
Failure-Atomic Byte-Addressable R-tree
for Persistent Memory

Soojeong Cho , Wonbae Kim, Sehyeon Oh , Changdae Kim,

Kwangwon Koh , and Beomseok Nam ,Member, IEEE

Abstract—In this article, we propose Failure-atomic Byte-addressable R-tree (FBR-tree) that leverages the byte-addressability,

persistence, and high performance of persistent memory while guaranteeing the crash consistency. We carefully control the order of

store and cacheline flush instructions and prevent any single store instruction from making an FBR-tree inconsistent and

unrecoverable. We also develop a non-blocking lock-free range query algorithm for FBR-tree. Since FBR-tree allows read transactions

to detect and ignore any transient inconsistent states, multiple read transactions can concurrently access tree nodes without using

shared locks while other write transactions are making changes to them. Our performance study shows that FBR-tree successfully

reduces the legacy logging overhead and the lock-free range query algorithm shows up to 2.6x higher query processing throughput

than the shared lock-based crabbing concurrency protocol.

Index Terms—R-tree, persistent memory, failure-atomicity, multidimensional indexing structure

Ç

1 INTRODUCTION

RECENT advances in byte-addressable persistent memo-
ries (PM) such as 3D Xpoint [19], phase-change mem-

ory [54], and STT-MRAM [16] are expected to open up new
opportunities to transform main memory from volatile
device to persistent storage [8], [21], [26], [43], [44], [47],
[49], [55], [58]. Due to its persistency and byte-addressabil-
ity, PM can be used either as slow but large main memory
or as fast secondary storage via legacy block I/O interfa-
ces [4], [6], [8], [17], [24], [32], [39], [40], [57]. To leverage the
high performance, persistence, and byte-addressability of
PM, various opportunities are being pursued in numerous
domains, including operating systems and database sys-
tems [24], [33], [45]. However, how PM will interact with
existing systems has not been thoroughly investigated, and
a possible role of PM for multidimensional spatial objects is
currently an open question. In this work, we study how R-
tree, one of the most popular data structures for multidi-
mensional datasets, can benefit from PM.

To manage data structures in PM, the properties of PM
must be considered. Although we can employ traditional
techniques, such as logging and shadowing when designing
data structures for PM, they may duplicate unmodified por-
tions of data structures, which incurs significant overhead
due to additional memory writes and cache line flush
instructions. Implementing byte-addressable data struc-
tures for PM has very different characteristics from disk-
based data structures as well as in-memory data structures.
First, there is no guarantee that when modified dirty cache-
lines will be written back to PM. Even if we do not explicitly
call clflush instructions, dirty cache lines can be flushed by
cache replacement mechanisms. Such a premature cacheline
flush can make data structures in PM inconsistent, and such
inconsistency becomes permanent and exposed to other
processes when a system crashes. Second, when processors
store data in PM, they guarantee at most 8 bytes of data to
be written atomically. Most data structures consist of logical
blocks of composite data types; thus, failure-atomicity at a
granularity of 8 bytes is not sufficient to guarantee crash
consistency. Third, multiple write operations may not occur
in the same order as they are written by a process running
on the CPU. Such reordering of memory writes does not
harm in volatile memory because applications that make
changes to volatile memory can protect the inconsistent
data via locking mechanisms, and partially written data
will be lost when a system crashes. However, if we store
data objects on PM, such transient inconsistent data written
in an arbitrary order will persist across system failures.

To address these challenges associated with a fine-
grained write unit in PM, various block-based indexing
structures, such as B+-trees [4], [18], [49], [56] and hash
tables [38], [59], [60] have been redesigned. However, to the
best of our knowledge, no previous study has attempted to
design multidimensional indexing structures for byte-
addressable persistent memory.

� Soojeong Cho and Sehyeon Oh are with the Ulsan National Institute of
Science and Technology (UNIST), Ulsan 44919, South Korea.
E-mail: {cristalcho, osh829}@unist.ac.kr.

� Wonbae Kim is with the Ulsan National Institute of Science and Technol-
ogy (UNIST), Ulsan 44919, South Korea, and also with ETRI, Daejeon,
South Korea. E-mail: wbkim@unist.ac.kr.

