7 p + 18 ±
√ 

A 

′ ], 
here the quantity A 

′ is 

 

′ = 25 β2 
1 (p 4 + 16 p 3 + 88 p 2 + 64 p − 112) 

+25 β2 
2 (p 4 + 12 p 3 + 52 p 2 + 32 p − 64) 

+10 β1 (p 4 + 23 p 3 + 214 p 2 + 36 p − 168) 

−50 β1 β2 (p 4 + 14 p 3 + 52 p 2 + 72 p − 96) 

−10 β2 (p 4 + 21 p 3 + 52 p 2 + 212 p − 208) 

+ p 4 + 30 p 3 + 781 p 2 − 580 p − 28 . 

From the formation in (25) , we find the point is defined by β1 ,

2 , and p. In particular, since β3 only affects on λ1 , we assume 

3 = 0 . 5 , and the basin of parameters for the stable (25) can be

epicted as Fig. 9 when it is defined. 

As we explored in Section 3.2 , the fixed point (25) appears 

hen p = 1 as stable state. However, from the basin structure in 

ig. 9 , we found that the point can be stable when p = 0 . 83 with

ery narrow region. The area of the basin is expanding as p in- 

reases, which means that the stronger intragroup competition can 

romote the stable survival of groups X and Y . Since we restrict 

he level of all inflow rates, corresponding basins only appear in 

mall regions in Fig. 4 , which are indicated in Figs. 9 (d)- 9 (h). Sta-

ility of other fixed points can be similarly obtained, and we there- 

ore omit. 

. Conclusion 

Flow mechanisms that can account inflow and outflow of an 

ndividual’s movements or participant’s investment can be a com- 

on feature in social sciences. In particular, for cyclic governance 

hanges among similar companies seeking to seize the market 
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Fig. 9. Basin of parameters (β1 , β2 ) for the stable (25) with different p. (a) The basin of parameters for stable (25) is presented in the three-dimensional space. (b-h) As p

increases, the associated basin of (β1 , β2 ) enlarges, which emerges from p = 0 . 83 with a small area. Under the restriction 
∑ 3 

i =1 βi = �, parameters with β3 = 0 . 5 associated 

to Fig. 4 are depicted by different colors. 
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hrough sequential launches of products and price cycling in eco- 

omic markets [35,58,59] , it is important to understand the flow 

echanism on changes in existing commercial areas due to new 

ommercial trends, bankruptcy or other industries. Furthermore, 

nder the framework of ecological sciences, it is also important to 

nderstand the process of population flow as species can move in 

nd out of society to find a better environment. 

We investigated the effect of population flow on biodiversity 

n the system of cyclic competition which can lead the change of 

 community paradigm. Through numerical simulations and the 

inear stability analysis, we found that diversity of group survival 

tates can be strongly promoted by population flow. If inflow and 

utflow rates of populations are considered as same to all groups, 

espectively, all groups always coexist by exhibiting a phase transi- 

ion from an asymptotically stable heteroclinic cycle to a stable at- 

ractor, which corresponds to weak and strong coexistence, respec- 

ively. Such phenomena can be driven by frequent flow as the rate 

f intragroup competition increases. On the other hand, it has been 

ound that the imbalanced flow where all frequencies of inflow and 

utflow of groups differ can yield alternative stable states. To be 

oncrete, similar to the effect of intragroup competition [16,47] , we 

ound various survival states including the survival of any two in- 

eracting groups. We also found that the survival of the sole group 

an be stabilized, and the multistability among sole group survival 

tates can emerge [31,33] which are sensitive to initial densities of 

roups depending on population flow. By exploiting the basin area 

f parameters which is measured by the number of parameters to 

atisfy existence and stability conditions, we have further investi- 

ated the dependency of coexistence due to relativistic interplay of 

opulation flows by changing the strength of intragroup competi- 

ion, and captured oscillatory dynamics of coexistence which will 

rovide a guideline for the robustness of coexistence behavior. 

