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ABSTRACT This paper considers the stabilization problem for under-actuated rotary inverted pendulum
systems (RotIPS) via a fuzzy-based continuous sliding mode control approach. Various sliding mode
control (SMC) methods have been proposed for stabilizing the under-actuated RotIPS. However, there are
two main drawbacks of these SMC approaches. First, the existing SMCs have a discontinuous structure;
therefore, their control systems suffer from the chattering problem. Second, a complete proof of closed-
loop system stability has not been provided. To address these two limitations, we propose a fuzzy-based
(continuous) super-twisting stabilization algorithm (FBSTSA) for the under-actuated RotIPS. We first
introduce a new sliding surface, which is designed to resolve the under-actuation problem, by combining the
fully-actuated (rotary arm) and the under-actuated (pendulum) variables to define one sliding surface. Then,
together with the proposed sliding surface, we develop the FBSTSA, where the corresponding control gains
are adjusted based on a fuzzy logic scheme. Note that the proposed FBSTSA is continuous owing to the
modified super-twisting approach, which can reduce the chattering and enhance the control performance.
With the proposed FBSTSA, we show that the sliding variable can reach zero in finite time and then the
closed-loop system state converges to zero asymptotically. Various simulation and experimental results are
provided to demonstrate the effectiveness of the proposed FBSTSA. In particular, (i) compared with the
existing SMC approaches, chattering is alleviated and better stabilization is achieved; and (ii) the robustness
of the closed-loop system (with the proposed FBSTSA) is guaranteed under system uncertainties and external
disturbances.

INDEX TERMS Asymptotic stability, finite-time stability, fuzzy-based super-twisting sliding mode control,
rotary inverted pendulum system, stabilization control.

I. INTRODUCTION
Rotary inverted pendulums were first developed by Furuta
and his colleagues at the Tokyo Institute of Science and
Technology [1], [2]. The Furuta pendulum comprises a rotary
arm that rotates in the horizontal plane and a pendulum link
connected to the end of the rotary arm, which is free to rotate
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in the vertical plane [1], [2] (see Fig. 1). The rotary inverted
pendulum belongs to a class of two-degree-of-freedom under-
actuated system since its motion is composed of the rotation
of the arm and the pendulum; however, only the arm is
subjected to the control input torque [1], [2].

Concerning the stabilization task of the under-actuated
RotIPS, it is a common-but-challenging objective in control
theory. The RotIPS is a popular control benchmark because
its shape and dynamic in the upright position canmimic many

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 185079

https://orcid.org/0000-0002-1051-9477
https://orcid.org/0000-0002-8877-9519
https://orcid.org/0000-0002-4290-9568
https://orcid.org/0000-0003-3356-2889
https://orcid.org/0000-0003-2143-2438


N. P. Nguyen et al.: Fuzzy-Based Super-Twisting Sliding Mode Stabilization Control for Under-Actuated RotIPS

FIGURE 1. The Quanser rotary inverted pendulum. Image courtesy of
Quanser Inc. [24].

real world applications, such as Segways and rocket systems;
see [1], [2] and the references therein. In addition, the RotIPS
is also presented in other fields of industrial engineering
systems, such as flexible systems, locomotive systems, and
marine systems [1], [2]. The challenges in controlling the
RotIPS arise because the dynamic model governing the sys-
tem is strongly coupled and nonlinear, and the equilibrium
point in the upright position is unstable.

Various kinds of control approaches have been proposed
to address these challenges, including linear control meth-
ods [3]–[5], generic nonlinear control approaches [6], [7],
adaptive control methods [8], [9], fuzzy control techniques
[10], [11], and sliding mode control approaches [12]–[15].
Interested readers are referred to [1], [2] for more details
about the linear and the nonlinear stabilization controllers for
the RotIPS. Among the methods described in [1], [2], sliding
mode control (SMC) is considered as an effective control
approach for stabilizing the RotIPS because of its ease of
implementation and rapid transient response [12]–[15].

The SMC design is typically divided into two stages. In the
first stage, a sliding surface on which sliding motion occurs
is defined. Then, a finite-time (discontinuous/continuous)
control law must be proposed to force the system states
converging to the desired sliding surface. Once the sliding
motion is achieved, the stability of the closed-loop system is
ensured [16]–[18]. We mention that the SMC approach has
been employed successfully for different fully-actuated sys-
tems. Interested readers are referred to [19]–[21] for various
applications of the (discontinuous/continuous) SMC to fully-
actuated nonlinear systems. However, it should be pointed out
again that the RotIPS is an under-actuated, open-loop unsta-
ble, and highly nonlinear complex dynamic system. Hence,
it is difficult to apply these SMCs directly to the stabilization
control of the under-actuated RotIPS. In particular, one of the
most challenging problems, inhibiting the application of the
SMC to the RotIPS, is defining a legitimate sliding surface.

Specifically, a proper sliding surface must be designed in
such a way that the stability of the fully-actuated (rotary
arm) and the under-actuated (pendulum) state variables can
be achieved simultaneously in the sliding phase. This is owed
to the inherent under-actuated nature of the RotIPS, in con-
trast to fully-actuated systems. Generally, it is straightforward
to develop nonlinear (discontinuous/continuous) SMC laws
safeguarding that the sliding variable converges to zero in
finite time. However, a thorough mathematical examination
is required to show the stability of the fully-actuated (rotary
arm) and the under-actuated (pendulum) state variables in the
sliding phase.

