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Using P300-based brain–computer interfaces (BCIs) in daily life should take into account
the user’s emotional state because various emotional conditions are likely to influence
event-related potentials (ERPs) and consequently the performance of P300-based
BCIs. This study aimed at investigating whether external emotional stimuli affect the
performance of a P300-based BCI, particularly built for controlling home appliances.
We presented a set of emotional auditory stimuli to subjects, which had been selected
for each subject based on individual valence scores evaluated a priori, while they
were controlling an electric light device using a P300-based BCI. There were four
conditions regarding the auditory stimuli, including high valence, low valence, noise,
and no sound. As a result, subjects controlled the electric light device using the
BCI in real time with a mean accuracy of 88.14%. The overall accuracy and P300
features over most EEG channels did not show a significant difference between the four
auditory conditions (p > 0.05). When we measured emotional states using frontal alpha
asymmetry (FAA) and compared FAA across the auditory conditions, we also found no
significant difference (p > 0.05). Our results suggest that there is no clear evidence
to support a hypothesis that external emotional stimuli influence the P300-based BCI
performance or the P300 features while people are controlling devices using the BCI in
real time. This study may provide useful information for those who are concerned with
the implementation of a P300-based BCI in practice.

Keywords: emotional stimulation, brain-computer interface, P300, ERP, auditory stimulus

INTRODUCTION

A brain–computer interface (BCI) provides a direct communication channel between people and
external environments without any involvement of muscles by translating brain signals directly
into the commands (Wolpaw et al., 2000, 2002). Due to this capacity, BCIs can provide an
alternative means of communication with the external world for those who are suffering from
severe neurological disorders, such as amyotrophic lateral sclerosis, spinal cord injury, or brainstem
stroke (Birbaumer and Cohen, 2007). Not only as a means for communication with the external
world, BCIs can also be used to restore, enhance, supplement, and improve lost central nervous
system (CNS) functions as well as to provide a decent research tool (Brunner et al., 2015). In
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particular, non-invasive BCIs based on electroencephalography
(EEG) have been widely used due to their high temporal
resolution and relatively low cost (Nicolas-Alonso and Gomez-
Gil, 2012).

Brain-computer interfaces can be classified into several
categories such as active, reactive, and passive BCIs (Zander
and Kothe, 2011). Active BCIs elicit brain signals such as
sensorimotor rhythms by self-paced and voluntary mental
activity. Reactive BCIs induce brain signals such as event-related
potentials (ERPs) or steady-state visually evoked potentials
(SSVEPs) by providing external stimuli in a synchronous manner.
Passive BCIs detect brain signals to infer various mental states.
Among reactive BCIs relying on ERPs, P300-based BCIs have
been the most widely investigated, where P300 refers to one
of the ERP components induced by the oddball task paradigm
(Sara et al., 1994). For instance, a P300-based BCI implements
an oddball task with the visual arrangement of letters in
a matrix form and enables one to select and type a letter
using brain activity only (Farwell and Donchin, 1988). It has
been further expanded for device control by selecting a target
function amid available control functions using brain activity
(Aloise et al., 2010; Carabalona et al., 2010; Corralejo et al.,
2014; Halder et al., 2015; Miralles et al., 2015; Schettini et al.,
2015; Pinegger et al., 2016; Zhang et al., 2017). This type of
BCI, potentially combined with the Internet of things (IoT), is
especially useful for those with severe neurological disorders to
operate living goods such as home appliances (Aydin et al., 2016;
Zhong et al., 2019).

To bring BCIs to one’s daily life for efficient communications
and control of devices (Wolpaw et al., 2000), however, a number
of issues need to be resolved. One of them is the fact that the BCI
users are likely to be exposed to virtually all kinds of stimulations
from environments, which can contribute unexpected and
undefined sources of noise to EEG. In particular, the BCI users
would undergo dynamically changing states of emotions driven
by external and internal events, which would increase a chance
to temporarily distort or alternate EEG patterns, affecting the
performance of BCIs. This is particularly crucial for P300-based
BCIs, because a number of ERP components (e.g., late positive
potentials) are known to be related to emotional states and
possibly overlapped with P300 (Schupp et al., 2000; Olofsson
et al., 2008; Hajcak et al., 2010). For instance, Mehmood and
Lee (2015) investigated ERPs during the perception of emotional
visual stimuli (happy, scared, calm, and sad) and observed the
occurrence of P300 at occipital and parietal regions. Also, Conroy
and Polich (2007) reported that the frontal P300 amplitude
varied with valence using emotional stimuli provided in an
oddball paradigm.

