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FULL LENGTH ARTICLE

Solid state crystal growth of single crystals of 0.75(Na1/2Bi1/2)TiO3-0.25SrTiO3 
and their characteristic electrical properties
Phan Gia Lea, Thuy Linh Phama, Dang Thanh Nguyena, Jong-Sook Lee a, John G. Fisher a, Hwang-Pill Kimb 

and Wook Job

aSchool of Materials Science and Engineering, Chonnam National University, Gwangju, Republic of Korea; bSchool of Materials Science and 
Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea

ABSTRACT
Ceramics of composition 0.75(Na1/2Bi1/2)TiO3-0.25SrTiO3 (NBT-25ST) show a giant electric field- 
induced strain, making them attractive for actuator applications. Single crystals generally have 
improved piezoelectric properties over their ceramic counterparts, but the electrical properties 
of NBT-25ST single crystals have not yet been studied. In this work, NBT-25ST single crystals are 
grown by the solid state crystal growth technique and their electrical properties measured for 
the first time. The single crystals show relaxor ferroelectric behavior typical of an NBT-type 
material. The ferroelectric and inverse piezoelectric properties depend strongly on crystal
lographic orientation, with superior properties in the (001) orientation. The inverse piezo
electric properties of the (001)-oriented NBT-25ST single crystal are superior to those of an 
NBT-25ST ceramic (Smax/Emax = 1042 pm/V vs. 739 pm/V).
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1. Introduction

Piezoactuators have been applied in many areas such as 
electric fuel injection, autofocusing of cameras, ink-jet 
printers, optical lenses and mirrors [1,2]. A piezoactuator 
can be designed based on physical dimensions, displa
cement (stroke), blocking force, maximum strain, tem
perature range, frequency range and voltage range 
[2,3]. Piezoactuators must operate in many different 
environments and are affected by many factors such 
as temperature, frequency, pressure and humidity 
[3–5]. At the present time, the global market for piezo
actuators is dominated by Lead Zirconate Titanate (PZT), 
which has excellent piezoelectric properties such as Smax 

/Emax ≈ 700 pm/V, ε33T/ε0 = 2300, Tc = 250°C [2,6–8]. 
However, the high concentration of lead in PZT can 
negatively affect human health and the environment 
[2]. To mitigate these effects, restrictions on the amount 
of lead permissible in electronic devices have been 
applied through the RoHS and WEEE regulations from 
the European Union and similar legislation from various 
countries [2,7,9]. Therefore, the discovery of new lead- 
free materials with piezoelectric properties that are 
comparable to PZT is urgently required. Many efforts 
from researchers to look for and discover new material 
systems have been in progress. Many methods were 
proposed to improve the piezoelectric properties of 
well-known lead-free systems by making binary or tern
ary solid solutions, doping or fabrication of single crys
tals [2,3,10–21].

Sodium Bismuth Titanate, (Na1/2Bi1/2)TiO3 (NBT), is 
a relaxor ferroelectric material with high coercive elec
tric field that makes it difficult to pole [2,22]. Below 
255°C, NBT is rhombohedral. The space group is gen
erally considered to be R3c [23,24], although 
a monoclinic structure (space group Cc) is also possible 
[25]. Rhombohedral to tetragonal (P4bm) and tetrago
nal to cubic ðPm3mÞ phase transitions take place at 
~255°C and ~540°C respectively [24,26–28]. The rhom
bohedral and tetragonal phases co-exist between 
255–400°C, while the tetragonal and cubic phases co- 
exist between 500–540°C [24]. To improve the electri
cal properties, SrTiO3 (ST) was combined with NBT; the 
Sr2+ ion is dispersed in the NBT crystal lattice to make 
a solid solution [11,29]. The coercive electric field is 
decreased, which assists poling [30]. Addition of ST to 
NBT causes the NBT rhombohedral structure to change 
to a pseudocubic structure as ST concentration 
increases, with a morphotropic phase boundary 
(MPB) existing between rhombohedral and pseudocu
bic phases at x ≈ 0.25 [11,31,32]. At compositions near 
the MPB the piezoelectric properties can be improved, 
at the cost of a reduction in the depolarization tem
perature Td and the rhombohedral to tetragonal phase 
transition temperature TR-T [29–32]. Hiruma et al. stu
died the (100-x)NBT-xST system and found that com
positions near the MPB with x = 26–28 mol % had 
improved inverse piezoelectric properties with 
a strain of 0.29% and a normalized strain Smax/Emax of 
488 pm/V [11]. Acosta et al. found that 75 mol % (Na1/2 
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Bi1/2)TiO3 – 25 mol % SrTiO3 (NBT-25ST) ceramics, 
which have a composition close to the MPB, showed 
a normalized strain Smax/Emax of 600–700 pm/V at 
a relatively low electric field of 4 kV/mm [3].