� Changdae Kim is with Data Centric Computing Systems, ETRI, Daejeon,
South Korea. E-mail: cdkim@etri.re.kr.

� Kwangwon Koh is with SW Fundamental Research, ETRI, Daejeon, South
Korea. E-mail: kwangwon.koh@etri.re.kr.

� Beomseok Nam is with Sungkyunkwan University, Seoul 110-745, South
Korea. E-mail: bnam@skku.edu.

Manuscript received 16 Nov. 2019; revised 20 July 2020; accepted 20 Sept.
2020. Date of publication 6 Oct. 2020; date of current version 15 Oct. 2020.
(Corresponding author: Beomseok Nam.)
Recommended for acceptance by K. Mohror.
Digital Object Identifier no. 10.1109/TPDS.2020.3028699

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 3, MARCH 2021 601

1045-9219� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIST. Downloaded on December 17,2021 at 04:50:01 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7784-7125
https://orcid.org/0000-0002-7784-7125
https://orcid.org/0000-0002-7784-7125
https://orcid.org/0000-0002-7784-7125
https://orcid.org/0000-0002-7784-7125
https://orcid.org/0000-0002-7489-3927
https://orcid.org/0000-0002-7489-3927
https://orcid.org/0000-0002-7489-3927
https://orcid.org/0000-0002-7489-3927
https://orcid.org/0000-0002-7489-3927
https://orcid.org/0000-0003-3318-3109
https://orcid.org/0000-0003-3318-3109
https://orcid.org/0000-0003-3318-3109
https://orcid.org/0000-0003-3318-3109
https://orcid.org/0000-0003-3318-3109
https://orcid.org/0000-0001-5481-6070
https://orcid.org/0000-0001-5481-6070
https://orcid.org/0000-0001-5481-6070
https://orcid.org/0000-0001-5481-6070
https://orcid.org/0000-0001-5481-6070
mailto:cristalcho@unist.ac.kr
mailto:osh829@unist.ac.kr
mailto:wbkim@unist.ac.kr
mailto:cdkim@etri.re.kr
mailto:kwangwon.koh@etri.re.kr
mailto:bnam@skku.edu

Multidimensional range queries are an important class of
problems in database systems, computer graphics, geo-
graphic information systems, and high-performance com-
puting [2], [7], [9], [10], [12], [22], [28], [34], [36], [37], [48],
[50]. In many scientific domains, the size of data files pro-
duced by scientific applications continue to grow, and peta-
bytes or exabytes of data will soon be common. Typically,
the content of scientific data files are a collection of multidi-
mensional arrays along with the associated spatio-temporal
coordinates [2], [5], [28], [36]. To help navigating through
large scientific datasets, various multidimensional indexing
techniques, such as R-trees [13], [29], have been developed
and used widely to allow direct access to particular data-
sets [11], [12], [35], [37], [42], [53]. For example, multiphysics
oil reservoir simulation [27], spatial modeling of the
brain [48], and disease transmission analysis [5] employ
multidimensional indexes to accelerate range query proc-
essing performance. For large-scale scientific datasets, per-
sistent memory offers the ability to bring persistent data
closer to the CPU and to extend the capacity of main mem-
ory. We note that Intel’s latest Optane DC Persistent Mem-
ory [19] extends the capacity of DRAM and enables very
large storage class memory, i.e., 3 TBytes of memory capac-
ity per server CPU socket.

In this work, we design and implement a variant of an R-
tree for byte-addressable PM. Byte-addressable PM raises
new challenges in the use of R-trees because legacy R-tree
operations are based on the assumption that block I/O is
failure-atomic and memory operations are volatile. How-
ever, in PM, each memory operation at the granularity of a
word, e.g., 8 byte, must be failure-atomic, i.e., data must be
consistent for each store instruction. Otherwise, partially
updated inconsistent tree nodes can be exposed to other
transactions upon system failures, or to other concurrent
read transactions if lock-free search is enabled. To prevent
the reordering of memory write operations and to ensure
that each cacheline flush to PM does not compromise the
consistency of R-tree structures, we carefully redesign R-
tree algorithms to control the order of memory writes and
cacheline flushes so that R-tree can tolerate transient incon-
sistency [18] caused by incomplete write transactions.

