
ORIGINAL RESEARCH
published: 23 December 2020

doi: 10.3389/fnins.2020.543472

Frontiers in Neuroscience | www.frontiersin.org 1 December 2020 | Volume 14 | Article 543472

Edited by:

Kaushik Roy,

Purdue University, United States

Reviewed by:

Yam Song Chua,

Huawei Technologies, China

Aayush Ankit,

Purdue University, United States

*Correspondence:

Jongeun Lee

jlee@unist.ac.kr

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 17 March 2020

Accepted: 27 October 2020

Published: 23 December 2020

Citation:

Sim H and Lee J (2020)

Bitstream-Based Neural Network for

Scalable, Efficient, and Accurate Deep

Learning Hardware.

Front. Neurosci. 14:543472.

doi: 10.3389/fnins.2020.543472

Bitstream-Based Neural Network for
Scalable, Efficient, and Accurate
Deep Learning Hardware

Hyeonuk Sim 1,2 and Jongeun Lee 1,2*

1 School of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea,
2Neural Processing Research Center, Seoul National University, Seoul, South Korea

While convolutional neural networks (CNNs) continue to renew state-of-the-art

performance across many fields of machine learning, their hardware implementations

tend to be very costly and inflexible. Neuromorphic hardware, on the other hand, targets

higher efficiency but their inference accuracy lags far behind that of CNNs. To bridge the

gap between deep learning and neuromorphic computing, we present bitstream-based

neural network, which is both efficient and accurate as well as being flexible in terms

of arithmetic precision and hardware size. Our bitstream-based neural network (called

SC-CNN) is built on top of CNN but inspired by stochastic computing (SC), which uses

bitstreams to represent numbers. Being based on CNN, our SC-CNN can be trained

with backpropagation, ensuring very high inference accuracy. At the same time our

SC-CNN is deterministic, hence repeatable, and is highly accurate and scalable even

to large networks. Our experimental results demonstrate that our SC-CNN is highly

accurate up to ImageNet-targeting CNNs, and improves efficiency over conventional

digital designs ranging through 50–100% in operations-per-area depending on the CNN

and the application scenario, while losing <1% in recognition accuracy. In addition,

our SC-CNN implementations can be much more fault-tolerant than conventional

digital implementations.

Keywords: bitstream-based neural network, neuromorphic computing, stochastic computing, deep learning

hardware, dynamic precision scaling, SC-CNN, variable precision

1. INTRODUCTION

In a broad sense of the term, neuromorphic system refers to a system engineered based on the
organizing principles of the nervous system (Mead, 1990). For instance, a CMOS transistor’s I-
V curve follows an exponential curve under specific conditions and the amount of charge in
a capacitor is the time integration of current. Thus, if a system’s computation mostly consists
of the elementary operations directly derived from the physical principles of devices, such as
exponential and time integration, extremely efficient systems can be built by using those elementary
operations of devices, as opposed to using AND and OR primitives, which is an artifact of
digital design principle (Mead, 1990). Along the same line, neuromorphic system also means
mimicking the structure, in addition to the behavior, of the nervous system, which is argued
to be an important ingredient to attaining desirable system properties, such as high energy
efficiency and error resilience, which may be as essential as accuracy in biological nervous systems
(Hawkins and George, 2006).

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.543472
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.543472&domain=pdf&date_stamp=2020-12-23
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:jlee@unist.ac.kr
https://doi.org/10.3389/fnins.2020.543472
https://www.frontiersin.org/articles/10.3389/fnins.2020.543472/full

Sim and Lee Bitstream-Based Neural Network

On the other hand, neural networks in the neuromorphic
camp, exemplified by the spiking neural networks (SNNs) (Lee
et al., 2016), are criticized for their low performance; their
inference accuracy lags far behind that of artificial neural
networks used in deep learning (Roy et al., 2019). This criticism
is a serious one, since the deep learning’s efficiency, which is
generally regarded as low compared with that of SNNs and other
neuromorphic-based ones, can be improved a lot, if inference
accuracy can be sacrificed. For instance, low precision networks
(Zhou et al., 2016) and binary/ternary networks (Courbariaux
and Bengio, 2016; Hubara et al., 2017) have far less computation
compared with the original models at the cost of slight accuracy
loss. One may argue that the apparent performance advantage
of deep learning comes partly from the dataset itself, given
the pivotal role played by datasets in the evolution of deep
learning (Roy et al., 2019). Nevertheless, it is clear that there
is a widening gap between neuromorphic computing and deep
learning in terms of accuracy, which must be remedied to make
the neuromorphic approach more appealing.

To bridge the gap between neuromorphic computing and
deep learning, we present a class of neural networks based
on bitstreams. Our neuron model is inspired by stochastic
computing (SC), which is an alternative design principle for
hardware that is distinguished from both digital and analog
design principles. In SC, a number is represented as a bitstream
that can be carried on a single wire over a period of time, which
is reminiscent of analog computing, yet at the same time, SC
circuits can be entirely made out of digital components. The
advantages of SC over digital implementations, such as low-cost
computation (e.g., multiplication), flexible precision, and high
error resilience has led to many applications in image processing
and neural networks (Kim et al., 2016; Li et al., 2016, 2017a,b;
Ren et al., 2016, 2017; Sim et al., 2017; Zhakatayev et al., 2018).
However, the conventional SC as applied to neural networks
suffers from the low accuracy problem especially with large
neural networks, much like neuromorphic computing.

Our bitstream-based neural network, which is based on
convolutional neural network (CNN) and hence called SC-
CNN, addresses the low accuracy problem of SC while retaining
its main advantages. At the same time, our neural network
is deterministic, hence repeatable, and is highly accurate and
scalable even to large networks1. Much like any CNN, our SC-
CNN can be trained with backpropagation, ensuring very high
inference accuracy. In addition, as CNNs grow more complex
and diverse, there is a need for a more reconfigurable hardware
architecture that can run various CNNs with different precision
requirements at high efficiency. Such reconfigurable precision,
which we call dynamic precision scaling (DPS), is particularly
useful for SC, where 1-bit saving can reduce computation latency
by 50% (see Figure 1), suggesting a great potential for higher
efficiency on CNNs with diverse precision requirements.

In this paper, we present SC-CNN, which is highly optimized
for both accuracy and efficiency as well as flexibility, such as

1Despite the deterministic nature of our SC-MAC, we retain the term, SC-MAC,

in this paper because its operation is based on bitstreams. It also helps maintain

consistency with previous work.

dynamically adjustable precision. Specifically, we first propose
dynamic precision scaling for SC-CNN, which extends our
previous work (Sim and Lee, 2017) such that the precision of
input/output data can be arbitrarily modulated at runtime (see
section 3). The extension has very little overhead and allows us
to be efficiently parsimonious with regard to precision, which
gives a considerable reward in latency saving. Second, in terms
of allocating precision across the value range of a variable, we
observe that in some layers input activations are always non-
negative, meaning that we can reduce precision by 1 bit (with
corresponding 50% latency saving) and still get effectively the
same accuracy.We call this optimization half-range specialization
(HRS). Importantly, we implement the HRS optimization as an
add-on feature that can be switched on dynamically, so that
the same hardware can run all layers of a CNN regardless of
the input range (see section 3.4). Third, we present our design
methodology to optimize precision across layers of a CNN in
section 4. Fourth, exploiting the compactness of our neuron we
explore multi-dimensional parallelism to better utilize a given
area budget. This is motivated by the fact that the nervous
system does no time-multiplexing but implements all neurons
with dedicated resources, which is likely an important factor of
its high efficiency. We show that multi-dimensional parallelism
can give a significant efficiency improvement for SC-CNN over
using limited parallelism.

Our experimental results demonstrate that our SC-CNN can
be as efficient as conventional digital designs up to ImageNet-
targeting CNNs, such as AlexNet (Krizhevsky et al., 2012) and
GoogleNet (Szegedy et al., 2015), with <1% degradation in
recognition accuracy. This is quite significant as the previous
work on SC-CNN was only able to show it up to Cifar-10
(Sim and Lee, 2017), which is much smaller than ImageNet.
Second, we show that our SC-CNN can be over 100% more
efficient in terms of operations-per-area over conventional digital
design when the same hardware is used for multiple CNN
applications of varying precision requirements. Third, we show
that even for a single application scenario where the hardware
is designed only for one application (e.g., AlexNet), our SC-
CNN can still be 52% more efficient than conventional digital
design. Fourth, we show that our neuromorphic SC-CNN is
very scalable, achieving very high efficiency at a high throughput
level; more specifically, our 4D-parallel neuromorphic SC-CNN
can give nearly 100 times better efficiency in ADP (area-delay
product) over 2D-parallel architectures. Fifth, our error injection
experiments demonstrate that our SC-CNNs can be significantly
more fault-tolerant than conventional digital implementations.
These results suggest that our SC-CNN, which has several traits
of neuromorphic computing, such as compact and efficient
neurons, flexible precision, and high fault tolerance, can still be
highly accurate and scalable similar to deep learning models.