Single crystals of NBT-based compositions generally 
have improved properties relative to their ceramic coun
terparts [33,34]. Some NBT-BT single crystals with com
positions near to the morphotropic phase boundary 
between rhombohedral and tetragonal phases exhibit 
a high Smax/Emax and free strain such as 0.945(Na1/2 

Bi1/2)TiO3-0.055BaTiO3, with Smax/Emax ≈ 1420 pm/V 
and 0.44% strain, and Na1/2Bi1/2TiO3-Ba(Ti,Zr)O3, with 
Smax/Emax ≈ 2000 pm/V and 0.45% strain [35–37]. 
Single crystals of (Na1/2Bi1/2)TiO3-BaTiO3-(K0.5N0.5)NbO3 

(NBT-BT-KNN) compositions showed a giant strain of 
0.57% and Smax/Emax of 950 pm/V [38] and a giant strain 
of 0.83% at an electric field of 28 kV/cm [39]. Single 
crystals of NBT-25ST may also have improved piezoelec
tric properties, but as of yet only limited work on single 
crystal growth in this system has been reported and the 
electrical properties have not been measured [13].

In the present work, the solid state crystal growth 
technique is used to grow single crystals [40,41]. In this 
technique, a piece of single crystal (the seed crystal) is 
buried inside the polycrystalline powder of the compo
sition to be grown, pressed into a pellet and then sin
tered. A single crystal with the same composition as the 
powder grows epitaxially on the seed crystal. The rela
tively low processing temperature (lower than the melt
ing point of the compound to be grown) helps the 
single crystal preserve its stoichiometry and chemical 
homogeneity. Solid state crystal growth has been used 
to grow single crystals with properties comparable to 
those of conventionally-grown crystals. Single crystals of 
(Na1/2Bi1/2)TiO3-BaTiO3, (Na1/2Bi1/2)TiO3-Ba(Ti,Zr)O3, 
(Na1/2Bi1/2)TiO3-CaTiO3, (Na1/2Bi1/2)TiO3-SrTiO3 and 
(Na1/2Bi1/2)TiO3-BaTiO3-(K0.5N0.5)NbO3 have been 
grown by this technique [13,15,33,38,42–45]. In the pre
sent work, single crystals of 75 mol % (Na1/2Bi1/2)TiO3 – 
25 mol % SrTiO3 (NBT-25ST) are grown by solid state 
crystal growth and the microstructure, structure and 
electrical properties of the grown single crystals are 
studied. Single crystals of NBT-25ST are found to have 
significantly improved inverse piezoelectric properties 
over their ceramic counterparts.

2. Experimental

The NBT-25ST powder is synthesized from Na2CO3 

(ACROS organics, 99.5%), Bi2O3 (Alfa Aesar, 99.9%), 
TiO2 (Alfa Aesar, 99.8%) and SrCO3 (Aldrich, ≥ 99.9%) 
starting materials by solid state reaction. For further 
details, see reference [13]. SrTiO3 single crystal seeds 
(MTI Corp., CA) with (110) orientation and dimensions 
of 5 mm × 5 mm × 0.5 mm are buried in 0.5 g of powder 
in a 10 mm steel die which is then pressed by hand into 
pellets, followed by cold isostatic pressing at 1500 kg. 

cm−2 (~ 147 MPa). The pellets are sintered at 1250°C for 
5 h with heating and cooling rates of 5°C.min−1. To 
reduce volatilization of Na and Bi during sintering, the 
pellets are buried in a 2 wt% Na2CO3 – 2 wt% Bi2O3 – 
96 wt% NBT-25ST packing powder in double alumina 
crucibles with lids. A schematic diagram of the experi
ment is shown in Figure S 1(a).

To study the microstructure, samples are vertically 
sectioned, polished to a 1 µm finish with diamond 
suspension and thermally etched at 1200°C for 1 h. 
The etched samples are Pt-coated and observed by 
Scanning Electron Microscopy (SEM, Hitachi S-4700, 
Tokyo, Japan) with attached Energy Dispersive X-ray 
spectrometer (EDS, EMAX energy EX-200, Horiba, 
Kyoto, Japan). The mean matrix grain size and matrix 
grain size distribution are analyzed from the SEM 
micrographs using imageJ v1.50a image analysis soft
ware (National Institute of Mental Health, Bethesda, 
MD). To analyze the mean matrix grain size and grain 
size distribution, the equivalent 2D radii of at least 200 
grains are analyzed. For EDS analysis, a polished and 
un-etched sample was used.