The key contributions of this work are as follows.

� We design and implement byte-addressable and fail-
ure-atomic algorithms for multidimensional R-tree
optimized for PM. The insert and delete algorithms
consist of a sequence of 8-byte store instructions,
each of which preserves R-tree invariants.

� Wepresent a novel in-place rebalancing with byte-address-
ablemetadata-only logging algorithm forR-tree node split
and merge operations, and compare it against copy-on-
write (CoW)-based rebalancing algorithm.

� We show that fine-grained control of failure-atomic
8-byte store instructions enables the lock-free search
for R-trees on PM. Non-blocking queries on R-trees
significantly improve the concurrency level and
transaction throughput by up to 13.5x.

The remainder of this paper is organized as follows. In
Section 2, we present the challenges involved in designing a
R-tree index on PM. In Section 3, we present the design and
implementation of failure-atomic and byte-addressable

persistent R-tree (FBR-tree). In Sections 4 and 4.3, we dis-
cuss concurrency and consistency issues associated with an
FBR-tree. In Section 5, we evaluate the performance of FBR-
trees. Conclusion of this paper is presented in Section 6.

2 CHALLENGES IN DESIGN OF INDEXING TREES
FOR PERSISTENT MEMORY

R-tree structures are similar to B-tree structures in that both
structures are balanced search trees and are designed for
block device storage where data items are organized in
pages. Although, to the best of our knowledge, there exists
no prior work that studies multidimensional indexing trees
on PM, various B-tree variants for PM have been proposed
to resolve the challenges of PM and benefit from its high-
performance [4], [18], [41], [56].

One of the invariants of legacy B-trees is that the key-
value pairs in each tree node are stored in sorted order. This
invariant entails a large number of shifts and cache line
flushes. In the legacy disk-based index, the overhead of a
large number of shifts and cacheline flushes is negligible
due to incomparably large disk I/O overhead. However, in
high-performance PM, the overhead of memory barriers
and cacheline flushes is known to be the dominant perfor-
mance factor [4], [18], [41], [45], [49], [56]. To avoid such a
large number of shifts and cacheline flushes, NV-tree [56],
FP-tree [41], and wB+-tree [4] proposed to append unsorted
key-value pairs into the array. The append-only update
strategy has been shown to improve write performance, but
at the cost of higher lookup overhead because it requires lin-
ear scanning of all unsorted keys [18].

R-tree is different from B-tree in that a tree node of R-tree
stores a set of Minimum Bounding Rectangles (MBR)
instead of an array of sorted keys. That is, unlike B-trees, R-
trees do not require the multidimensional MBRs to be geo-
metrically sorted. Instead, R-tree requires each MBR to
enclose all the MBRs of its corresponding sub-tree. I.e., one
of the invariants of R-tree is the hierarchical enclosure rela-
tions of MBRs. Such an invariant is required for multidi-
mensional queries. That is, a search for multidimensional
objects has to visit all sub-trees whose associated MBRs
overlap the given point. This invariant puts a unique chal-
lenge on designing a failure-atomic byte-addressable R-
trees. I.e., unlike B-trees where each query traverses the tree
structure in a top-down manner, R-tree queries backtrack to
the previously visited parent nodes. I.e., if a query overlaps
multiple MBRs in an R-tree node, all the corresponding
child nodes must be visited in a depth first order. When a
leaf node is reached, the spatial coordinates of objects in the
leaf node are compared against the query range, and their
objects are put into the result set if they lie within the search
range. Since an R-tree query scans all MBRs in a visited
node, the ordering of MBRs in a tree node does not affect
the performance of an R-tree search.

When rebalancing a tree-structured index, recovery
methods, such as logging and CoW, make the structure
recoverable by writing a consistent copy elsewhere prior to
updating the tree structure. However, in byte-addressable
PM, such per-node logging or per-node CoW is known to
be expensive and sub-optimal because it unnecessarily
duplicates the entire tree node, including the unmodified

602 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 3, MARCH 2021

Authorized licensed use limited to: UNIST. Downloaded on December 17,2021 at 04:50:01 UTC from IEEE Xplore. Restrictions apply.

portion of it. To resolve this problem, NV-tree [56] and FP-
tree [41] use selective persistence that keeps leaf nodes in PM
but internal nodes in volatile DRAM. This is because inter-
nal tree nodes can be reconstructed from scratch when a
system restarts. Although the selective persistence makes
logging unnecessary, it requires reconstruction of whole
tree structures upon any system fault. In that regard, NV-
tree and FP-tree are not persistent indexes in strict sense.