Recently, a number of studies investigated the effect of using
emotional stimuli as targets for P300-based BCIs. Zhao et al.
(2013) demonstrated that P300-based BCIs using emotional
faces as target stimuli showed higher performance than using
non-face objects or neutral faces, due to the addition of ERP
components of human face encoding and emotion processing to
those of target recognition, which enhanced the discrimination
of ERPs for targets. Onishi and colleagues (Onishi et al.,
2017; Onishi and Nakagawa, 2019) used emotional auditory

stimuli in a certain range of valence for P300-based BCIs and
suggested that auditory stimuli of positive valence improved
BCI performance. In addition, Fernandez-Rodríguez et al. (2019)
reported that using emotional or neutral pictures resulted in
better performance than using letters as a BCI stimulus, which
was supported by more preferable evaluations by the users
on neutral and positive emotional pictures. Lu et al. (2019)
developed an audiovisual P300 speller equipped with emotional
visual and auditory stimuli, which resulted in an improvement
of performance. All of these studies, however, used emotional
stimuli as targets for the oddball paradigm, which users attended
to all the time. However, when we take the scenario of daily
use of BCIs into consideration, external emotional stimuli would
be more likely irrelevant to BCI control of devices, which the
BCI users need to ignore but can be affected—e.g., the sound
of a laugh or a crash. In this context, little is known about the
effect of external emotional stimuli on P300-based BCIs, not as
target stimuli used as a part of BCIs, but as ambient stimuli
irrelevant to BCIs.

Therefore, this study aims to investigate whether external
emotional stimuli irrelevant to the oddball paradigm influence
the performance of a P300-based BCI used for controlling home
appliances. To modulate one’s emotional states, we used external
emotional auditory stimuli concurrently with the oddball task
in which visual device control icons were used as target
or non-target stimuli. Thus, the BCI user selected a visual
target while receiving auditory emotional stimuli irrelevant to
visual stimuli. The emotional auditory stimuli used in this
study were selected from the International Affective Digitized
Sounds (IADS) (Bradley and Lang, 2007). To address individual
differences in emotional responses to a given emotional auditory
stimulus, we sorted a particular set of auditory stimuli for each
user through a precedential behavioral experiment. To examine
the effect of emotional changes on practical use of BCIs, we
built an online P300-based BCI system that controlled an electric
light device and examined the real-time effect of emotional
stimuli on the users’ performances of controlling the electric light
via the BCI system.

MATERIALS AND METHODS

Participants
Seventeen healthy subjects participated in the study (7 Female,
ages 22–28 with mean 24.61 ± 1.58). For a fair comparison of
BCI outcomes, the age range in this study was selected similar
to the previous BCI studies (Zhao et al., 2013; Lian et al., 2017;
Onishi et al., 2017; Voznenko et al., 2018; Fernandez-Rodríguez
et al., 2019). All subjects had normal or were corrected to normal
vision and had no history of neurological or psychiatric disorders.
All subjects gave informed consent for this study, approved
by the Ulsan National Institutes of Science and Technology,
Institutional Review Board (UNIST-IRB-18-08-A).

Data Acquisition and Preprocessing
The scalp EEG data of subjects were acquired from 31 active
wet electrodes (FP1, FPz, FP2, F7, F3, Fz, F4, F8, FC5, FC1,
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FC2, FC6, T7, C3, Cz, C4, CP5, T8, CP1, CP2, CP6, P7,
P3, Pz, P4, P8, O1, Oz, and O2), using a standard EEG cap
placed on the head following the 10–20 system of American
Clinical Neurophysiology Society Guideline 2. Reference and
ground electrodes were placed on mastoids of the left and right
ears, respectively. The impedance of all electrodes was kept
below 5 k�. EEG signals were amplified by a commercial EEG
amplifier (anti-CHamp, Brain Product GmbH, Germany) and
sampled at 500 Hz.

