
sensors

Article

Improvement of P300-Based Brain–Computer
Interfaces for Home Appliances Control by Data
Balancing Techniques

Taejun Lee, Minju Kim and Sung-Phil Kim *
Department of Human Factors Engineering, Ulsan National Institute of Science and Technology,
Ulsan 44919, Korea; xowns325@unist.ac.kr (T.L.); mjkim28@unist.ac.kr (M.K.)
* Correspondence: spkim@unist.ac.kr; Tel.: +82-52-217-2727

Received: 26 June 2020; Accepted: 27 September 2020; Published: 29 September 2020
����������
�������

Abstract: The oddball paradigm used in P300-based brain–computer interfaces (BCIs) intrinsically
poses the issue of data imbalance between target stimuli and nontarget stimuli. Data imbalance
can cause overfitting problems and, consequently, poor classification performance. The purpose of
this study is to improve BCI performance by solving this data imbalance problem with sampling
techniques. The sampling techniques were applied to BCI data in 15 subjects controlling a door
lock, 15 subjects an electric light, and 14 subjects a Bluetooth speaker. We explored two categories
of sampling techniques: oversampling and undersampling. Oversampling techniques, including
random oversampling, synthetic minority oversampling technique (SMOTE), borderline-SMOTE,
support vector machine (SVM) SMOTE, and adaptive synthetic sampling, were used to increase the
number of samples for the class of target stimuli. Undersampling techniques, including random
undersampling, neighborhood cleaning rule, Tomek’s links, and weighted undersampling bagging,
were used to reduce the class size of nontarget stimuli. The over- or undersampled data were
classified by an SVM classifier. Overall, some oversampling techniques improved BCI performance
while undersampling techniques often degraded performance. Particularly, using borderline-SMOTE
yielded the highest accuracy (87.27%) and information transfer rate (8.82 bpm) across all three
appliances. Moreover, borderline-SMOTE led to performance improvement, especially for poor
performers. A further analysis showed that borderline-SMOTE improved SVM by generating more
support vectors within the target class and enlarging margins. However, there was no difference in
the accuracy between borderline-SMOTE and the method of applying the weighted regularization
parameter of the SVM. Our results suggest that although oversampling improves performance of
P300-based BCIs, it is not just the effect of the oversampling techniques, but rather the effect of solving
the data imbalance problem.

Keywords: brain–computer interfaces (BCI); electroencephalography (EEG); P300; sampling
techniques; borderline-SMOTE

1. Introduction

Noninvasive brain–computer interfaces (BCIs) utilizing P300, an event-related potential (ERP)
component [1], have been extensively studied for various applications [2–4]. P300 component refers to
a positive ERP peak that appears between 250 and 500 ms after event onset [5]. P300 is mainly elicited
in an oddball paradigm consisting of frequently presented nontarget stimuli along with infrequently
presented target stimuli. Target stimulus classification through P300 allows a BCI to infer and transmit
the user’s intents to external devices. Farwell and Donchin created a P300-based BCIs system that
enables typing letters only by brain activities [6]. Since then, P300-based BCIs have also been widely
applied to control other devices such as a wheelchair, robot, and games [7–10].

Sensors 2020, 20, 5576; doi:10.3390/s20195576 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/1424-8220/20/19/5576?type=check_update&version=1
http://dx.doi.org/10.3390/s20195576
http://www.mdpi.com/journal/sensors


Sensors 2020, 20, 5576 2 of 16

P300-based BCIs can be integrated in a smart home system to control living devices with brain
activity [11]. Carabalona et al. developed P300-based BCIs for controlling bulbs, doors, and speakers
through a 6 × 6 matrix user interface and showed the accuracy of approximately 50% through the linear
discriminant analysis (LDA) classifier [12]. Edlinger et al. built a hybrid BCI system for smart home
control using both P300 and steady-state visually evoked potential (SSVEP) in a virtual reality (VR)
environment. In this system, a P300-based interface was used to select a target from many alternatives
and an SSVEP-based interface was used to start or stop the P300-based interface [13]. The BCI system
that controlled home appliances and navigation in the VR environment achieved a range of accuracy
from 83% to 100% [14].

However, the oddball paradigm used in P300-based BCIs intrinsically poses the issue of data
imbalance between target stimuli and nontarget stimuli because it generates a relatively small number of
ERP samples for target compared to a larger number of ERP samples for nontarget stimuli. In general,
the number of data samples for nontarget is at least three times greater than that for the target.
In addition, the P300 amplitude increases as the ratio of nontarget sample size to target sample size
increases [15]. Such data imbalance can bias classifiers toward the class with a larger size and thus
degrade classification performance by overfitting [16].

Several studies have attempted to address data imbalance problems with different approaches.
First, the data level approach draws on sampling techniques by either undersampling data in larger-size
classes or oversampling data in smaller-size classes. For instance, Wu et al. achieved the performance
of 99.48% using one of the oversampling techniques, synthetic minority oversampling technique
(SMOTE) [16], for classifying epileptic electroencephalogram (EEG) [17]. Xu et al. also showed
that using SMOTE could improve the LDA classifier for P300 detection, and that oversampling was
more effective than undersampling [18]. However, this study applied sampling techniques to BCIs
in only 2 subjects. Second, the algorithm level approach uses an ensemble model with multiple
classifiers. For instance, Shi et al. developed random undersampling bagging support vector machines
(SVMs) that conducted random undersampling from nontarget data to match the number of target
and nontarget data samples, trained classifiers, and detected P300 using multiple classifiers [19].
This ensemble model led to better classification performance than using single classifiers such as LDA,
SVM, and convolutional neural network (CNN).

The purpose of this study is to prove the feasibility of improving the performance of P300-based
BCIs using sampling techniques and to find which of the techniques provides the best performance
to control various home appliances. While numerous studies have investigated P300-based BCI
performance improvement through classification models using feature extraction and deep learning
methods, few studies examined whether it would be plausible to improve performance by solving data
imbalance. Therefore, in this study, various oversampling and undersampling techniques as well as
ensemble method were explored to find the optimal sampling technique. Additionally, we investigate
how sampling techniques help to build a classifier in a better way. To this end, we opt to use SVM as
a classifier for BCIs rather than more complex artificial neural networks, as it is straightforward to
analyze the effect of sampling on the properties of SVM such as the number of support vectors and the
margin between support vectors and decision boundary.

2. Methods

2.1. Subjects

A total of 44 subjects participated in the study of controlling one of the three home appliances
using BCIs (13 female, ages 18–31 years old). Fifteen of them participated in the experiment of a
door lock control BCI, 15 in an electric light control BCI, and 14 in a Bluetooth speaker control BCI.
They had no history of neurological illness. This study was approved by the Ulsan National Institutes
of Science and Technology of Institutional Review Board (UNISTIRB-18-08-A) and all subjects gave
informed consent.



Sensors 2020, 20, 5576 3 of 16

2.2. Stimuli

The visual oddball paradigm with four or six stimuli was used to elicit P300 depending on the
type of home appliance controlled. In the electric light BCI, stimuli were composed of three control
(on/off/± brightness) icons as well as one dummy icon; and in the door lock BCI, stimuli consisted of
two control (lock/unlock) icons and two dummy icons. In the Bluetooth speaker BCI, there were six
control stimuli (play and pause/mute/volume up/volume down/next song/previous song). The ratio of
the number of target to nontarget stimuli was 1:3 in the electric light and door lock BCIs, and 1:5 in the
Bluetooth speaker BCI. In the case of the electric light and door lock BCIs, the stimuli were presented
in the see-through user interface (UI); and in the case of the Bluetooth speaker BCI, the stimuli were
presented on the LCD screen.

