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Abstract: Epilepsy is characterized by recurrent seizures due to abnormal hyperexcitation of neurons.
Recent studies have suggested that the imbalance of excitation and inhibition (E/I) in the central
nervous system is closely implicated in the etiology of epilepsy. In the brain, GABA is a major
inhibitory neurotransmitter and plays a pivotal role in maintaining E/I balance. As such, altered
GABAergic inhibition can lead to severe E/I imbalance, consequently resulting in excessive and
hypersynchronous neuronal activity as in epilepsy. Phospholipase C (PLC) is a key enzyme in
the intracellular signaling pathway and regulates various neuronal functions including neuronal
development, synaptic transmission, and plasticity in the brain. Accumulating evidence suggests
that neuronal PLC is critically involved in multiple aspects of GABAergic functions. Therefore, a
better understanding of mechanisms by which neuronal PLC regulates GABAergic inhibition is
necessary for revealing an unrecognized linkage between PLC and epilepsy and developing more
effective treatments for epilepsy. Here we review the function of PLC in GABAergic inhibition in the
brain and discuss a pathophysiological relationship between PLC and epilepsy.

Keywords: Phospholipase C (PLC); γ-aminobutyric acid (GABA); excitatory/inhibitory balance (E/I
balance); GABAergic inhibition; epilepsy

1. Introduction

Epilepsy, one of the most common neurological disorders, is characterized by re-
peated spontaneous seizures with abnormal hyperexcitation and synchronous discharge
of neurons [1]. Approximately 60 million people worldwide suffer from epilepsy with
cognitive and psychiatric comorbidities [2,3]. Although several biological factors have
been identified as an etiology of epilepsy, including genetic mutation, brain injury, tumor,
and aging, the precise cause of epilepsy in most cases is still unknown [4,5]. One of the hy-
potheses explaining the pathophysiological mechanism of epilepsy is that the disruption of
excitation and inhibition balance (E/I balance) could generally lead to abnormal excitability
of neurons [6–8]. In the brain, neurons receive numerous excitatory and inhibitory synaptic
inputs and once the synaptic potentials in dendrites and soma are integrated together,
neurons produce axon potentials with various shapes, rates, and patterns of firing [9].
E/I balance either by increasing excitation or decreasing inhibition is associated with the
hyperexcitation of neurons, which can cause epileptic seizures [7,10,11].

γ-aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the brain and
using GABA, GABAergic inhibitory neurons primarily regulate the excitability of neurons.
GABAergic neurons produce GABA from glutamate using glutamic acid decarboxylase
(GAD) and this synthesized GABA is packaged into synaptic vesicles at synaptic terminals
through vesicular GABA transporters (VGATs). Synaptically released GABA binds to both
presynaptic and postsynaptic GABA receptors (GABAA and GABAB) and suppresses the
excitation of presynaptic terminals and postsynaptic neurons. In addition, the uptake
of released GABA at GABAergic synapses is mediated by GABA transporters (GATs).
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Molecular and cellular abnormalities of GABA synthesis, release, uptake, and GABA
receptor-mediated signaling can alter E/I balance in neurons and the dysfunctions of
any of these processes may be implicated in neurological disorders including epilepsy,
schizophrenia, and autism [12–14]. As a matter of fact, the therapeutic rationale of the
majority of current antiepileptic drugs (AEDs) is to restore altered E/I balance by elevating
the level of GABA at synapses and potentiating the functions of GABA receptors. Hence, a
better understanding of the underlying molecular mechanisms that regulate GABAergic
inhibition in the brain will be crucial to identify new drug targets, as well as to increase the
efficacy and minimize the side effects of antiepileptic drugs.