In our study, EEG signals were preprocessed as follows. First,
a raw EEG signal was high-pass filtered above 0.5 Hz. Then, a
bad EEG channel was detected and removed if more than 70%
of all other channels showed a cross-correlation lower than 0.4
with that channel after being band-pass filtered through 0.5 to
1 Hz (Bigdely-Shamlo et al., 2015). This process removed four
channels on average across subjects. Potential noise components
from the reference were removed by using the common average
reference (CAR) technique. The re-referenced EEG signal was
low-pass filtered below 50 Hz. Then, artifacts were eliminated by
the artifact subspace reconstruction (ASR) method (Mullen et al.,
2015; Chang et al., 2018). Finally, the signal was low-pass filtered
again below 12 Hz for the ERP analysis.

Experimental Setup
The experiment was conducted twice on two different days
in each subject, with an interval of 6–8 days between the
experiments. In the first experiment, a pre-survey was taken for
selecting emotion-induced sounds used as individual auditory
stimuli for each subject. In the second experiment, subjects
performed an online P300-based BCI session to control an
electric light device while listening to the set of sounds selected
in the first experiment. Afterward, they took a post-survey again
for the emotion-induced sounds used in the BCI session.

Sound Samples Selection
We selected sound stimuli for individual subjects, used for
inducing positive and negative emotions in them during the
operation of the P300-based BCI; 100 emotional sound samples
were prepared initially from the International Affective Digitized
Sounds, the 2nd edition (IADS-2) (Bradley and Lang, 2007)
based on the reported mean valence rating: 50 highest mean
valence rating (Supplementary Table 1) and 50 lowest mean
valence rating (Supplementary Table 2). These samples included
natural sounds made by people, animals, and objects that are
commonly experienced in daily life (Supplementary Table 1
and Supplementary Table 2). For each of the sound samples,
the survey in the first experiment asked each subject to report
how strongly they felt an emotion by scoring emotional response
in each of the two emotional dimensions: valence and arousal.
The score was scaled between −100 and 100 in each dimension.
We informed subjects to score valence toward −100 if they felt
strongly negative by the sound and toward +100 if they felt
strongly positive. Also, we informed subjects to score arousal
toward−100 if they were weakly aware of an emotion and toward
+100 means if they were strongly aware of an emotion. The
survey questions were provided to subjects in the text form.

In each subject, after the first experiment, we selected the 15
sound samples from each high valence (HV) and low valence

(LV) group showing the largest absolute valence scores along with
positive arousal scores (Figure 1A).

Online BCI Operation
In the second experiment, before the online P300-based BCI
session, subjects performed a training session. The training
session consisted of 40 blocks. Each block started with a fixation
period for 500 ms where a fixation cross appeared at the center
of the screen, followed by the random presentation of four
visual stimuli located at each of the four corners of the screen.
The stimuli were designed as a purple square with an icon
indicating a control function of the electric light device. When
highlighted, the color of square was changed to light green
(Figure 1B). Subjects were given the information about which
of the four stimuli was a target and asked to gaze at it through
the block. Then, a trial began by highlighting one of the stimuli
randomly for 75 ms followed by an inter-trial interval of 75 ms.
There were 40 trials per block—four stimuli were highlighted
exactly 10 times each in a random order, which led to 6 s of
stimuli presentation. Including a fixation period, 4 s of target
presentation and 4 s of feedback presentation and 1 s of inter-
block interval, one block lasts 15.5 s resulting in 10.3 min of
the training session. Note that no auditory stimulus was given to
subjects during training.

After the training session was over, we epoched the
acquired EEG data according to the stimulus information by
distinguishing each stimulus as a target or non-target. Note that
there was an overlap between successive epochs because the
length of an epoch was set to−200 to 600 ms in this study which
was longer than the length of a trial. This was originally designed
for the development of online P300-based BCIs in our previous
studies and shown to work properly (Kim et al., 2019). Then,
we obtained ERPs in response to the target or the non-target in
each block by taking average of EEG in the corresponding epoch
over trials. From these ERPs, we extracted features from the P300
component as well as other potential components by taking out
ERP amplitude values between 150 and 600 ms after stimulus
onset. The features were then used to train a classifier based on
support vector machine (SVM) with a linear kernel and penalty
parameter C as 1, which discriminated between target and non-
target. Note that there were 40 training samples in the target class
and 120 samples in the non-target class, respectively. These data
were imbalanced, possibly posing a problem for classification.
Our previous study (Lee et al., 2020) showed that adjusting the
penalty parameter C could resolve the problem of imbalance
slightly, but the resulting improvement in accuracy was only
marginal. According to this study, we did not adjust C in the
online BCI experiment. In addition, during online BCI operation,
one of the four stimuli that was closest to the target class based on
SVM score was decided as a target.