2.3. Experimental Design

Each experiment was composed of a training session and a test session. The training session
consisted of a total of 50 blocks from which we obtained EEG data and target information to train a
BCI classifier. At the beginning of each block, the target information was displayed for 1000 ms with
an instruction for subjects to count the number of times the target was highlighted. Then, the main
screen with all the stimuli appeared and a trial began by randomly highlighting one of the stimuli by
changing its color from blue to green for 62.5 ms. Following an intertrial interval of 62.5 ms, the next
trial began by randomly selecting a stimulus and highlighting it. In one block, each stimulus was
highlighted exactly 10 times, so there were 40 trials per block in the electric light and door lock stimuli
BCIs, and 60 trials in the Bluetooth speaker BCI. When the training session ended, we collected the
subject’s EEG data and used them to train an SVM classifier (Figure 1).

In the test session, a total of 30 blocks were performed, in which the device was controlled by BCIs
in real-time. The block in the test session was designed in the same way as that in the training session.
At the end of each block, the trained classifier predicted the target, and the device was controlled
according to the prediction result. The result was displayed for 1000 ms. Our smart home BCI system
connected middleware in PC and each home appliance via TCP/IP communication. A more detailed
experimental design is described in the previous study [11].

Sensors 2020, 20, x FOR PEER REVIEW 3 of 16 

 

2.2. Stimuli 

The visual oddball paradigm with four or six stimuli was used to elicit P300 depending on the 
type of home appliance controlled. In the electric light BCI, stimuli were composed of three control 
(on/off/± brightness) icons as well as one dummy icon; and in the door lock BCI, stimuli consisted of 
two control (lock/unlock) icons and two dummy icons. In the Bluetooth speaker BCI, there were six 
control stimuli (play and pause/mute/volume up/volume down/next song/previous song). The ratio 
of the number of target to nontarget stimuli was 1:3 in the electric light and door lock BCIs, and 1:5 
in the Bluetooth speaker BCI. In the case of the electric light and door lock BCIs, the stimuli were 
presented in the see-through user interface (UI); and in the case of the Bluetooth speaker BCI, the 
stimuli were presented on the LCD screen. 

2.3. Experimental Design 

Each experiment was composed of a training session and a test session. The training session 
consisted of a total of 50 blocks from which we obtained EEG data and target information to train a 
BCI classifier. At the beginning of each block, the target information was displayed for 1000 ms with 
an instruction for subjects to count the number of times the target was highlighted. Then, the main 
screen with all the stimuli appeared and a trial began by randomly highlighting one of the stimuli by 
changing its color from blue to green for 62.5 ms. Following an intertrial interval of 62.5 ms, the next 
trial began by randomly selecting a stimulus and highlighting it. In one block, each stimulus was 
highlighted exactly 10 times, so there were 40 trials per block in the electric light and door lock stimuli 
BCIs, and 60 trials in the Bluetooth speaker BCI. When the training session ended, we collected the 
subject's EEG data and used them to train an SVM classifier (Figure 1).  

In the test session, a total of 30 blocks were performed, in which the device was controlled by 
BCIs in real-time. The block in the test session was designed in the same way as that in the training 
session. At the end of each block, the trained classifier predicted the target, and the device was 
controlled according to the prediction result. The result was displayed for 1000 ms. Our smart home 
BCI system connected middleware in PC and each home appliance via TCP/IP communication. A 
more detailed experimental design is described in the previous study [11]. 

 
(a) 

  Figure 1. Cont.



Sensors 2020, 20, 5576 4 of 16

Sensors 2020, 20, x FOR PEER REVIEW 4 of 16 

 

 
(b) 

Figure 1. (a) The experimental design to build brain–computer interfaces (BCIs) for controlling three 
different home appliances: door lock, electric light, and Bluetooth speaker. Participants performed 50 
training blocks followed by 30 test blocks. User interfaces provided to participants for controlling 
each home appliance are shown. (b) An overall diagram of the communication network between 
electroencephalography (EEG)-based BCIs and home appliances through TCP/IP communication. 

2.4. EEG Processing 

EEG data were acquired by an amplifier (actiCHamp, Brain Products GmBH, Gilching, 
Germany) with 32-channel wet electrodes, with a sampling rate of 500 Hz. Ground and reference 
electrodes were attached at the left and right mastoid, respectively. EEG data were preprocessed 
through a pipeline set in the following order: high-pass filtering (>0.5 Hz), bad channel rejection, 
common average re-referencing, low-pass filtering (<50 Hz), and artifact subspace reconstruction 
(ASR). EEG data were epoched from −200 to 600 ms after stimulus onset, and baseline correction was 
conducted with baseline data from −200 ms to onset. After epoching, EEG data were standardized by 
removing the mean and scaling to unit variance. For preprocessing, EEGLAB Toolbox [20], MATLAB 
(The MathWorks, Inc., Natick, Massachusetts, United States), and Python (Python Software 
Foundation, Beaverton, OR, United States) were used together. 

2.5. Data Balancing 

Given two-class training datasets, we first determined a majority and minority class according 
to the class size: majority for larger and minority for smaller class. Then, we applied the following 
oversampling methods to synthesize training data samples in the minority class or undersampling 
methods to remove training data samples in the majority class. 

2.5.1. Oversampling 

Random Oversampling (ROS) 

Random oversampling randomly selects and copies the minority class samples to create 
additional minority class instances [18]. 

Synthetic Minority Oversampling Technique (SMOTE) 

SMOTE is a heuristic method of synthesizing the minority class instances using the nearest 
neighbors of original minority class instances [21]. 

The procedure is as follows: 

Figure 1. (a) The experimental design to build brain–computer interfaces (BCIs) for controlling three
different home appliances: door lock, electric light, and Bluetooth speaker. Participants performed
50 training blocks followed by 30 test blocks. User interfaces provided to participants for controlling
each home appliance are shown. (b) An overall diagram of the communication network between
electroencephalography (EEG)-based BCIs and home appliances through TCP/IP communication.

2.4. EEG Processing

EEG data were acquired by an amplifier (actiCHamp, Brain Products GmBH, Gilching, Germany)
with 32-channel wet electrodes, with a sampling rate of 500 Hz. Ground and reference electrodes were
attached at the left and right mastoid, respectively. EEG data were preprocessed through a pipeline
set in the following order: high-pass filtering (>0.5 Hz), bad channel rejection, common average
re-referencing, low-pass filtering (<50 Hz), and artifact subspace reconstruction (ASR). EEG data were
epoched from −200 to 600 ms after stimulus onset, and baseline correction was conducted with baseline
data from −200 ms to onset. After epoching, EEG data were standardized by removing the mean and
scaling to unit variance. For preprocessing, EEGLAB Toolbox [20], MATLAB (The MathWorks, Inc.,
Natick, MA, USA), and Python (Python Software Foundation, Beaverton, OR, USA) were used together.

2.5. Data Balancing

Given two-class training datasets, we first determined a majority and minority class according
to the class size: majority for larger and minority for smaller class. Then, we applied the following
oversampling methods to synthesize training data samples in the minority class or undersampling
methods to remove training data samples in the majority class.

2.5.1. Oversampling

Random Oversampling (ROS)

Random oversampling randomly selects and copies the minority class samples to create additional
minority class instances [18].

Synthetic Minority Oversampling Technique (SMOTE)

SMOTE is a heuristic method of synthesizing the minority class instances using the nearest
neighbors of original minority class instances [21].

The procedure is as follows:



Sensors 2020, 20, 5576 5 of 16

1. Find the K-nearest neighbors of each minority class instance and then calculate the distances
between the neighbors and instance. The value of K depends on the number of minority class
instances to be synthesized.