In general, the overall structure between cyclically competing 

roups is defined by a closed community with no population flow 

o the outside environment. Thus the density in a group can be 

nly affected by one of interplay among groups, and the total 

ensity should be maintained by keeping balance among interac- 

ion interplay [15,16,47] . However, since the interplay only occurs 

ithin the same group, there is no change of a community struc- 

ure even if an asymmetric system is considered. On the contrary, 

e suggested that population flow can be an additional candidate 
9 
o destroy the symmetric structure among groups, and our sugges- 

ion can ultimately indicate the change of a community paradigm. 

n this regard, we expect our findings to contribute to provid- 

ng global insights to interpret complex phenomena in interdisci- 

linary sciences. 
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ppendix A. Fixed points of Eq. (5) with imbalanced flow 

Similar to the case of the balanced population flow in 

ection 4.1 , direct calculation yields again that Eq. (5) can also pos- 

ess three distinct survival states of groups which are classified by 

he number of surviving groups for βi , δi > 0 : (a) Q 1 for existence 

f the only one group, (b) Q 2 for survivals of any two interacting 

roups, and (c) Q 3 for coexistence of all groups. 

To be concrete, the Q 1 consists of three absorbing fixed points 

f form: (
2(β1 − δ1 + 1) 

p + 2 

, 0 , 0 

)
, (

0 , 
2(β2 − δ2 + 1) 

p + 2 

, 0 

)
, (A.1) (

0 , 0 , 
2(β3 − δ3 + 1) 

p + 2 

)
. 

Since 

2(βi − δi + 1) 

p + 2 

≤ 1 

https://doi.org/10.13039/501100003725
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⇒ 2(βi − δi + 1) ≤ p + 2 

⇒ 2(βi − δi ) ≤ p, 

ach point can be defined if 2(βi − δi ) ≤ p with βi + 1 > δi for p >

 which is similar to P 1 in Proposition 1 . 

For the Q 2 , it also contains three fixed points of form: 

 ̃ x ∗, ̃  y ∗, 0) , (0 , ̃  y ∗, ̃  z ∗) , and ( ̃  x ∗, 0 , ̃  z ∗) , where components in each

ase are given by 
 

 

 

 

 

˜ x ∗ = 

2(2 β1 − 2 β2 − 2 δ1 + 2 δ2 + p(1 + β1 − δ1 )) 

p 2 + 4 p − 4 

, 

˜ y ∗ = 

2(2 β2 − 4 β1 + 4 δ1 − 2 δ2 − 2 + p(1 + β2 − δ2 )) 

p 2 + 4 p − 4 

. 

(A.2) 

or ( ̃  x ∗, ̃  y ∗, 0) , 
 

 

 

 

 

˜ y ∗ = 

2(2 β2 − 2 β3 − 2 δ2 + 2 δ3 + p(1 + β2 − δ3 )) 

p 2 + 4 p − 4 

, 

˜ z ∗ = 

2(2 β3 − 4 β2 + 4 δ2 − 2 δ3 − 2 + p(1 + β3 − δ3 )) 

p 2 + 4 p − 4 

, 

(A.3) 

or (0 , ̃  y ∗, ̃  z ∗) , and 

 

 

 

 

 

˜ x ∗ = 

2(2 β1 − 4 β3 − 2 δ1 + 4 δ3 − 2 + p(1 + β1 − δ1 )) 

p 2 + 4 p − 4 

, 

˜ z ∗ = 

2(2 β3 − 2 β1 + 2 δ1 − 2 δ3 + p(1 + β3 − δ3 )) 

p 2 + 4 p − 4 

, 

(A.4) 

or ( ̃  x ∗, 0 , ̃  z ∗) . 
The Q 3 , that describes the coexistence of all groups, is defined 

y the only one interior fixed point of the following form: 

2(x ∗∗, y ∗∗, z ∗∗) 
p 3 + 6 p 2 − 12 p + 32 

, (A.5) 

here the components are given by 

 

∗∗ = 12(β2 − δ2 ) − 4(β1 − δ1 ) − 4(β3 − δ3 ) 

+(4 β1 − 2 β2 − 4 β3 − 4 δ1 + 2 δ2 + 4 δ3 − 2) p 

+(β1 − δ1 + 1) p 2 + 4 , 

 

∗∗ = 12(β3 − δ3 ) − 4(β2 − δ2 ) − 4(β1 − δ1 ) 

+(4 β2 − 4 β1 − 2 β3 + 4 δ1 − 4 δ2 + 2 δ3 − 2) p 

+(β2 − δ2 + 1) p 2 + 4 , 

z ∗∗ = 12(β1 − δ1 ) − 4(β3 − δ3 ) − 4(β2 − δ2 ) 

+(4 β3 + 2 δ1 + 4 δ2 − 4 δ3 − 2 β1 − 4 β2 − 2) p 

+(β3 − δ3 + 1) p 2 + 4 . 
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