Phospholipase C (PLC) is an essential enzyme in intracellular signal transduction cas-
cades (Figure 1). PLC hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2), generating
secondary signal transducers including inositol 1,4,5-triphosphate (IP3) and diacylglycerol
(DAG). IP3 increases intracellular calcium level by binding to IP3 receptors in the endo-
plasmic reticulum and DAG activates protein kinase C (PKC)-related signaling cascades.
Throughout the body, PLC is associated with key cellular processes such as proliferation,
differentiation, migration, and survival [15–18]. There are in total 13 mammalian isozymes
of PLC including β (1–4), γ (1, 2), δ (1, 3, 4), ε, ζ, and η (1, 2), which are classified accord-
ing to their distinct domain structures and biochemical properties. Each PLC isozyme is
differentially expressed among tissues and regulates the complex cellular functions in a
tissue-dependent manner. Among these PLC isozymes, PLCβ and PLCγ are major PLC
enzymes abundantly expressed in the brain and play diverse roles in neuronal functions.
In this review article, we summarize the molecular and cellular mechanisms of GABAergic
inhibition on the regulation of E/I balance. Then we particularly focus on the role of PLC
in GABAergic inhibition. Finally, we discuss the potential relationship between PLC and
epilepsy.
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Figure 1. The principal PLC signaling cascades and functions in the brain. External ligands such as neurotransmitters and
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Gβγ subunits of G protein-coupled receptors (GPCRs), whereas the activation of PLCγ is triggered by the phosphorylation
of receptor tyrosine kinases (RTKs). Activation of PLC hydrolyzes phospholipid PIP2 into IP3 and DAG and these second
messengers mediate diverse neuronal functions.
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2. Epilepsy Model and Antiepileptic Drugs

There are several epilepsy animal models to study the mechanism of epileptogenesis
and evaluate the efficacy of AEDs [19–23] (Table 1). Animal models of epilepsy share
similar pathological mechanisms as well as mimic the seizure behaviors of human patients.
Therefore, drug screening using various epilepsy models is useful and essential to develop
new AEDs. Chemoconvulsants such as pilocarpine and kainate (also referred as kainic
acid, KA) are generally used to generate acute seizures within a relatively short period of
time by systemic- or micro-injection. Pilocarpine is a muscarinic acetylcholine receptor
agonist and pilocarpine-induced seizure has been well established as an epilepsy model.
Systemic injection of pilocarpine induces tonic–clonic generalized seizures by activating
M1 muscarinic receptors, especially in hippocampal neurons, and causes electrophysio-
logical and morphological changes in the hippocampus [24–26]. KA is an L-glutamate
analog and activates ionotropic KA receptors that are usually expressed in both excita-
tory and inhibitory synapses. Administration of KA causes neuronal depolarization and
excitotoxic damage, particularly in the hippocampus, eventually leading to spontaneous
seizures [27–29]. In another acute epilepsy model, electrical stimulation, so-called electrical
kindling, is repeatedly delivered to the specific brain regions such as the hippocampus
and amygdala. This electrical kindling increases NMDA receptor-dependent synaptic
transmission, neuronal loss, and mossy fiber sprouting in the hippocampus, all of which
are similar to the deficits in human epilepsy patients [30–32].

Unlike the acute seizures by chemical stimulants or electrical stimulation, genetic mod-
els of epilepsy in rats and mice can provide more direct insight into the genetic etiology of
human epilepsy. The Genetic Absence Epilepsy Rat from Strasbourg (GAERS) is an absence
seizure model that is characterized by a brief and nonconvulsive behavioral arrest and
apparent unconsciousness with spike-and-wave discharges (SWDs) on electroencephalo-
graphic recordings [33]. The Wistar Albino Glaxo from Rijswijk (WAG/Rij) is also one
of the absence seizure models, while the specific pathophysiological mechanism of these
inbred strains is still not fully understood. Dilute brown agouti coat color (DBA/2) mice
frequently show tonic-clonic seizures in response to a specific auditory stimulus [34,35].
Similarly, genetically epilepsy-prone rats (GEPR) exhibit sound-induced seizures with
GABAergic, serotonergic, and noradrenergic deficits [36–40].

Table 1. The animal models of epilepsy.

Type Epilepsy Model Mechanism Symptoms Reference

Genetic

Genetic Absence Epilepsy Rat
from Strasbourg (GAERS)

Inbred strain
Mutation of Cacna1h gene

encoding CaV3.2
T-type calcium channel

Spike-and-wave discharges
(SWD) in EEG [33,41]

WAG/Rij Polygenic gene mutation Spike-and-wave discharges
(SWD) in EEG [42,43]

DBA/2 Mutation of Asp2 gene Audiogenic seizures [34,35]

Genetically epilepsy-prone rats
(GEPR)

GABAergic, serotonergic,
noradrenergic deficits

Audiogenic, generalized
tonic-clonic seizures [33]

Electrical Kindling Lower threshold by
repeated stimulation Temporal lobe epilepsy [30–32]