2. These distances are multiplied by a random value between 0 and 1 and added to minority class
instances to synthesize the new minority class instance. The equation is as follows:

s j = p + r jd j, j = 1, 2, . . . , K, (1)

where s j is a newly synthesized instance vector, p is an original instance vector in the minority class,
d j is a difference vector between p and its j-th neighbor, and r j is a random value uniformly distributed
between 0 and 1.

In this study, K is set to 5. However, since SMOTE does not consider whether the surrounding data
of each instance are majority class or minority class, synthetic data can be generated in a meaningless
space that does not affect the decision boundary.

Borderline-SMOTE (B-SMOTE)

Borderline-SMOTE is a variant of SMOTE. Since SMOTE only considers minority class instances,
without taking into account adjacent majority class instances, it can create instances that interfere
with building a proper classifier. To address this limitation, Han et al. proposed borderline-SMOTE,
which also performs oversampling on instances of the minority class near the borderline [22].

The procedure is as follows:

1. After extracting the M-nearest neighbors from each minority class instance, put the minority class
instances into a set if more than half of the M-nearest neighbors of it belong to the majority class.
This set is called a ’DANGER’ set (see Figure 2b).

2. After selecting the K-nearest neighbors of every instance in the ’DANGER’ set, calculate a
difference vector between the instance and each of the K-nearest neighbors. Then, multiply the
difference vector by a random value between 0 and 1 and add it to the minority data set, in the
same way as the SMOTE procedures described above.

Sensors 2020, 20, x FOR PEER REVIEW 5 of 16 

 

1. Find the K-nearest neighbors of each minority class instance and then calculate the distances 
between the neighbors and instance. The value of K depends on the number of minority class 
instances to be synthesized. 

2. These distances are multiplied by a random value between 0 and 1 and added to minority class 
instances to synthesize the new minority class instance. The equation is as follows: 

, 1, 2,..., ,j j jr j K= + =s p d  (1) 

where js  is a newly synthesized instance vector, p  is an original instance vector in the minority 

class, jd  is a difference vector between p  and its j-th neighbor, and jr  is a random value 

uniformly distributed between 0 and 1. 
In this study, K is set to 5. However, since SMOTE does not consider whether the surrounding 

data of each instance are majority class or minority class, synthetic data can be generated in a 
meaningless space that does not affect the decision boundary. 

Borderline-SMOTE (B-SMOTE) 

Borderline-SMOTE is a variant of SMOTE. Since SMOTE only considers minority class instances, 
without taking into account adjacent majority class instances, it can create instances that interfere 
with building a proper classifier. To address this limitation, Han et al. proposed borderline-SMOTE, 
which also performs oversampling on instances of the minority class near the borderline [22]. 

The procedure is as follows: 

1. After extracting the M-nearest neighbors from each minority class instance, put the minority 
class instances into a set if more than half of the M-nearest neighbors of it belong to the majority 
class. This set is called a 'DANGER' set (see Figure 2b). 

2. After selecting the K-nearest neighbors of every instance in the 'DANGER' set, calculate a 
difference vector between the instance and each of the K-nearest neighbors. Then, multiply the 
difference vector by a random value between 0 and 1 and add it to the minority data set, in the 
same way as the SMOTE procedures described above. 

In this study, M and K are set to 10 and 5. 

 
Figure 2. (a) An example of 2D binary class data with data imbalance: majority class of black circles 
and minority class of red crosses. (b) Among the minority class instances, a ‘DANGER’ set was made 
by selecting those instances whose neighbors are more included in the majority class than in the 
minority class—borderline minority instances, marked by blue squares. The number of neighbors, K 
= 5. (c) K new synthetic instances are created for each instance in the DANGER set (see the text for 
more details of the synthesis procedure); newly synthesized instances in the minority class are marked 
by green squares. 

  

Figure 2. (a) An example of 2D binary class data with data imbalance: majority class of black circles
and minority class of red crosses. (b) Among the minority class instances, a ‘DANGER’ set was made
by selecting those instances whose neighbors are more included in the majority class than in the
minority class—borderline minority instances, marked by blue squares. The number of neighbors, K =

5. (c) K new synthetic instances are created for each instance in the DANGER set (see the text for more
details of the synthesis procedure); newly synthesized instances in the minority class are marked by
green squares.

In this study, M and K are set to 10 and 5.



Sensors 2020, 20, 5576 6 of 16

Support Vector Machine SMOTE (SVM-SMOTE)

SVM-SMOTE, another variant of SMOTE using the support vectors proposed by Nguyen et al.,
is similar to borderline-SMOTE, except that the support vector machine is used to define the borderline,
which is equivalent to a decision boundary in SVM [23].

The procedure is as follows:

1. Find support vectors in the minority class after training a support vector machine.
2. Find the M-nearest neighbors of each minority class support vector.
3. Count the number of majority class instances in those M-nearest neighbors.
4. If the number of majority class instances is less than half, calculate a distance vector between the

minority class support vector and the K-nearest neighbors and multiply it by a random value
between 0 and 1. Then, add these K newly synthesized vectors to the minority class support
vector, in the same way as the SMOTE procedures described above.

In this study, M and K are set to 10 and 5.

Adaptive Synthetic Sampling (ADASYN)

ADASYN, an adaptive oversampling method proposed to overcome the limitation of SMOTE,
adjusts the number of synthetic data to be generated according to the distribution of surrounding
majority class instances [24]. The procedure is as follows:

1. Determine the total number of synthetic data (G) to generate in the minority class using the
following formula:

G = β(
∣∣∣Smaj

∣∣∣− |Smin|), (2)

where
∣∣∣Smaj

∣∣∣ is the size of the majority class, |Smin| is the size of the minority class, and β ∈ [0, 1] is
a parameter used to specify the desired balance level after generation of the synthetic data.

2. Find the K-nearest neighbors for each instance belonging to the minority class, and calculate the
portion of the majority neighbors for each instance, denoted by γ here, as follows:

γ(i) =
1
Z
δ(i)
K

, i = 1, . . . , |Smin|, (3)

where δ(i) is the number of instances belonging to the majority class instances among K-nearest
neighbors, and Z is a normalization constant that makes the sum of γ(i) equal to 1.

3. Determine the number of synthetic data (g) that need to be generated for each instance of the
minority class as (if g has a decimal point, it is rounded up):

g(i) = γ(i) ×G, i = 1, . . . , K. (4)

4. For each minority instance, generate g(i) synthetic instances using SMOTE.

In this study, β is set to 1 to equal the number of majority class and minority class data, and K is
set to 5.

2.5.2. Undersampling

Random undersampling randomly selects and removes majority class instances.

Neighborhood Cleaning Rule (NCR)

NCR combines the edited nearest neighbor method and the condensed nearest neighbor
method [25]. The procedure is as follows:



Sensors 2020, 20, 5576 7 of 16

1. First, apply the edited nearest neighbor method to the dataset. The edited nearest neighbor
method removes the instances in the majority class if more than half of the K-nearest neighbors of
an instance in the majority class do not belong to the majority class.

2. Then, the condensed nearest neighbor method is applied to the data set with noise removed
through the edited nearest neighbor method. This method removes a majority class instance
if its closest neighbor belongs to the majority class or not if the closest neighbor belongs to the
minority class.

In this study, K is set to 3.

Tomek’s Links (Tomek)

Tomek’s link method is an undersampling technique that removes majority class instances from a
Tomek’s link. The procedure is as follows:

1. Include all minority class data in the new training data set.
2. Find the Tomek’s links where the two data with different classes are closest to each other.
3. Include majority class data that does not correspond to Tomek’s link in the new training data set.