The rest of the paper is organized as follows. After reviewing
the related work in section 2, we present the SC-CNN
and neuron-level optimizations in section 3. In section 4,
we present the network-level optimizations including those
targeting neuromorphic applications. In section 5, we present our
experimental results, and section 6 concludes the paper with a
summary of the work and future directions.

Frontiers in Neuroscience | www.frontiersin.org 2 December 2020 | Volume 14 | Article 543472

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sim and Lee Bitstream-Based Neural Network

FIGURE 1 | Dynamic precision, or using lower precision whenever possible, can give huge boost in efficiency for stochastic computing (SC).

2. RELATED WORK

2.1. SC-Based Neural Network
The most closely related to our work is SC-based neural
networks. Thanks to low implementation cost and high error
resilience, SC is seen as a promising approach to accelerating
applications in certain domains including image processing
and neural network. Previous work on SC-based acceleration
of CNNs can be classified into two categories: fully parallel
and tile-based.

In the fully parallel approach (Kim et al., 2016; Li et al., 2016,
2017a,b; Ren et al., 2016, 2017), all neurons are implemented
spatially using dedicated hardware resources, and they operate in
parallel such that the neural network circuit will produce output
as the wave of input data sweeps through the circuit. It could
have very high energy efficiency owing to the fact that it does
not involve external memory access to store intermediate result,
but has limited applicability because it cannot support arbitrarily
large CNNs.

The tile-based approach (Sim and Lee, 2017; Sim et al., 2017),
on the other hand, is more scalable in terms of the number
of layers and neurons supported, since it works by tiling the
computation of a layer into smaller fixed-sized arrays, each of
which is performed by the same hardware block. This is also
the approach employed by all recent hardware accelerators for
CNNs (Chen et al., 2014, 2017). The intermediate results are
saved to and reloaded from buffers, which are typically on-chip
and backed by external memories. Now for efficiency reasons in
terms of storage and external memory bandwidth, SC data should
be saved in memories as conventional digital numbers, in which
case every on-chip memory access would require a conversion
between SC and digital representations, which is a considerable
overhead in the tile-based approach.

A recent technique (Sim and Lee, 2017) proposes a new SC-
MAC (multiply and accumulate) algorithm by combining the
SNG (stochastic number generator), SC multiply operation, and
an addition in the digital domain. This input and output of the

SC-MAC is conventional digital. As such, it fits nicely with the
tile-based approach, greatly reducing the conversion overhead.
However, the inherent precision disadvantage of SC—that SC
requires exponentially longer bitstreams as precision increases—
has so far kept SC from being competitive on larger CNNs, such
as AlexNet (Krizhevsky et al., 2012).

In terms of accuracy, both the fully parallel (Kim et al., 2016;
Yu et al., 2017) and tile-based approaches (Sim and Lee, 2017; Sim
et al., 2017) have shown competitive result against conventional
digital designs for small CNNs with about 10 classification
categories, such as MNIST (LeCun et al., 2010) and CIFAR-
10 (Krizhevsky and Hinton, 2009). It seems that the retraining
capability of CNNs helps cope with the approximating nature of
stochastic computing.

2.2. Neuromorphic Computing
Neuromorphic computing is multi-faceted. On the one hand,
there is the neuromorphic engineering approach (Mead, 1990),
where researchers try to design useful systems based on the
elementary operations of devices, which could lead to much
more efficient systems than conventional digital designs. On the
other hand, many neuromorphic models (Izhikevich, 2003) and
systems (Markram, 2012) aim to imitate or emulate the nervous
system as faithfully as possible, which can aid, e.g., with brain
scientists studying the nervous system. Some of the effort has
led to the design of dedicated hardware chips, such as TrueNorth
(Akopyan et al., 2015) and Loihi (Davies et al., 2018).

Due to the similarity between neuromorphic computing and
deep learning, there is a hope that the neuromorphic approach
can 1 day lead to a much better neuron model than what
is used today. For instance, spiking neuron, such as leaky
integrate-and-fire (LIF) model (Maass, 1997) is referred to as
the third-generation neuronmodel afterMcCulloch-Pitts neuron
(McCulloch and Pitts, 1943) and perceptron (Hornik et al., 1989).
Since spiking neurons generally use timing information, they
may be able to achieve sparse, event-driven neural networks

Frontiers in Neuroscience | www.frontiersin.org 3 December 2020 | Volume 14 | Article 543472

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sim and Lee Bitstream-Based Neural Network

withmuch higher energy efficiency than perceptron-based neural
networks used in today’s deep learning (Roy et al., 2019).
However, it remains to be seen whether SNNs can indeed
show competitive performance as deep learning models on large
datasets. To improve the efficiency of SNNs, a recent technique
(Stöckl and Maass, 2020) reduces the number of spikes a neuron
has to emit to pass information to subsequent neurons, by
essentially encoding the information as a binary number where
each bit position has a different weight. However, it discusses
no hardware implementation, thus with no area- or energy-
efficiency result. To improve the accuracy of SNNs, which is
another way to improve efficiency, a training method (Wu
et al., 2019) was proposed that uses an auxiliary artificial neural
network that approximates the behavior of the coupled SNN and
thereby enables back-propagation-based training for the SNN.
Our training method is also based on back-propagation, which
is why our models can show very high accuracy. Note that the
training method, such as Wu et al. (2019) does not eliminate the
need for (re)training for SNNs, but it only makes SNN training
converge better and faster.

2.3. Deep Learning Hardware
Recent CNN hardware implementations (Chen et al., 2014, 2017;
Han et al., 2016) all have their precision fixed at design time. This
has an obvious disadvantage when the application’s precision
requirement is different from the designed precision, that is,
accuracy loss (when the needed precision is higher) and efficiency
loss (when it is lower). This mismatch can happen even within
a single CNN, such as varying precision requirement among
different layers (Judd et al., 2016), which causes some inefficiency
even when the accelerator is running the CNN for which it is
designed. One solution to the precision mismatch problem is to
use bit-serial hardware, such as bit-serial multiplier (Judd et al.,
2016). Our solution can provide an alternative solution, which
has other advantages, such as error resiliency (see section 5.7)
as well as being more efficient than the bit-serial approach
(see section 5.4).

In comparison, SC can be more efficient partially owing to
the optimizations proposed in this paper. This helps close the
efficiency gap between SC and bit-parallel conventional digital
for a wider range of precisions as we show later in Figure 7,
while still retaining the benefits of SC, such as DPS. Also the
effect of DPS could be higher in SC than in conventional digital,
since 1-bit reduction in SC may reduce the delay of computation
by about 50% as shown in Figure 1. In the figure, the y-axis
shows computation delay, which is given by the bitstream length
needed to deliver the precision on the x-axis. The exponential
relationship holds for both the conventional SC (Kim et al., 2016)
and the new SC-MAC (Sim and Lee, 2017).

3. DYNAMIC PRECISION SCALING
SC-CNN

Our neuron model is built on top of SC-MAC (Sim and Lee,
2017), which uses a deterministic and optimized SC multiply
algorithm. We first briefly review it and its application to neural

networks, and present two extensions: (i) DPS optimization
that allows the hardware precision to vary dynamically
with little overhead, and (ii) HRS optimization that can be
dynamically enabled.

3.1. Analysis of Baseline SC-MAC
The key features of the baseline SC-MAC (Sim and Lee, 2017)
include SNG integration, a novel SC multiply algorithm, and
variable latency, which help it achieve superior efficiency as
compared with conventional SC-based MACs, such as Kim
et al. (2016). The MAC unit takes two operands labeled x and
w, and generates output y that should approximate xw. All
the inputs/output are represented as conventional digital, as
illustrated in Figure 2 (shown in red is for dynamic precision
discussed in the next section).

Let us first consider the unsigned version, where the
inputs/output are interpreted as fractional numbers between 0
and 1. Let integer X = x2Q and integerW = w2Q, where Q is the
width of the X andW registers. TheMUX-FSM circuit is designed
to generate a bitstream whose signal probability is close to x (Sim
and Lee, 2017). Thus, counting bits from the x-bitstream for W
cycles gives approximately xW = xw2Q. Therefore, y ≈ xw with
Q-bit precision.