Chemical
Pilocarpine Muscarinic acetylcholine

receptor agonist
Generalized tonic–clonic

seizures [24–26]

Kainic acid L-glutamate analog Temporal lobe epilepsy [27–29]

Currently, many AEDs have been developed for the treatment of complex seizure
types [44]. Mechanisms of action of major AEDs are to decrease neuronal excitation by
controlling voltage-gated ion channels and glutamatergic neurotransmission or to increase
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neuronal inhibition by upregulating GABA level and potentiating the responsiveness of
GABA receptors. In this review, we will focus on the AEDs targeting GABAergic mecha-
nisms (Table 2). Both benzodiazepines and barbiturates are positive allosteric modulators
of GABAA receptors and act on GABAA receptors by increasing the conductance of chloride
through ion channels [45–47], yet these drugs regulate GABAA receptors in different ways.
Benzodiazepines bind to GABAA receptors only when in the presence of GABA, while bar-
biturates, when at high concentrations, can bind to GABAA receptors even without ambient
GABA. Phenobarbital, an allosteric modulator of GABAA receptors, has been widely used
for the treatment of status epilepticus and generalized tonic-clonic seizures. Upon binding
to GABAA receptor subunits, it increases the influx of Cl– into neurons and therefore
reinforces the hyperpolarization, causing the inhibition of neuronal excitation [44,46,48].
Although effective in reducing seizures, phenobarbital has severe cognitive and behavioral
adverse effects, including decreased consciousness, dizziness, nystagmus, and ataxia [49].
Vigabatrin, an irreversible inhibitor of mitochondrial enzyme GABA transaminase, blocks
the catabolic process of GABA [50,51]. Tiagabine is a selective competitive inhibitor of
GABA transporter GAT-1, which blocks the reuptake of GABA in the synaptic cleft [52].
Vigabatrin and tiagabine increase the level of ambient GABA at synapses so that they can
facilitate GABAergic inhibition.

Table 2. Current antiepileptic drugs with GABAergic effects.

Drug Mechanism Epilepsy Types Reference

Potassium bromide GABA potentiation Generalized tonic-clonic seizures,
myoclonic seizures [53,54]

Phenobarbital Potentiation of GABAA receptor Partial and generalized convulsive seizures [55]

Primidone GABA potentiation Partial and generalized convulsive seizures [56]

Diazepam Potentiation of GABAA receptor Status epilepticus [57–59]

Valproate
Multiple mechanisms with glutamate inhibition,
blockade of sodium and T-type calcium channels,
inhibition of GABA transaminase and re-uptake

Partial and generalized
convulsive seizures,

absence seizures
[60,61]

Clonazepam Potentiation of GABAA receptor Juvenile myoclonic epilepsy [62,63]

Benzodiazepines Potentiation of GABAA receptor
Partial and generalized convulsive seizures,

Lennox–Gastaut syndrome,
myoclonic seizures

[58]

Vigabatrin Inhibition of GABA transaminase Infantile spasms, complex partial seizures [64,65]

Tiagabine Inhibition of GABA transporter Partial seizures [52]