With a P300-based BCI containing the trained classifier,
subjects performed the online session to control an electric light
device (Phillips hue 2.0, Phillips, Netherlands). The online session
consisted of 60 blocks with four auditory conditions: HV sound
presentation (HV), LV sound presentation (LV), noise sound
presentation (Noise), and no sound (None). As a noise sound,
we used a recording of ambient daily sounds mixed with human
voices, dishes, and objects clattering. All sound samples were
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FIGURE 1 | Experimental protocol. (A) Subjects reported the valence and arousal level of 100 IADS sound samples. From the reports, a total of 30 samples were
selected for each subject (15 highest valence + 15 lowest valence values). (B) Approximately a week later, subjects revisited and conducted a P300 BCI control
experiment while exposed to emotional auditory stimuli with four conditions (high valence, low valence, noise, and none). (C) After the P300 BCI experiment,
subjects again rated the valence and arousal level of the sound samples that they heard during the BCI experiment.

6 s long so that it could be played in the same duration as the
6-s visual stimulation length. Subjects listened to the auditory
stimulus through earphone at a sound level of 61 dB on average.
There were 15 blocks in each of the four conditions. The order
of the blocks was randomized. The composition of a block was
same as that in training session, except for feedback presentation.
In each block, subjects were given the information of which
control command (out of four) they should operate and selected
it using the BCI through 40 trials of the stimulus presentation
in a block. The four commands included light on, light off, color
change, and brightness change. After the block, subjects received
feedback immediately from the real-time operation of the electric
light device located in front of them according to the functional
command generated by the BCI, regardless of the correctness
of the operation (Figure 1B). Unlike automatic progress of the
experiment in training session, the progress to the next block was
done manually, one block lasted 20 s to 35 s, and the entire online
session took approximately 20 min.

After the online session, subjects conducted a post hoc survey
for the selected sound stimuli used in the session with the
same scoring scheme as in the first experiment (i.e., −100
to 100 for valence and arousal each) (Figure 1C). This post
survey was designed to examine how much emotional responses
to the selected sound samples changed before and after the
online BCI session.

Data Analysis
ERP Analysis
We analyzed ERPs for the target stimuli obtained from the online
test session across different auditory conditions. Specifically, we
focused on the amplitude of a positive peak that was defined
as the highest amplitude within a time window from 250 to
500 ms after stimulus onset. We also measured the latency of
this peak in each ERP. To examine whether these ERP features
were different across the four conditions, we applied repeated
measures ANOVA (rmANOVA) for each ERP feature at each
channel. Note that the number of subjects (i.e., samples) tested
varied across channels due to individual differences of bad
channel removal results (see Table 1). Also, the channel FT10 was
completely excluded in this ERP analysis because this channel
was removed in every subject except for one subject, which
was due to problem of the corresponding electrode cap used
in the experiment.

BCI Performance Analysis
Using the BCI control results from the online test session, we
calculated accuracy given by the ratio of the number of blocks
with correct target selection to the number of all blocks (i.e.,
60). After obtaining accuracy of all subjects for each condition,
we divided subjects into two groups according to the extent to
which the presence of emotional stimuli affected subjects’ BCI
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TABLE 1 | The statistical test results of differences in the P300 peak amplitude and latency between emotional conditions (rmANOVA). The values that showed
significance (p < 0.05) were highlighted in bold.