In the signed version, the inputs/output are 2’s complement
numbers between −1 and 1. Since the MSB (most significant
bit) is used as the sign bit, X = x2(Q−1) and W = w2(Q−1).
The W counter is initialized to the absolute value of W. If W is
positive, feeding the x-bitstream to the Y counter (which is now
an up/down counter) forW cycles will give approximately xW =
xw2(Q−1). To understand why, note (i) unsigned interpretation
of X register after inverting the MSB is (X + 2(Q−1))/2Q, and
(ii) the expected contribution of a single bit z to an up/down
counter is (2z − 1). Thus, the expected change of Y per cycle is
2(X + 2(Q−1))/2Q − 1 = x. If W is negative, the x-bitstream is
inverted, resulting in the negated value of x(−W), or xW in the
Y counter. In either case, y ≈ xw with Q-bit precision (including
the sign bit).

3.2. Acceleration of Neural Network
The baseline SC-MAC can be used to accelerate convolution
and linear (also known as fully connected) layers (Sim and Lee,
2019). The first question is how to combine multiple MACs to
create an array of MACs. Figure 3 illustrates the matrix-vector
multiplier (MVM) block proposed in Sim and Lee (2017), which
is to share the weight parameter (w) among the MACs. The
jth up/down counter in Figure 3 accumulates the product terms
xijwi, eventually computing

∑
i xijwi. In this sense, one SC-MAC,

which consists of an MUX and an up/down counter, can be
regarded as a synapse-neuron pair.

Constructing the MAC array in this manner has two
important benefits. First, since the latency of the SC-MAC is
dependent on w, this scheme ensures that all the SC-MACs
in an MVM block finishes simultaneously; in other words,
there is no synchronization overhead within an MAC array.
Second, the FSM and the down counter connected to w can
be shared across all MACs within an MVM block, leading to
cost-efficient hardware.

Frontiers in Neuroscience | www.frontiersin.org 4 December 2020 | Volume 14 | Article 543472

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sim and Lee Bitstream-Based Neural Network

FIGURE 2 | SC-MAC from Sim and Lee (2017) extended for dynamic precision. Datapath remains the same; only the control is changed (p: dynamic precision, Q: the

maximum supported precision). (A) Unsigned version. (B) Signed version.

FIGURE 3 | (A) Stochastic computing (SC) matrix-vector multiplier (simplified) and (B) the operation it performs, where yj =
∑

i wixij , reproduced from

Sim and Lee (2017).

Frontiers in Neuroscience | www.frontiersin.org 5 December 2020 | Volume 14 | Article 543472

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sim and Lee Bitstream-Based Neural Network

To use the MVM array as the main computation engine of a
neural network accelerator, we also need to decide the dataflow,
or how to parallelize computation. For convolution layers, for
instance, computation of the output feature map (OFM) uses the
same weight parameters along the width and height dimensions.
Hence the convolution computation can be parallelized along
the two dimensions as suggested in Sim and Lee (2017), which
corresponds to output stationary according to the taxonomy of
Chen et al. (2017). To provide the input to the 2D MAC array
one can use the input reuse network (Rahman et al., 2016)
between the input feature map buffer and the MAC array, or
rearrange input data in advance with some duplication as is
typically known as im2col (Chetlur et al., 2014). We later extend
the 2D parallelism to make a better use of hardware area for
neuromorphic applications (see section 4.6).

3.3. Dynamic Precision Scaling Extension
The extension to support DPS on the SC-MAC costs very little
hardware. In fact, the datapath remains almost the same except
for a few gates, the major difference being in the control logic.
Here, we explain the operation of DPS SC-MAC.

The DPS SC-MAC has an additional input p, which is the
precision of the input/output values. Figure 2 illustrates an
example with p = 3 where the maximum precision Q is 4-bit.

Let us first consider the unsigned version, where the operands
and the output are interpreted as unsigned numbers between 0
and 1. The output, being accumulated, may grow larger than 1,
for which we add extra bits in the Y counter. The X register
holds the integer version of x, or x2p, aligned at the MSB. The
remaining bits, if any, are not used. The W register is initialized
to the integer version of w, or w2p, zero-extended to fill the
Q-bit register, i.e., W = w2p. The selector FSM is unchanged
regardless of p.

It is easy to see that the latency of multiplication is W = w2p

cycles, which is at most 2p − 1. During this period, the LSB
(least significant bit) part of X register that is not initialized
from x is unused (x0 in the example). Thus, counting the x-
bitstream still approximates xW, with less accuracy due to the
reduced precision of W. Since Y ≈ xW = xw2p, y ≈ xw with
p-bit precision.

In the signed version, the X register holds x2(p−1) aligned at
MSB. After inverting the MSB, the unsigned interpretation of X
register is 0.5+x/2 with p-bit precision, assuming a decimal point
right before MSB. The W register is initialized to w2(p−1), sign-
extended to Q-bit, i.e., W = w2(p−1). If W is positive, the Y
counter holds xW = xw2(p−1) after W cycles. If W is negative,
it holds −x(−W) = xW due to the XOR gate. In either case,
y ≈ xw with p-bit precision including the sign bit.

The latency of signed multiplication is |w|2(p−1) cycles. The
maximum latency of DPS SC-MAC is 2(p−1) when w = −1,
in which case the W counter requires p-bit, as indicated by the
dotted box in Figure 2B (but it never needs more than Q bits).
Similarly, the Y counter needs p+1 bits, whichmay exceedQ bits;
however, the Y counter has extra bits already in order to serve as
an accumulator.

Since the p-bit precision of y always starts from LSB, it
means that the decimal point will have to move depending on

the precision. Fixing the decimal point can be done with a
single shifter.

3.4. Half-Range Specialization
Since the latency of an SC-MAC is exponential to the precision,
saving even 1 bit is very worthwhile. HRS is based on the
observation that the range of certain variables, namely, input
activations, are guaranteed to be non-negative due to the
particular shape of activation function (i.e., ReLU) used in the
preceding layer.

One way to exploit the limited range of input is through a
data scaling framework as in section 4.3. But data scaling works
best for symmetrical ranges, and making asymmetrical ranges
symmetrical incurs additional overhead.

Alternatively we can make a full use of input precision in
our DPS SC-MAC of Figure 2B by treating x as unsigned. This
effectively increases x’s precision to p-bit while the precision of
w remains the same [i.e., (p − 1)-bit due to 1-bit sign]. Since w
is unaffected, latency is also the same. The main effect of this
scheme is accuracy improvement: in our evaluation, (p − 1)-
bit multiplication with HRS shows a similar accuracy as p-bit
multiplication without HRS (see Figure 10). Conversely, HRS
can achieve a similar accuracy with 1-bit less precision, or at half
the latency.

It is important to note that HRS cannot guarantee the same
accuracy as that of 1-bit lower precision, since w’s precision
is not increased. However, input activation often turns out to
require a higher precision than weight parameters Judd et al.
(2015), which explains why increasing x’s precision through HRS
is very effective in practice. On the other hand, if a layer or
network requires higher-precision weight (w) than input (x), the
HRS advantage of cost-free increase of x precision by 1 bit will
not be very useful, since weight precision is the bottleneck and
determines the SC-MAC’s precision.

Also important to note is that in order to support layers
whose input is not necessarily one-sided (e.g., the first layer), the
hardware must retain the original behavior of Figure 2B. Thus,
we make HRS runtime-programmable through an extra input
XIS (meaning “x is signed”), as shown in Figure 4.

When XIS is 1, the hardware degenerates into the signed
version. When XIS is 0, the x part becomes like the unsigned
version, and the up/down operation of the Y counter is
suppressed if the x-bitstream’s output is 0, essentially making it
perform either up or down depending on the sign of w, which
ensures a correct operation.

4. DESIGN OPTIMIZATIONS FOR DPS
SC-CNN

4.1. Hardware Precision vs. Software
Precision
So far our notion of precision has been the width of a variable
in the application program as represented in conventional
digital, which typically ranges up to 32-bit. Quantization is to
reduce the precision in the application code. Thus, this kind
of precision may be called software precision. When converted

Frontiers in Neuroscience | www.frontiersin.org 6 December 2020 | Volume 14 | Article 543472

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sim and Lee Bitstream-Based Neural Network

FIGURE 4 | Supporting HRS mode for x along with the normal mode. Extension is shown in blue. The new input XIS indicates whether x is signed.

into SC, a variable of n-bit software precision requires about a
2n-bit bitstream.

While a bit-serial multiplier as in (Judd et al., 2016) computes
only one bit at a time, it is quite common in SC to employ
bit-parallel hardware due to the relative simplicity of an SC
multiplier compared to the rest of SC-MAC. To generate a
variable of n-bit software precision, a bit-serial SC multiplier
needs 2n cycles, but a k-bit parallel SCmultiplier can do it in 2n/k
cycles. We define hardware precision as the base-2 logarithm of k.

It is straightforward to extend the DPS SC-MAC to a bit-
parallel version, which supports integer hardware precisions for
efficiency reasons. It is based on the bit-parallel version of the
baseline SC-MAC (Sim and Lee, 2017).