To study the structure, a single crystal sample is 
polished with SiC paper up to grade #4000 to expose 
NBT-25ST single crystal faces with (110) orientation on 
both sides. The sample is analyzed by X-ray diffraction 
(XRD, X’Pert PRO, PANalytical, Almelo, the Netherlands) 
using CuKα radiation, a scan range of 20–90° 2θ and 
a scan speed of 3°C.min−1. Kα2 peak removal was car
ried out using MDI Jade 6.5 (Materials Data Inc., CA). 
For micro-Raman scattering, a single crystal sample is 
removed from the matrix and polished to a 1 µm finish 
with diamond suspension to expose the (110)-oriented 
NBT-25ST single crystal face on one side. To remove 
strains generated during polishing, the sample is 
annealed at 400°C for 1 h and cooled at a rate of 1°C. 
min−1. Micro-Raman scattering is carried out with 
a 514 nm Ar+ ion laser and output power of 10 mW 
(LabRam HR800 UV Raman microscope, Horiba Jobin- 
Yvon, France). The Raman spectrum is recorded at 
room temperature in back scattering geometry with 
a resolution of ~0.5 cm−1. The diameter of the laser 
spot on the sample is 1–2 μm. Peak fitting of Gaussian 
peaks is carried out using fityk 0.9.8 peak fitting soft
ware [46].

To carry out impedance spectroscopy, the single 
crystal sample that had been prepared for XRD analysis 
is used. Both (110) faces of the single crystal are coated 
with Pt-paste and the sample is annealed at 900°C for 
30 min with heating and cooling rates of 5°C.min−1 to 
prepare Pt electrodes. An impedance analyzer 
(HP4284A, Hewlett-Packard, Kobe, Japan) is used to 
record the electrical properties of the sample at differ
ent temperatures and frequencies. The sample is mea
sured in a furnace in the temperature range of 30 to 
800°C in oxygen with heating and cooling rates of 1°C. 
min−1. The AC voltage was set at 0.1 V and the 
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frequency range from 1000 kHz to 39.8 Hz. For com
parison, a ceramic NBT-25ST sample is prepared by 
sintering a 0.3 g pellet (without seed crystal) at 1250° 
C for 1 h, with heating and cooling rates of 5°C.min−1 

and its electrical properties measured in the same way.
As will be seen, the single crystals of NBT-25ST 

grown by solid state crystal growth are limited in 
thickness. In order to prepare larger NBT-25ST single 
crystals for measurement of the inverse piezoelectric 
properties, top-seeded solid state crystal growth 
experiments are carried out [47]. Details of these 
experiments, as well as details of the SEM and XRD 
analyses, are provided in the supplemental material. 
Single crystal samples with (110) and (001) major faces 
are prepared for electrical property measurements 
(Figure S 2). For polarization and strain hysteresis mea
surements, silver paste electrodes are applied on the 
(110) or (001) major faces of the samples. The external 
electric field (E) dependencies of polarization (P) and 
strain (S) hysteresis are measured in a commercial 
apparatus, aixPES (aixACCT system GmbH, Aachen, 
Germany) using a bipolar electric field profile at 1 Hz. 
To carry out impedance spectroscopy, Pt paste electro
des are applied as before. Samples are measured in the 
temperature range of 70 to 800°C in oxygen with 
heating and cooling rates of 1°C.min−1. The AC voltage 
was set at 1 V and the frequency range from 1000 kHz 
to 39.8 Hz.

3. Results

An SEM micrograph of a sample are shown in Figure 1. 
An NBT-25ST single crystal has grown epitaxially on the 
SrTiO3 seed crystal. At a sintering temperature of 1250° 
C, a grown single crystal thickness of ~315 μm was 
obtained after sintering for 5 h. In the matrix, coarse 
grains are predominant (Figure S 3(a)). Porosity is visi
ble in both the single crystal and the matrix grains. 
Micro-faceting of the grains is visible as steps on the 
grain boundaries. Some examples are marked with 

arrows in Figure S 3(a). The matrix grain size distribu
tion shows that the matrix grains have a bimodal size 
distribution with the largest grain reaching to ~85 μm 
in radius as shown in Figure S 3(b). The mean size and 
standard deviation of the matrix grains is 21 ± 16 μm.

Energy Dispersive X-ray Spectroscopy (EDS) results 
are shown in Table 1. EDS was taken on ten points on 
the single crystal and ten points on the matrix grains. 
The results show the mean and standard deviation. 
The NBT-25ST single crystal is slightly deficient in Na 
and has an excess of Bi. The matrix grains show similar 
behavior but the Na loss is less pronounced and the Bi 
excess is slightly more pronounced.

The NBT-25ST single crystal sample shows two 
peaks in the XRD pattern (Figure 2), which can be 
indexed as 110 and 220 peaks using pseudocubic 
indices. The top and bottom faces of the single crystal 
sample show identical XRD patterns, showing that the 
sample is single crystalline throughout its thickness. An 
XRD pattern of a (110) oriented SrTiO3 single crystal 
substrate is also shown for comparison. The positions 
and d-spacings of the 110 peaks for the NBT-25ST and 
SrTiO3 single crystals are given in Table S1. The XRD 
results show that the NBT-25ST single crystal has epi
taxially grown on the SrTiO3 seed crystal. However, the 
peak positions and lattice parameters of the substrate 
and grown single crystal are slightly different, so the 
grown single crystal has some mismatch with the seed 

Figure 1. SEM micrograph of an NBT-25ST single crystal grown 
by solid state crystal growth.