Channel Amplitude Latency The number of subject

F p-value F p-value

F3 2.9188 0.0442 0.9812 0.4101 16

Fz 1.1825 0.3263 0.7303 0.5390 17

F4 0.4108 0.7460 0.0348 0.9912 17

FC1 1.4411 0.2425 0.6397 0.5932 17

FC2 1.8931 0.14543 1.6373 0.1951 15

C3 2.1072 0.1116 2.4873 0.0717 17

Cz 0.1228 0.9462 0.3986 0.7546 17

C4 0.3269 0.8059 0.2995 0.8256 16

CP1 0.4269 0.7346 1.6363 0.1934 17

CP2 0.2813 0.8386 0.1964 0.8983 17

P3 0.2955 0.8285 1.0302 0.3876 17

Pz 0.6687 0.5754 0.0560 0.9823 17

P4 1.609 0.1996 1.0347 0.3857 17

O1 2.2360 0.0980 1.0720 0.3712 15

Oz 0.5893 0.6254 0.2911 0.8316 15

O2 1.1 0.3590 1.7083 0.1788 16

control: a large difference (LD) and small difference (SD) groups.
The LD group consisted of subjects who showed an increase
or decrease of accuracy in either the HV or LV conditions by
more than 10% compared to the None condition. The SD group
consisted of the rest subjects. Since 15 blocks were conducted
for each condition, one correct (or wrong) selection would cause
the change of accuracy as much as 6.67%. Compared to None,
more than one correct or wrong selection in either HV or LV was
deemed to be a large difference in this study, as one or less correct
or wrong selection in both HV and LV than in None would not
sufficiently pronounce a difference of accuracy. Therefore, we set
10% of accuracy as a criterion to discriminate subject groups into
the LD and SD groups. This division was intended to observe
whether those who were influenced more by emotional stimuli
regardless of the valence of emotion (HV or LV) showed different
tendency compared to others. There were nine subjects in the LD
group, and 8 in the SD group, respectively. Then, we compared
BCI control accuracy as well as ERP features (see section “ERP
Analysis”) and emotional EEG features (see section “Emotional
EEG Analysis”) between the four conditions within each group.
This further analysis was conducted to examine whether we could
observe any influence of emotional stimuli on the BCI operation
if we sharpened our focus on a certain group of individuals.

Emotional EEG Analysis
We analyzed EEG characteristics reflecting overt emotional
responses to auditory stimuli during the operation of the BCI.
Specifically, we examined frontal alpha asymmetry (FAA) that
has been well known to represent valence (Coan and Allen,
2003). FAA was calculated by asymmetry between left and right
hemisphere alpha-band power of EEG. In this study, FAA was
determined as follows:

FAA = 10(ln(Powerright)− ln(Powerleft)) (1)

where Powerleft was the average power of alpha band (8–
14 Hz) at channel FP1, F3 and F7; and Powerright was the
average power of the same frequency band at channel FP2, F4,
and F8. We measured FAA from EEG data in each condition
in each subject. Then, we compared FAA across the four
conditions using rmANOVA.

RESULTS

Survey Results
We compared the valence scores from the survey of a set of 30
sound samples selected for each subject taken before and after the
online BCI session (Figure 2). There was no instance that the sign
of the valence scores was altered for any of the samples. However,
the absolute values of the valence scores significantly decreased
after the online BCI session (HV: p = 0.0012; LV: p < 0.001).

ERP Differences
We visually inspected the ERPs from the training data to examine
whether the P300 component was induced by the target stimulus
(Figure 3A). As expected, the P300 component appeared to
be present in response to the target but not to the non-
target over many channels (e.g., Pz, Oz, and others). Next, we
compared the ERPs of different auditory conditions from the test
data (Figure 3B, Supplementary Table 3 and Supplementary
Table 4). We observed no conspicuous difference between the
conditions in the ERP patterns in response to the target stimulus.
The rmANOVA was conducted on those channels in which P300
was observed: F3, Fz, F4, FC1, FC2, C3, Cz, C4, CP1, CP2, P3,
Pz, P4, O1, Oz, and O2. The rmANOVA revealed no significant
difference in the peak ERP amplitude and latency among the
conditions except for F3 (Table 1). In order to examine the
peak amplitude level at F3, the peak amplitude was compared

Frontiers in Human Neuroscience | www.frontiersin.org 5 February 2021 | Volume 15 | Article 612777

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-612777 February 22, 2021 Time: 19:23 # 6

Kim et al. Emotional Stimulation in BCI

FIGURE 2 | The distributions of the valence scores of high-, and low-valence stimuli used in the experiment before (Pre) and after (Post) the online BCI session. The
bars indicate the average valence scores. AVG, average over all pre- and post-session scores. There were 15 high-valence and 15 low-valence stimuli, respectively.
There was an approximately 1-week interval between pre- and post-session. **p < 0.01, ***p < 0.001, paired t-test.