4.2. Design Flow
A design objective is to minimize ADP while meeting accuracy
constraint, which we set to be 1% point below the reference
accuracy achieved by an unquantized version (i.e., floating-point
implementation). We consider the following design parameters:
(i) data scaling parameters, (ii) software precision of each layer,
and (iii) hardware precision of SC-MAC. Next we discuss each
of these.

4.3. Determining Data Scaling Parameters
Previous work (Lin et al., 2016) has pointed out the importance of
scaling input data to better utilize the limited range of SC or fixed-
point representations. The idea is to scale more than covering
the worst case input data, such that some of the input values go
out of range. It may introduce errors to some input, but those in
the range can be represented more precisely. More-than-worst-
case scaling is particularly effective when the out-of-range input
data get saturated. To avoid the overhead due to scaling, scaling
parameters are typically restricted to powers of 2.

The issue here is how to determine data scaling parameters,
the effect of which seems highly unpredictable. We use the
following scheme.

1. Determine the scaling factor so that all values are within range
(i.e., worst-case design).

2. Double the scaling factor and check whether the recognition
accuracy improves.

3. Repeat the above while there is improvement.

The above procedure is repeated for each layer, starting from the
first layer. We do not retrain the CNN during this procedure. We
find this scheme robust as it does not rely on any arbitrary design
parameter, which is a major advantage of the scheme. While
this algorithm is greedy and not able to address the possible
inter-dependence issue among layers, doing so would run into a
combinatorial problem, which may require a prohibitive amount
of resources for large CNNs.

4.4. Determining Software Precision of
Each Layer
Similar to data scaling parameter exploration, here we optimize
one layer at a time in order to avoid combinatorial problems.
There are also differences. First, precision optimization uses
retraining, which is crucial to get meaningful accuracy at low
precisions. On the other hand, retraining takes much longer than
inference, and can take hours and days for the SC version even
when using GP-GPUs for simulation. Second, higher precision
is more detrimental than a lower precision can save. Thus,
we first find the uniform precision for the SC version that
satisfies the accuracy constraint with retraining. This can be
solved in linear time, since all layers have the same precision.
The uniform precision is used as the precision upper-bound
for each layer. Third, knowing the uniform precision also helps
determine hardware precision (see the next section). Fourth, to
speed up the search we use the result of conventional digital
implementation’s optimized precision. However, since there is
usually a gap between the precisions of the two, we use a concept
called precision slack.

To illustrate precision slack, suppose that a conventional
digital implementation is optimized to have the following

Frontiers in Neuroscience | www.frontiersin.org 7 December 2020 | Volume 14 | Article 543472

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sim and Lee Bitstream-Based Neural Network

precisions across five layers: 10–9–5–6–8. Precision slack is the
difference in precision between the highest and the current layer,
e.g., 0–1–5–4–2 in this example. Then we subtract precision slack
from the uniform precision value to get the precision lower-
bound. The rationale is that while the SC version gives higher
reward for lower precision, its accuracy is also more sensitive to
it. Also using very low precisions gives diminishing return (see
Figure 1) while often hurting accuracy toomuch. Having a lower-
bound makes it easy to do binary search instead of linear search,
saving retraining time.

4.5. Determining Hardware Precision
Hardware precision affects both delay and area of our SC-CNN
(see section 5.3). Therefore, the decision in this step could affect
the optimality of the precision setting found in the previous step
as ADP can change as we use a different hardware precision. To
avoid this problem, we run this step twice, first for the uniform
precision value, then after non-uniform precision setting is
found. Finding the best hardware precision is straightforward,
and can be done quickly as it has only a linear complexity and
does not require retraining (changing hardware precision does
not affect recognition accuracy, but only ADP).

4.6. Neuromorphic Optimizations
4.6.1. Motivation
One key difference between neuromorphic vs. deep learning
hardware is the separation of computation and memory. In
the nervous system, memory is distributed and computation is
tightly integrated with memory, whereas in today’s deep learning
hardware, memory is clearly separated from the compute engine,
which can create performance bottleneck for certain applications
due to memory wall.

The main reason why today’s deep learning architectures
use the von Naumann architecture is efficiency. Because digital
MACs are large, a typical chip can have only so many of them,
which we must use iteratively, or in a time-multiplexed manner,
in order to handle large layers and networks. Also because of the
large granularity of individual MACs, it would be quite inefficient
and difficult in terms of placement and routing if we distribute
them among memory blocks.

Contrary to a digital MAC, which consists of an n-bit
multiplier and an m-bit accumulator (m > n), an SC-MAC is
extremely small. It allows us to build a massive array of neurons
and synapses on a single chip, for which we explore a much more
parallel architecture than the previous SC neural networks.

We also explore a tight integration of memory (e.g., SRAM
blocks) with SC-MACs. Even though our SC-MAC takes digital
numbers (X and W) as input, only one bit is used at a time (see
Figure 4). By rearranging the bits in the memory, the MUX can
be made redundant, with its function merged into the address
decoder of an SRAM block.

4.6.2. More Parallel Architecture for SC-CNN
While the size of our SC-MAC depends on the hardware
precision as explained in section 4.1, it can be up to 63.9 times
smaller than a digital MAC. To better utilize the massive number
of SC-MACs available, we parallelize along all dimensions of the

convolution kernel. Figure 5 lists the C code of a convolution
kernel that is tiled along all four dimensions of Z,M,R,C. The
remaining two loop levels not tiled, Kr ,Kc, are typically very
small. Those tiled loops are unrolled in hardware, meaning that
the MAC array consists of TZ × TM × TR × TC SC-MACs,
and is able to perform the same number of SC-MAC operations
every cycle. This is in contrast with the previous SC-CNNs (Sim
and Lee, 2017; Sim et al., 2018), where only R,C dimensions
are unrolled, thus having saturating efficiency when the array
size increases (see section 5.6). Conventional digital accelerators
also, such as Chen et al. (2014, 2017), not having been optimized
for such a high degree of parallelism, suffers the same limited
efficiency issue.

Parallelizing along theM-loop is similar to parallelizing along
the R- or C-loop because M, R, and C are all output feature
map dimensions; we replicate the 2D MAC array TM times. But
there is a downside. Each of the 2D MAC arrays uses one weight
value per cycle, hence there are TM weights overall that need to
be supplied per cycle. Consequently, the TM MAC arrays may
have different latency values, which can incur synchronization
overhead among the 2D MAC arrays.

The main idea of parallelizing along the Z-loop is to increase
the number of inputs for the up/down counter in Figure 4 by
TZ times. Instead of having a single bitstream, we now have
TZ bitstreams coming from different input channels; thus, we
employ a TZ bitcount logic to combine TZ bits into an integer,
which is then accumulated. In fact, the up/down counter in
Figure 4 has three operations, i.e., up, down, and no-op (when
update is zero), due to the HRS optimization. Hence, the input
bitstreams are ternary, and the bitcount logic is extended to
handle ternary input. Similar to the parallelization along the M-
loop, the weight parameters from the TZ input channels may
all be different. There are TZ down counters corresponding to
the TZ weights. The done signal from a down counter forces
the corresponding ternary input to zero, which makes the input
effectively ignored by the bitcount logic.

4.6.3. Tight Integration of SRAM and SC-MAC
Among the main components of an SC-MAC, i.e., MUX and
up/down counter, the MUX can be made redundant if we
rearrange the input data in the SRAM. Suppose input x is 8-
bit. In the conventional memory storage, each byte of the input
SRAM contains one value of x, the next byte containing the next
x, and so on. In the previous work (Sim and Lee, 2017; Sim et al.,
2018), all these values of x are loaded simultaneously into the
input registers, but only one bit is accessed per cycle through the
selector FSM.

More specifically, let x1, x2, etc. be 8-bit values loaded to the
input registers of an MAC array. In other words, xj is the jth

element of the input vector Exi in Figure 3A. Let x
(k)
j be the bit

k of xj where 0 ≤ k ≤ 7. Then in the first cycle we need a set of

bits, x
(7)
1 , x

(7)
2 , etc., and in the next cycle we need another set of

bits, x
(6)
1 , x

(6)
2 , etc. This scheme may be called bit-major.