3. GABAergic Dysfunction in Epilepsy

Excitatory and inhibitory synaptic currents precisely coordinate neuronal functions at
the level of the synapse and neural circuit. E/I balance in the brain is determined by several
physiological factors. For instance, synapse development, transmission, and plasticity
modulate E/I balance at the synapse level, while the firing properties of neurons and
spatiotemporal synchronization of neuronal firing can determine E/I balance at the level of
the neural circuit [66,67]. At the most fundamental level, however, E/I balance is governed
by neurotransmitters glutamate and GABA, both of which are primary neurotransmitters
to regulate E/I balance in the brain. The concentration of glutamate in the mammalian
brain is approximately 80–100 nmol/mg protein and that of GABA is 10–30 nmol/mg
protein [68]. Although the population of GABAergic neurons is also much smaller than that
of excitatory neurons, which is about 25–30% of excitatory neurons, GABAergic neurons
strongly control the excitation of neurons with local and long-distance innervations in the
brain [69]. Previous studies have observed altered GABAergic inhibition in both epilepsy
animal models and human patients. In temporal lobe epilepsy patients as well as in the
pilocarpine-induced epilepsy animal model, mRNA and protein levels of GAD65 and
GAD67 were markedly increased in the hippocampus, probably to facilitate GABA synthe-
sis and protect against the long-term hyperexcitability of neurons [70,71]. Two isoforms of
GAD, GAD65, and GAD67, are expressed in distinct subcellular locations during neuronal
development. GAD67 is mostly distributed in neuronal cell bodies, whereas GAD65 is
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highly expressed in axon terminals [72]. GAD65 knockout mice showed increased seizure
susceptibility and the genetic deletion of GAD67 caused severe developmental defects
and early deaths in mice [70,73–76]. On the other hand, elevated GAD67 expression in
the hippocampal CA3 region by using recombinant adeno-associated virus (AAV) signif-
icantly decreased the seizure generation in temporal lobe epilepsy models [77]. These
results indicate that the manipulation of GABA level by targeting the GAD enzyme can
be a therapeutic strategy for maintaining appropriate excitability of neurons and treating
epilepsy [77]. VGAT is also responsible for synaptic inhibition at GABAergic inhibitory
synapses and its dysfunction is related to epilepsy. However, the specific role and con-
tribution of VGAT is still debated in epilepsy animal models. For instance, VGAT level
was found to decrease in animal epilepsy models such as cortical dysplasia, Mongolian
gerbil, and picrotoxin model. Yet other studies, in contrast, reported no change of VGAT
in the kainic acid model or increased VGAT expression in the pilocarpine model [78–85].
Mutation of GAT-1 was identified in epileptic encephalopathy patients, resulting in an
impaired GABA reuptake process [86]. In addition to neuronal GAT-1, astrocytic GAT-1
is also crucial to GABAergic inhibition in neural circuits and its currents were attenuated
in the absence seizure model [87]. This evidence supports the idea that GABA synthesis
and reuptake are essential for maintaining GABAergic inhibition and the dysregulation of
these processes can induce epileptic seizures.

Activation of GABA receptors by GABA binding initiates and critically mediates the
postsynaptic effects of GABAergic synaptic transmission. There are two types of GABA
receptors in the brain, which are GABAA receptors and GABAB receptors. GABAA recep-
tors are ligand-gated ion channels and function to mediate the majority of fast inhibitory
synaptic transmission in the brain. Activation of GABAA receptors leads to the hyperpolar-
ization of neurons by increasing the movement of Cl– into the cytosol, which prevents the
action potential for neuronal activity [88–90]. In humans, GABAA receptors that consist
of five subunits, have 19 distinct subunits including α (1–6), β (1–3), γ (1–3), δ, ε, θ, π,
and $ (1–3). Unlike GABAA receptors, GABAB receptors are G protein-coupled receptors
(GPCRs) and are responsible for the slow inhibitory function. They mediate the hyper-
polarization of neurons by opening inwardly-rectifying K+ channels and inactivating the
voltage-gated Ca2+ channels [91,92]. Functional GABAB receptors are assembled from two
subunits, GABAB1 and GABAB2, to form heterodimers [93]. Any dysfunction of GABA
receptor-mediated signaling is directly implicated in various neurological disorders and
psychiatric disorders [94,95]. Importantly, genetic and functional alterations of GABA
receptors are closely linked to epilepsy. Mutations of GABA receptors have been identified
in human epilepsy patients. For example, mutations in the α1 subunit of the GABAA
receptor were observed in human juvenile myoclonic epilepsy [96]. Missense variants
of α1, α5 subunits in GABAA receptors were found in early-onset epilepsy patients [97].
Moreover, the γ2 subunit of the GABAA receptor was mutated in children with absence
seizures [98]. Consistent with these human studies, genetic ablation of GABAA receptors
in mice led to epileptic seizures [99]. The expression of GABAA receptors was also reduced
in the rodent hippocampus following pilocarpine or kainic acid-induced seizures [100,101].
As with GABAA receptors, the mutations of GABAB receptors have been reported in
epilepsy. Polymorphisms of the GABAB receptor were frequently present in temporal lobe
epilepsy patients [102,103]. In animal studies, the expression of the GABAB receptor was
decreased in the rat epilepsy model [104]. GABAB receptor knockout mice showed sponta-
neous seizures with hyperalgesia, hyperlocomotion, and memory deficit [105]. In current
antiepileptic treatments, some antiepileptic drugs enhance GABAergic inhibition through
the elevation of brain GABA levels or the potentiation of GABAA receptors [46,47,106].
As mentioned above, barbiturates and benzodiazepines allosterically modulate GABAA
receptors and are widely used as antiepileptic drugs [107,108]. Conversely, GABAA recep-
tor antagonists including bicuculline, picrotoxin, and pentylenetetrazol induce seizures
and are used to experimentally model epilepsy [109]. Together, a deeper understanding of
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the GABAergic system and GABA receptor-mediated signaling in the brain is vital to the
identification of etiology and therapeutic targets for epilepsy.