Table 1. EDS analysis results of an NBT-25ST single crystal 
grown by solid state crystal growth and its surrounding matrix 
grains.

Element
Single crystal (at. 

%)
Matrix grains (at. 

%)
Nominal value (at. 

%)

O 58.5 ± 2.5 57.4 ± 3.1 60
Na 7.0 ± 0.9 7.4 ± 1.4 7.5
Ti 20.1 ± 1.8 21.0 ± 1.9 20
Sr 5.7 ± 0.6 5.3 ± 0.7 5
Bi 8.6 ± 0.7 8.9 ± 0.7 7.5

Figure 2. X-ray diffraction patterns of a single crystal NBT-25ST 
sample grown by solid state crystal growth and a SrTiO3 seed 
crystal.
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crystal. A Raman spectrum of the NBT-25ST single crys
tal is shown in Figure 3. The black curve is the experi
mental data, the blue curves are the fitted peaks and 
the red curve is the sum of the fitted peaks. Gaussian 
peaks were fitted as this peak shape is more suitable for 
fitting the spectra of solids [48]. Wavenumber regions 
corresponding to the different types of vibrations 
(described in the Discussion) are indicated.

The impedance spectroscopy results of the NBT-25ST 
single crystal and polycrystalline samples are presented 
in Figure 4. The numbers in the legends are the loga
rithmic values of the measurement frequency. The 

curved arrows show the directions of increasing mea
surement frequency. The plots of the real part of the 
relative permittivity ε’r vs. temperature show broad 
peaks with a maximum at ~ 190°C (Figure 4(a,d)). At 
temperatures below the peak temperature, the value of 
ε’r decreases as measurement frequency increases. At 
temperatures close to and above the peak temperature, 
ε’r does not show much dispersion with frequency. 
A shoulder is visible in the ε’r vs. temperature curves of 
the single crystal sample at ~135°C. A corresponding 
shoulder is hardly visible in the polycrystalline sample. In 
the curves for the polycrystalline sample, peaks are 
visible at temperatures > 500°C, becoming smaller as 
measurement frequency increases. These peaks are due 
to polarization effects at the electrodes. In the plots of 
loss tangent vs. temperature, peaks corresponding to 
the ε’r shoulder at ~135°C are clearly visible, both in the 
single crystal and polycrystalline samples (Figure 4(b,e)). 
The peaks move to higher temperature and larger value 
of loss tangent with increasing measurement frequency. 
Loss tangent minima, corresponding to the peaks in ε’r, 
are visible at lower measurement frequencies. The low 
frequency data for ε’r and loss tangent are not shown as 
it is very noisy. As previously reported [15,43,49–51], 
from the AC conductivity curves (Figure 4(c,f)), activa
tion energies of 1.65 eV and 1.19 eV above ~600°C at the 
low frequency limit can be estimated for the single 
crystal and polycrystalline samples respectively (calcu
lated from the data measured at 39.8 Hz) [52,53].

An SEM micrograph of an NBT-25ST single crystal 
grown by top-seeded solid state crystal growth is 
shown in Figure 5. A single crystal of NBT-25ST has 
grown ~1,200 μm in the [110] direction. The interfacial 
region between the single crystal and the matrix grains 

Figure 3. Raman spectrum of an NBT-25ST single crystal 
grown by solid state crystal growth. The black curve is the 
experimental data, the blue curves are the fitted Gaussian 
peaks and the red curve is the sum of the fitted peaks. 
Wavenumber regions corresponding to the different types of 
vibrations are indicated.

Figure 4. Real part of the relative permittivity, loss tangent and conductivity as functions of temperature measured in the 
temperature range from 30 to 800°C on (a) – (c) an NBT-25ST single crystal grown by solid state crystal growth and (d) – (f) an NBT- 
25ST polycrystalline sample. The numbers in the legends are the logarithmic values of the measurement frequency.
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is shown in Figure S 4(a). A secondary phase can be seen 
at the matrix grain boundaries and in the single crystal. 
EDS analysis of the secondary phase in the matrix shows 
it to be TiO2. The secondary phase in the single crystal 
may be an artifact caused by thermal etching [15,42]. 
The matrix grain size distribution of this sample is shown 
in Figure S 4(b). The mean and standard deviation of the 
matrix grain size is 14 ± 6 μm. EDS analysis results are 
shown in Table 2. Each value is the mean and standard 
deviation of five measurement points. Both the single 
crystal and the matrix grains have excess Na and Bi 
compared to the nominal values.

