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Abstract: In the past few decades, membrane-based processes have become mainstream in water
desalination because of their relatively high water flux, salt rejection, and reasonable operating cost
over thermal-based desalination processes. The energy consumption of the membrane process has
been continuously lowered (from >10 kWh m−3 to ~3 kWh m−3) over the past decades but remains
higher than the theoretical minimum value (~0.8 kWh m−3) for seawater desalination. Thus, the high
energy consumption of membrane processes has led to the development of alternative processes,
such as the electrochemical, that use relatively less energy. Decades of research have revealed that the
low energy consumption of the electrochemical process is closely coupled with a relatively low extent
of desalination. Recent studies indicate that electrochemical process must overcome efficiency rather
than energy consumption hurdles. This short perspective aims to provide platforms to compare
the energy efficiency of the representative membrane and electrochemical processes based on the
working principle of each process. Future water desalination methods and the potential role of
nanotechnology as an efficient tool to overcome current limitations are also discussed.
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1. Introduction

Membrane processes have accelerated industrial use and research on water desalination owing
to relatively low energy consumption (~4 kWh m−3) compared to previously used multiple-effect
distillation and multi-stage flash thermo-based processes (>10 kWh m−3) [1,2]. Thus, membrane
processes, such as reverse osmosis (RO), are the gold standard for water desalination [3–5]. In the
last few decades, the energy used for seawater desalination using the RO process has decreased
significantly, from ~10 kWh m−3 to 4 kWh m−3 [3,6] (~3 kWh m−3 in recently established plants [7])
because of the development of high-performance membranes and energy recovery devices and because
the RO process does not require thermo-energy to operate [1]. This RO energy consumption implies a
thermodynamic energy efficiency of approximately 20% when considering the theoretical minimum
energy consumption of ~0.8 kWh m−3 for seawater desalination [2]. However, the ~4 kWh m−3

level has not been drastically reduced, despite further technological advances because of inevitable
membrane resistance and friction loss—inherent limitations of the RO process [8,9].

The success of the electrochemical process for desalination depends on the relatively low
energy consumption compared to that of the membrane process [10]. The working principle of
the electrochemical process is mostly attributed to salt adsorption by electrodes or ion migration by
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ion-exchange membranes in the system [11–13]. Thus, the relatively limited salt adsorption (or removal)
or the capacity of the electrochemical processes often limits the application of electrochemical processes
to brackish water desalination [10,13]. The limited ion removal capacity of the electrochemical
process implies that the overall productivity and energy efficiency (according to the extent of
desalination) and the energy consumption of the electrochemical and membrane processes should
be compared [14,15]. A recent study indicates that capacitive deionization (CDI), one of the most
widely studied electrochemical desalination technologies, uses less energy than RO but has a lower
energy efficiency due to lower productivity and a lower extent of desalination [16]. Therefore, an
understanding of the process evaluation matrix (i.e., thermodynamic energy efficiency versus overall
productivity) is needed to understand the direction of future desalination research.

From this perspective, a brief introduction of the membrane processes, the most widely employed
desalination process, and its working principle are presented first. Subsequently, several important
aspects of currently studied electrochemical cells are described. Because detailed research or review
articles for each desalination process have been published recently [14–19], this perspective attempts to
introduce several major findings from each study. A performance evaluation matrix of theoretical (or
practical) energy consumption with an emphasis on thermodynamic energy efficiency is introduced
based on the characteristics of the representative membrane (RO) and electrochemical (CDI) processes.
Additionally, the applications of these processes for recovering energy and valuable resources are
briefly presented. Finally, the future direction of water desalination technologies and the possible
contribution of nanotechnology are discussed as efficient tools to overcome current limitations.