Now we propose to store the input data in such a way that
the bits needed together are stored together in the same byte
as much as possible. For instance in the above example, bits

Frontiers in Neuroscience | www.frontiersin.org 8 December 2020 | Volume 14 | Article 543472

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sim and Lee Bitstream-Based Neural Network

FIGURE 5 | Convolution layer tiled along four loop levels (M,R,C,Z). Arrays A, B, and W are input feature map (IFM), output feature map (OFM), and weight

parameters, respectively. The four innermost loops are hardware-unrolled, creating a 4D-parallel architecture.

x
(7)
1 , x

(7)
2 , · · · , x

(7)
8 will make up one byte, and x

(6)
1 , x

(6)
2 , · · · , x

(6)
8

will make up another byte. The latter byte may never need to be
accessed simultaneously as the former, hence can be stored in the
depth direction of an SRAM block. We call this scheme lane-
major. Using the lane-major scheme can eliminate both input
MUXes and input registers. The scheme can also reduce the input
memory bandwidth, or the maximum number of bytes we read
from the input memory in a cycle, by N times compared with
bit-major, where N is the width of input in bytes times 8. For
instance, if the input data are 12-bit wide, it still requires 2 bytes,
thus the saving is 16 times. Using the lane-major scheme does not
significantly affect the capacity of the input memory needed but
does affect the aspect ratio; we now need deeper memory.

On the other hand, since we have eliminated input registers,
we must access the input SRAM every cycle, potentially
increasing the energy consumption. In the worst case, an 8-bit
input data may need to be accessed 256 times in the lane-major
scheme. However, the actual number of accesses depends on the
weight value, which is typically small. Also when using dynamic
precision scaling, the actual precision at themoment can bemuch
less than the width of the input data stored in the memory. Thus,
our scheme fits well with DPS.

While the input data are stored as lane-major, the output
data as produced in an SC-MAC follows bit-major. Therefore,
we need to convert the bit packing scheme of the output data.
This can be done when the output data are loaded from the
external memory to the on-chip input buffer, at which time we
also apply the im2col transformation (Chetlur et al., 2014). In
addition, we can optimize away the XOR gate required by HRS,
by doing the MSB flipping in advance. It can be done during the
bit packing conversion.

5. EXPERIMENTS

5.1. Experimental Setup
To evaluate our approach, we use CNNs targeting ILSVRC2012
(ImageNet Large Scale Visual Recognition Challenge 2012), such
as AlexNet, VGG, and GoogLeNet, in addition to smaller ones.

For training and accuracy evaluation, we use Caffe (Jia et al.,
2014) extended to model the functionality of DPS SC-MAC.
For retraining (also called fine-tuning), 5,000 update iterations
were performed starting from the reference models of the Caffe
Model Zoo.2 For learning parameters, such as weight decay and
batch size, we use the same values as used in the reference
solver script provided with the model, with the only exception
of the base learning rate, which is scaled down by 10× from that
of the reference script. During retraining, forward propagation
is done using the SC algorithm but back-propagation is done
using floating-point arithmetic with weight update done to real-
valued weights, which is essentially the same procedure used
in training quantized neural networks (Hubara et al., 2017).
Note that retraining is needed not only for SC-DNNs but digital
DNNs also, and that the computational overhead of retraining
is very little compared with that of the baseline training (5,000
vs. 450,000 iterations in the case of AlexNet). Recognition
accuracy is reported for the first 10,000 images (out of 50,000)
of the ImageNet validation set. The SC-CNN architecture is
modeled cycle-accurately to generate exact cycle counts in a
data-dependent manner.

We have extended the SC-MVM (matrix-vector multiplier)
(Sim and Lee, 2017) to support our DPS SC-MACs, which
is referred to as DPS SC-MVM. Our DPS SC-MACs have a
few variants depending on hardware precision. Our DPS-2ˆp
processes 2p bits per cycle, therefore being roughly equivalent to
p-bit parallel digital logic. We have implemented the previous
SC-MVM (Sim and Lee, 2017), our DPS SC-MVM, and the
conventional digital baseline MVM in Verilog and synthesized
them using Synopsys Design Compiler. All syntheses were done
for the same target frequency of 1 GHz, although SC is likely
to meet higher frequency. The conventional digital baseline
uses fixed-point binary multipliers with rounding accumulators.
The area for Stripe (Judd et al., 2016) is estimated to be
207% of the digital baseline as per the paper, which however
does not provide power result. Only convolution layers are

2https://github.com/BVLC/caffe/wiki/Model-Zoo

Frontiers in Neuroscience | www.frontiersin.org 9 December 2020 | Volume 14 | Article 543472

https://github.com/BVLC/caffe/wiki/Model-Zoo
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sim and Lee Bitstream-Based Neural Network

FIGURE 6 | Area overhead of dynamic precision scaling (DPS) SC-MVM vs. SC-MVM.

accelerated in all the approaches compared, permitting us to use
ideal convolution layer speedup for delay comparison. Maximal
accuracy degradation is set to 1% point.

Our main figure of merit is area-delay product (ADP), which
is the product of MVM area and average MAC cycles (thus the
lower, the better), or its inverse representing operations per area.
ADP is chosen because in addition to being a meaningful area-
efficiency metric, it permits direct comparisons with previous
work (e.g., Judd et al., 2016). Though we also report power and
energy results for our designs, these metrics tend to vary a lot,
affected more by such factors as on-chip and off-chip memory
accesses (Chen et al., 2014), which are not the main focus of this
paper, than the design of processing element (PE) arrays.

5.2. Area Overhead of our DPS SC-CNN
Figure 6 compares the area of our proposed DPS SC-MVM
against the previous SC-MVM (Sim and Lee, 2017). The DPS
SC-MVM includes our optimizations, such as HRS, which have
very small extra logic (see Figure 4). Not surprisingly, the graph
shows that the area overhead of ours is mostly small, typically at
around 5%, though varied depending on the hardware precision
shown on the x-axis. The graph also shows that the area is linearly
proportional to the hardware precision, or logarithmically to
bit-parallelism. This is due to the optimization exploiting the
structure of the bitstream ordering. Overall the average area
overhead is 6%, which is small.

5.3. Effect of Software and Hardware
Precision on ADP
Figure 7 shows the ADP trend as we vary software precision.
For our ADP result, we use AlexNet parameters as our SC-
MVM has data-dependent variable latency. The digital baseline
does not support dynamic precision, thus has constant ADP. For
Stripe, delay is proportional to the precision, resulting in linear

ADP. The graph shows that Stripe becomes inefficient over the
conventional digital baseline beyond 7- or 8-bit (➀). DPS-2ˆ4,
which is our DPS SC-MVM with hardware precision of 4, shows
exponentially increasing ADP as software precision increases.
But the range of software precision for which DPS-2ˆ4 is more
efficient than conventional digital is wider than that of Stripe.

DPS-2ˆ8, which is our DPS SC-MAC with hardware precision
of 8, can widen the efficient operating range even further (➁). At
the same time, it has higher ADP than DPS-2ˆ4 when software
precision is lower (➂), as it is more optimized for higher precision
workload. Some of the efficiency loss can be reclaimed by zero
skipping (➃), which is to skip computation of multiplication
whose weight operand is 0 (after quantization) as shown in
the graph.

As demonstrated previously, ADP depends on hardware
precision. Figure 8 shows ADP vs. hardware precision (a) for
a CNN (AlexNet) and (b) for multiple CNNs. As hardware
precision increases, the average delay decreases until it reaches
saturation, whereas area increases more or less linearly to
hardware precision. This suggests that there is an optimal
hardware precision to minimize ADP. In the case of AlexNet in
Figure 8A, for instance, ADP is minimized at hardware precision
of 4, or DPS-2ˆ4. But in other CNNs, different points can be
optimal as there are different weight distributions and precision
requirements depending on the CNN. Figure 8B shows how
ADP as well as optimal hardware precision changes depending
on application. Understandably, large and complex CNNs seem
to be better off with higher hardware precision. Our hardware
precision for the multi-application scenario (see the next section)
is chosen based on this profile.

5.4. Multi-Application Scenario
Figure 9A compares our DPS SC-CNN and previous CNN
implementations. First, ours is highly area efficient, which is not

Frontiers in Neuroscience | www.frontiersin.org 10 December 2020 | Volume 14 | Article 543472

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sim and Lee Bitstream-Based Neural Network

FIGURE 7 | Area-delay product (ADP) vs. software precision.

surprising given the area efficiency of SC. Since Stripe is bit-serial,
we use 16 times as many MACs for Stripe as in the baseline, so
that the two can have the same throughput in the worst case
(i.e., when the CNN’s software precision is 16-bit). Hence, Stripe
has the largest tile area as shown in Figure 9B due to the large
number of MACs it has; the others have 256 MACs only.