Figure S 2(a) shows the NBT-25ST single crystals 
oriented in the [100] and [110] directions with their 
dimensions. Figure S 2(b) shows XRD patterns of the 
single crystals. The peaks are again indexed using pseu
docubic indices. The peaks of the (001)-oriented single 
crystal show shoulders on the low angle side. These may 
be caused by a skin layer on the sample [54]. The Rietveld 
refinement results of the annealed powder sample pre
pared from a polycrystalline NBT-25ST ceramic are given 
in Table S2. Refinement was carried out using rhombohe
dral (R3c), tetragonal (P4bm), cubic ðPm3mÞ and coexist
ing rhombohedral + tetragonal, rhombohedral + cubic 
and tetragonal + cubic phases. Coexisting rhombohedral 
and cubic phases provide the best fit to the data. The XRD 
pattern, Rietveld refinement and difference plot of the 
annealed polycrystalline NBT-25ST powder sample is 
shown in Figure S 5. The pattern was fitted with coexisting 

rhombohedral (R3c) and cubic ðPm3mÞ phases. The 

sample contains ~76 vol. % rhombohedral phase and 
~24 vol. % cubic phase.

The polarization-electric field (PE) and bipolar strain- 
electric field (SE) hysteresis loops of the (001)- and (110)- 
oriented NBT-25ST single crystal samples are shown in 
Figure 6. For comparison, polarization and strain hyster
esis curves of a polycrystalline sample (sintered at 1250°C 
for 1 h) are also shown. The properties of the samples are 
given in Table 3. The (001)-oriented NBT-25ST single crys
tal sample has a narrow, pinched PE loop and a sprout- 
shaped SE bipolar loop with almost zero remanent and 
negative strain (Figure 6(a,b)). The polycrystalline NBT- 
25ST sample also has a narrow, pinched PE loop and 
a sprout-shaped SE bipolar loop (Figure 6(e,f)). The prop
erties of the polycrystalline NBT-25ST sample are compar
able to those previously measured [3,11]. Compared with 
the polycrystalline sample, the (001)-oriented single crys
tal shows lower coercivity Ec, increased saturation polar
ization Ps, remnant polarization Pr and maximum strain 
Smax, an increase in Smax/Emax of 41% and a reduced strain 
hysteresis ΔS/Smax of 18%, where ΔS is the difference in 
strain between the upper and lower parts of the curve 
when E = maximum electric field Emax/2 [38]. The Smax 

/Emax value of the (001)-oriented NBT-25ST single crystal 
sample is comparable to those of (Na1/2Bi1/2)TiO3-BaTiO3 

-(K0.5N0.5)NbO3 single crystals [38,44].
The behavior of the (110)-oriented NBT-25ST single 

crystal is quite different (Figure 6(c,d)). The PE hyster
esis loops are slim but do not have a pinched appear
ance. The PE loops are also not well saturated with 
relatively low Ps. The bipolar SE loops are also slim with 
almost zero remnant and negative strain, but the 
shape is slightly different to that of the (001)-oriented 
NBT-25ST single crystal and also that of the polycrystal
line sample. Smax is also greatly reduced.

The impedance spectroscopy results of the (001) and 
(110)-oriented NBT-25ST single crystals are presented in 
Figure S 6. The results appear similar to those in Figure 4. 
However, the temperature of maximum ε’r increases to 
~215°C and the values of loss tangent in the temperature 
range 400–600°C are larger than those of the single crystal 
in Figure 4. The plots of ε’r vs. temperature for both 
orientations have a shoulder at ~135°C. The values of ε’r 
for the (001)-oriented single crystal are larger than those 
of the (110)-oriented single crystal. In the plots of loss 
tangent vs. temperature, the drop in loss tangent corre
sponding to the shoulder in ε’r is more clearly defined for 
the (001)-oriented sample.

4. Discussion

In the solid state crystal growth technique, the seed 
crystal acts as a rapidly growing abnormal grain and 
consumes the surrounding matrix grains, causing 
a single crystal of the matrix composition to grow 
epitaxially onto the seed [41,55]. For single crystal 
growth to take place, the grain boundaries must be 

Figure 5. SEM micrograph of an NBT-25ST single crystal grown 
by top-seeded solid state crystal growth.

Table 2. EDS analysis results of an NBT-25ST single crystal 
grown by top seeded solid state crystal growth and its sur
rounding matrix grains.

Element
Single crystal (at. 

%)
Matrix grains (at. 

%)
Nominal value (at. 

%)

O 59.3 ± 2.8 58.4 ± 4.8 60
Na 8.3 ± 1.2 7.7 ± 2.3 7.5
Ti 18.7 ± 1.3 19.6 ± 2.0 20
Sr 5.2 ± 1.0 5.1 ± 0.4 5
Bi 8.6 ± 0.4 9.2 ± 0.8 7.5
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ordered [41,56], as was found in previous work on NBT- 
based ceramics [13,57,58] and as indicated by the pre
sence of micro-facets at the grain boundaries (Figure 
S 3(a)) [59]. The broad matrix grain size distribution 
(Figure S 3(b)) shows that abnormal grain growth has 
occurred, where abnormal grains are defined as grains 

with a radius greater than three times the mean grain 
radius [58].