2. Membrane Process

2.1. Reverse Osmosis

The RO process utilizes a hydraulic pressure higher than the osmotic pressure across a
semi-permeable polymer membrane, such as thin-film composite (TFC) membranes (Figure 1a).
Controlling the concentration polarization (CP) of ions in the RO process is particularly important,
as CP increases the osmotic pressure on the membrane surface, thereby requiring a driving pressure
higher than it practically needs. The use of cross-flow filtration, in which the feed solution flows along
the membrane surface, can reduce the CP of the ions in the feed side boundary layer, resulting in high
energy efficiency (>20%; <4 kWh m−3) [3,20,21]. The development of a superior low resistance TFC
RO membrane with high selectivity and permeability has greatly improved the RO process’ energy
efficiency, thereby reducing the energy consumption in commercial RO plants from >10 kWh m−3 to
<4 kWh m−3 [3,6]. In past decades, most research has focused on improving the TFC RO membranes’
performance from ~1 LMH/bar to 5.77 LMH/bar without sacrificing the salt rejection (Table 1) [22–25].
Nevertheless, the application of highly permeable membranes to commercial-sized existing modules
could increase the extent of CP within the module and accordingly makes process optimization
difficult [19,26]. Thus, developing a new module with shorter vessel length could take advantage of a
highly permeable membrane. Membrane fouling should also be considered when a highly permeable
membrane is employed as the increased amount of water filtered could increase the fouling propensity
of the membrane. However, the fouling test for the highly permeable membrane has been tested
with only a few foulants [23,25], and the evaluation of chlorine resistance of the membrane, which is
required for chlorine-based disinfection to mitigate biofouling, has not been sufficiently performed.
For these reasons, current research has focused mainly on increasing selectivity and reducing membrane
fouling instead of permeability. The desire to develop ideal desalination membranes has furthered the
development of channel-type membranes (aquaporin, protein, carbon nanotube, and nanofiber) or
ultra-thin two-dimensional materials [25,27–31]. However, the extent to which the new membranes
increase the energy efficiency of RO is poorly understood, because most membranes are in the early
stages of development and remain uncommercialized.
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Table 1. A summary of enhanced and unexplored performances of the representative polyamide
(RO) or carbon (CDI) materials in water desalination. Water permeance and selectivity of commercial
thin-film composite (TFC) RO membrane are ~1 LMH/bar at 99% NaCl rejection [32,33]. The salt
adsorption capacity of non-treated activated carbon is ~10 mg g−1 [34,35].

Process
Type of Membranes
(RO) or Electrodes

(CDI)
Performances Enhanced

Performances to
be Further
Explored

Refs.

RO

Multi-layered polyamide

- ~60% flux increase
(1.66 ± 0.20 LMH/bar) and
higher salt rejection (98%) a

- Better fouling resistance to
bovine serum albumin (BSA)

- Fouling
experiment with

seawater
[23]

Hydrophilic additives
incorporated polyamide

- Flux enhancement (up to
5.77 LMH/bar) b

- Salt rejection of >98.8%
- Fouling resistance [24]

Co-solvent induced
polyamide

- Twice water flux
(2.78 LMH/bar) c

- Salt rejection of 99%

- Long-term
stability- Fouling

resistance
[22]

Polyamide synthesized
under controlled

solution pH

- Flux of > 1.55 LMH/bar b

- Salt rejection of >97%
- Fouling resistance-
Chlorine tolerance [36]

Polyelectrolyte coated
polyamide

- Organic and biofouling
control

- ~10% flux reduction with a
slight increase in salt

rejection (>98%) d

- Seawater tests [37,38]

CDI

Nitrogen-doped porous
carbon

- Salt adsorption capacity of
14.91 mg g−1 e

- Specific capacitance of
290 F g−1

- Long-term
stability of
>1000 min

[39]

Nitrogen-doped
graphitic porous carbon

- Salt adsorption capacity of
17.73 mg g−1 f

- Specific capacitance of
307 F g−1

[40]

Phosphorus-doped 3D
carbon nanofiber

- Salt adsorption capacity of
16.20 mg g−1 e

- Specific capacitance of
295 F g−1

[41]

Ca-alginate
coated-carbon

- Salt adsorption capacity of
14.20 mg g−1 g [42]