3 DESIGN AND IMPLEMENTATION OF FBR-TREE
FOR PM

In this section, we present the details of the tree node struc-
ture and tree operations of the proposed Failure-atomic and
Byte-addressable R-tree optimized for PM with reduced
consistency cost.

3.1 Node Structure

Fig. 1 shows the structure of FBR-tree nodes. If the metadata
size is bounded by an 8-byte word, as shown in Fig. 1a, we can
update the metadata in a failure-atomic manner with a single
8-byte store instruction. Each bit in the bitmap indicates
whether its corresponding MBR and pointer are valid. If the
kth bit is 0, a pair of MBR[k] and its pointer in the node is a free
space. Otherwise, the MBR and the pointer are valid and con-
sistent. Therefore, themaximumnumber ofMBRswe can store
in a tree node with 8-byte metadata is limited to 55. Note that
we use one bit to store the type of tree node (leaf (LN) or inter-
nal node (IN)) and one byte to store the version number, which
is necessary to implement a lock-free search algorithm, which
we will describe in Section 4.1. The rest of metadata is bitmap.
Alternatively, the bitmap size can be set arbitrarily large to
have node degrees greater than 55, as shown in Fig. 1b. If we
use metadata larger than an 8-byte word, explicit bitmap log-
ging becomes necessary because the bitmap that spans across
multiple 8-byte words cannot be modified atomically. That is,
word B in Fig. 1b can be unexpectedly flushed to PMwhile we
are updating word A in CPU cache. To prevent such premature
flush, we may employ hardware transactional memory to

implement an atomic multi-word write function; however,
hardware transactional memory incurs additional over-
head [18] and requires specialized hardware. We note that the
node size depends on the dimension of MBRs. With two-
dimensional and three-dimensional MBRs, the node size with
8-bytemetadata is about 2 KB and 4KB, respectively.

3.2 Failure-Atomic Insertion

When inserting a new spatial object into an R-tree, the R-tree is
traversed recursively from the root node to a leaf node. At
each node, a candidate child node is selected using a legacy
heuristic, such as the least enlargement algorithm [13]. If the cho-
sen MBR does not completely overlap the new spatial object,
theMBRmust be enlarged to contain the newobject, as shown
in Fig. 2a. In legacy disk-based R-trees, an MBR update
requires expensive per-node logging of the entire tree node to
provide atomicity and crash consistency. That is, all updated
nodes are duplicated as log entries, as shown in Fig. 2b and
then checkpointed to the R-tree index file later.

However, in byte-addressable PM, the per-node logging,
i.e., duplication of dirty data, incurs unnecessary memory
copy overhead. Instead of relying on expensive logging,
FBR-tree carefully enforces the order of store instructions to
preserve the invariants of R-tree index such that it guaran-
tees the failure-atomicity.

Algorithm 1 shows the insertion algorithm of FBR-tree.
First, we select a child node and enlarge the MBR of the child
node, as shown in Fig. 2a. Then, we call mfence and clflush

to persist the updated MBR. Note that we perform in-place
updates for the selected MBR (step 1 in the example) without
logging. AnMBR hasmultiple spatial coordinates, thus it can-
not be updated atomically. To guarantee failure-atomicity, we
may copy-on-write the MBR such that we retain the old MBR
while writing a new one. Then, we validate the new copy by
atomically flipping the valid bit of the old copy and the new
copy. However, we note that such a CoW is not necessary for
MBR updates because insertions only enlarge the size of the
MBRs. In other words, as long as the MBR contains all MBRs
of child nodes, MBR updates do not have to be atomic and the

Fig. 1. Node structure of FBR-tree. Fig. 2. Byte-addressable insertion in FBR-tree.