As the single crystal’s driving force for growth 
decreases as mean matrix grain size increases [41], 
retarding grain growth in the matrix (especially abnor
mal grain growth) is important in order to grow a large 

Figure 6. Polarization vs. electric field and strain vs. electric field hysteresis loops of NBT-25ST single crystals grown by top-seeded 
solid state growth: (a, b) (001) orientation; (c, d) (110) orientation; (e, f) NBT-25ST polycrystalline sample.

Table 3. Ferroelectric and piezoelectric properties of (001)- and (110)-oriented NBT-25ST single crystals grown by top-seeded solid 
state crystal growth and a polycrystalline sample.

Sample
E 

(kV/mm)
Pr 

(µC/cm2)
Ps 

(µC/cm2)
Ec 

(kV/mm)
Smax 

(%)
Smax/Emax 

(pm/V) ΔS/Smax (%)

Single crystal (001) orientation 4 5.1 41.5 0.61 0.42 1042 38.7
Single crystal (110) orientation 4 5.1 18.6 0.99 0.13 334 40.8
Polycrystal 4 4.5 24.8 0.7 0.30 739 57.1
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crystal. The NBT-25ST system suffers from abnormal 
grain growth, as can be seen in Figure S 3, which 
restricts growth of the single crystal. In the single 
crystals grown by top-seeded solid state crystal 
growth, the single crystal growth distance is larger 
and the matrix grains are smaller than in the sample 
grown by solid state crystal growth (Figure 5 and 
Figure S 4(a)). Also, the grain size distribution is nar
rower (Figure S 4(b)). During the pre-sintering step at 
900°C some matrix grain growth will take place. This 
will lower the driving force for growth of the matrix 
grains in the subsequent annealing step at 1250°C [60], 
reducing their growth rate and delaying the onset of 
abnormal grain growth. The smaller matrix grain size 
means an increased driving force for single crystal 
growth, leading to increased single crystal growth. 
The EDS results also show the matrix grains in the 
sample grown by top-seeded solid state crystal growth 
to be slightly more Bi-excess (Table 2), which may also 
affect the growth behavior. Bi-excess was found to 
reduce grain growth in NBT [61].

From the EDS results (Table 1), it is seen that the single 
crystals grown by solid state crystal growth at 1250°C for 
5 h are Na-deficient due to volatilization of Na2O during 
sintering, as also found in our previous work [13]. 
Compared to the previous work, which used a packing 
powder without excess Na2CO3 and Bi2O3, the use of 
a packing powder with excess Na2CO3 in the present 
work could reduce the amount of Na volatilization. 
From the EDS results of the single crystal grown by top- 
seeded solid state crystal growth (Table 2), it appears that 
surrounding the sample with compacted NBT-25ST pow
der and NBT-25ST packing powder is effective in prevent
ing Na and Bi losses by evaporation.

Raman spectra of NBT-based materials are generally 
separated into three regions. Modes between 
100–150 cm−1 are associated with A1-symmetry Na-O 
vibrations or vibrations of other A-site cations [29,62]. 
The mode at ~75 cm −1 may correspond to Bi-O vibra
tions [63]. Modes at 200–450 cm−1 are associated with 
A1-symmetry Ti-O vibrations, while modes in the 
region 450–700 cm−1 are associated with vibrations 
of the TiO6 octahedra [29]. A1(LO) and E(LO) overlap
ping bands are probably the cause of modes in the 
region between 700–900 cm−1 [64]. The shapes of the 
peaks in the different spectral regions are sensitive to 
the phase or phases present in the material [63,65–67]. 
For rhombohedral NBT, the peak at ~270 cm−1 is rela
tively narrow and can often be fitted with a single 
mode. The peaks in the region 450–700 cm−1 are 
merged together and are not well defined. For tetra
gonal NBT, the peak at ~270 cm−1 becomes broader 
and may be fitted with two modes [65–68]. A shoulder 
on the high wavenumber side may appear. The peaks 
in the region 450–700 cm−1 begin to separate and 
become more clearly defined. The Raman spectrum 
of the NBT-25ST single crystal is in an intermediate 

state (Figure 3). The peak at ~270 cm−1 is broad 
enough to be fitted with two modes, but the shoulder 
at the high wavenumber side has not appeared. 
Likewise the peaks in the region 450–700 cm−1 are 
beginning to separate. The overall appearance of the 
spectrum is similar to that of (Na1/2Bi1/2)TiO3-BaTiO3 

ceramics in the MPB region between rhombohedral 
and tetragonal phases [63,65–67], indicating that the 
NBT-25ST single crystal contains both rhombohedral 
and tetragonal regions.