N, P co-doped 3D
hierarchical carbon

- Salt adsorption capacity of
26.80 mg g−1 h

- Specific capacitance of
221 F g−1

- Fouling tests [43]

Note: LMH/bar: L m−2 h−1 bar−1; mg g−1: the amount of salts adsorbed by electrode mass. Testing conditions:
a 500 ppm NaCl at 10 bar; b 2000 ppm NaCl at 15.5 bar; c 2000 ppm NaCl at 15 bar; d 2000 ppm NaCl at 15−41 bar;
e 1000 ppm NaCl at 1.2 V; f 500 ppm NaCl at 1.4 V; g 1110 ppm NaCl at 1.2 V; h 500 ppm NaCl at 1.2 V.
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Figure 1. Schematic and working principle of (a) pressure-driven (RO) or (b) osmotic-driven (FO) 
membrane processes. (c) Membrane-based renewable energy production process (PRO) using a 
turbine (black) driven by pressurized water flow. 
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Figure 1. Schematic and working principle of (a) pressure-driven (RO) or (b) osmotic-driven (FO)
membrane processes. (c) Membrane-based renewable energy production process (PRO) using a turbine
(black) driven by pressurized water flow.

Two major factors used to evaluate the RO process, water flux (Jw; L m−2 h−1), and salt rejection
(R; often assumed to be >99%), can be calculated as follows:

Jw = A× P =
∆Vw

Am∆t
(1)

R =

(
1−

Cp

C f

)
× 100(%) (2)

where A is membrane permeance (often assumed to be >1.2 L m−2 h−1 bar−1), ∆Vw is the decreased
volume of water on the feed side (L), Am is the effective membrane area (m−2), ∆t is permeation time (h),
and P is applied pressure (bar). Cp and Cf are the permeated and feed water concentrations, respectively.

The Gibbs free energy of separation (∆g; kWh m−3) and the specific energy consumption (SEC)
are calculated to obtain the thermodynamic energy efficiency (TEE), the universal factor to compare
each process.

TEE =
∆g

SEC
× 100(%) (3)

The practical energy consumption of the RO process in a single-stage system can be calculated as:
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where ηp is the pump efficiency (often assumed to range from 0.8–0.85), ηE is the efficiency of the
energy recovery device (often assumed to range from 0.90–0.98), and Y is the fractional water recovery
(typically assumed to reach up to 0.5) [44–46]. ∆Pcirc and ∆Pr=1

chan are the frictional pressure drops in
the piping and membrane module, respectively [47]; π* is the osmotic pressure of the feed water at
the membrane wall, which can be defined as π* = π0 · exp(Jw/k), with the following assumptions:
(1) the solute is completely rejected by the RO membrane; (2) the ratio of solute concentrations (Cw/Cb)
is approximately equal to the ratio of osmotic pressures, π*/π0 [48]; k is the solute mass-transfer
coefficient. Equation (4) can be used to estimate the practical energy consumption that considers the
CP phenomenon on the membrane surface for a given RO membrane water flux. Equation (4) can be
derived with a practical minimum SEC model for one-stage RO modified by applying π* to the existing
model [47]. The use of π0 in the model represents the condition at the limit of the thermodynamic
restriction of cross-flow RO desalting without the CP phenomenon, ∆P = ∆π0/(1 − Y) [47,49].

2.2. Forward Osmosis

The forward osmosis (FO) process uses osmotic pressure rather than the hydraulic pressure
(chemical potential) of the solution (Figure 1b). Water molecules in the feed solution (target water)
briefly migrate to the draw solution (high saline water) because of osmosis differences. The use of
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osmotic pressure has rendered the FO process a next-generation desalination technology with higher
fouling reversibility than RO because of the lack of hydraulic pressure [50]. However, one of the most
problematic issues with FO is finding a suitable draw solute [51–53]. In the early stages of FO research,
ammonium bicarbonate (draw solute) received much attention because of its high volatility at relatively
low temperatures [54]. However, a remaining technical difficulty is that any form of draw solute
must have a higher chemical potential than brine and be simple to recover. Ammonium bicarbonate,
considered one of the most promising draw solutes, also requires an additional post-treatment process
to regenerate with low-grade heat [55]. Therefore, maximizing the chemical potential difference by
creating a high CP on the draw side of an FO membrane with minimal use of draw solute could be an
alternative way to commercialize the FO process. Recently, a technique for obtaining high CP using
a small amount of draw solute by applying electricity to a system was developed [56], but research
towards lower energy consumption should continue.