More details can be found in [26].

Weighted Undersampling Bagging (WUS)

One way to conduct undersampling in the context of classification is to divide the majority class
data into multiple subsets, build classifiers for individual subsets, and combine classification outcomes.
For instance, in Kundu and Ari’s study [27], the majority class data were divided into multiple subsets,
and SVM model was built for each subset. Then, they combined the classification output of each
classifier in each subset by assigning weights to those outputs according to the cross-validation results;
a more non-negative weight for higher cross-validation accuracy with the sum of the weights equal
to 1.

In this study, we benchmarked Kundu and Ari’s approach with the procedure given below:

1. Divide randomly shuffled nontarget data into several subsets: 3 subsets for door lock and electric
light, and 5 subsets for Bluetooth speaker.

2. Pair each nontarget subset with the target dataset and train an SVM classifier for each pair.
3. Calculate the training accuracy.
4. Determine a weight to be assigned to each pair. For 4-class cases (door lock and electric light),

the weights are determined as 1/6, 2/6, or 3/6 for the pairs with the lowest to the highest training
accuracy. For 6-class cases (Bluetooth), the weights are determined as 1/15, 2/15, 3/15, 4/15, or 5/15
for the pairs with the lowest to the highest training accuracy.

5. Classify a new EEG data using each SVM that produces the target probability for each stimulus.
Let pi j be the target probability for the j-th stimulus from the SVM trained with the i-th subset,
where j = 1, . . . , C (C is the number of stimuli, i.e., 4 or 6) and i = 1, . . . , K (K is the number of
subsets, i.e., 3 or 5).

6. Multiply the target probability values by the weights assigned to each SVM. Let wi be the weight
assigned to the i-th subset. Then, the multiplication yields wipi j for i = 1, . . . , K.

7. Sum these weighted target probability values over all SVMs for each stimulus and choose the
stimulus with the highest value as a target:

Estimated target =argmax
j

K∑
i=1

wipi j. (5)



Sensors 2020, 20, 5576 8 of 16

2.6. Classification

2.6.1. EEG Feature Extraction

The features specified as inputs of the support vector machine in this study were composed
of the ERP amplitudes of every EEG channel (excluding bad channels). The ERP amplitudes were
collected from 100~600 ms after stimulus onset, which generated 250 data points per channel with the
500-Hz sampling rate. Since there were 50 training blocks, the door lock and electric light experiments
produced 50 target class samples and 150 nontarget class samples, whereas the Bluetooth speaker
experiment produced 50 target class samples and 250 nontarget class samples.

2.6.2. Classification Algorithm

In this study, we used SVM for classification, which has been widely used for BCIs [28–30].
SVM has been successfully applied to high-dimensional classification problems and helps to avoid
unnecessary additional computational steps such as feature selection or dimensionality reduction [31].
To determine the classification algorithm, we applied different classification algorithms other than
SVM to our P300 data. In particular, we examined the use of linear discriminant analysis (LDA) and
decision tree (DT). A comparison analysis showed that classification accuracy was 46.59% with decision
tree, 83.56% with LDA, and 86.06% with SVM with the original P300 data. Therefore, we chose to use
SVM with the highest accuracy and investigated if we could further improve its performance with
oversampling. Another reason to opt for SVM over other methods was because we expected that
sampling would be more effective for SVM since it might help with determining support vectors by
adding more samples to the decision boundary.

SVM aims to maximize the margin defined by distance between the decision boundary and the
support vectors of each class. Considering overlapping between classes, we used soft margin SVM,
whose objective function is given by

min
w,b,ξ

1
2

wTw + C
l∑

i=1

ξi, (6)

subject to yi(wTφ(xi) + b) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , l,

yi =

{
−1 (i f the class o f y is negative)
1 (i f the class o f y is positive)

.

In this study, the regularization parameter C is fixed to 1 without optimization.
The process of training and testing SVM is as follows:

1. Train the binary SVM that classifies target and nontarget stimuli using the training session data.
2. For each test block data, calculate the target probability of each stimulus by the trained SVM model.
3. The stimulus with the highest target probability is classified as the target stimulus, and the

remaining stimuli are classified as nontarget stimuli.

2.6.3. Classification Performance Evaluation

To evaluate classification performance for each smart home BCI, accuracy was defined as the
percentage of the test blocks in which the predicted target matches the actual target. We also calculated
recall, precision, and F1-score based on the confusion matrix given by Table 1.



Sensors 2020, 20, 5576 9 of 16

Table 1. Confusion matrix.

Actual

Target Nontarget

Predicted
Target True Positive (TP) False Positive (FP)

Nontarget False Negative (FN) True Negative (TN)

Recall, precision, and F1-score are calculated from Table 1 as follows:

Recall =
TP

TP + FN
, (7)

Precision =
TP

TP + FP
, (8)

F1 score = 2×
Precision×Recall
Precision + Recall

. (9)

The higher value of recall in BCIs means that the classification algorithm can successfully detect
a target stimulus whenever it is presented. The higher value of precision means that when the
classification algorithm classifies a stimulus as a target, it is more likely a real target stimulus. As an
example, if the recall is high but precision is low, the classification algorithm tends to classify nontarget
stimuli as well as target ones as targets, showing biased classification toward the target. F1-score
overcomes this possible trade-off between recall and precision by using the harmonic mean of these two
metrics. F1-score can more accurately describe the performance of classification algorithms especially
when class sizes are unbalanced.

The information transfer rate (ITR), which has been widely used for evaluating BCI performance,
indicate the amount of information delivered from the brain to external devices by BCIs for a certain
period. Since BCIs need to be able to send a large amount of information to devices as quickly as
possible, BCI researches have been focused on increases in ITR, which requires the increase of accuracy,
the number of target classes, and/or the reduction of processing time. ITR is calculated as follows:

ITR(bits/min) =
log2 N + P log2 P + (1− P) log2[(1− P)/(N − 1)]

T
, (10)

where N is the number of target classes, P is classification accuracy, and T is the time elapsed to control
devices (in the unit of minute). For instance, for the BCIs built in this study, it took 1 s to select one of
the given control menus by a BCI in each test block.

3. Results

3.1. Effects of Balancing on BCI Accuracy

Overall, oversampling improved the accuracy of P300-based BCIs while undersampling worsened
it. For individual home appliances, using the oversampling technique of ADASYN resulted in the
highest accuracy (84.22% ± 13.89), while all the undersampling techniques lowered accuracy for the
door lock BCI (Figure 3A). Notably, SVM-SMOTE also reduced accuracy. Using borderline-SMOTE
produced the highest accuracy for the electric light BCI (92.67% ± 5.52) and for the Bluetooth speaker
BCI (85% ± 13.25) (Figure 3B,C). Once again, the undersampling techniques did not improve accuracy
in these BCIs. Combining all three home appliances’ BCIs together, borderline-SMOTE showed the
highest accuracy (87.27% ± 11.46), while SVM-SMOTE, RUS, and Tomek techniques reduced accuracy
(Figure 3D).



Sensors 2020, 20, 5576 10 of 16

Sensors 2020, 20, x FOR PEER REVIEW 10 of 16 

 

 
Figure 3. Average accuracy of controlling each home appliance using P300-based BCIs without 
balancing as well as various over-, and undersampling techniques for balancing. See the text for 
details. Accuracy for controlling for each home appliance as well as total accuracy is shown: (a) door 
lock, (b) electric light, (c) Bluetooth speaker, and (d) sum of them. Red vertical bars denote standard 
error of mean and * marks denote statistical significance (p < 0.05), and ** mark denote statistical 
significance (p < 0.005). 