From the XRD and Rietveld refinement results 
(Figure S 5 and Table S2), the NBT-25ST structure 
appears to consist of coexisting rhombohedral and 
cubic phases. The fact that the NBT-25ST structure in 
the present work is not perfectly cubic is also evident 
from the presence of remanent polarization (Figure 6). 
This is consistent with the study or Rout et al., which 
found an MPB between rhombohedral and pseudocu
bic (tetragonal) phases at x ≈ 0.25 [29]. Likewise, 
Sayyed et al. found an MPB between rhombohedral 
and pseudocubic phases at x = 0.25–0.26 [32]. 
However, Tong et al. found that their 0.74(Na1/2 

Bi1/2)TiO3-0.26SrTiO3 ceramics contained coexisting 
pseudocubic and tetragonal phases [69]. The present 
work also differs from previous work on the 0.75(Na1/2 

Bi1/2)TiO3-0.25SrTiO3 composition by Acosta et al., in 
which a pseudocubic structure was reported [3]. It is 
difficult to determine the structure of NBT-based mate
rials using XRD, as the rhombohedral and tetragonal 
distortions are very small and the average structure 
often appears cubic [70,71]. This may explain why the 
XRD results indicate coexisting rhombohedral and 
cubic phases whereas the Raman scattering results 
indicate coexisting rhombohedral and tetragonal 
phases. The NBT-25ST structure may contain 
a tetragonal phase whose correlation length is too 
short to be detected by XRD, but which can be 
detected at the unit cell level by Raman scattering 
[72]. The reduction in the rhombohedral to tetragonal 
phase transition temperature TR-T toward room tem
perature with increasing SrTiO3 concentration may 
also account for the presence of a tetragonal phase 
[11]. Further study on the phase composition of this 
material needs to be carried out to account for the 
conflicting experimental results of different authors.

The plots of ε’r and loss tangent vs. temperature 
(Figure 4) are similar to those measured by previous 
workers on this composition and show behavior typi
cal of NBT relaxor ferroelectric materials [3,30,73]. The 
broad peaks with a maximum at ~ 190°C do not corre
spond to the Curie temperature but are associated 
with the thermal evolution of polar nanoregions 
[74,75] or a transition between polar and nonpolar 
tetragonal phases [76]. The nature of the shoulders at 
~135°C is not yet certain. They may correspond to the 
transition from the rhombohedral phase to the mixed 
rhombohedral and tetragonal phases [24,77–79], 
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thermal evolution of mixed rhombohedral and tetra
gonal polar nanoregions [75], a transition from a non- 
ergodic to ergodic relaxor [80] or from a ferroelectric to 
relaxor state [74]. The plots of ε’r and loss tangent vs. 
temperature of the single crystals prepared by top- 
seeded solid state crystal growth show differences in 
behavior to those of the single crystal prepared by 
solid state crystal growth. These differences may be 
due to the different sample preparation conditions 
leading to differences in composition (Tables 1 and 2) 
[61,81]. The ε’r values of the single crystals vary with 
crystallographic orientation (Figure S 6). A similar var
iation in values of relative permittivity with crystallo
graphic orientation has also been found in single 
crystals of NBT-BaTiO3 [82,83].

The activation energy values of 1.65 eV and 1.19 eV 
estimated from the AC conductivity curves (Figure 4(c, 
f)) are considered to represent the electronic conduc
tivity. The activation energy of 1.65 eV observed for the 
single crystal sample appears to be close to half of the 
band gap value of NBT-based materials [84–86]. The 
smaller activation energy of 1.19 eV and high conduc
tivity values observed in the polycrystalline sample 
may be ascribed to the extrinsic effects induced by 
the presence of the grain boundaries, e.g. facilitated 
oxidation/reduction reactions. It is notable that the AC 
conductivity plots of the polycrystalline sample indi
cate another Arrhenius behavior of activation energy ~ 
0.70 eV. As the high temperature extrapolation of this 
lower activation energy trace does not determine the 
high temperature conductivity behavior, the feature 
could not be explained by the brick-layer model in 
the presence of blocking grain boundaries. Therefore 
it is suggested that the trace of activation energy 
0.70 eV may represent the ionic conduction mechan
ism in perovskites. Oxide ion conductivity or alkali ion 
conductivity has been discussed to explain high DC 
loss and electrode polarization in ferroelectric perovs
kites but few conclusive investigations have been 
reported yet [52,53,87–89]. It is notable that the traces 
of activation energies of 1.19 eV and 0.70 eV are also 
indicated in the single crystal sample in Figure 4(c) (the 
thin black lines), in addition to a trace (the dashed line) 
of a line parallel to that of the 1.65 eV trace for the DC 
limit conductivity. This trace has conductivity values 
about 2.3 times higher than the DC limit conductivity, 
similar to the current constriction effects due to the 
grain boundaries of ionic conductors [90–92]. The ori
gin of such current constriction effects in a nominally 
single crystalline sample should also be understood in 
future work together with the other traces related to 
the mixed conduction effects.