When two solutions with different salinities come in contact with a membrane (such as in the
FO process), water molecules flow from the low-concentration solution (feed solution) to the high
concentration solution (draw solution). Water molecules are transferred from the feed to the draw
solution and drive a turbine to produce energy when the high-concentration solution is operated in a
pressurized state in a process called pressure-retarded osmosis (PRO) (Figure 1c). PRO is being studied
to produce renewable energy where two solutions with different salinities, such as seawater and river
water, are available.

2.3. Hybrid Membrane Processes

Hybrid membrane processes, such as NF–RO (NF: nanofiltration), FO–RO, and RO–PRO have
been developed to lower energy consumption by combining unit processes such as NF, RO, FO,
and PRO [9,57–63]. The processes have shown the reduced energy consumption of water desalination
(mostly for RO) by decreasing the salinity of the feed solution or by harvesting salinity gradient energy
from RO brine that is generally doubled total ion concentrations of the seawater. However, the high
installation and maintenance costs of each process remain a challenge. For example, when using
seawater and river water together, the PRO process has less than half the flux of the RO process
because of differences in the osmotic pressure (<12 bar for PRO at maximum power density) and
hydraulic pressure (~60 bar at 50% recovery for RO) for each process [4,64,65]. Thus, according to
the mass balance, the membrane surface area of the PRO process should be twice that of the RO
process. This mass balance issue could be applied to other hybrid processes, such as NF–RO or FO–RO,
as the optimized water flux of each process is mostly in the order of FO < RO < NF [9,66]. Therefore,
capital and operating costs can be a critical issue and should be considered in the design of hybrid
membrane processes.

3. Electrochemical Cells

3.1. Capacitive Deionization

CDI is one of the most widely studied electrochemical water desalination technologies [11,67,68].
Unlike filtration processes, where the feed and permeate are separated by a semi-permeable membrane
(Figure 1a), CDI consists of two electrodes connected by a flow channel, in which an electric circuit is
in contact with saline water (Figure 2a) [69]. A CDI system has a cathode and an anode at each end,
providing an electrical double layer (EDL) of stored ions dissolved in water after the electrode charge
during the first cycle. The second cycle discharges the ions, resulting in concentrated water. Carbon
electrodes with good electrical characteristics, low cost, and many fine pores (<2 nm micropores)
have been widely used [70]. Early CDI studies focused on improving electrode properties such as
salt adsorption capacity and specific capacitance (Table 1). For instance, the use of three-dimensional
hierarchical carbon showed the salt adsorption capacity of 26.80 mg g−1 [43], which is nearly
triple the capacity of the non-treated carbon electrode [34,35]. However, a recent study showed
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that thermodynamic efficiency could not be proportionally increased, regardless of the electrode
properties [71]. Electrode development is relatively insignificant above a certain lever, because overall
CDI performance is influenced not only by the electrode performance, but also by other factors, such as
spacers, flow patterns, and external resistance [71].
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Membrane capacitive deionization (MCDI) with an ion exchange membrane attached to the
electrode surface has been widely studied to improve the ion selectivity (or ion storage capacity)
of low-performance CDI electrodes (Figure 2b) [69]. MCDI shows greatly enhanced desalination
performance by suppressing Faradaic reactions (i.e., chlorine reactions and water splitting) and
providing more ion storage sites than the conventional CDI process [72]. Additionally, electrical energy
in MCDI operation could be reduced with a combined technique in which a polarity reversal follows
a short circuit [73]. These advantages of MCDI imply that the use of ion-exchange membranes in
electrochemical processes, such as battery deionization (BDI) and electrodialysis (ED), could help
enhance desalination performance over conventional CDI in future research owing to the Donnan
potential of the ion-exchange membrane [10,74]. Donnan potential can be caused by imbalances in ion
concentration across the ion-exchange membrane. Thus, the use of ion-exchange membranes in an
electrochemical system could increase the cell potential without additional force.