FIGURE 3 | ERP graphs. (A) Grand average ERP graphs obtained from the training set. The red line represents ERP of target and black line does that of non-target
stimuli. (B) Grand average ERP graphs obtained from the test set for each of the four emotional auditory stimulation conditions. The shaded area indicates where the
analysis for P300 component was conducted.
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FIGURE 4 | Average accuracy of online P300-based BCI control for each
stimulus condition (HV, high valence; LV, low valence; Noise, noise sound;
None, no sound). Black dots represent the accuracy of individual subjects in
each condition. N indicates the number of samples.

between the target and non-target stimuli, and a paired t-test
showed no significant difference for all conditions (HV: p = 0.35,
LV: p = 0.27, Noise: 0.21, None: p = 0.26). In addition, we
repeated the comparison of the ERP peak amplitude and latency
in each group of subjects: the LD and SD groups. For this
analysis, we used the Friedman test followed by the Tukey’s-HSD
post hoc test. The LD group showed a significant difference in the
peak amplitude only at channel O1 between the HV and None
conditions (HV < None, p = 0.02), while it showed no difference
in the peak latency. The SD group showed a significant difference
between the conditions in neither the peak amplitude nor peak
latency (p > 0.05).

Online BCI Performance
Subjects operated the P300-based BCI to control the electric light
device with an average accuracy of 88.14± 7.26% (Figure 4). The

maximum and minimum accuracy among subjects was 98.33%
and 73.33%, respectively. The rmANOVA showed no significant
difference in accuracy between the conditions [F(3,48) = 0.086,
p = 0.98]. The accuracy was also compared in two groups. The
average accuracy of the LD group was 85.93 ± 5.15% and that of
the SD group was 90.63± 8.77%. Wilcoxon rank sum test showed
no significant difference between these groups (p = 0.118).
In addition, The Friedman test did not show any significance
between the conditions in either the LD [χ2(3, N = 8) = 0.89,
p = 0.828] or SD group [χ2 (3, N = 9) = 0.49, p = 0.922] (Figure 5).

Additionally, subjects were grouped again according to their
accuracy in the None condition. Subjects who showed higher
accuracy than the average belonged to the high accuracy group
and those with lower accuracy than the average belonged to the
low accuracy group. The average accuracy of the high accuracy
group was 92.29 ± 5.77% and that of the low accuracy group
was 84.44 ± 6.61%. Wilcoxon rank sum test showed a significant
difference between these groups (p = 0.0216). Among eight
subjects in the SD group, only one subject was included in the
low accuracy group. Similarly, 8 out of 9 subjects in the LD group
belonged to the low accuracy group (Figure 6).

Frontal Alpha Asymmetry
Overall, the rmANOVA revealed no significant difference in FAA
between the conditions [F(3,48) = 2.496, p = 0.071] (Figure 7). In
the group-wise analysis, the Wilcoxon signed rank test did not
show any significant change of FAA from the None condition
to each of the other auditory conditions (HV, LV, and Noise), in
either the LD or SD group (p > 0.05) (Figure 8 and Table 2).

DISCUSSION

In the present study, we investigated the effect of externally
induced emotions on the performance of a P300-based BCI.
Subjects participating in this study received emotional auditory
stimuli designed to induce positive (HV) and negative (LV)

FIGURE 5 | Average accuracy of online P300-based BCI control for each stimulus condition (HV, high valence; LV, low valence; Noise, noise sound; None, no sound)
in each subject group: small difference group and large difference group. See the text for the details of the criteria of dividing groups. Black dots represent the
accuracy of individual subjects in each condition. N indicates the number of samples in each group.
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FIGURE 6 | The number of subjects included in groups based on the
difference from None condition (SD and LD) and the accuracy in None
condition (high accuracy and low accuracy). The values in parentheses are the
average accuracy of the corresponding group.