The narrow, pinched PE loops and sprout-shaped SE 
bipolar loops of the (001)-oriented NBT-25ST single crys
tal sample (Figure 6(a,b)) and polycrystalline sample 
(Figure 6(e,f)) are characteristic of an electric-field 
induced transformation from an ergodic relaxor phase 

to a ferroelectric phase [3,7,70,75,79,93–95]. The differ
ence in shape of the PE and SE loops of the (110)- 
oriented NBT-25ST single crystal sample (Figure 6(c,d)) 
shows that the ferroelectric and inverse piezoelectric 
behavior of NBT-25ST depends on the crystallographic 
orientation. The PE loops of the (110)-oriented NBT-25ST 
single crystal sample also appear unsaturated, possibly 
due to the low value of the applied electric field. The 
NBT-25ST single crystals have relatively high conductiv
ity, which makes applying higher electric fields difficult.

Similar variation of piezoelectric properties with crys
tallographic orientation has been found in other NBT- 
based single crystals [44,79,82,83,96,97] and is generally 
the case for single crystals e.g. BaTiO3 [98], KNbO3 

[99,100] and relaxor-PbTiO3 [101,102]. This dependence 
of piezoelectric properties on crystallographic orientation 
is due to the different types of ferroelectric domain struc
ture that form during poling (domain engineering) 
[82,83,102], different electric field induced phase transi
tions [103–105], polarization extension [79,106] and 
polarization rotation [106] (although polarization rotation 
does not take place in NBT-based materials [79]). For NBT- 
based compositions, application of an electric field along 
different crystallographic directions causes different elec
tric field induced phase transitions to take place. Luo et al. 
studied the behavior of (Na1/2Bi1/2)TiO3-5.6% BaTiO3 sin
gle crystals under electric fields applied along the pseu
docubic [001] and [111] directions using XRD and 
unipolar strain hysteresis measurements [95]. At tempera
tures close to Td, application of an electric field along 
[001] caused a phase transition from pseudocubic to 
tetragonal phases with a large strain. Application of an 
electric field along [111] caused a pseudocubic – rhom
bohedral phase transition with a lower resultant strain. 
Chen et al. used electric field-dependant Raman scatter
ing and XRD to study the orientation-dependant beha
vior in single crystals of 0.92(Na1/2Bi1/2)TiO3–0.06BaTiO3 

–0.02(K0.5Na0.5)NbO3 [97]. They found that their (001)- 
oriented single crystal underwent an electric-field 
induced pseudocubic to tetragonal phase transition 
with a large resultant strain, whereas their (111)- 
oriented single crystal underwent a partial pseudocubic 
to rhombohedral phase transition with a small resultant 
strain. Similar behavior may also be happening in the 
NBT-25ST single crystals in the present work. This could 
also explain the increase in strain for the NBT-25ST single 
crystal sample oriented in the [001] direction compared 
to the polycrystalline sample at electric fields of ≥3 kV/ 
mm. The single crystal can be oriented with its [001] 
direction parallel to the electric field, thus maximizing 
the electric-field induced pseudocubic to tetragonal 
phase transition. The polycrystalline ceramic will have 
grains randomly oriented to the electric field, limiting 
the degree of pseudocubic to tetragonal phase transition 
that can take place [79]. The NBT-25ST single crystals 
have inverse piezoelectric properties superior than 
those of PZT i.e. Smax/Emax ≈ 625–750 pm/V for a soft 
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PZT at an electric field of 4 kV/mm vs. 1042 pm/V for the 
NBT-25ST single crystal [2,8]. The reduced strain hyster
esis of the NBT-25ST single crystal compared to the NBT- 
25ST ceramic means that less energy will be wasted as 
heat during operation, which will improve temperature 
stability. With further development, single crystals of 
NBT-25ST could be possible replacements for PZT in 
actuator applications.

5. Conclusions

Single crystals of 0.75(Na1/2Bi1/2)TiO3-0.25SrTiO3 were 
grown by the solid state and top-seeded solid state 
crystal growth techniques using (110)-oriented SrTiO3 

seed crystals and their electrical properties studied for 
the first time. Raman scattering indicated that the 
crystal structure has coexisting rhombohedral and tet
ragonal phases, whereas X-ray diffraction and Rietveld 
refinement of a polycrystalline sample indicated coex
isting rhombohedral and cubic phases. Both the single 
crystal and polycrystalline samples showed relaxor 
behavior typical of (Na1/2Bi1/2)TiO3-based materials. 
AC conductivity measurements over a wide tempera
ture range revealed directly the Arrhenius behavior 
with activation energies of 1.65, 1.19, and 0.70 eV in 
the paraelectric region, which are attributed to mixed 
ionic and electronic conduction mechanisms. The 
polarization and bipolar strain hysteresis loops of the 
(001)-oriented NBT-25ST single crystal indicate an elec
tric-field driven ergodic relaxor to ferroelectric phase 
transition. Ferroelectric and inverse piezoelectric prop
erties are superior in the (001)-oriented single crystal 
compared to the (110)-oriented single crystal and the 
ceramic sample. The inverse piezoelectric constant of 
the (001)-oriented NBT-25ST single crystal is improved 
by 41% compared to that of the NBT-25ST ceramic 
(Smax/Emax = 1042 pm/V vs. 739 pm/V) and strain hys
teresis is reduced by 18%.
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