Notwithstanding accuracy results, all the sampling techniques increased F1-scores (Table 2) 
compared to the normal classification without balancing. Specifically, most over- and undersampling 
techniques increased recall at the expense of decreases in precision. These results imply the effect of 
sampling techniques to partially correct the bias of classification toward the nontarget class due to 
data imbalance. 

Table 2. Recall, Precision, F1-score results for each sampling method (support vector machine, SVM). 
Random oversampling—ROS; synthetic minority oversampling technique—SMOTE; borderline-
SMOTE—B-SMOTE; adaptive synthetic sampling—ADASYN; random undersampling—RUS; 
neighborhood cleaning rule—NCR; weighted undersampling bagging—WUS. 

  w/o 
Balancing 

ROS SMOTE 
B-

SMOTE 
SVM-

SMOTE 
ADASYN RUS NCR Tomek WUS 

All home 
appliances 

Recall 0.62 0.75 0.73 0.74 0.74 0.74 0.84 0.70 0.63 0.87 
Precision 0.95 0.85 0.88 0.88 0.84 0.87 0.71 0.87 0.94 0.75 
F1-score 0.75 0.80 0.80 0.80 0.79 0.80 0.77 0.78 0.76 0.81 

3.2. Performance Improvement of Poor Performers 

We investigated whether the sampling techniques could improve the performance of poor 
performers who showed lower accuracy than the average (86.06%) across all the home appliances in 
the normal classification without sampling. A total of 15 out of 44 subjects were determined as poor 
performers. We found that all the oversampling techniques except SVM-SMOTE improved the 
accuracy of poor performers (Figure 4). In particular, using borderline-SMOTE showed the largest 
improvement (2.89%) in accuracy. On the contrary, the undersampling techniques reduced accuracy 
by approximately 2%. 

Figure 3. Average accuracy of controlling each home appliance using P300-based BCIs without
balancing as well as various over-, and undersampling techniques for balancing. See the text for details.
Accuracy for controlling for each home appliance as well as total accuracy is shown: (A) door lock,
(B) electric light, (C) Bluetooth speaker, and (D) sum of them. Red vertical bars denote standard error
of mean and * marks denote statistical significance (p < 0.05), and ** mark denote statistical significance
(p < 0.005).

Notwithstanding accuracy results, all the sampling techniques increased F1-scores (Table 2)
compared to the normal classification without balancing. Specifically, most over- and undersampling
techniques increased recall at the expense of decreases in precision. These results imply the effect of
sampling techniques to partially correct the bias of classification toward the nontarget class due to
data imbalance.

Table 2. Recall, Precision, F1-score results for each sampling method (support
vector machine, SVM). Random oversampling—ROS; synthetic minority oversampling
technique—SMOTE; borderline-SMOTE—B-SMOTE; adaptive synthetic sampling—ADASYN;
random undersampling—RUS; neighborhood cleaning rule—NCR; weighted
undersampling bagging—WUS.

w/o
Balancing ROS SMOTE B-SMOTE SVM-SMOTE ADASYN RUS NCR Tomek WUS

All home
appliances

Recall 0.62 0.75 0.73 0.74 0.74 0.74 0.84 0.70 0.63 0.87
Precision 0.95 0.85 0.88 0.88 0.84 0.87 0.71 0.87 0.94 0.75
F1-score 0.75 0.80 0.80 0.80 0.79 0.80 0.77 0.78 0.76 0.81

3.2. Performance Improvement of Poor Performers

We investigated whether the sampling techniques could improve the performance of poor
performers who showed lower accuracy than the average (86.06%) across all the home appliances
in the normal classification without sampling. A total of 15 out of 44 subjects were determined as
poor performers. We found that all the oversampling techniques except SVM-SMOTE improved the
accuracy of poor performers (Figure 4). In particular, using borderline-SMOTE showed the largest
improvement (2.89%) in accuracy. On the contrary, the undersampling techniques reduced accuracy by
approximately 2%.



Sensors 2020, 20, 5576 11 of 16

Sensors 2020, 20, x FOR PEER REVIEW 11 of 16 

 

 
Figure 4. Total accuracy over all three home appliances in poor BCI performers without balancing as 
well as with various sampling techniques. Red vertical bars denote standard error of mean and * 
marks denote statistical significance (p < 0.05). 

3.3. Information Transfer Rate (ITR) Improvement 

Improvement of accuracy also gave rise to increases in ITR. For individual home appliances, 
ADASYN resulted in the highest ITR (3.71 bpm) for the door lock BCI; and borderline-SMOTE 
yielded the highest ITR for both the electric light BCI (11.33 bpm) and the Bluetooth speaker BCI 
(11.48 bpm). Combining all the three home appliances, borderline-SMOTE produced the highest ITR 
(8.82 bpm) (Figure 5). On the contrary, the undersampling techniques did not improve ITR.  

 
Figure 5. Information transfer rate (ITR) of BCIs over all three home appliances without balancing as 
well as with various sampling techniques. 

3.4. Effect of Borderline-SMOTE on SVM 

We further investigated how the oversampling affected SVM, especially with borderline-
SMOTE, which showed the best performance. In the SVM trained without oversampling, the average 
number of support vectors in the target class was 40.7, and that in the nontarget class was 63.11. When 
the SVM was trained with oversampling by borderline-SMOTE, the number of support vectors in the 
target class increased to an average of 56.98. As such, borderline-SMOTE increased the ratio of the 
number of support vectors in the target class to that in the nontarget class from 0.67 to 0.83. Moreover, 
the average relative distance between the support vectors to the decision boundary, which 

Figure 4. Total accuracy over all three home appliances in poor BCI performers without balancing as
well as with various sampling techniques. Red vertical bars denote standard error of mean and * marks
denote statistical significance (p < 0.05).

3.3. Information Transfer Rate (ITR) Improvement

Improvement of accuracy also gave rise to increases in ITR. For individual home appliances,
ADASYN resulted in the highest ITR (3.71 bpm) for the door lock BCI; and borderline-SMOTE yielded
the highest ITR for both the electric light BCI (11.33 bpm) and the Bluetooth speaker BCI (11.48 bpm).
Combining all the three home appliances, borderline-SMOTE produced the highest ITR (8.82 bpm)
(Figure 5). On the contrary, the undersampling techniques did not improve ITR.

Sensors 2020, 20, x FOR PEER REVIEW 11 of 16 

 

 
Figure 4. Total accuracy over all three home appliances in poor BCI performers without balancing as 
well as with various sampling techniques. Red vertical bars denote standard error of mean and * 
marks denote statistical significance (p < 0.05). 

3.3. Information Transfer Rate (ITR) Improvement 

Improvement of accuracy also gave rise to increases in ITR. For individual home appliances, 
ADASYN resulted in the highest ITR (3.71 bpm) for the door lock BCI; and borderline-SMOTE 
yielded the highest ITR for both the electric light BCI (11.33 bpm) and the Bluetooth speaker BCI 
(11.48 bpm). Combining all the three home appliances, borderline-SMOTE produced the highest ITR 
(8.82 bpm) (Figure 5). On the contrary, the undersampling techniques did not improve ITR.  

 
Figure 5. Information transfer rate (ITR) of BCIs over all three home appliances without balancing as 
well as with various sampling techniques. 

3.4. Effect of Borderline-SMOTE on SVM 

We further investigated how the oversampling affected SVM, especially with borderline-
SMOTE, which showed the best performance. In the SVM trained without oversampling, the average 
number of support vectors in the target class was 40.7, and that in the nontarget class was 63.11. When 
the SVM was trained with oversampling by borderline-SMOTE, the number of support vectors in the 
target class increased to an average of 56.98. As such, borderline-SMOTE increased the ratio of the 
number of support vectors in the target class to that in the nontarget class from 0.67 to 0.83. Moreover, 
the average relative distance between the support vectors to the decision boundary, which 

Figure 5. Information transfer rate (ITR) of BCIs over all three home appliances without balancing as
well as with various sampling techniques.