FIGURE 7 | The distributions of frontal alpha asymmetry (FAA) values under
each emotional stimulus condition (HV, high valence; LV, low valence; Noise,
noise sound; None, no sound). The red line shows the average of FAA value
over subjects in each condition. Every line connecting dots represents the
FAA variation of each subject across conditions. No significant difference in
FAA between the conditions was found [F (3,48) = 2.496, p = 0.071].

emotions while controlling an electric light device through
the P300-based BCI. In addition to these emotional stimuli,
noise (neutral valence) as well as no sound was presented.
We compared the ERP properties, online BCI performance
and FAA between the four conditions (HV, LV, Noise, and
None). We found no significant difference in the ERP peak
amplitude and peak latency over most EEG channels except for

F3 (although a difference in the peak amplitude was found at
F3, the amplitude level was relatively small and thus hard to
extract meaningful results). Also, BCI control accuracy and FAA
were not different between the conditions. Subjects controlled
the electric light using the BCI fairly well under all conditions
(online control accuracy of 88.14% on average). Furthermore,
we examined whether the extent to which individuals were
influenced by emotional stimuli contributed to individual
differences in accuracy. To this end, we divided subjects into two
groups based on the difference of accuracy between the emotional
and None conditions. We observed no significant difference in
BCI control accuracy, ERP peak amplitude and FAA across the
conditions within each of the large difference (LD) group and
small difference (SD) group. From the results of the present study,
there was no clear evidence that emotional stimulations would
affect the P300-based BCI performance.

Previous studies have suggested that visual or auditory
emotional stimuli can influence P300-based BCIs when the
stimuli are used as targets to select (Onishi et al., 2017;
Fernandez-Rodríguez et al., 2019; Onishi and Nakagawa, 2019).
In these studies, P300-based BCIs included emotional stimuli—
such as sounds or images with different valence levels—as task-
relevant stimuli, so that the user was attending to those emotional
stimuli. This paradigm is different from our study in which
emotional stimuli are irrelevant to the task. In our paradigm,
the user is attending to emotionless stimuli relevant to the
task, while receiving a separate set of task-irrelevant emotional
stimuli. Our task paradigm is closer to real-life situations
because the user would be exposed to a variety of emotional
stimuli from uncontrolled environments when controlling home
appliances using BCIs.

In previous studies where background stimuli were present
during the use of BCI, the BCI accuracy was not improved,
but in most cases decreased (Lian et al., 2017; Voznenko et al.,
2018; Cherepanova et al., 2019; Xu et al., 2020). Especially, the
visual BCI performance deteriorated when background stimuli,
whether auditory or visual, attracted attention. Also, the more
mental workload was required, the more the accuracy decreased
(Cherepanova et al., 2019; Xu et al., 2020). In addition, the
presence of background stimuli without any requirement of
attention often showed reduced performance in BCI (Lian
et al., 2017; Voznenko et al., 2018). According to Voznenko
et al. (2018), music listening while using a BCI influenced each
individual differently. Some subjects were negatively affected
by music stimuli regardless of the genre of music, whereas
others showed the decreased accuracy in specific genre of
music. The authors discussed that subjects reported different
levels of interference with music depending on their preference,
which could cause distraction to the music. Hence, it can
be deduced that when background stimuli do not demand
mental workload, the effect of them depends on the extent
to which people are distracted to them. In our study, the
auditory emotional stimuli, which did not demand any attention,
did not show significant influence on the BCI performance.
It might be because the emotional stimuli did not evoke
distraction enough to decrease the BCI performance on average
in subjects of this study.
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FIGURE 8 | Changes in FAA from the None (no sound) condition to each stimulus condition (HV, high valence; LV, low valence; Noise, noise sound), in each subject
group: small difference group and large difference group. See the text for the details of the criteria of dividing groups. Red lines indicate mean changes in FAA. The
Wilcoxon signed rank test showed no significant difference between the conditions in each group.

TABLE 2 | The statistical test results of changes in frontal alpha asymmetry (FAA)
in a given stimulation condition compared to the condition of no sound (Wilcoxon
signed rank test).

Subject group Stimulation condition Signed-rank statistic p-value

SD HV 6 0.1094

SD LV 24 0.4609

SD Noise 12 0.4609

LD HV 23 1

LD LV 38 0.0742

LD Noise 22 1

SD, small difference group; LD, large difference group; HV, high valence;
LV, low valence.