Figure 9C shows average MAC cycles and Figure 9D shows
the ADP result, which is normalized to the digital baseline.
First, all these results are from implementations that achieve
<1% point accuracy drop from the reference floating-point
implementations (see Table 1). That SC-CNNs can achieve this
high accuracy for large CNNs is very significant. Also this is
why this graph has no comparison with previous SC-CNNs.
Second, at the same time the efficiency of ours as measured in
ADP is actually higher than that of conventional digital, often
significantly. For instance, DPS-2ˆ8, which is optimized for large
CNNs, shows consistently better results than the conventional
digital designs. It also demonstrates the flexibility as well as
efficiency of our DPS SC-CNN. Third, the optimal design as
measured in geometric mean of ADP is DPS-2ˆ6 for this mix of
CNNs, which is obviously influenced by the existence of a small
network. But our scheme can flexibly support different workloads
through the hardware precision, while simultaneously being able
to support dynamic software precision at runtime. Figures 9E,F
present the power and energy comparisons, which show very
similar trends as those of the area and ADP comparisons in
the same figure. Overall, our DPS-2ˆ6 can achieve over 2×
and 1.5× improvements compared with the baseline and Strip,
respectively, in terms of operations per area.

5.5. Single Application Comparison
We also compare different implementations including the
previous state-of-the-art SC-CNN (Sim and Lee, 2017) for a
single application scenario, i.e., when we design and use a chip
for just a single CNN. We use AlexNet as the target CNN.
Figure 10 shows area, average delay, and ADP results in one

graph, all normalized to that of the digital baseline. For SC
designs, hardware precision is set to 4. Maximum software
precision supported (Q) is determined to be the minimum value
that meets the recognition accuracy constraint, which is largely
dependent on how accurate the MAC is. The digital baseline
requires 9-bit while the previous SC-CNN requires 11-bit. Our
DPS SC-CNN requires 10-bit with uniform precision; dynamic
precision setting is listed in Table 1.

The graph shows that the previous SC-CNN has smaller area
than the digital baseline but its average delay is much higher,
which is attributed to the high precision requirement. Applying
HRS to it (but not DPS) can reduce precision requirement by 1-
bit with significant saving in delay, but its average delay is still
higher than that of conventional digital. Applying DPS further
gives 14% reduction in ADP, achieving the best efficiency. The
relatively weak impact of DPS is due to the small number of layers
in AlexNet and our limited precision exploration. For deeper
networks and if we can use the optimal precision combination,
the impact could be higher. Even with these limitations our
proposed design achieves 34 and 46% reduction in ADP (or 52
and 85% increase in operations per area) over the digital baseline
and the previous SC-CNN, respectively.

5.6. Efficiency of Neuromorphic
Architecture
Thanks to its extremely small size, SC-MAC allows us to explore
more flexible architectures including significantly more parallel
architectures and tight integration of memories with compute
elements. In one of those architectures, which more closely
resembles the nervous system and therefore is referred to as
neuromorphic architecture, we use the following parameters.

• It is bit-serial (hardware precision p = 0), meaning that each
SC-MAC processes only one bit in a cycle.

• The tiling parameters (see Figure 5) are as follows: TZ =
TM = TR = TC = 16.

Frontiers in Neuroscience | www.frontiersin.org 11 December 2020 | Volume 14 | Article 543472

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sim and Lee Bitstream-Based Neural Network

FIGURE 8 | Area-delay product (ADP) vs. hardware precision. (A) AlexNet and (B) Multi-application.

• Input SRAM is directly integrated into SC-MAC as described
in section 4.6.3.

The same synthesis setting is used as described in section 5.1

including the target clock frequency.

We compare three cases: digital, DPS SC-CNN (DPS-2ˆ4),

and the neuromorphic architecture. The result is summarized

in Table 2. For fair comparison, we use the same number of

synaptic connections, which is set to 64K (216). This means that

all the three architectures compared here have the same number

of multipliers or their equivalents. In the table, the first two
architectures, Digital and DPS-2ˆ4, are the same as in Figure 9A,
with only 256 MACs or synaptic connections, but added here
for comparison. CNN cycles of MNIST for digital and DPS-
2ˆ4 are equivalent because the network precision requirement is
4 (excluding sign-bit) and DPS-2ˆ4 can process the maximum
length of stochastic stream at a cycle. Their “large” versions are
created by increasing the tiling parameters; each has two tiling
parameters, which are multiplied by 16 each. The ADP column is
the geometric mean for both networks.

Frontiers in Neuroscience | www.frontiersin.org 12 December 2020 | Volume 14 | Article 543472

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sim and Lee Bitstream-Based Neural Network

FIGURE 9 | Comparison with the digital baseline and Stripe. (A) Area (mm2), (B) #MAC of a tile (1 k), (C) Average cycles, (D) Normalized ADP, (E) Power (mW), and

(F) Normalized energy.

TABLE 1 | Recognition accuracy (for 10K images) and dynamic precision scaling

(DPS) precision setting.

CNN Baseline accuracy

(float)

DPS

accuracy

DPS precisions

found

MNIST 0.9904 0.9826 5 (uniform)

AlexNet (top-5) 0.8070 0.7999 10-9-8-9-9

GoogLeNet (top-5) 0.8926 0.8844 13 (uniform, w/o

fine-tuning)

VGG_S (top-5) 0.8341 0.8247 9-9-10-9-10

The table suggests that among the three architectures with
64K synaptic connections, the neuromorphic architecture has
the best area, performance, and ADP. In terms of area, the
neuromorphic architecture shows several dozen times higher
density, thanks to the use of bit-serial SC-MAC and input
MUX elimination (enabled by SRAM integration). Yet, its

latency is actually lower than that of the others. The DPS
SC-CNN architecture suffers extremely low utilization, which
is the main culprit of the architecture when the number of
MACs is very high. Simply it is not designed to be very
scalable, which is addressed in the neuromorphic architecture.
While the neuromorphic architecture has its own weakness,
i.e., synchronization overhead, it is relatively mild. Our
simulation result shows that the overhead increases average
MAC latency by about 2.96 and 6.97 times for MNIST and
AlexNet, respectively, compared with when the synchronization
overhead is ignored. As a result, the neuromorphic architecture
achieves orders of magnitude improvement in ADP over
DPS SC-CNN.

The table also provides comparisons with previous digital
DNN accelerators. DianNao (Chen et al., 2014) is similar to
our Digital implementation employing the same number of
MAC units but based on a different dataflow, as a result of
which it has lower throughput than our digital implementation.

Frontiers in Neuroscience | www.frontiersin.org 13 December 2020 | Volume 14 | Article 543472

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sim and Lee Bitstream-Based Neural Network

FIGURE 10 | Comparison with previous SC-CNN on AlexNet.

TABLE 2 | Processing element (PE) array comparison.

Architecture

(PEs)

#Synaptic

connections

Area

(mm2)

#Synaptic

connections/Area

CNN cycles Area-delay

product (norm.)

Power

(mW)

Energy

(norm.)
MNIST ImageNet

Small Digital 256 0.41 630 27.0K 3.8M 1 171.42 1

DPS-2∧4 256 0.13 1,985 27.0K 4.3M 0.34 41.62 0.26

Large Digital large† 64K 104.04 630 25.5K 2.3M 195.52 43884.54 195.52

DPS-2∧4

large†
64K 33.02 1,985 25.5K 2.4M 62.73 10654.98 47.98

Neuromorphic 64K 1.63 40,261 2.3K 1.1M 0.65 489.26 0.46

Small DianNao* 256 0.85 302 41.6K 4.4M 2.79 132 1.03

Eyeriss* 168 9.63 17 – 20.7M – – –

Our neuromorphic PE array shows much higher synaptic density and better scalability than the scaled-up versions of Digital (the baseline) and our DPS-2ˆ4. The Digital and DPS-2ˆ4 PE

arrays share the same architecture. For context, we also compare the baseline architecture with two previous accelerator architectures (∗based on published papers, †estimated).

The area number of DianNao is after place-and-route, and
thus includes metal wiring space as well, whereas those of
our designs are based on synthesized logic gates only. But
even after discounting the differences due to methodology, the
compute density (i.e., synaptic connections per area) of DianNao
is extremely low, making it unsuitable for neuromorphic
architectures, where a large number of non-time-multiplexing
neurons are expected. We note that the same weakness plagues
our digital implementations as well. Eyeriss (Chen et al., 2017) is a
well-known systolic array architecture to accelerate CNNs. While
it is one of the most energy-efficient digital CNN accelerators,
it has the lowest compute density (synaptic connections per
area) in our comparison. That is because Eyeriss employs large
PEs as well as many intra-PE registers and complex inter-PE
connections, making it hard to scale to tens of thousands
of PEs.

When the number of MACs is small, or when there is no
area constraint, the DPS SC-CNN architecture achieves the
best ADP, beating the neuromorphic architecture by about 2×.
The neuromorphic architecture, on the other hand, shows very
competitive ADP at a high throughput level. Note that the
neuromorphic architecture has the exactly the same accuracy as
the DPS SC-CNN, whose accuracy drop is <1% as shown in
Table 1. All in all, these results indicate that our SC-based neural
network is very flexible and scalable to accommodate various
applications as well as area constraints.