A series of SMCs has been developed for stabilizing the
under-actuated RotIPS, which can be found in [12]–[15],
where different sliding surfaces were utilized. In [12],
a decoupled SMC for the RotIPS was proposed. The authors
first decoupled the dynamics of the RotIPS into two second-
order subsystems. Then, a discontinuous SMC was designed
to ensure the finite-time reachability of the sliding surface.
Moreover, the authors in [13] developed a discontinuous
nonlinear SMC for the Furuta pendulum. The proposed con-
troller was shown to have better control performance than
the linearization feedback controller in terms of convergence
rate and control accuracy. In addition, in [14], a nonlinear
stabilization model-based controller was developed for the
under-actuated RotIPS. To describe the model, the authors
first derived two third-order differential equations. Then, a
discontinuous SMC-based stabilization controller was pro-
posed to achieve the control purpose. Experimental results
indicated a better control performance of the proposed con-
troller, compared with that of the linear quadratic controller.
Recently, the authors in [15] proposed a dynamic inversion-
based SMC for the RotIPS. The dynamic model of the RotIPS
was first linearized around the unstable equilibrium point.
Then, the equivalent control law in the proposed framework
was designed using the Moore-Penrose generalized inversion
method, and the switching control part was developed based
on the discontinuous SMC.

From the control perspective, there are two main draw-
backs of these SMC methods:

(D-1) the existing SMC approaches [12]–[15] have dis-
continuous variable structures; therefore, their con-
trol systems suffer from the chattering problem. For
a practical system, the chattering problem might
degrade the control performance and cause potential
damage to the actuators;

(D-2) a complete proof for the stability of the under-
actuated RotIPS has not been provided in [12]–[15].
Only the system stability analysis in the reaching
phase was presented. In other words, the conver-
gence of the system state variables during the sliding
phase was not analyzed. From the control aspect,
the system stability during the sliding phase is also
important since the instability of the closed-loop sys-
tem during the sliding phase may lead to undesirable
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motion of the RotIPS, which could degrade the entire
system performance.

In this paper, we address both (D-1) and (D-2) for
the under-actuated RotIPS. In particular, we propose a
fuzzy-based (continuous) super-twisting stabilization algo-
rithm (FBSTSA) for the under-actuated RotIPS. We present
the main contributions of this paper in the next subsection,
which is followed by a detailed comparison of the proposed
FBSTSA with the existing SMC approaches.

MAIN CONTRIBUTIONS
The main contributions can be summarized as follows:

(i) we propose a fuzzy-based (continuous) super-twisting
stabilization algorithm (FBSTSA) for the under-
actuated RotIPS. As part of the FBSTSA, a new slid-
ing surface is designed to resolve the under-actuation
problem. This surface is defined by combining the
fully-actuated (rotary arm) and the under-actuated
(pendulum) variables. The corresponding super-
twisting control gains in the proposed FBSTSA are
adjusted based on a fuzzy logic scheme, which can
alleviate the chattering phenomenon and enhance the
control performance. Note that this feature overcomes
the first limitation (see the statement in (D-1));

(ii) the stability of the under-actuated RotIPS under the
proposed FBSTSA in both the reaching and the sliding
phases is addressed. We show that the sliding variable
can reach zero in finite time in the reaching phase,
and then the closed-loop system state converges to zero
asymptotically in the sliding phase. This contribution
resolves the second limitation (see the statement in
(D-2)); and

(iii) various simulation and experimental results are pro-
vided to demonstrate the effectiveness of the proposed
FBSTSA. In particular, (i) compared with the existing
SMC approaches, chattering is alleviated and better
stabilization is achieved; and (ii) the robustness of
the closed-loop system (with the proposed FBSTSA)
is guaranteed under system uncertainties and sudden
external disturbances.

To the best of our knowledge, our paper is the first to con-
sider fuzzy-based super-twisting sliding mode stabilization
control for the under-actuated RotIPS, where the stability of
the closed-loop system is addressed in both the reaching and
the sliding phases.

COMPARISON
For the stabilization control problem of the under-
actuated RotIPS, our paper can be viewed as an extension
of [12]–[15], [22], [23]:

(i) compared with [12]–[15], our paper shows the stability
of the closed-loop system in the reaching phase, as well
as in the sliding phase;

(ii) we consider a continuous fuzzy-based super-twisting
control law, whereas [12]–[15] used the traditional dis-
continuous) first-order SMC approach;

(iii) we generalize the results of the super-twisting algo-
rithm (STA) in [22], [23] to the case of under-actuated
systems with fuzzy-based gains; and

(iv) compared with the proposed adaptive gains in [23],
our proposed fuzzy-based gains ensure the finite-time
convergence to zero rather than to a small region around
zero of the sliding variable.

It should be noted that generalizations of [12]–[15], [22], [23]
are not that as straightforward as they appear owing to the
under-actuated structure of the RotIPS. The features of the
SMCs in [12]–[15], [22], [23] and the proposed FBSTSA are
listed in Table 1.

TABLE 1. Features of SMC, STA, and proposed FBSTSA.

The remainder of this paper is organized as follows.
Section II presents the problem formulation in which the
dynamic model of the under-actuated RotIPS and the control
objective are given. In Section III, the main results of this
paper are presented, where the FBSTSA is proposed and
the closed-loop system stability is analyzed. The simulation
and experimental results are provided in Sections IV and V,
respectively. Concluding remarks and future works are pre-
sented in Section VI.

II. PROBLEM FORMULATION
In this section, we first derive the dynamic model of the
under-actuated RotIPS. Then, we state the control objective
of our paper.

A. DYNAMIC MODEL OF THE ROTARY INVERTED
PENDULUM SYSTEM
In this paper, we use the Quanser rotary inverted pendulum
module.1 As shown in Fig. 1, the pendulum section is con-
nected at the end of the rotary arm section. The simplified free
body diagram of the mechanical components is illustrated in
Fig. 2. In the figure, the arm has a mass ofmr , a total length of
Lr , and a moment of inertia of Jr . The pendulum attached to
the arm has amass ofmp, a total length of Lp, and amoment of
inertia about its center of mass of Jp. In addition, the positive
angular rotation is counter-clockwise (CCW).

By using the Euler-Lagrange method, the nonlinear
dynamic model of the RotIPS can be derived as follows [24]:(
J r +

1
4
mpL2psin

2(α)
)
θ̈ −

1
2
mpLpLrcos(α)α̈

1https://www.quanser.com/products/rotary-inverted-pendulum/
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+
1
2
mpL2psin(α)cos(α)θ̇ α̇ +

1
2
mpLpLrsin(α)α̇2 = τ(

Jp +
1
4
mpL2p

)
α̈ −

1
2
mpLpLrcos(α)θ̈

−
1
4
mpL2psin(α)cos(α)θ̇

2
−

1
2
mpLpgsin(α) = 0, (1)

where J r := mpL2r + Jr . The definitions of the system
parameters are given in Table 2. A detailed derivation of (1)
can be found in [24].