4. Phospholipase C Beta (PLCβ) and GABAergic Inhibition

PLCβ is activated by Gαq and Gβγ subunits of G protein-coupled receptors (GPCRs)
and interacts with diverse GPCRs such as 5-HT receptors, metabotropic glutamate recep-
tors, and muscarinic acetylcholine receptors [110–112]. PLCβ is abundantly expressed
in the brain and plays a pivotal role in regulating neuronal activity. Several studies
have investigated the role of PLCβ in neuronal cells by examining PLCβ isoform-specific
knockout mice. PLCβ1 knockout mice displayed an altered anxiety level and memory
impairment [113]. When PLCβ3 was genetically deleted in mice, these PLCβ3-deficient
mice showed high sensitivity to an opioid agonist, indicating that PLCβ3 would be a
key regulator in opioid signaling and addiction [114]. PLCβ4 knockout mice exhibited
deficits in visual processing, nociceptive responses, muscular coordination, and synapse
elimination in the cerebellum [115–117].

In addition, a large number of studies have demonstrated that PLCβ is implicated
in regulating GABAergic inhibition. Acetylcholine can regulate GABAergic synaptic
transmission by affecting hyperpolarization, depolarization, GABA release, and oscillatory
properties of GABAergic interneurons in the hippocampus [118]. Acetylcholine binds to
and activates two types of receptors, which are nicotinic acetylcholine receptor (nAChR,
ligand-gated ion channel) and muscarinic acetylcholine receptor (mAChR, metabotropic
receptor). mAChR is a GPCR and is classified into five subtypes. Among these five
subtypes, M1, M3, and M5 receptors are coupled with the Gαq protein and can activate
the PLCβ signaling pathway. Notably, the activation of muscarinic receptors is associated
with the generation of epileptic seizures [119]. Activation of muscarinic M1 and M2
receptors by muscarinic agonists muscarine and oxotremorine suppressed GABA release,
reducing the amplitude of evoked inhibitory postsynaptic currents (eIPSCs) in the rat
auditory cortex [120]. On the contrary, the application of PLC blocker U73122 alleviated
the oxotremorine-induced depression of eIPSC amplitude. This result clearly shows that
the activation of muscarinic acetylcholine receptors can inhibit GABA transmission via
the PLCβ pathway, eventually altering neuronal excitation. In addition, KA receptors
are implicated in epilepsy and KA-induced seizures. Interestingly, KA receptors can
affect GABAergic synaptic transmission in the presynaptic terminal. In the hippocampus,
the activation of KA receptors attenuated GABA release through the PLCβ pathway in
immature CA3 neurons of rats [121,122]. Moreover, presynaptic D2 receptors activated
the PLC-IP3-calcineurin signaling cascade and decreased GABA release at striatopallidal
terminals of medium-sized spiny GABAergic neurons [123]. These results reveal that
several neurotransmitters act on presynaptic receptors and can activate presynaptic PLCβ.
Once activated, PLCβ stimulates the downstream signaling pathway at the GABAergic
presynaptic terminal, leading to the inhibition of GABA release. On the other hand, it is
also likely that PLCβ is involved in enhancing GABA release. In the rat cerebellum, ethanol
increased spontaneous GABA release from Purkinje cells through PLC activation, and the
suppression of PLC by using PLC antagonist edelfosine prevented the ethanol-induced
GABA release [124]. Similarly, 5-HT2A receptors activated PLCβ and facilitated GABA
release at the thalamic reticular presynaptic terminal [125,126]. From this evidence, it
appears that PLC and the downstream signaling pathway mainly suppress GABA release
at the GABAergic presynaptic terminal, while they also enhance GABA release depending
on cell types and interacting receptors (Figure 2).