5.7. Fault Tolerance
To evaluate the fault tolerance of our proposed schemes, we have
performed an error injection experiment. For the fault model, we
assume that random bit flip can occur at the input, as is done in
a previous study on SC (Qian et al., 2011). The SRAM memories

Frontiers in Neuroscience | www.frontiersin.org 14 December 2020 | Volume 14 | Article 543472

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sim and Lee Bitstream-Based Neural Network

FIGURE 11 | Fault tolerance comparison among different schemes, for AlexNet.

TABLE 3 | Feature comparison (O: supported, X: not supported).

Feature

Digital SC

DianNao (Chen

et al., 2014) Judd et al., 2016
Eyeriss (Chen

et al., 2017) Kim et al., 2016 Sim et al., 2017 Sim and Lee, 2017
Ours

Large (≥5 Conv. layers) CNNs O O O X X X O

Tile based O O O X O O O

Per-CNN precision X O X X X X O

Per-layer precision X O X X X X O

Per-bit precision X O X O O O O

Multi-bit acceleration X X X X X O O

Variable latency operation X X X O X O O

Half-range specialization X X X X X X O

are assumed to be protected, such as using hardened logic or ECC
(error correcting code). For a given fault rate f , we flip the bits
of input registers, whose size varies depending on the scheme,
with the same probability f . This fault model is integrated into the
Caffe framework. No retraining is performed, but only inference,
in the presence of faults.

Figure 11 shows accuracy degradation for AlexNet as we
vary fault rate. First, we observe that SC-based implementations
show significantly higher fault tolerance than the conventional
digital implementation, which agrees with previous studies
(Qian et al., 2011; Zhakatayev et al., 2018). Second, there is
quite a variance among the SC-based implementations. The
neuromorphic implementation, which is based on bit-serial SC,
shows the highest fault tolerance whereas the bit-parallel version,
DPS-2ˆ4, is less error resilient. There are a number of differences

between the two architectures. One relevant fact is that the
bit-parallel version performs a weighted bitcount operation to
process multiple bits in parallel, which is more like digital logic
than SC, and thus may contribute to its lower fault tolerance.

Another difference is that the neuromorphic architecture
reloads input every cycle due to the tight SRAM integration.
(The neuromorphic architecture has input registers too like the
other architectures.) To test if this contributes to the higher fault
tolerance, we test a variant of the DPS-2ˆ4 scheme, denoted by
DPS-2ˆ4*, which is to reload input every cycle even when it is
not necessary to do so. Our experimental result in Figure 11

clearly shows that input reloading helps. This may come as a
surprise, but while input reloading does not lower the average
number of faults in the circuit, it does lower the chance of having
correlated faults, faults that occur at the same bit position of

Frontiers in Neuroscience | www.frontiersin.org 15 December 2020 | Volume 14 | Article 543472

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sim and Lee Bitstream-Based Neural Network

the input and therefore are more detrimental to the correctness
of computation. The neuromorphic architecture has the least
correlated faults, which helps achieve the highest fault tolerance.

5.8. Feature Comparison With Previous
Work
In addition to performance numbers, our solution proposed
in this paper has many important features as summarized in
Table 3. The key factors that make our work much more efficient
and accurate than the previous work are the combination of
variable latency, dynamic precision (i.e., per-layer precision),
multi-bit acceleration (crucial for larger CNNs), and HRS (which
is specific to SC). In addition, ours has high fault tolerance
inherent with SC.

6. CONCLUSION

In this paper, we presented a bitstream-based neural network,
which is a highly optimized and deterministic version of
SC neural network. Thanks to many optimizations including
dynamic precision scaling and half-range specialization in
addition to the fundamental redesign of the SC multiplication
operation, our SC-CNN can achieve both very high accuracy
and high efficiency up to ImageNet-targeting CNNs. The SC-
CNN owes some of its accuracy advantage to deep learning
training algorithms, such as backpropagation. However, it has
a distinct set of advantages over deep learning models due
to SC, such as precision flexibility and error resilience. These
advantages can be very useful, for instance, when designing a
single piece of hardware that needs to efficiently support various
neural networks with different precision requirements and when
computation may not be reliable due to advanced semiconductor
process scaling. The flexibility of precision comes with the
challenge of optimizing it. Currently, our optimization flow is

greedy and slow due to the retraining of SC-CNN. Finding better
methods to determine optimal precision settings more quickly
remains for future work.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

AUTHOR CONTRIBUTIONS

HS did the design, implementation, and experimentation in the
paper, and also made the initial draft of the paper. JL made
critical contributions to the conception of the work, and extensive
revisions of the paper. All authors contributed to the article and
approved the submitted version.

FUNDING

This work was supported by Samsung Advanced Institute of
Technology, NRF grants funded by MSIT of Korea (Nos.
2017R1D1A1B03033591 and 2020R1A2C2015066), IITP grants
funded by MSIT of Korea [No. 1711080972, Neuromorphic
Computing Software Platform for Artificial Intelligence Systems,
No. 2020-0-01336, Artificial Intelligence Graduate School
Program (UNIST)], and Free Innovative Research Fund of
UNIST (1.170067.01).

ACKNOWLEDGMENTS

This paper was an extension of work originally presented at
DAC 2018 (Sim et al., 2018), with new contributions relevant to
neuromorphic computing including a much more scalable and
memory-integrating architecture and fault tolerance analysis.

REFERENCES

Akopyan, F., Sawada, J., Cassidy, A., Alvarez-Icaza, R., Arthur, J., Merolla, P.,

et al. (2015). Truenorth: design and tool flow of a 65 MW 1 million neuron

programmable neurosynaptic chip. IEEE Trans. Comput. Aided Des. Integr.

Circuits Syst. 34, 1537–1557. doi: 10.1109/TCAD.2015.2474396

Chen, T., Du, Z., Sun, N., Wang, J., Wu, C., Chen, Y., et al. (2014). “Diannao: a

small-footprint high-throughput accelerator for ubiquitous machine-learning,”

in Proceedings of the 19th International Conference on Architectural Support for

Programming Languages and Operating Systems, ASPLOS ’14 (New York, NY:

ACM), 269–284. doi: 10.1145/2541940.2541967

Chen, Y.-H., Krishna, T., Emer, J. S., and Sze, V. (2017). Eyeriss: an energy-efficient

reconfigurable accelerator for deep convolutional neural networks. IEEE J. Solid

State Circuits 52, 127–138. doi: 10.1109/JSSC.2016.2616357

Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J., Catanzaro, B., et al.

(2014). cudnn: Efficient primitives for deep learning. arXiv 1410.0759.

Courbariaux, M., and Bengio, Y. (2016). Binarynet: training deep neural networks

with weights and activations constrained to +1 or−1. CoRR abs/1602.02830.

Davies, M., Srinivasa, N., Lin, T., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).

Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro

38, 82–99. doi: 10.1109/MM.2018.112130359

Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M. A., et al. (2016). “EIE:

efficient inference engine on compressed deep neural network,” in ISCA’16

(Seoul: IEEE Press), 243–254. doi: 10.1145/3007787.3001163

Hawkins, J., and George, D. (2006). Hierarchical Temporal Memory: Concepts,

Theory and Terminology. Technical report, Numenta.

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward

networks are universal approximators. Neural Netw. 2, 359–366.

doi: 10.1016/0893-6080(89)90020-8

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and Bengio, Y. (2017).

Quantized neural networks: training neural networks with low precision

weights and activations. J. Mach. Learn. Res. 18, 6869–6898. Available online

at: http://jmlr.org/papers/v18/16-456.html

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Trans. Neural

Netw. 14, 1569–1572. doi: 10.1109/TNN.2003.820440

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., et al. (2014).

Caffe: convolutional architecture for fast feature embedding. arXiv 1408.5093.

doi: 10.1145/2647868.2654889

Judd, P., Albericio, J., Hetherington, T., Aamodt, T., Jerger, N. E., Urtasun, R., et al.

(2015). Reduced-precision strategies for bounded memory in deep neural nets.

arXiv 1511.05236.

Judd, P., Albericio, J., Hetherington, T., Aamodt, T. M., and Moshovos, A. (2016).

“Stripes: bit-serial deep neural network computing,” in MICRO’16 (Taipei:

IEEE), 1–12. doi: 10.1109/MICRO.2016.7783722

Kim, K., Kim, J., Yu, J., Seo, J., Lee, J., and Choi, K. (2016). “Dynamic

energy-accuracy trade-off using stochastic computing in deep neural

networks,” in DAC’16 (Austin, TX), 124:1–124:6. doi: 10.1145/2897937.