Flow-electrode capacitive deionization (FCDI) using suspended electrodes (mostly carbon-based
electrodes) has been developed and actively studied to overcome the limited ion adsorption capacity
and the need for the desorption cycle (Figure 2c) [72,75]. However, even in FCDI, Faradaic reactions
cannot be excluded entirely when the particle electrode materials react outside the cell to adjust the pH
of the solution.

Hybrid desalination systems that use sequentially coupled high salt rejection membrane (NF and
RO) and CDI-based processes (MCDI and FCDI) are attracting more attention [76,77]. As standalone
CDI possesses a relatively low salt removal rate in desalting highly saline water >3000 mg/L [69,76],
NF and RO could play an important role in providing feed water quality suitable for CDI. The NF-MCDI
system could be more energy efficient than RO for brackish water treatment (≤10,000 mg/L) and
meet drinking water standards (≤ 500 mg/L) [69], because NF membranes require lower operating
pressure and electrical power consumption compared to RO membranes owing to the lower membrane
resistance and concentration polarization.

The energy stored in the EDL during the charging step can theoretically be recovered during the
discharging step using a buck–boost converter [78,79]. The energy can briefly be stored in an extra
circuit connected to a CDI unit when the potential and current signs are in opposite directions. Thus,
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to calculate the TEE of CDI, the energy recovery (ER; kWh m−3) during the discharge step can be
considered as:

TEE =
∆g

SECCDI − ER
× 100(%) (5)

where SECCDI is the specific energy consumption of constant-current CDI and can be calculated as [80]:

SECCDI =
I
∫ Tc

o Vdt

Vtotal
(6)

where V is the applied voltage, I is the applied current, and Tc is the charging step time. Vtotal is the total
water volume produced during one complete cycle (charging and discharging steps). The symbols I and
V in Equation (6) must be transposed in constant-voltage CDI. Energy recovery can also be considered,
because the energy released during the discharging step could be harvested with a converter [78].

The following equation can be used to obtain the theoretical ∆g dependence on the extent of
desalination in CDI [18].

∆g = 2RTa

{
C0

Y
ln

[
C0 −YCD

C0(1−Y)

]
−CD ln

[
C0 −YCD

CD(1−Y)

]}
(7)

where R is the ideal gas constant (8.314 J K−1 mol−1), Ta is the absolute temperature (assumed to be
298 K), C0 is the feed concentration, and CD is the stabilized product water concentration. The water
recovery (Y) of CDI is often assumed to be 0.5 when an identical time is used for the charging and
discharging steps at the same flow rate. Finally, the TEE for the RO and CDI processes (Equations (3)
and (5)) can be used with the productivity of fresh (desalinated water) to compare the energy efficiency
of each process.

3.2. Battery Deionization

To convert Faradaic reactions—which are problematic reactions in the CDI process [72]—to
the useful reactions, a Faradaic deionization process was developed to directly exchange the flux of
electrons and ions [81]. This is also commonly referred to as the cation intercalation desalination [82–84]
or BDI process [10,85–87] and primarily uses electrodes that can intercalate sodium ions (similar to
that of battery electrodes for lithium-ion intercalation) (Figure 3a).
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For the symmetric BDI process, sodium ions are intercalated into the cathode during the charging
step, and the counter chloride ions migrate through the anion exchange membrane to the opposite
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stream to maintain the electrical neutrality of the cell. In the second cycle, the cathode becomes
the anode, releasing previously adsorbed sodium ions; thus, the desalination stream becomes the
concentrate stream (Figure 3a). The reaction mechanism shows that BDI has several inherent advantages
over CDI. First, the thermodynamic energy efficiency of BDI could be higher than that of CDI, because
BDI directly utilizes Faradaic reactions as redox reactions (reduction and oxidation of electrodes)
and can also be operated at a lower voltage (~1.0 V) than conventional CDI (~1.2 V). Additionally,
switching water streams allows the production of semi-continuous fresh water (water recovery ratio of
~100%), whereas the CDI process typically has a water recovery ratio of 50%. During the charging step,
the cleaned water is generated on the left stream (Figure 3a), whereas the treated water is generated on
the right stream during the discharging step in the following operation.