TABLE 2. The parameters of the under-actuated RotIPS.

The rotary inverted pendulum equations of (1) can be
rewritten as follows:

θ̈ = fθ
(
α, α̇, θ̇

)
+ gθ (α)τ

α̈ = fα
(
α, α̇, θ̇

)
+ gα(α)τ, (2)

where

fθ (α, α̇, θ̇ ) :=
4Jα
Jθ (α)

[
θ̇
(
−

1
2
mpL2psin(α)cos(α)α̇

+
1
8Jα

m2
pL

3
pLrsin(α)cos

2(α)θ̇
)

−
1
2
mpLpLrsin(α)α̇2

+
1
4Jα

m2
pL

2
pLrgsin(α)cos(α)

]
fα(α, α̇, θ̇ ) :=

1
Jθ (α)

mpLpLrcos(α)
(
− mpLpLrsin(α)α̇2

−mpL2psin(α)cos(α)θ̇ α̇
)

+
(
4J r + mpL2psin

2(α)
)

×
[ 1
4Jθ (α)

mpL2psin(α)cos(α)θ̇
2

+
1

2Jθ (α)
mpLpgsin(α)

]
gθ (α) :=

4Jα
Jθ (α)

, gα(α) :=
2

Jθ (α)
mpLpLrcos(α)

Jθ (α) := 4JαJ r + JαmpL2psin
2(α)− m2

pL
2
pL

2
r cos

2α

Jα := Jp +
1
4
mpL2p .

FIGURE 2. The rotary inverted pendulum conventions [24].

Note that, as shown from (1) and (2), the RotIPS belongs to
a class of under-actuated mechanical system since there are
two controlled outputs θ and α, but it has only one control
input τ . We use the pendulum model in (2) to design the
control algorithm in Section III.
Remark 1:We can observe that Jθ (α) > 0, ∀α ∈ [−π, π],

which implies that the system dynamics described in (2) are
always well-defined.

B. CONTROL OBJECTIVE
In this paper, the control objective is to drive the rotary
arm (fully-actuated variable) from its initial position, θ (0),
to reach the zero position and simultaneously stabilize the
pendulum (under-actuated variable) in the vertical upright
position from its initial position, α(0), based on the FBSTSA,
which can be mathematically described as

θ (t)→ 0, α(t)→ 0.

Remark 2: The control problem considered in this paper
is much more complicated than it may seem. The RotIPS
belongs to a class of nonlinear, unstable, and under-actuated
mechanical dynamic system. Hence, in order to apply the
SMC approach, it requires a thorough mathematical exam-
ination. In contrast to the existing SMC approaches in
[12]–[15], [22], [23], in this paper, we consider the second-
order SMC stabilization control problem for the under-
actuated RotIPS, which increases the complexity with respect
to the control law design and stability analysis. We should
mention that the problem of stabilization control for general
under-actuated nonlinear systems is very challenging, and not
limited to the under-actuated RotIPS. Further, we note that the
proposed controller can be applied to other nonlinear under-
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actuated systems including crane systems, ball and beam
systems, and quadrotor and hexarotor UAV systems.

III. MAIN RESULTS
In this section, we propose a fuzzy-based super-twisting
stabilization algorithm (FBSTSA) for the under-actuated
RotIPS. We first introduce a new sliding surface to over-
come the under-actuated structure. Then, together with the
proposed sliding surface, we develop the FBSTSA, where the
corresponding control gains are adjusted based on a fuzzy
logic scheme.

We show that the proposed FBSTSA is capable of assuring
the finite-time convergence to zero of the sliding variable
during the reaching phase. Furthermore, the closed-loop sys-
tem state converges to zero asymptotically during the sliding
phase. We note that the proposed FBSTSA is continuous,
whereas the existing SMC-based stabilization controllers for
the under-actuated RotIPS are discontinuous [12]–[15].

We first design the FBSTSA for stabilization purpose.
Then, we provide a rigorous stability analysis of the closed-
loop system with the proposed control law.

A. FUZZY-BASED SUPER-TWISTING SLIDING MODE
STABILIZATION CONTROL
1) CONTROL LAW DESIGN
In this subsection, the fuzzy-based super-twisting stabiliza-
tion control scheme for the under-actuated RotIPS is pre-
sented. First, for the stabilization control objective, the sliding
function s, which consists of the arm and the pendulum
dynamics, is designed as follows:

s = kθ θ̇ + kαα̇ + λθθ + λαα, (3)

where kθ , kα, λθ , and λα are the sliding surface gains. Then,
the super-twisting algorithm with the fuzzy variable gains is
proposed as follows:

τ = −
1

kθgθ (α)+ kαgα(α)

[
kθ fθ

(
α, α̇, θ̇

)
+ kαfα

(
α, α̇, θ̇

)
+ λθ θ̇ + λαα̇ + k1(t)φ1(s)− z

]
ż = −k2(t)φ2(s), (4)

where φ1 and φ2 are given by

φ1(s) =
∣∣s∣∣1/2sign(s)+ k3s, k3 > 0

φ2(s) =
1
2
sign(s) +

3
2
k3
∣∣s∣∣1/2sign(s)+ k23 s.

In the above expression, the gains k1 and k2 have the follow-
ing form:

k1(t) =
1
2β0

[
4α0(β0 + 4α20)+ 2α0 + K (t)

]
k2(t) = β0 + 4α20 + 2α0k1(t), (5)

where α0 and β0 are positive scalar constants and K is
determined via the fuzzy tuning mechanism presented in
Section III-A2. Note that kθ and kα must be selected properly
to ensure that kθgθ (α)+kαgα(α) 6= 0 during the stabilization
phase (see Remark 3).