When we narrowed our focus on a subset of subjects showing
differences in BCI control accuracy with emotional stimuli,
overall BCI control accuracy in the LD group was not different
between emotional conditions. This may be because the effect of
emotional stimuli on BCI performance could vary over subjects
in the LD group. Also, average accuracy in the SD group tended to
be higher than in the LD group. SD group, those whose accuracy
under emotional conditions did not change from the control
condition, tended to be good at operating P300 BCIs. Therefore,
good BCI performers might be relatively less influenced by
emotional conditions. However, it is still premature to draw
any conclusion from this analysis due to the lack of a sufficient
number of samples. Therefore, a more in-depth study is necessary
to investigate influences of emotional state changes on the use of
the BCI specifically for those who are more susceptible to external
emotional events.

Even though we asked subjects to rate valence and arousal
scores of emotional auditory stimuli independently of BCI
control, we additionally computed FAA in each condition to
estimate their emotional states during the online BCI control
task. FAA has been widely used as a metric to represent emotional
valence (Davidson et al., 1979; Harmon-Jones et al., 2010). It was
confirmed in our experiment that the valence score of HV stimuli
remained positive and that of LV stimuli remained negative

before and after the task. We also found no difference between the
SD and LD groups in the valence scores for HV and LV stimuli,
respectively (p > 0.05). In contrast, FAA showed no difference
between the HV, LV, Noise, and None conditions. This result of
FAA may be associated with no significant difference in ERPs and
BCI performance, implying that external emotional stimuli given
during BCI control did not induce emotional changes much in
the brain. We conjecture that no clear effect of the valence of
emotional stimuli on FAA might be due to the fact that subjects
were likely to concentrate on selecting targets during the online
BCI control session with real-time feedback from the device,
which could weaken the effect of auditory emotional stimuli.
However, this conjecture would not be made possible if we only
look into the survey results as self-reporting on HV or LV stimuli
remained positive or negative. In addition, we observed decreases
in the absolute valence scores after the BCI control session.
This reduced emotional recognition of stimuli intensity may be
potentially due to repeated experiences because people tend to
habituate to emotional stimuli when those stimuli are repeated
and evaluate the repeated emotional stimuli to a smaller degree
(Dijksterhuis and Smith, 2002; Leventhal et al., 2007).

In this study, we found no evidence to support a hypothesis
that emotional stimuli would influence the performance of P300-
based BCIs. However, there are some limitations in this study,
which needs further investigations. First, the number of subjects
in each group was too small for statistical test results within
each group to be considered significant. Future studies with a
larger sample size should follow up to confirm our preliminary
results. Second, FAA in the HV or LV condition was not increased
compared to that in the None condition, which might indicate
that the HV or LV auditory stimuli did not successfully evoke
positive emotions. If the auditory stimuli had been selected based
on FAA combined with self-reports, the effect of emotional
stimuli on FAA might be more clearly manifested. This may
indicate a need to simultaneously measure FAA during self-
reporting on emotional stimuli in future studies. Third, it was
plausible that our BCI control task was so intense that subjects’
attention might be mostly attracted to the task and visual
processing, leaving little room for the perception of auditory
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stimuli. To verify this plausibility, we should have a brief session
in which we simply provided the prepared set of auditory stimuli
to subjects and analyzed ERPs and FAA to confirm that subjects’
emotional state changed. The follow-up studies may need to
consider such an addition to experimental design. Lastly, the age
range of subjects in our study was below 29 years. Subjects had to
attend to the BCI task while the irrelevant auditory stimuli were
presenting in the experiment. Since younger people are better at
ignoring irrelevant stimuli (McDowd and Filion, 1992), which
would worked as one of the strategies to successfully complete
the required task, those who are older than subjects in this study
may produce different results. To clarify this important inquiry,
further studies need to investigate the effect of emotions on
P300-based BCIs for elder populations.

Nonetheless, to the best of our knowledge, the present
study investigates the effect of emotional stimuli on the online
performance of a P300-based BCI for the first time and reveals
that there is no significant effect by neither positive nor
negative stimuli. We envision that the present study’s results
may provide useful information to those who are concerned with
potential effects of ambient stimuli when they build a P300-based
BCI in practice.
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