3.4. Effect of Borderline-SMOTE on SVM

We further investigated how the oversampling affected SVM, especially with borderline-SMOTE,
which showed the best performance. In the SVM trained without oversampling, the average number
of support vectors in the target class was 40.7, and that in the nontarget class was 63.11. When the
SVM was trained with oversampling by borderline-SMOTE, the number of support vectors in the
target class increased to an average of 56.98. As such, borderline-SMOTE increased the ratio of the



Sensors 2020, 20, 5576 12 of 16

number of support vectors in the target class to that in the nontarget class from 0.67 to 0.83. Moreover,
the average relative distance between the support vectors to the decision boundary, which represented
the margin that SVM aimed to maximize, increased by 6.05% when borderline-SMOTE was used.

3.5. A Comparison with the Models with Revised Regularization Parameter

The problem of data imbalance can also be handled through the regularization parameter (C) of
the SVM classifier. The value of C determines the amount of penalty given for errors. As the value
of C increases, the margin width decreases, resulting in a stricter SVM that does not tolerate error
much. We adjusted the value of C by multiplying the inversely proportional weight of the number of
data samples in each class. It yielded a classification accuracy of 86.82% on average, which was not
significantly different from that of borderline-SMOTE.

3.6. Effect of the Ratio between Target and Nontarget Data on Performance

Performance changes according to the ratio of target sample size to nontarget sample size were
examined for the SVM with borderline-SMOTE. The ratio varied from 1/3 to 1 for the door lock
and electric light BCIs and 1/5 to 1 for the Bluetooth speaker BCI, respectively. The three training
performance measures—training accuracy, recall, and F1-score—monotonically increased as the ratio
approached 1, where recall showed the greatest increase. On the other hand, precision slightly
decreased as the ratio increased (Figure 6a). All the measures converged to certain values as the ratio
became close to 1.

Sensors 2020, 20, x FOR PEER REVIEW 12 of 16 

 

represented the margin that SVM aimed to maximize, increased by 6.05% when borderline-SMOTE 
was used. 

3.5. A Comparison with the Models with Revised Regularization Parameter 

The problem of data imbalance can also be handled through the regularization parameter (C) of 
the SVM classifier. The value of C determines the amount of penalty given for errors. As the value of 
C increases, the margin width decreases, resulting in a stricter SVM that does not tolerate error much. 
We adjusted the value of C by multiplying the inversely proportional weight of the number of data 
samples in each class. It yielded a classification accuracy of 86.82% on average, which was not 
significantly different from that of borderline-SMOTE. 

3.6. Effect of the Ratio between Target and Nontarget Data on Performance 

Performance changes according to the ratio of target sample size to nontarget sample size were 
examined for the SVM with borderline-SMOTE. The ratio varied from 1/3 to 1 for the door lock and 
electric light BCIs and 1/5 to 1 for the Bluetooth speaker BCI, respectively. The three training 
performance measures—training accuracy, recall, and F1-score—monotonically increased as the ratio 
approached 1, where recall showed the greatest increase. On the other hand, precision slightly 
decreased as the ratio increased (Figure 6a). All the measures converged to certain values as the ratio 
became close to 1. 

 
Figure 6. Cont.



Sensors 2020, 20, 5576 13 of 16
Sensors 2020, 20, x FOR PEER REVIEW 13 of 16 

 

 
Figure 6. Performance of raw model with borderline-SMOTE according to target and nontarget data 
ratio during training (a) and testing (b), respectively. DL: Door lock, EL: Electric light, BS: Bluetooth 
speaker. Training accuracy is the result of binary classification that classifies target and nontarget. BCI 
system accuracy is the accuracy to select a target among stimuli presented through target probability. 

This trend was similar for the test performance. As the target ratio increased, the three measures 
of test accuracy, recall, and F1-score increased while precision decreased (Figure 6b). Yet, the extent 
to which F1-score increased was not as great as in the case of training, because precision decreased 
more as the ratio increased in the test. Note that we also added the accuracy of the BCIs—which was 
determined based on the target probability—to binary classification accuracy for every stimulus. To 
examine how the effect of the ratio on classification measures was related to BCI accuracy, we 
calculated linear correlation coefficients between each classification measure and BCI accuracy (Table 
3). It revealed that while decreases in precision by increases in the ratio were not much correlated 
with BCI accuracy for training, those decreases in precision were more influential to BCI accuracy for 
test.  

Table 3. Correlation of BCI system accuracy with other performance indices. Corrcoef: Correlation 
Coefficient. Accuracy is the result of binary classification that classifies target and nontarget. 

 Training Session Test Session 
 Recall Precision F1-Score Accuracy Recall Precision F1-Score Accuracy 

Corrcoef 0.60 −0.21 0.59 0.65 0.68 −0.65 0.63 0.65 
p-value 0.05 0.53 0.06 0.03 0.02 0.03 0.04 0.03 

4. Discussion 

This study addressed the data imbalance problem inevitably generated by the oddball paradigm 
used in P300-based BCIs by employing sampling techniques. We applied the sampling techniques to 
a set of P300-based BCIs built for controlling home appliances including door lock, electric light, and 
Bluetooth speaker. Among over-, and undersampling techniques, classifiers in the BCIs could benefit 
from the oversampling approaches. Specifically, the borderline-SMOTE oversampling technique 
provided the most improvement in BCI accuracy (1.21% on average). This also led to increases in ITR 

Figure 6. Performance of raw model with borderline-SMOTE according to target and nontarget data
ratio during training (a) and testing (b), respectively. DL: Door lock, EL: Electric light, BS: Bluetooth
speaker. Training accuracy is the result of binary classification that classifies target and nontarget.
BCI system accuracy is the accuracy to select a target among stimuli presented through target probability.

This trend was similar for the test performance. As the target ratio increased, the three measures
of test accuracy, recall, and F1-score increased while precision decreased (Figure 6b). Yet, the extent to
which F1-score increased was not as great as in the case of training, because precision decreased more as
the ratio increased in the test. Note that we also added the accuracy of the BCIs—which was determined
based on the target probability—to binary classification accuracy for every stimulus. To examine how
the effect of the ratio on classification measures was related to BCI accuracy, we calculated linear
correlation coefficients between each classification measure and BCI accuracy (Table 3). It revealed that
while decreases in precision by increases in the ratio were not much correlated with BCI accuracy for
training, those decreases in precision were more influential to BCI accuracy for test.

Table 3. Correlation of BCI system accuracy with other performance indices. Corrcoef: Correlation
Coefficient. Accuracy is the result of binary classification that classifies target and nontarget.

Training Session Test Session

Recall Precision F1-Score Accuracy Recall Precision F1-Score Accuracy

Corrcoef 0.60 −0.21 0.59 0.65 0.68 −0.65 0.63 0.65
p-value 0.05 0.53 0.06 0.03 0.02 0.03 0.04 0.03

4. Discussion

This study addressed the data imbalance problem inevitably generated by the oddball paradigm
used in P300-based BCIs by employing sampling techniques. We applied the sampling techniques
to a set of P300-based BCIs built for controlling home appliances including door lock, electric light,
and Bluetooth speaker. Among over-, and undersampling techniques, classifiers in the BCIs could
benefit from the oversampling approaches. Specifically, the borderline-SMOTE oversampling technique
provided the most improvement in BCI accuracy (1.21% on average). This also led to increases in ITR



Sensors 2020, 20, 5576 14 of 16

by 0.44 bpm. Note that we also checked whether oversampling could improve the performance of
the other classifiers, but little improvement was achieved in LDA or decision tree. From the in-depth
analysis of the effect of borderline-SMOTE on SVM, we found that applying borderline-SMOTE
increased the number of support vectors in the minority class (i.e., target class in our case), as reported
in the previous study [32], as well as the relative distance between the support vectors and the decision
boundary (i.e., margin). We suspect that these changes in SVM might allow for better performance
in BCIs.