2) FUZZY TUNING ALGORITHM DESIGN
For the fuzzy logic tuning mechanism, K is adjusted with
regard to the absolute value of the sliding variable |s| defined
in (3). For simulation and experimental verification, the uni-
verses of discourse for |s| and K are arranged as [0, 1] and
[1, 40], respectively. The fuzzy input |s| is defined as follows:

{ZE, VT , T , AVG, B, VB, VVB},

where ZE = Zero, VT = Very Tiny, T = Tiny, AVG =
Average, B = Big, VB = Very Big, and VVB = Very Very
Big, and the fuzzy output K is characterized by

{VVT , VT , T , AVG, B, VB, VVB},

where VVT = Very Very Tiny, VT = Very Tiny, T = Tiny,
AVG = Average, B = Big, VB = Very Big, and VVB = Very
Very Big. We use the triangle membership functions for both
fuzzy input and output variables, as shown in Fig. 3.

From empirical knowledge of the design of the super-
twisting algorithm, large switching gains will drive the state
to the sliding surface s rapidly, but at the same time, they tend
to enlarge the chattering phenomenon [22], [25], [26]. Hence,
when the state is far from the sliding surface, the switching
gains should be large, and they should be small when the state
is close to the sliding surface.

FIGURE 3. Membership functions: |s| (top) and K (bottom).

According to the above analysis, the fuzzy rules are
designed as shown in Table 3. The MIN-MAX methodology
is used for the inference system. In addition, the defuzzi-
fication methodology used in the fuzzy logic scheme is of
the centroid type. A detailed discussion of the membership
function, inference system, and defuzzification methodology
in fuzzy control can be found in [27]. In this paper, the fuzzy
logic controller is designed using the fuzzy logic toolbox in
MATLAB [28].

Before concluding this subsection, we provide several
remarkable aspects of the implementation of the fuzzy mech-
anism in the super-twisting algorithm:
(i) the proposed FBSTSA reduces the chattering phe-

nomenon, comparedwith the existing SMCapproaches;
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TABLE 3. Fuzzy rules for control gain K adjusting.

(ii) the proposed FBSTSA guarantees a faster reachability
to the sliding surface than that with the existing SMC
approaches; and

(iii) the proposed FBSTSA possesses better control accu-
racy owing to the adaptation of the switching gains
with respect to the sliding variable, compared with the
existing SMC approaches.

The features (i)–(iii) are verified through simulations and
experiments in Sections IV and V.

B. STABILITY ANALYSIS
This subsection provides a stability analysis of the RotIPS
in (2), with the proposed control law (4) in both the reaching
and the sliding phases. We first prove that the proposed
FBSTSA is capable of assuring the finite-time convergence
to zero of the sliding variable during the reaching phase.
Then, we show that, during the sliding phase, the closed-loop
system achieves asymptotic stability.

1) REACHING PHASE STABILITY
By taking the derivative of (3), we have

ṡ = kθ θ̈ + kαα̈ + λθ θ̇ + λαα̇. (6)

Substituting (2) and (4) into (6) yields

ṡ = −k1(t)φ1(s) + z

ż = −k2(t)φ2(s). (7)

We have the following result:
Theorem 1: The sliding variable s described in (3) con-

verges to zero in finite time if the controller gains k1 and k2
are defined as in (5). The finite convergence time to the sliding
surface is approximated as

T =
2
ϑ2

ln
(
ϑ2

ϑ1
V 1/2(s(0), z(0))+ 1

)
, (8)

where V (s, z) = ζ>Pζ, ζ> =
[∣∣s∣∣1/2sign(s) + k3s z], and

ϑ1 and ϑ2 are described in (12).
Proof:

To prove the finite-time convergence of the sliding variable
s, we construct an appropriate Lyapunov function and show
that its derivative is negative with the proper controller gains.

In view of [22], consider the following Lyapunov candidate
function:

V (s, z) = ζ>Pζ, (9)

where

ζ> =
[∣∣s∣∣1/2sign(s) + k3s z]

P =
[
p1 p3
p3 p2

]
=

[
β0 + 4α20 −2α0
−2α0 1

]
. (10)

We define S := {(s, z) ∈ R2
: s = 0}. It can be observed

that V (s, z) is positive definite, continuous everywhere, and
differentiable everywhere except on S.
For every point in R2

\ S, it follows from φ2(s) :=
φ′1(s)φ1(s) that

ζ̇ =

[
φ′1(s)

{
− k1(t)φ1(s)+ z

}
−k2(t)φ2(s)

]
= φ′1(s)

[
−k1(t) 1
−k2(t) 0

]
ζ

:= φ′1(s)K(t)ζ.

We can see that the derivative of the function V (s, z) in (9)
exists on the same set, which can be obtained as follows:

V̇ (s, z) = φ′1(s)ζ
>
[
K(t)>P+ PK(t)

]
ζ

:= −φ′1(s)ζ
>Q(t)ζ,

where Q :=
[
q1 q3
q3 q2

]
and

q1(t) := 2k1(t)p1 + 2k2(t)p3
q2(t) := −2p3
q3(t) := k1(t)p3 + k2(t)p2 − p1.

Selecting P as in (10), we can show that

q1(t) = 2k1(t)(β0 + 4α20)− 4α0k2(t)

q2(t) = 4α0
q3(t) = −2α0k1(t)+ k2(t)− (β0 + 4α20). (11)

From (11) and selecting the gains as in (5), we have

Q(t)− 2α0I =
[
K (t) 0
0 2α0

]
,

where I ∈ R2×2 is the identity matrix. We can observe
that the proposed fuzzy scheme in Section III-A2 ensures
the positive-definiteness of K , which then guarantees the
positive-definiteness of the matrix Q− 2α0I. This leads to

V̇ (s, z) = −φ′1(s)ζ
>Q(t)ζ ≤ −2α0φ′1(s)ζ

>ζ

= −2α0

(
1

2
∣∣s∣∣1/2 + k3

)
ζ>ζ.