2898011

Frontiers in Neuroscience | www.frontiersin.org 16 December 2020 | Volume 14 | Article 543472

https://doi.org/10.1109/TCAD.2015.2474396
https://doi.org/10.1145/2541940.2541967
https://doi.org/10.1109/JSSC.2016.2616357
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1145/3007787.3001163
https://doi.org/10.1016/0893-6080(89)90020-8
http://jmlr.org/papers/v18/16-456.html
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1145/2647868.2654889
https://doi.org/10.1109/MICRO.2016.7783722
https://doi.org/10.1145/2897937.2898011
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Sim and Lee Bitstream-Based Neural Network

Krizhevsky, A., and Hinton, G. (2009). Learning Multiple Layers of Features From

Tiny Images (Toronto, ON: University of Toronto).

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “Imagenet classification

with deep convolutional neural networks,” in NIPS’12 (Tahoe City, CA), 1097–

1105.

LeCun, Y., Cortes, C., and Burges, C. (2010). MNIST Handwritten Digit Database

(New York, NY: New York University).

Lee, J. H., Delbruck, T., and Pfeiffer, M. (2016). Training deep spiking

neural networks using backpropagation. Front. Neurosci. 10:508.

doi: 10.3389/fnins.2016.00508

Li, J., Ren, A., Li, Z., Ding, C., Yuan, B., Qiu, Q., et al. (2017a).

“Towards acceleration of deep convolutional neural networks

using stochastic computing,” in ASP-DAC’17 (Chiba), 115–120.

doi: 10.1109/ASPDAC.2017.7858306

Li, Z., Ren, A., Li, J., Qiu, Q., Wang, Y., and Yuan, B. (2016). “DSCNN:

hardware-oriented optimization for stochastic computing based deep

convolutional neural networks,” in ICCD’16 (Scottsdale, AZ), 678–681.

doi: 10.1109/ICCD.2016.7753357

Li, Z., Ren, A., Li, J., Qiu, Q., Yuan, B., Draper, J., et al. (2017b). “Structural

design optimization for deep convolutional neural networks using stochastic

computing,” in DATE’17 (Lausanne), 250–253. doi: 10.23919/DATE.2017.79

26991

Lin, D., Talathi, S., and Annapureddy, S. (2016). “Fixed point quantization of

deep convolutional networks,” in International Conference onMachine Learning

(New York, NY), 2849–2858.

Maass, W. (1997). Networks of spiking neurons: the third generation

of neural network models. Neural Netw. 10, 1659–1671.

doi: 10.1016/S0893-6080(97)00011-7

Markram, H. (2012). The human brain project. Sci. Am. 306, 50–55.

doi: 10.1038/scientificamerican0612-50

McCulloch, W. S., and Pitts, W. (1943). A logical calculus of the ideas immanent

in nervous activity. Bull. Math. Biophys. 5, 115–133. doi: 10.1007/BF02478259

Mead, C. (1990). Neuromorphic electronic systems. Proc. IEEE 78, 1629–1636.

doi: 10.1109/5.58356

Qian, W., Li, X., Riedel, M. D., Bazargan, K., and Lilja, D. J. (2011). An architecture

for fault-tolerant computation with stochastic logic. IEEE Trans. Comput. 60,

93–105. doi: 10.1109/TC.2010.202

Rahman, A., Lee, J., and Choi, K. (2016). “Efficient FPGA acceleration of

convolutional neural networks using logical-3D compute array,” in 2016Design,

Automation Test in Europe Conference Exhibition (DATE) (Dresden), 1393–

1398. doi: 10.3850/9783981537079_0833

Ren, A., Li, Z., Ding, C., Qiu, Q., Wang, Y., Li, J., et al. (2017). “SC-DCNN: highly-

scalable deep convolutional neural network using stochastic computing,” in

ASPLOS’17 (Xi’an), 405–418. doi: 10.1145/3037697.3037746

Ren, A., Li, Z., Wang, Y., Qiu, Q., and Yuan, B. (2016). “Designing reconfigurable

large-scale deep learning systems using stochastic computing,” in ICRC’16 (San

Diego, CA), 1–7. doi: 10.1109/ICRC.2016.7738685

Roy, K., Jaiswal, A., and Panda, P. (2019). Towards spike-based machine

intelligence with neuromorphic computing. Nature 575, 607–617.

doi: 10.1038/s41586-019-1677-2

Sim, H., Kenzhegulov, S., and Lee, J. (2018). “DPS: dynamic precision scaling for

stochastic computing-based deep neural networks,” in Proceedings of the 55th

Annual Design Automation Conference, DAC 18 (New York, NY: Association

for Computing Machinery). doi: 10.1145/3195970.3196028

Sim, H., and Lee, J. (2017). “A new stochastic computing multiplier with

application to deep convolutional neural networks,” in DAC’17 (Austin), 29:1–

29:6. doi: 10.1145/3061639.3062290

Sim, H., and Lee, J. (2019). Cost-effective stochastic mac circuits for deep neural

networks. Neural Netw. 117, 152–162. doi: 10.1016/j.neunet.2019.04.017

Sim, H., Nguyen, D., Lee, J., and Choi, K. (2017). “Scalable stochastic-computing

accelerator for convolutional neural networks,” in ASP-DAC’17 (Chiba), 696–

701. doi: 10.1109/ASPDAC.2017.7858405

Stöckl, C., and Maass, W. (2020). Classifying Images With Few Spikes per Neuron

(Ithaca, NY: Cornell University).

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al.

(2015). “Going deeper with convolutions,” in The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR) (Boston, MA).

doi: 10.1109/CVPR.2015.7298594

Wu, J., Chua, Y., Zhang, M., Li, G., Li, H., and Tan, K. C. (2019). A Tandem

Learning Rule for Efficient and Rapid Inference on Deep Spiking Neural Networks

(Ithaca, NY).

Yu, J., Kim, K., Lee, J., and Choi, K. (2017). “Accurate and efficient stochastic

computing hardware for convolutional neural networks,” in 2017 IEEE

International Conference on Computer Design (ICCD) (Boston, MA), 105–112.

doi: 10.1109/ICCD.2017.24

Zhakatayev, A., Lee, S., Sim, H., and Lee, J. (2018). “Sign-magnitude

SC: getting 10× accuracy for free in stochastic computing for deep

neural networks,” in 2018 55th ACM/ESDA/IEEE Design Automation

Conference (DAC) (San Francisco, CA), 1–6. doi: 10.1145/3195970.

3196113

Zhou, S., Ni, Z., Zhou, X., Wen, H., Wu, Y., and Zou, Y. (2016). Dorefa-

net: training low bitwidth convolutional neural networks with low bitwidth

gradients. CoRR abs/1606.06160.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Sim and Lee. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s) and

the copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 17 December 2020 | Volume 14 | Article 543472

https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.1109/ASPDAC.2017.7858306
https://doi.org/10.1109/ICCD.2016.7753357
https://doi.org/10.23919/DATE.2017.7926991
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1038/scientificamerican0612-50
https://doi.org/10.1007/BF02478259
https://doi.org/10.1109/5.58356
https://doi.org/10.1109/TC.2010.202
https://doi.org/10.3850/9783981537079_0833
https://doi.org/10.1145/3037697.3037746
https://doi.org/10.1109/ICRC.2016.7738685
https://doi.org/10.1038/s41586-019-1677-2
https://doi.org/10.1145/3195970.3196028
https://doi.org/10.1145/3061639.3062290
https://doi.org/10.1016/j.neunet.2019.04.017
https://doi.org/10.1109/ASPDAC.2017.7858405
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/ICCD.2017.24
https://doi.org/10.1145/3195970.3196113
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Bitstream-Based Neural Network for Scalable, Efficient, and Accurate Deep Learning Hardware
	1. Introduction
	2. Related Work
	2.1. SC-Based Neural Network
	2.2. Neuromorphic Computing
	2.3. Deep Learning Hardware

	3. Dynamic Precision Scaling SC-CNN
	3.1. Analysis of Baseline SC-MAC
	3.2. Acceleration of Neural Network
	3.3. Dynamic Precision Scaling Extension
	3.4. Half-Range Specialization

	4. Design Optimizations for DPS SC-CNN
	4.1. Hardware Precision vs. Software Precision
	4.2. Design Flow
	4.3. Determining Data Scaling Parameters
	4.4. Determining Software Precision of Each Layer
	4.5. Determining Hardware Precision
	4.6. Neuromorphic Optimizations
	4.6.1. Motivation
	4.6.2. More Parallel Architecture for SC-CNN
	4.6.3. Tight Integration of SRAM and SC-MAC

	5. Experiments
	5.1. Experimental Setup
	5.2. Area Overhead of our DPS SC-CNN
	5.3. Effect of Software and Hardware Precision on ADP
	5.4. Multi-Application Scenario
	5.5. Single Application Comparison
	5.6. Efficiency of Neuromorphic Architecture
	5.7. Fault Tolerance
	5.8. Feature Comparison With Previous Work

	6. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