PLCβ and its relevance to epilepsy have been strongly suggested in many studies
(Table 3). Genetic mutations of PLCβ1 were found in human infantile epileptic encephalopa-
thy [127–130]. In animal studies, PLCβ1 knockout mice exhibited status epilepticus with
generalized and tonic-clonic seizures and prematurely died starting from three-weeks-
old [131]. Moreover, the population of somatostatin interneurons that primarily target the
distal dendrite of a neuron was reduced in the hilus of PLCβ1 knockout mice. Loss of
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PLCβ1 function by using transgene insertion in mice caused late-onset epileptic symptoms
at six months of age with aberrant mossy fiber sprouting in the hippocampus, decreased
NMDA receptor density in the stratum oriens of the CA1, and increased apoptosis [132].
In the thalamus, dysfunction of PLCβ4 in thalamocortical neurons induced abnormal burst
firing, resulting in absence seizures characterized by spike-wave discharges on electroen-
cephalography (EEG) [133]. On the other hand, the expression of PLCβwas remarkably
increased in the hippocampus in the chemical-induced epilepsy model, possibly to protect
against neuronal damage [134–136]. Furthermore, both PLCβ1 and PLCβ4 expression
in hippocampal GABAergic interneurons was reduced following pilocarpine-induced
seizures [136]. Collectively, these findings suggest that the function of PLCβ is potentially
important for preventing excessive neuronal excitability in epilepsy.
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Figure 2. The functions of PLCβ in GABAergic inhibition. (a) PLCβ is activated by diverse GPCRs
such as KA receptor, muscarinic receptor, and D2 receptor. Activation of PLCβ suppresses presynaptic
GABA release, resulting in increased excitation of postsynaptic neurons. (b) However, in other
neuronal types, activation of PLCβ by ethanol or serotonin increases presynaptic GABA release and
consequently decreases the excitation of postsynaptic neurons.

Table 3. The functions of PLC in epilepsy.

PLC Isozyme Animal or Human Study Phenotype Reference

PLCβ1

Genetic knockout mice Early-onset epileptic encephalopathy [127]

Mongolian gerbils mice Increased PLCβ1 expression after seizures [135]

Genetic knockout mice Malignant migrating partial seizures
in infancy [128]

Pilocarpine-induced status epilepticus in mice Decreased PLCβ1 expression in hippocampal
interneurons after seizures [136]

Homozygous deletions or nonsense variant
in human Infantile epileptic encephalopathy [130]

PLCβ4 Genetic knockout mice Absence seizures [133]

PLCγ1

TrkB mutation mice in PLCγ1 binding domain Decreased pilocarpine-induced
status epilepticus [137]

Heterozygote knockout mice Decreased kindling-induced seizures [138,139]

GABAergic neuron-specific
knockout mice Late-onset seizures [140]

5. Phospholipase C Gamma (PLCγ) and GABAergic Inhibition

PLCγ is usually activated by the phosphorylation of receptor tyrosine kinases (RTKs)
in response to extracellular ligands such as brain-derived neurotrophic factor (BDNF),
epidermal growth factor (EGF), platelet-derived growth factor (PDGF), nerve growth factor
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(NGF), and fibroblast growth factor (FGF). PLCγ has Src homology (SH) domains such
as SH2 and SH3. SH2 binds to the tyrosine-autophosphorylation site of RTKs and SH3
interacts with other signaling molecules including the c-Cbl family of E3 ubiquitin ligase
and proline-rich motifs on SOS1 which is a guanine nucleotide exchange factor [141,142].
Two isoforms of PLCγ, PLCγ1, and PLCγ2, exhibit distinct expression patterns throughout
the body. PLCγ1 is highly expressed in diverse tissues including the brain, while PLCγ2 is
primarily enriched in immune cells and its expression in the nervous system is relatively
weak [18,143]. Polymorphism in PLCγ1 was frequently found in bipolar patients [144,145]
and excitatory neuron-specific PLCγ1 knockout mice exhibited manic-like behaviors such
as hyperlocomotion, decreased anxiety, increased hedonic action, and impaired learning
and memory performance [146]. Moreover, the ablation of PLCγ1 in neuronal progenitor
cells resulted in impaired axon guidance during developmental stages [147].