Since λmin
{
P
}∥∥ζ∥∥22 ≤ V (s, z) ≤ λmax

{
P
}∥∥ζ∥∥22, where∥∥ζ∥∥22 = ζ 21 + ζ 22 = ∣∣s∣∣+ 2k3

∣∣s∣∣3/2 + k23 s2 + z2, and∣∣ζ1∣∣ ≤ ∥∥ζ∥∥2 ≤ V 1/2(s, z)

λ
1/2
min

{
P
} ,

it can be concluded that

V̇ (s, z) ≤ −ϑ1V 1/2(s, z)− ϑ2V (s, z), (12)

where

ϑ1 =
α0λ

1/2
min

{
P
}

λmax
{
P
} , ϑ2 =

2α0k3
λmax

{
P
} .

Note that the trajectories of (7) cannot stay on set S defined
above. This implies that V is monotonically decreasing and
the origin is finite-time stable [22].
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To characterize the specific finite-time given in (8), we note
that the solution of the comparison equation

v̇ = −ϑ1v1/2 − ϑ2v, v(0) = v0 ≥ 0

can be obtained as

v(t) = exp(−ϑ2t)
[
v1/20 +

ϑ1

ϑ2

(
1− exp

(
ϑ2

2
t
))]2

.

This, together with (12) and the comparison principle [29],
implies that the state dynamics in (7) converge to zero in finite
time and reach that value at most after the time given in (8).
This completes the proof of the theorem.

2) SLIDING PHASE STABILITY
In Section III-B1, we show that the sliding function s con-
verges to zero in finite time T , where T is given in (8). Hence,
from (3), the following holds in finite time:

θ̇ = −
λθ

kθ
θ −

λα

kθ
α −

kα
kθ
α̇. (13)

Note that Eq. (13) is always well-defined, since we can select
kθ 6= 0 (see Remark 3).
We have the following result:
Theorem 2: During the sliding phase, the system state

variables of the rotary inverted pendulum in (1), θ , θ̇ , α, and
α̇ are locally asymptotically stable if the sliding surface gains
are selected as follows:

λθ , kθ < 0, λα, kα > 0
λα

kα
>
λθ

kθ
, 2kθJα + kαmpLpLr > 0.

Proof: During the sliding phase, by substituting (4)
and (13) into (2), the closed-loop dynamics of system (2) can
be represented by

α̈ = fα
(
θ, α, α̇

)
−

gα(α)
kθgθ (α)+ kαgα(α)

[
kθ fθ

(
θ, α, α̇

)
+ kαfα

(
θ, α, α̇

)
+ λθ

(
−
λθ

kθ
θ −

λα

kθ
α −

kα
kθ
α̇
)
+ λαα̇

]

kθ θ̇ + kαα̇ + λθθ + λαα = 0. (14)

Let x1 = θ , x2 = α, and x3 = α̇ and x =
[
x1 x2 x3

]>.
From (14), we can form a new dynamical system as

ẋ = f(x) =

f1(x)f2(x)
f3(x)

 , (15)

where

f1(x) := −
λθ

kθ
x1 −

λα

kθ
x2 −

kα
kθ
x3

f2(x) := x3

f3(x) := fα(x1, x2, x3)−
gα(x2)

kθgθ (x2)+ kαgα(x2)

×

[
kθ fθ (x1, x2, x3)+ kαfα(x1, x2, x3)

+ λθ

(
−
λθ

kθ
x1 −

λα

kθ
x2 −

kα
kθ
x3
)
+ λαx3

]
,

where the definition of fθ (x1, x2, x3), fα(x1, x2, x3), gθ (x2),
and gα(x2) are given in (16), as shown at the bottom of the
page.

The stability of the autonomous system given by (15) must
be investigated. First, we can easily check that the equilibrium
point of (15) is the origin, that is, xe = 0. Then by linearizing
the system (15) around the equilibrium point, the following
linearized system can be obtained:

ẋ = Ax, (17)

where A = ∂f(x)
∂x

∣∣∣
x=xe

=

A11 A12 A13A21 A22 A23

A31 A32 A33

 with elements

defined by

A11 := −
λθ

kθ
, A12 := −

λα

kθ
, A13 := −

kα
kθ

A21 := 0, A22 := 0, A23 := 1

A31 :=
λ2θ

kθ

mpLpLr
2kθJα + kαmpLpLr

fθ (x1, x2, x3) :=
4Jα
Jθ (x2)

[(
−
λθ

kθ
x1 −

λα

kθ
x2 −

kα
kθ
x3
)(
−

1
2
mpL2psin(x2)cos(x2)x3

)
+

(
−
λθ

kθ
x1 −

λα

kθ
x2 −

kα
kθ
x3
)2( 1

8Jα
m2
pL

3
pLrsin(x2)cos

2(x2)
)
−

1
2
mpLpLrsin(x2)x23

+
1
4Jα

m2
pL

2
pLrgsin(x2)cos(x2)

]
fα(x1, x2, x3) :=

1
Jθ (x2)

mpLpLrcos(x2)
[
− mpL2psin(x2)cos(x2)x3

(
−
λθ

kθ
x1 −

λα

kθ
x2 −

kα
kθ
x3
)
− mpLpLrsin(x2)x23

]
+

1
4Jθ (x2)

mpL2psin(x2)cos(x2)
(
−
λθ

kθ
x1 −

λα

kθ
x2 −

kα
kθ
x3
)2(

4J r + mpL2psin
2(x2)

)
+

1
2Jθ (x2)

mpLpgsin(x2)
(
4J r + mpL2psin

2(x2)
)

gθ (x2) :=
4Jα
Jθ (x2)

, gα(x2) :=
2

Jθ (x2)
mpLpLrcos(x2), Jθ (x2) := 4JαJ r + JαmpL2psin

2(x2)− m2
pL

2
pL

2
r cos

2(x2). (16)
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A32 :=
1
kθ

mpLpgk2θ + mpLpLrλθλα
2kθJα + kαmpLpLr

A33 := −
mpLpLr

2kθJα + kαmpLpLr

(
−
λθkα
kθ
+ λα

)
.