The use of ion exchange membranes in electrochemical processes, such as BDI and MCDI,
could render the system more energy (or charge) efficient because of the Donnan potential of the ion
exchange membranes [88,89]. Therefore, the electrode development is important; however, the design
of the electrochemical processes also plays an important role in the further application of these
processes for water desalination. Although cation intercalation materials have been widely studied,
the dual-ion intercalation (or asymmetric) system has also been proposed by using both cation and
anion intercalation electrodes (Figure 3b) [90–93]. Unlike typical CDI that utilizes EDL for ion storage,
cations and anions can be directly intercalated into the electrode in the BDI system. Thus, the BDI
system often showed superior salt adsorption capacity (>50 mg-Na+/g [10,87]) compared to that of the
CDI system (<30 mg-Na+/g [67]) depending on the electrode geometry and the selection of materials.

3.3. Electrodialysis

ED is a desalination technique that alternately arranges a pair of cation and anion exchange
membranes between two electrodes, a cathode, and an anode (Figure 4) [94]. ED utilizes the migration
of ions through ion exchange membranes, whereas CDI uses ion adsorption on the EDL or electrode
surface. A recent simulation study showed that ED possibly outperforms CDI because of the diminished
influence of Faradaic reactions at the electrodes [74]. Therefore, the use of an ion exchange membrane
in the ED system increased the overall energy efficiency of the system, similar to the case of MCDI
and BDI. However, the cost of the relatively expensive ion exchange membrane should be considered
when designing large-scale systems. The reverse use of ED allows electricity to be produced from two
solutions with different chemical potentials through reverse electrodialysis (RED) [94,95]. The working
principle of RED is similar to that of the desalination battery using CDI or BDI; electricity is produced
with an electrode with (or without) an ion-exchange membrane in between [96,97].

Membranes 2020, 10, x FOR PEER REVIEW 8 of 17 

 

For the symmetric BDI process, sodium ions are intercalated into the cathode during the 
charging step, and the counter chloride ions migrate through the anion exchange membrane to the 
opposite stream to maintain the electrical neutrality of the cell. In the second cycle, the cathode 
becomes the anode, releasing previously adsorbed sodium ions; thus, the desalination stream 
becomes the concentrate stream (Figure 3a). The reaction mechanism shows that BDI has several 
inherent advantages over CDI. First, the thermodynamic energy efficiency of BDI could be higher 
than that of CDI, because BDI directly utilizes Faradaic reactions as redox reactions (reduction and 
oxidation of electrodes) and can also be operated at a lower voltage (~1.0 V) than conventional CDI 
(~1.2 V). Additionally, switching water streams allows the production of semi-continuous fresh water 
(water recovery ratio of ~100%), whereas the CDI process typically has a water recovery ratio of 50%. 
During the charging step, the cleaned water is generated on the left stream (Figure 3a), whereas the 
treated water is generated on the right stream during the discharging step in the following operation. 

The use of ion exchange membranes in electrochemical processes, such as BDI and MCDI, could 
render the system more energy (or charge) efficient because of the Donnan potential of the ion 
exchange membranes [88,89]. Therefore, the electrode development is important; however, the 
design of the electrochemical processes also plays an important role in the further application of these 
processes for water desalination. Although cation intercalation materials have been widely studied, 
the dual-ion intercalation (or asymmetric) system has also been proposed by using both cation and 
anion intercalation electrodes (Figure 3b) [90–93]. Unlike typical CDI that utilizes EDL for ion storage, 
cations and anions can be directly intercalated into the electrode in the BDI system. Thus, the BDI 
system often showed superior salt adsorption capacity (>50 mg-Na+/g [10,87]) compared to that of the 
CDI system (<30 mg-Na+/g [67]) depending on the electrode geometry and the selection of materials. 