In line with the previous study [18], we also observed that the oversampling technique increased
BCI performance while the undersampling techniques did not. We speculate that undersampling
can disturb a-priori probability of the training set and thus distort the posterior distribution [33].
In addition, it is expected that the performance of the classification model decreases as the number of
training samples decreases.

It was more effective when borderline-SMOTE was utilized on poor performers. It is likely that
ERP data in poor performers would be more intermingled between the target and nontarget classes,
making it difficult to draw a decision boundary. Then, borderline-SMOTE might help to find the
decision boundary relatively more clearly by creating synthetic data (and support vectors as well)
around the decision boundary. This resulted in 2.89% performance improvement in poor performers,
which was more than twice the overall average accuracy gain of 1.21%.

For the BCIs built in this study, borderline-SMOTE yielded the best performance improvement
among other oversampling techniques, such as SMOTE, SVM-SMOTE, and ADASYN. It was
unexpected, however, why SVM-SMOTE did not help even with the use of SVM as a classifier.
Since SVM-SMOTE performs oversampling using support vectors, when combined with SVM as a
classifier, it may not induce a significant change in the decision boundary. However, borderline-SMOTE
or ADASYN may enable to build a more general decision boundary because it oversamples minority
class instances that have more than half of the majority class nearest neighbors.

In addition, there is no performance difference with SVM using a weighted regularization
parameter to solve the data imbalance problem. However, the SVM model that optimizes regularization
parameters showed significantly lower performance (85.38%). It means that solving the data
imbalance problem by any method can improve the performance of P300-based BCIs, not only
oversampling techniques.

Compared to our previous study [8], this study demonstrated that the door lock BCI improved the
average accuracy by 5.3% and the average ITR by 0.22 bpm; and that the electric light BCI improved
the average accuracy by 12.67% and the average ITR by 4.06 bpm [11] (note that the Bluetooth BCI was
not analyzed in the previous study).

There are, however, some limitations to this study. First, the techniques used in this study
showed limitations in performance improvement. Other sampling techniques not covered in this
study might be effective. In the smart home P300-based BCIs, attempting to solve data imbalance
problem and improve performance using oversampling did not have the expected effect. Second,
in this study, only data balance was considered. In addition, there may be other feature extraction
methods, feature engineering methods such as feature selection, and classification models that can
improve performance. Third, the comparison focuses on performance such as accuracy and ITR. To use
BCI in real life, computational costs must be considered. However, it will not be covered in detail in
this study and will be covered in future studies. Fourth, the performance improvement demonstrated
in this study was obtained through offline studies. To validate the approach in practice, we should
demonstrate the effect of sampling techniques in real-time BCIs. Moreover, it is necessary to develop a
technique to solve the data imbalance problem suitable for P300-based BCIs.

While recent developments of over-, and undersampling methods have allowed the effective
training of machine learning methods, little is known about whether such sampling could also
enhance the performance of P300-based BCIs, which inherently possesses a data imbalance issue
due to the oddball paradigm. Moreover, no attempt has been made to compare a variety of over-,



Sensors 2020, 20, 5576 15 of 16

and undersampling techniques for enhancing P300-based BCIs. To address the question, this study
investigated the effects of a wide array of over-, and undersampling techniques on a P300-based BCI
and showed a plausibility of performance improvement in P300-based BCIs by addressing the data
imbalance issue based on either parameter optimization in classification methods (if available) or
oversampling of training data. As such, we anticipate that the present study may offer an insight on
how to deal with data imbalance issues in BCIs.

Author Contributions: Conceptualization, S.-P.K. and T.L.; methodology, T.L.; experiment, M.K.; analysis, T.L.,
M.K.; writing–original draft, T.L.; writing–review and editing, S.-P.K. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was partly supported by Institute of Information & Communications Technology Planning
& Evaluation (IITP) grant funded by the Korean Government (MSIT), (No. 2017-0-00432, development of
noninvasive integrated BCI SW platform to control home appliances and external devices by user’s thought
via AR/VR interface), the U-K (UNIST-Korea) research brand program (1.200040.01) funded by Ulsan National
Institute of Science & Technology (UNIST), and the Outstanding Research Fund (1.190042.01) of UNIST.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sutton, S.; Braren, M.; Zubin, J.; John, E.R. Evoked-potential correlates of stimulus uncertainty. Science 1965,
150, 1187–1188. [CrossRef] [PubMed]

2. Mak, J.N.; Arbel, Y.; Minett, J.W.; McCane, L.M.; Yuksel, B.; Ryan, D.; Thompson, D.; Bianchi, L.; Erdogmus, D.
Optimizing the P300-based brain-computer interface: Current status, limitations and future directions.
J. Neural Eng. 2011, 8, 025003. [CrossRef] [PubMed]

3. Rezeika, A.; Benda, M.; Stawicki, P.; Gembler, F.; Saboor, A.; Volosyak, I. Brain–computer interface spellers:
A review. Brain Sci. 2018, 8, 57. [CrossRef] [PubMed]

4. Kleih, S.C.; Kaufmann, T.; Zickler, C.; Halder, S.; Leotta, F.; Cincotti, F.; Aloise, F.; Riccio, A.; Herbert, C.;
Mattia, D.; et al. Out of the frying pan into the fire-the P300-based BCI faces real-world challenges.
Prog. Brain Res. 2011, 194, 27–46. [PubMed]

5. Polich, J. Updating P300: An integrative theory of P3a and P3b. Clin. Neurophysiol. 2007, 118, 2128–2148.
[PubMed]

6. Farwell, L.A.; Donchin, E. Talking off the top of your head: Toward a mental prosthesis utilizing event-related
brain potentials. Electroencephalogr. Clin. Neurophysiol. 1988, 70, 510–523. [CrossRef]

7. Arrichiello, F.; Di Lillo, P.; Di Vito, D.; Antonelli, G.; Chiaverini, S. Assistive robot operated via P300-based
brain computer interface. In Proceedings of the IEEE International Conference on Robotics and Automation,
Marina Bay Sands, Singapore, 29 May–3 June 2017.

8. Congedo, M.; Goyat, M.; Tarrin, N.; Ionescu, G.; Varnet, L.; Rivet, B.; Phlypo, R.; Jrad, N.; Acquadro, M.;
Jutten, C. Brain Invaders: A prototype of an open-source P300-based video game working with the OpenViBE
platform. In Proceedings of the 5th International Brain-Computer Interface Conference 2011, Graz, Austria,
22–24 September 2011.

9. Pires, G.; Castelo-Branco, M.; Nunes, U. Visual P300-based BCI to steer a wheelchair: A Bayesian approach.
IEEE. Trans. Biomed. Eng. 2008, 55, 1931–1932.