We note that the origin of (17) is asymptotically stable if
all eigenvalues of A are in the open left-half of the complex
plane. Let us define A := ρI − A, where ρ is the Laplace
variable and I ∈ R3×3 is the identity matrix. Then, A can be
expressed as follows:

A :=

A
11

A
12

A
13

A
21

A
22

A
23

A
31

A
32

A
33


where

A
11
:= ρ +

λθ

kθ
, A

12
:=

λα

kθ
, A

13
:=

kα
kθ

A
21
:= 0, A

22
:= ρ, A

23
:= −1

A
31
:= −

λ2θ

kθ

mpLpLr
2kθJα + kαmpLpLr

A
32
:= −

1
kθ

mpLpgk2θ + mpLpLrλθλα
2kθJα + kαmpLpLr

A
33
:= ρ +

mpLpLr
2kθJα + kαmpLpLr

(
−
λθkα
kθ
+ λα

)
.

Hence, we obtain the characteristic equation of sys-
tem (17), which can be written as

ρ3 + ρ2
[
λθ

kθ
+

mpLpLr
2kθJα + kαmpLpLr

(
−
λθkα
kθ
+ λα

)]
+ ρ

[
−

mpLpgkθ
2kθJα + kαmpLpLr

]
+

[
−

mpLpgλθ
2kθJα + kαmpLpLr

]
= 0. (18)

Note that the equilibrium point of (17) is asymptotically
stable when the roots of the polynomial in (18) are in the open
left-half plane of the complex domain. This can be achieved
if the sliding surface gains kθ , kα, λθ , and λα are chosen to
satisfy the following conditions:

λθ , kθ < 0, λα, kα > 0 (19)
λα

kα
>
λθ

kθ
, 2kθJα + kαmpLpLr > 0.

It should be pointed out that it is always possible to select
the sliding surface gains kθ , kα, λθ , and λα such that (19)
is satisfied (see Remark 3). The conditions given in (19)
ensure that all eigenvalues ofA are in the open left-half of the
complex plane. Hence, θ , α, and α̇ are asymptotically stable.
Then, Eq. (13) assures that θ̇ is asymptotically stable. In other
words, if kθ , kα, λθ , and λα are selected to satisfy (19), then
the linear system given in (17) is asymptotically stable, which
leads to the stability of the nonlinear system given by (15)
around the equilibrium point [29]. This completes the proof
of the theorem.

Before concluding this section, we provide several impor-
tant remarks on the proposed FBSTSA.
Remark 3:
(i) For the effective implementation of the proposed con-

troller, the sliding surface gains need to be selected
carefully. The following tuning procedure can be
applied to determine the proper parameters:
1) Without loss of generality, set

kθ = −0.1, λθ = −0.1

to satisfy the condition λθ , kθ < 0.
2) With kθ = −0.1, kα is taken as 0.2 to satisfy the

following conditions

2kθJα + kαmpLpLr > 0, kα > 0.

3) Maintain kθ = −0.1, λθ = −0.1, and kα = 0.2,
tune λα by increasing from a small value, while
checking the errors and vibrations, as well as the
conditions λαkα >

λθ
kθ

and λα > 0.
(ii) With kθ = −0.1, λθ = −0.1, kα = 0.2, and λα = 3.1,

we have the following results:
• The conditions given in (19) are satisfied.
• By selecting kθ = −0.1, kα = 0.2, we can verify

that kθgθ (α)+ kαgα(α) 6= 0, ∀α ∈ [−1, 1] (rad).
In this work, we start the stabilization procedure
when α ∈ [− π

15 ,
π
15 ] (rad), which implies that the

proposed stabilization control law in (4) is always
well-defined.

(iii) The structure of the proposed FBSTSA (4) is simple.
We can implement this controller easily in practice.
We also note that, as mentioned in Section III-A2, the
fuzzy logic controller can be easily implemented using
available fuzzy logic toolboxes such as the MATLAB
software [28].

The following remark presents the main contributions
of our paper and provides a comparison with the existing
approaches (see also Introduction):
Remark 4:
(i) Although different SMC approaches have been

employed successfully for various fully-actuated sys-
tems, it is difficult to apply these methods directly
for under-actuated systems, in particular, for the sta-
bilization control of the under-actuated RotIPS in
(2). The main obstacle is how to define a sliding
surface that can simultaneously stabilize both fully-
actuated (rotary arm) and under-actuated (pendulum)
variables, especially when the system (1) shows high-
nonlinearities and complex couplings. To address this
problem, we proposed the new sliding surface in (3),
which ensures the asymptotic stability of both the fully-
actuated and the under-actuated variables.

(ii) Note that the stability proof for Theorems 1 and 2 is
different from that of [12]–[15], [22], [23]. In particu-
lar, in our proof, we show that: (i) by defining proper
fuzzy variable gains, the proposed FBSTSA can force
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the sliding variable to zero in finite time using the con-
tinuous control law (see Theorem 1); and (ii) after the
system state converges to the designed sliding surface
(3), the asymptotic stability of the closed-loop system
can be achieved in the sliding phase by selecting proper
sliding surface gains (see Theorem 2). Hence, Theorem
1 together with Theorem 2 overcome the two main
drawbacks mentioned in Introduction when applying
the SMC for the under-actuated RotIPS.

(iii) Finally, it should be noted that the existing super-
twisting algorithms in [22], [23] cannot be used
directly for the stabilization control of the under-
actuated RotIPS because of two reasons: (i) their slid-
ing surfaces were proposed only for fully-actuated
systems; and (ii) as shown in Theorem 2, the sliding
variable is required to reach zero in finite time in order
to ensure the asymptotic stability of the closed-loop
system, whereas the adaptive gains in [23] only ensure
the finite-time convergence of the sliding variable to a
small region around zero.