3.3. Electrodialysis 

ED is a desalination technique that alternately arranges a pair of cation and anion exchange 
membranes between two electrodes, a cathode, and an anode (Figure 4) [94]. ED utilizes the migration 
of ions through ion exchange membranes, whereas CDI uses ion adsorption on the EDL or electrode 
surface. A recent simulation study showed that ED possibly outperforms CDI because of the 
diminished influence of Faradaic reactions at the electrodes [74]. Therefore, the use of an ion exchange 
membrane in the ED system increased the overall energy efficiency of the system, similar to the case 
of MCDI and BDI. However, the cost of the relatively expensive ion exchange membrane should be 
considered when designing large-scale systems. The reverse use of ED allows electricity to be 
produced from two solutions with different chemical potentials through reverse electrodialysis 
(RED) [94,95]. The working principle of RED is similar to that of the desalination battery using CDI 
or BDI; electricity is produced with an electrode with (or without) an ion-exchange membrane in 
between [96,97]. 

 
Figure 4. Schematic and working principle of electrodialysis (ED) that becomes the reverse 
electrodialysis (RED) mode where current flows in the external circuit when solutions with different 
salinities flow without applying current to the system. 

Figure 4. Schematic and working principle of electrodialysis (ED) that becomes the reverse
electrodialysis (RED) mode where current flows in the external circuit when solutions with different
salinities flow without applying current to the system.



Membranes 2020, 10, 280 9 of 16

4. Energy and Resource Recovery

Membrane (M) and electrochemical (E) processes, such as PRO (M), RED (E), BDI (E), or seawater
battery (SWB: E) can be used for salinity gradient energy production as well as water desalination [98–100].
However, in the case of PRO, only a limited energy density (<1.5 W m−2) can be obtained by using
the well-known combination of seawater and river water [65]. Although several pilot studies have
been reported, the application of RED is also limited by its low power density of <1.0 W m−2 [100].
A remarkably high (>12 W m−2) peak power density was reported for BDI; however, the longevity of
the electrode should be more carefully investigated in the future [101]. Although rechargeable SWB
has been reported, the low cycle performance (~84% over 40 cycles) needs to be improved to compete
with commercial lithium batteries [102]. Additionally, research on fouling on the electrode surface
for most of the aforementioned systems is insufficient. Thus, obtaining high power density during
long-term operation remains a challenge.

Hydrophobic or electrically conducting membranes have been recently developed to efficiently
recover (or capture) valuable resources, such as ammonia and phosphate, from wastewater [103,104].
These membranes facilitate the conversion of ammonium into ammonia or enhance the mass transfer of
the target compound. The use of electrochemical cells such as CDI, ED, and BDI can efficiently produce
nutrients or rare element-enriched streams from wastewater or seawater [85,86,105–110], primarily
because most of the nutrients in wastewater are present in ionic forms, and the electrochemical process
separate (or intercalate) the charged ions using electrostatic (or Faradaic) reactions. For instance,
a three-staged BDI system successfully produced an ammonium-enriched stream from 5 mM to 32 mM
using synthetic wastewater [85]. However, the cost evaluation for large-scale operation with real (not
synthetic) water must be carefully investigated for membrane and electrochemical processes.

5. Perspectives for Future Desalination and the Role of Nanotechnology

Membrane processes have seen remarkable growth over the last few decades and their energy
consumption of ~4 kWh m−3 [3,6] is competitive enough compared to other processes. The RO market is
technologically mature enough to satisfy most of the seawater desalination demand (>60%), compared
to other technologies [111]. Therefore, it is urgent to continue the research on minimizing environmental
impact by developing a cleaning method using less harmful chemicals rather than further reducing the
energy consumption of the RO process. Because of the several year-lifespan of TFC RO membranes,
longevity needs to be secured for a new class of channel-type or two-dimensional membranes.