10. Zhang, R.; Li, Y.; Yan, Y.; Zhang, H.; Wu, S.; Yu, T.; Gu, Z. Control of a wheelchair in an indoor environment
based on a brain-computer interface and automated navigation. IEEE Trans. Neural Syst. Rehabil. Eng. 2016,
24, 128–139. [CrossRef] [PubMed]

11. Kim, M.; Kim, M.K.; Hwang, M.; Kim, H.Y.; Cho, J.; Kim, S.P. Online home appliance control using EEG-Based
brain–computer interfaces. Electronics 2019, 8, 1101. [CrossRef]

12. Carabalona, R.; Grossi, F.; Tessadri, A.; Castiglioni, P.; Caracciolo, A.; de Munari, I. Light on! Real world
evaluation of a P300-based brain-computer interface (BCI) for environment control in a smart home.
Ergonomics 2012, 55, 552–563. [CrossRef] [PubMed]

13. Edlinger, G.; Holzner, C.; Guger, C. A hybrid brain-computer interface for smart home control. In International
Conference on Human-Computer Interaction; Springer: Berlin/Heidelberg, Germany, 2011.

http://dx.doi.org/10.1126/science.150.3700.1187
http://www.ncbi.nlm.nih.gov/pubmed/5852977
http://dx.doi.org/10.1088/1741-2560/8/2/025003
http://www.ncbi.nlm.nih.gov/pubmed/21436525
http://dx.doi.org/10.3390/brainsci8040057
http://www.ncbi.nlm.nih.gov/pubmed/29601538
http://www.ncbi.nlm.nih.gov/pubmed/21867792
http://www.ncbi.nlm.nih.gov/pubmed/17573239
http://dx.doi.org/10.1016/0013-4694(88)90149-6
http://dx.doi.org/10.1109/TNSRE.2015.2439298
http://www.ncbi.nlm.nih.gov/pubmed/26054072
http://dx.doi.org/10.3390/electronics8101101
http://dx.doi.org/10.1080/00140139.2012.661083
http://www.ncbi.nlm.nih.gov/pubmed/22455346


Sensors 2020, 20, 5576 16 of 16

14. Edlinger, G.; Holzner, C.; Guger, C.; Groenegress, C.; Slater, M. Brain-computer interfaces for goal orientated
control of a virtual smart home environment. In Proceedings of the 2009 4th International IEEE/EMBS
Conference on Neural Engineering, NER ’09, Antalya, Turkey, 29 April–2 May 2009; pp. 417–426.

15. Pritchard, W.S. Psychophysiology of P300. Psychol. Bull. 1981, 89, 506. [CrossRef] [PubMed]
16. Longadge, R.; Dongre, S. Class Imbalance Problem in Data Mining Review. arXiv 2013, arXiv:1305.1707.

Available online: https://arxiv.org/abs/1305.1707 (accessed on 8 May 2013).
17. Wu, J.M.T.; Tsai, M.H.; Hsu, C.T.; Huang, H.C.; Chen, H.C. Intelligent Signal Classifier for Brain Epileptic EEG

Based on Decision Tree, Multilayer Perceptron and Over-Sampling Approach; Lecture Notes in Networks and
Systems; Springer Nature: Singapore, 2020; pp. 11–24.

18. Xu, G.; Shen, F.; Zhao, J. The effect of methods addressing the class imbalance problem on P300
detection. In Proceedings of the 2013 International Joint Conference on Neural Networks, Dallas, TX,
USA, 4–9 August 2013; pp. 1–5.

19. Shi, X.; Xu, G.; Shen, F.; Zhao, J. Solving the data imbalance problem of P300 detection via Random
Under-Sampling Bagging SVMs. In Proceedings of the 2015 International Joint Conference on Neural
Networks, Killarney, Ireland, 12–17 July 2015; pp. 1–5.

20. Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including
independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [CrossRef] [PubMed]

21. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling
technique. J. Artif. Intell. Res. 2002, 16, 321–357. [CrossRef]

22. Han, H.; Wang, W.Y.; Mao, B.H. Borderline-SMOTE: A new over-sampling method in imbalanced data sets
learning. In Proceedings of the 2005 International Conference on Intelligent Computing, Hefei, China, 23–26
August 2005.

23. Nguyen, H.M.; Cooper, E.W.; Kamei, K. Borderline over-sampling for imbalanced data classification. Int. J.
Knowl. Eng. Soft Data Paradig. 2011, 3, 4–21. [CrossRef]

24. He, H.; Bai, Y.; Garcia, E.A.; Li, S. ADASYN: Adaptive synthetic sampling approach for imbalanced learning.
In Proceedings of the 2008 International Joint Conference on Neural Networks, Hong Kong, China, 1–8 June
2008; pp. 1–5.

25. Laurikkala, J. Improving identification of difficult small classes by balancing class distribution. In Proceedings
of the 8th Conference on Artificial Intelligence in Medicine in Europe, Cascais, Portugal, 1–4 July 2001.

26. Tomek, I. Two Modifications of CNN. IEEE Trans. Syst. Man Cybern. 1976, 6, 769–772. [CrossRef]
27. Kundu, S.; Ari, S. P300 Detection with Brain–Computer Interface Application Using PCA and Ensemble of

Weighted SVMs. IETE J. Res. 2018, 64, 406–414. [CrossRef]
28. Kaper, M.; Meinicke, P.; Grossekathoefer, U.; Lingner, T.; Ritter, H. BCI competition 2003—Data set IIb:

Support vector machines for the P300 speller paradigm. IEEE Trans. Biomed. Eng. 2004, 51, 1073–1076.
[CrossRef] [PubMed]

29. Manyakov, N.V.; Chumerin, N.; Combaz, A.; Van Hulle, M.M. Comparison of classification methods for P300
brain-computer interface on disabled subjects. Comput. Intell. Neurosci. 2011, 2011, 328–334. [CrossRef]

30. Oskoei, M.A.; Gan, J.Q.; Hu, O. Adaptive schemes applied to online SVM for BCI data classification.
In Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology
Society: Engineering the Future of Biomedicine, EMBC 2009, Minneapolis, MN, USA, 2–6 September 2009.

31. Pappu, V.; Pardalos, P.M. High-dimensional data classification. In Springer Optimization and Its Applications;
Springer: New York, NY, USA, 2014; pp. 119–150.

32. Wu, G.; Chang, E.Y.E. Class-boundary alignment for imbalanced dataset learning. In Proceedings of the
ICML’2003 Workshop on Learning from Imbalanced Data Sets (II), Washington, DC, USA, 21 August 2003.

33. Pozzolo, A.D.; Caelen, O.; Bontempi, G. When is undersampling effective in unbalanced classification
tasks? In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in
Databases, Porto, Portugal, 7–11 September 2015.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1037/0033-2909.89.3.506
http://www.ncbi.nlm.nih.gov/pubmed/7255627
https://arxiv.org/abs/1305.1707
http://dx.doi.org/10.1016/j.jneumeth.2003.10.009
http://www.ncbi.nlm.nih.gov/pubmed/15102499
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1504/IJKESDP.2011.039875
http://dx.doi.org/10.1109/TSMC.1976.4309452
http://dx.doi.org/10.1080/03772063.2017.1355271
http://dx.doi.org/10.1109/TBME.2004.826698
http://www.ncbi.nlm.nih.gov/pubmed/15188881
http://dx.doi.org/10.1155/2011/519868
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methods 
	Subjects 
	Stimuli 
	Experimental Design 
	EEG Processing 
	Data Balancing 
	Oversampling 
	Undersampling 

	Classification 
	EEG Feature Extraction 
	Classification Algorithm 
	Classification Performance Evaluation 


	Results 
	Effects of Balancing on BCI Accuracy 
	Performance Improvement of Poor Performers 
	Information Transfer Rate (ITR) Improvement 
	Effect of Borderline-SMOTE on SVM 
	A Comparison with the Models with Revised Regularization Parameter 
	Effect of the Ratio between Target and Nontarget Data on Performance 

	Discussion 
	References