The following remark discusses some potential research
topics for our future works:
Remark 5: In this paper, we have not considered the influ-

ence of the input saturation on the system actuator during
the control design. Hence, the control parameters must be
chosen carefully to avoid violating the actuator constraints
of the experimental hardware system. This problem will
be addressed in our future work. The readers are referred
to [30], [31] for effective methods to solve the actuator
constraint problems. In addition, it would be interesting
to develop an output-feedback stabilization controller for
the RotIPS based on the proposed FBSTSA together with
the velocity estimation approach, as reported in [32], [33].
Another possible future research direction is to consider the
stabilization control design for the RotIPS under additive
matched and mismatched disturbances. Finally, we can also
apply the proposed FBSTSA to the power system load fre-
quency control problem [34], [35].

IV. SIMULATION RESULTS
In this section, we provide the simulation setup, simulation
procedure, and detailed analysis and discussion of the simu-
lation results.

A. SIMULATION SETUP
We consider various simulation control scenarios to illustrate
the effectiveness of the proposed FBSTSA for the under-
actuated RotIPS.We illustrate that the proposed FBSTSA can
simultaneously stabilize the arm and the pendulum.

The parameters of the Quanser rotary inverted pendulum
are selected as in [24]. The simulation is performed by
starting to stabilize the system from the initial conditions of
α(0) = − π

15 (rad), θ(0) = 0 (rad), α̇(0) = θ̇ (0) = 0 (rad/s).
To validate the performance of the proposed FBSTSA,

we investigate the following two simulation groups:

Group 1: (Comparison performance) We demonstrate the
superior stabilization control performance of the pro-
posed FBSTSA by comparing it with the decoupled
SMC (DSMC) [12] and the SMC [13];

Group 2: (Robustness verification) We verify the robust-
ness of the proposed FBSTSA in the following two
control cases:

– Case 1: (System uncertainties) We illustrate the
robustness of the proposed FBSTSA with respect
to system uncertainties. The system parameters
including uncertainties are modeled as follows:

mp := mp +1mp, Lp := Lp +1Lp,

where 1mp and 1Lp represent the modeling
uncertainties with ±20% discrepancy from the
nominal values. The FBSTSA is designed using
nominal parameters.

– Case 2: (External disturbances) We examine the
control performance of the proposed FBSTSA
under the effect of sudden external disturbances.
At 10 (sec) and 20 (sec), control torques of
0.5 (N.m) and −0.5 (N.m) are added to the con-
trol effort during 0.05 (sec), respectively.

B. SIMULATION EVALUATION
In this subsection, the corresponding results of the two simu-
lation groups are presented.

1) GROUP 1
In this Group, the proposed FBSTSA is compared with the
other two SMC-based controllers for stabilizing the RotIPS,
including the DSMC in [12] and the SMC in [13]. For the
sake of fair comparisons (e.g., control accuracy, chattering
alleviation, and convergence rate), the control input torque is
bounded by 2 (N.m). The simulation results of stabilization
control for the RotIPS by all three controllers are depicted in
Fig. 4.

FIGURE 4. Simulation results – Group 1. DSMC [12] (dash-dot black), SMC
[13] (dashed red), and proposed FBSTSA (solid blue).

2) GROUP 2
For Group 2, we illustrate the robustness of the proposed
FBSTSA in the following two control scenarios:
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CASE 1
We consider the ability of the proposed FBSTSA to atten-
uate the effect of parametric variations by adding modeling
uncertainties into the nominal dynamic model. Note that the
proposed FBSTSA still uses nominal system parameters. The
simulation results with the effect of the system uncertainties
are shown in Figs. 5 and 6.

FIGURE 5. Simulation results – Group 2 (Case 1 – 20% increased).

FIGURE 6. Simulation results – Group 2 (Case 1 – 20% decreased).

CASE 2
The proposed FBSTSA’s immunity against bounded sudden
external disturbances is investigated by injecting two pulse
torque signals in the control input torque. The magnitudes
of these signals are 0.5 (N.m) and −0.5 (N.m), and their
durations are 0.05 (sec) at 10 (sec) and 20 (sec), respectively.
Fig. 7 depicts the performance of the proposed FBSTSA
against the sudden external disturbances.

FIGURE 7. Simulation results – Group 2 (Case 2).

C. ANALYSIS AND DISCUSSION
In Group 1, as shown in Fig. 4, we can observe that the
proposed FBSTSA provides better control accuracy, com-
pared with the DSMC [12] and the SMC [13]. In this paper,

TABLE 4. Simulation performance comparison – Group 1.

we also use the root-mean-square error (RMSE) and conver-
gence time (CT) as performance indexes in order to evaluate
the control performance of the DSMC, the SMC, and the
proposed FBSTSA. CT is the time after which |α| ≤ π

60 (rad)
and |θ | ≤ π

15 (rad) are satisfied. As seen from Table 4,
the proposed FBSTSA shows the minimum RMSE, as well
as the fastest CT. With regard to the chattering alleviation
ability, we can observe from Fig. 4 that the DSMC and the
SMC show serious chattering in the control torque, while
the proposed FBSTSA attenuates the chattering effectively.
Hence, the simulation results in Group 1 show that chattering
phenomenon is alleviated and better control performance
is achieved by the proposed FBSTSA, compared with the
existing SMCs in [12], [13].

For Group 2, with the influence of system uncertainties
and external disturbances shown in Figs. 5, 6, and 7, robust
performance is achieved with the proposed FBSTSA. It can
be seen that the proposed controller responds rapidly to drive
the arm to the zero position and stabilize the pendulum in its
upright position at the same time.

In summary, from the simulation results of Groups 1 and 2,
we can conclude that the proposed FBSTSA safeguards the
stability and robustness of the closed-loop systems under
different operating conditions.

V. EXPERIMENTAL RESULTS
This section first describes the hardware experiment con-
figuration, then presents the experimental examination, and
finally, provides detailed analysis and discussion with regard
to the experimental results.