Meanwhile, it was found that the treatment of BDNF suppressed GAT-1-mediated
GABA uptake and this inhibition was abolished by TrkB and PLC inhibitors such as K252a
and U73122 in rat hippocampal nerve terminals [148]. In another study, the activation
of PLC did not change GABA uptake in neurons, but decreased GABA uptake in astro-
cytes [149]. These findings suggest that PLC can control GABAergic transmission by
modulating GABA reuptake in a cell type-dependent manner. Many studies have focused
on the function of the BDNF/TrkB/PLCγ pathway in controlling GABAA receptor signal-
ing. The physiological role of BDNF in epilepsy has been well documented, but it is still
unclear whether the effect of BDNF is facilitating or inhibiting epileptic seizures [150,151].
It has been shown that short-term and long-term treatment of BDNF may exert differen-
tial effects on GABAergic transmission. Acute BDNF treatment decreased both evoked
and spontaneous inhibitory postsynaptic currents (IPSCs), which was caused partly by
a rapid reduction in postsynaptic GABAA receptor number, but did not affect excitatory
postsynaptic currents (EPSCs) in hippocampal CA1 neurons. Furthermore, BDNF-induced
attenuation of IPSCs was significantly suppressed by TrkB inhibitor and PLC inhibitor,
indicating that these effects by BDNF seem to be mediated by TrkB and PLC [152,153].
In the mouse cerebellum, acute application of BDNF also reduced postsynaptic GABA
response in cerebellar granule cells, whereas the same BDNF treatment potentiated GABAA
receptor functions via the TrkB-PLCγ pathway in cerebellar Purkinje cells and consequently
enhanced the amplitude of mIPSCs [154]. Another study showed that BDNF promoted
the maturation of GABAergic neurons and upregulated the expression of GABAA receptor
in cultured hippocampal neurons. Given the evidence above, although direct evidence
was lacking in this report, this trophic effect of BDNF might be potentially mediated by
PLC [155]. Interestingly, the effect of the BDNF/TrkB/PLC signaling pathway on GABAA
receptor function can change across the developmental stages. It was shown that BDNF
treatment acutely potentiated postsynaptic GABAA receptor-mediated currents in the rat
hippocampus at postnatal day six. However, through TrkB-PLCγ signaling, BDNF later
induced a long-lasting inhibition of postsynaptic GABAA receptor at postnatal day 14 [156].
In addition, the BDNF-TrkB-PLCγ pathway rapidly increased the number of GABAA
receptors in the developing rat visual cortex [157], demonstrating that PLC may be one
of the critical players regulating GABAA receptor expression, function, and eventually
GABAergic inhibition.

In line with the above findings, it appears that PLC is also implicated in GABAB
receptor-mediated functions. GABAB receptors are located in both presynaptic and postsy-
naptic neurons. Presynaptic GABAB receptors inhibit adenylyl cyclase and Ca2+ channels
through Gαi/o and Gβγ proteins, respectively, thus inhibiting additional GABA release.
Upon activation, postsynaptic GABAB receptors function to open K+ channels and cause
the hyperpolarization of postsynaptic neurons, so that it suppresses neuronal excitation.
GABAB receptors can also stimulate PLC and induce BDNF secretion to facilitate the matu-
ration of GABAergic synapses at developmental stages [158]. Released BDNF increased
the expression of GABAA receptor β2, β3 subunits in the postsynaptic neuronal surface,
and enhanced GABAergic response [159]. As further evidence showing the functional
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connection between the GABAB receptor and PLC, baclofen is a GABAB receptor agonist
and the application of PLC inhibitor U73122 suppressed GABAB receptor-mediated Ca2+

increase by baclofen in human retinal pigment epithelium [160]. Moreover, GABAB recep-
tor activation could modulate the insulin-like growth factor 1 signaling pathway via PLC
activation to prevent apoptosis in cerebellar granule neurons [161].

Neuronal K+-Cl– cotransporter KCC2 mediates Cl– extrusion from the cytosol to maintain
a low intracellular concentration of Cl– and hyperpolarize postsynaptic neurons [162–164].
The mRNA and protein expression of KCC2 were decreased in the hippocampus following
kindling-induced seizures. In addition, both KCC2 mutation and downregulated KCC2
expression were identified in epilepsy patients [165]. Importantly, BDNF application could
decrease the expression of KCC2 in hippocampal neurons, but the mutation of the PLCγ
interaction site in TrkB rather increased the expression of KCC2 protein by exposure to
BDNF [166]. Altogether, this evidence clearly indicates that PLCγ plays a key role in the
regulation of GABAergic inhibition by exerting diverse actions on both presynaptic and
postsynaptic sites (Figure 3).
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Figure 3. The functions of PLCγ in GABAergic inhibition. (a) Activation of PLCγ by the BDNF/TrkB
pathway prevents GABA reuptake by GAT-1, leading to the accumulation of extracellular GABA. (b)
Activation of PLCγ increases the surface expression of GABAA receptors. In addition, PLCγ inhibits
Cl– extrusion via the regulation of KCC2 function. Activation of GABAB receptors induces BDNF
secretion through PLCγ activation and consequently increases the expression of GABAA receptors in
the postsynaptic membrane, therefore decreasing the excitation of neurons.