Electrochemical processes can easily achieve high energy efficiency by reducing the gap (often
<300 µm) between the electrodes. However, this approach could significantly lower the productivity of
the process (freshwater production), because the gap between the electrodes proportionally reduces the
working volume. Therefore, an optimal effect on the energy consumption per unit of water produced
is unlikely. The overall productivity can be maintained by simultaneously increasing the electrode
area; however, the capital cost of the system inevitably increases. Therefore, future research should be
carefully designed in consideration of both energy efficiency and water productivity. Additionally,
the energy consumed by the pretreatment method or feed pump has often been overlooked. The fouling
phenomenon (electrode longevity) is another critical issue that needs to be addressed. Fundamental
organic and inorganic fouling experiments have been reported for CDI and ED [112–116], but fouling
phenomena are not yet fully understood, as electrochemical processes are in the early stages of
research compared to membrane processes. Moreover, a limited number of operations with relatively
short cycles (mostly <100) have been reported for electrochemical processes [80,85–87]. Finally,
high-performance electrodes are often challenging to mass-produce because of the use of expensive
materials and technical difficulties in synthesis. Comprehensive case studies should focus on the
aforementioned parameters to make electrochemical technology commercially successful. After the
electrochemical processes overcome these present limitations, the comparative advantage over other
technologies must be calculated by considering the TEE and overall productivity of the system.
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Nanotechnologies, such as nanomaterials [25,28–30,117,118] and nano-structure design [27,31,119],
have been extensively employed to overcome the current limitations of membranes and electrochemical
processes for water desalination (Figure 5). Several materials and techniques have been applied to
control the structure or functionality of the material and to produce a highly efficient membrane
or electrode. Highly selective (>99.75% salt rejection), permeable (>1.2 L m−2 h−1 bar−1),
and fouling-resistant membranes have been developed by applying graphene oxide (or reduced
graphene oxide), carbon nanotubes (CNTs), zeolite, aquaporin, protein, and nanofiber [25,27–31].
Superior performance electrodes have been synthesized to have high specific capacitance
(>100 F g−1), porosity (>50%), and conductivity (>25 S cm−1) using CNTs, metal oxides, and carbon
aerosols [68,117–119]. However, despite continued investigation, the development of high-performance
membranes or electrodes using nanotechnology remains challenging. The difficulty of the synthesis
for these materials often limits up-scaling at a reasonable cost [120]. For instance, the synthesis of
CNTs generally requires chemical vapor deposition using a silicon wafer, which limits the size of the
resultant materials smaller than several tens of centimeters [121–124]. Thus, the employment of only
CNTs to fully substitute the active layer (i.e., polyamide layer for RO membrane) is particularly difficult
in the industrial scale [123,124]. Therefore, the most promising approach to date could be a hybrid
method that applies a small amount of nanomaterials to existing membranes or electrodes [25,125].
In contrast to the direct incorporation of nanomaterial, a nano-structure approach using nanofibers
could be employed in a large-scale fabrication as a roll-to-roll synthesis method of nanofiber substrate
has been proposed [27]. However, the substrate layer of typical membranes or electrodes is not directly
in contact with the feed solution in most processes [25]; hence, the corresponding system should be
carefully designed to fully exploit the nano-structures’ functionality. Another challenge is the long-term
stability of each material, which has been partially investigated [126–128]. Even the widely used carbon
material itself, in particular for electrochemical processes, has been often tested in <1000 min (Table 1),
which is relatively shorter than industrial needs (often required for several months of operation).
As nanomaterials have a large surface area and high reactivity [129,130], their performance decay
over time is expected to be significant, implying that the long-term stability might be critical in the
practical application of nanomaterials. Moreover, a recent study claimed that the system design could
have a greater impact on the overall system performance rather than the effort to develop advanced
materials [71]. Therefore, the future use of nanotechnologies in material development should consider
these challenges to provide a new pathway for efficient water desalination.
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