A. EXPERIMENT SETUP
Extensive experimental validation is conducted on the rotary
inverted pendulum built by the Quanser company, as shown
in Fig. 8. The hardware includes the following components:
(i) the rotary inverted pendulum, which is equipped with
a DC motor and two encoders to read the rotary arm and
the pendulum angles; (ii) the built-in PWM power amplifier
device; and (iii) the data acquisition device. These hardware
components are connected to a laptop through the USB inter-
face provided by Quanser. To drive the DCmotor and read the
arm and the pendulum angles, we use the QUARC real-time
control software, integrated with MATLAB/Simulink [24].
The output voltage range of the load is between ±5V. The
block diagram for the real-time implementation is illustrated
in Fig. 9.

It should be noted that the energy-based control method
[36] is used to drive the pendulum to a close region around an
unstable equilibrium point. Then, the stabilization procedure
is triggered when α ∈ [− π

15 ,
π
15 ] (rad).
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FIGURE 8. Experiment configuration.

For experimental verification, we conduct the following
two different experiments:
Group 1: (Comparison performance) The superiority of the

proposed FBSTSA is illustrated by comparing it
with the DSMC [12] and the SMC [13];

Group 2: (Robustness verification)We verify the robustness
of the proposed FBSTSA in the following two
cases:

– Case 1: (Different initial conditions) We consider
the robustness of the proposed FBSTSA with
respect to different initial conditions. In order
to generate different initial conditions compared
with Group 1, we trigger the stabilization proce-
dure when α ∈ [−π9 ,

π
9 ] (rad). Note also that we

use different control parameters for the energy-
based swing-up controller [36].

– Case 2: (External disturbances) We evaluate the
control performance of the proposed FBSTSA
under the effect of external disturbances. To pro-
duce the sudden external disturbances, we inter-
rupt the motion of the pendulum by a push-pull
perturbation.

We mention that all the experiment results as a movie clip
are available at https://drive.google.com/file/d/1xAr30XJxpk
AKWvuj0LyQjYAd1Kwy-g9j/view.

B. EXPERIMENT EVALUATION
In this subsection, we present the corresponding experimental
results of two experiment groups.

1) GROUP 1
In this Group, we compare the stabilization control perfor-
mance of the proposed FBSTSA with the DSMC [12] and
the SMC [13]. Fig. 10 depicts the corresponding experimental
results of the DSMC, the SMC, and the proposed FBSTSA,
respectively.

FIGURE 9. Block diagram for the real-time implementation.

FIGURE 10. Experimental results – Group 1. DSMC [12] (dash-dot black),
SMC [13] (dashed red), and proposed FBSTSA (solid blue).

FIGURE 11. Experimental results – Group 2 (Case 1).

2) GROUP 2
For Group 2, we verify the robustness of the proposed
FBSTSA in the following two control cases:

CASE 1
The proposed FBSTSA’s ability to resist system parameter
uncertainties is considered. The stabilization procedure is
triggered when α ∈ [−π9 ,

π
9 ] (rad). In addition, we change

the control parameters of the energy-based swing-up con-
troller in [36] to generate different initial conditions com-
pared with the initial system states in experiment Group 1.
The experimental results with regard to the system uncertain-
ties are depicted in Fig. 11.

CASE 2
In this control scenario, we investigate the robustness of
the proposed FBSTSA in the presence of sudden exter-
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nal disturbances. As marked in Fig. 12, the external dis-
turbance appears two times at approximately 28 (sec) and
at approximately 46 (sec), respectively. The corresponding
experimental results of the closed-loop system are shown in
Fig. 12.

FIGURE 12. Experimental results – Group 2 (Case 2).

C. ANALYSIS AND DISCUSSION
In Group 1, as shown in Fig. 10, we can observe that the
proposed FBSTSA provides the chattering reduction ability,
a faster convergence rate, and improved control accuracy,
compared with the DSMC [12] and the SMC [13]. More
quantitatively, the RMSE is computed for each control algo-
rithm to show the advantages of the proposed FBSTSA.
Table 5 shows the RMSE of the arm and the pendulum
angles for all three control methods. In addition, in Table 5,
we compare the CT of three control methods. CT is the time
after which |α| ≤ π

60 (rad) and |θ | ≤ π
15 (rad) are satisfied.

As seen from Table 5, the proposed FBSTSA attains the min-
imum RMSE and shows the faster CT, compared with [12],
[13]. The experimental results presented in Group 1 show
that chattering phenomenon is alleviated and better control
performance is achieved by the proposed FBSTSA, compared
with the existing SMC approaches in [12], [13].

TABLE 5. Experimental performance comparison – Group 1.

For Group 2, we verify the robustness of the pro-
posed FBSTSA against system parameter uncertainties and
external disturbances. From Figs. 11 and 12, we can
observe that the proposed FBSTSA responds rapidly to
stabilize the pendulum and arm around its zero position
in the presence of parameter uncertainties and external
disturbances.

In summary, from the presented experimental results,
we can conclude that the proposed FBSTSA can guarantee
stability and robustness of the closed-loop system under var-
ious control situations.

VI. CONCLUSION AND FUTURE WORKS
In this paper, the stabilization problem of the unstable under-
actuated rotary pendulum system (RotIPS) was considered
via the fuzzy-based (continuous) super-twisting stabiliza-
tion algorithm (FBSTSA). To address the under-actuated
dynamic, a new sliding surface was defined. To reduce the
chattering and enhance the control performance, the control
gains of the proposed FBSTSA were adjusted based on a
fuzzy logic scheme depending on the value of the sliding
variable. We have shown that, with the proposed FBSTSA,
the sliding variable is driven to zero in finite time and the
closed-loop system converges to zero asymptotically. Various
simulation and experimental results for the under-actuated
RotIPS were provided to validate the performance of the
proposed FBSTSA.

One possible future research direction is to develop the
stabilization controller for the RotIPS with actuator con-
straints. In addition, it would be interesting to develop an
output-feedback stabilization control law for the RotIPS by
integrating the proposed FBSTSA with the velocity estima-
tor/observer. Another possible future research direction is to
consider the stabilization control design for the RotIPS under
additive matched and mismatched disturbances. Finally, we
can also apply the proposed FBSTSA to the load frequency
control problem in power systems.
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