Most studies of PLCγ on epilepsy have focused on the BDNF/TrkB/PLCγ1 signaling
cascade in epileptogenesis. It was shown that seizures induced by electrical stimulation
were significantly attenuated by genetic knockout of TrkB and PLCγ1 [138,167]. In addition,
blocking PLCγ1 binding to TrkB suppressed epileptogenesis in the hippocampus [137,139],
implying that BDNF/TrkB/PLCγ1 signaling may contribute to the etiology of epilepto-
genesis by shifting E/I balance towards more excitation. However, a recent study by our
group found that GABAergic neuron-specific PLCγ1 knockout mice over six months of
age exhibited late-onset seizures and other behavioral abnormalities owing to impaired
GABAergic inhibition in the hippocampus [140]. In spite of many unanswered questions,
these studies highlight a critical role for PLC in the generation of epilepsy, while its exact
role may be dependent on neuronal cell types and brain regions.

6. Concluding Remark and Future Perspectives

Although epilepsy is one of the most common neurological disorders, it is apparent
that the treatment of epilepsy still remains less than optimum. Many AEDs have been
developed over the past decades, most of which were effective in treating epileptic seizures.
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However, 30–40% of epilepsy patients are not adequately controlled by current AEDs
and these patients develop refractory epilepsy [168]. An alternative treatment option is
brain surgery that partially removes the epileptic brain region, but it inherently has a
high-risk with serious side effects. As such, a better understanding of the fundamental
etiology, as well as pathophysiological mechanism of epilepsy, is crucial to identify novel
and more effective treatments. Although much needs to be further investigated, a recent
hypothesis of E/I imbalance in the etiology of epilepsy advanced our understanding of the
molecular, cellular, and synaptic mechanisms underlying epilepsy. Most notably, it has been
demonstrated that despite their small population, GABAergic neurons and GABAergic
inhibition have a powerful effect in maintaining optimal E/I balance. In this review, we
briefly described the potential and critical role of PLC in regulating GABAergic inhibition
and epilepsy in the brain. As documented throughout this review, it is increasingly evident
that PLC plays an essential role in controlling GABAergic transmission at both presynaptic
and postsynaptic sites, through modulating GABA release, reuptake, and GABA receptor-
mediated signaling. In addition, evidence is accumulating that major PLC enzymes highly
expressed in the brain, including PLCβ and PLCγ, are directly and indirectly linked to
epileptogenesis both in human patients and animal models. As PLC can exert differential
molecular actions on neurons via a cell type-specific manner, undoubtedly, further work
will be required to dissect the exact role of each neuronal PLC isoform on regulating
GABAergic inhibition and E/I balance in both excitatory and inhibitory neurons. Together,
PLC can be a potential and new therapeutic target for epilepsy, and pharmacological
manipulation of specific PLC isoform may prove therapeutically fruitful in the treatment
of epilepsy.
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Abbreviations

E/I balance Excitation and inhibition balance
PLC Phospholipase C
GABA γ-aminobutyric acid
GAD Glutamic acid decarboxylase
VGAT Vesicular GABA transporter
AED Antiepileptic drug
PIP2 Phosphatidylinositol 4,5-bisphosphate
IP3 Inositol 1,4,5-triphosphate
DAG Diacylglycerol
PKC Protein kinase C
GPCR G protein-coupled receptor
RTK Receptor tyrosine kinase
BDNF Brain-derived neurotrophic factor
TrkB Tropomycin receptor kinase B
AAV Adeno-associated virus
GAT GABA transporter
EPSC Excitatory postsynaptic current
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IPSC Inhibitory postsynaptic current
KCC K+-Cl– cotransporter
nAChR Nicotinic acetylcholine receptor
mGluR Metabotropic glutamate receptor
EGF Epidermal growth factor
PDGF Platelet-derived growth factor
NGF Nerve growth factor
FGF Fibroblast growth factor
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