CHO ET AL.: FAILURE-ATOMIC BYTE-ADDRESSABLE R-TREE FOR PERSISTENT MEMORY 603

Authorized licensed use limited to: UNIST. Downloaded on December 17,2021 at 04:50:01 UTC from IEEE Xplore. Restrictions apply.

write ordering of spatial coordinates does not violate the cor-
rectness of the index. For example, no matter whether the
boundary of the first dimension or the second dimension is
updated, the partially updatedMBRwill still include all child
MBRs. Suppose a system crashes after only one of the bound-
aries is overwritten. Subsequent queries will still successfully
find and visit the child node if their query ranges overlap the
child node’sMBR.

Algorithm 1. Insert(Obj Obj, Node *N, Node *Parent)

1: n!mutex.lock()
2: if node is NOT leaf then
3: locked = true;
4: pos = PickChild(obj.r, n);
5: n! child[pos].mbr = Combine(n! child[pos].mbr, obj.r);
6: persist(n! child[pos]); // step 1 in Fig. 2a
7: if n! child[pos] is NOT FULL then
8: n!mutex.unlock(); locked = false;
9: end if
10: c_sibling = Insert(obj, n! child[pos].ptr, parent);
11: if c_sibling is NOT NULL then
12: child node has split, c_sibling is its sibling node
13: Rect c_sibling_mbr = getMBR(sibling)
14: if n is also full then
15: create a splitLog (parent, current and a new sibling)
16: persist(splitLog);
17: sibling = split(n, c_sibling, parent);
18: n!mutex.unlock();
19: else
20: n! child[free].mbr = c_sibling_mbr;
21: persist(n! child[free]); // step 4 in Fig. 4.
22: n! child[pos].mbr = getMBR(n! child[pos]);
23: increase n! version and update valid bit of free;
24: persist(n!metadata); // step 5 in Fig. 4.
25: persist(n! child[pos].mbr); // step 6 in Fig. 4.
26: persist(n! child[pos].ptr!version = 1); // step 7
27: sibling = NULL;
28: n!mutex.unlock();
29: end if
30: else
31: sibling = NULL;
32: if locked is true then
33: n!mutex.unlock()
34: end if
35: end if
36: return sibling;
37: else
38: if n! bitmap is FULL then
39: create a splitLog (parent, current and sibling)
40: sibling = split(n, obj, parent);
41: else
42: pos = n! getFreeSpace()
43: n! child[pos] = obj;
44: persist(n! child[pos]); // step 2 in Fig. 2(a)
45: increase n! version and update valid bit of pos;
46: persist(n!metadata); // step 3 in Fig. 2(a)
47: sibling = NULL;
48: end if
49: n!mutex.unlock();
50: return sibling;
51: end if

We note that partially enlarged MBRs can hurt the effi-
ciency of the index because the partially enlarged MBR may
unnecessarily overlap incoming queries due to the dead
space, i.e., space that contains no data objects. However,
such false positive results do not hurt the correctness, and
the partially updated MBRs never return false negative
results. We also note that such a dead space problem is not
permanent since a dead space can be removed when a node
splits or when underutilized nodes merge.

On the way down to a leaf node, we keep updating MBRs
when necessary so that all ancestor nodes contain the new
spatial object. Once we find a leaf node and insert a new spa-
tial object, we search for free space by checking the bitmap in
the leaf node and store the object’s spatial coordinates in it
(step 2 in Fig. 2a). Then, we call mfence and clflush to per-
sist the new object. In the next step (step 3 in Fig. 2a), we
increase the version number and update the bitmap to vali-
date the new object. If the version number and bitmap are
stored in an 8-byte word, they can be atomically updated and
flushed. The version number update is necessary to enable a
lock-free search, which we will discuss in Section 4.1. If a sys-
tem crashes before the bitmap is updated, the written spatial
object will be ignored and considered as a free spacewhen the
system recovers, i.e., no recovery process is required. In such
a sense, the insertion algorithm of the FBR-tree is failure-
atomic although it does not perform logging.

3.3 Failure-Atomic Deletion

When an indexed spatial object is deleted from a tree node,
FBR-tree flips the valid bit of the object and flushes the bitmap
to persist it, as shown in the first step of Fig. 3. If the deleted
object is entirely within the MBR of its leaf node, the MBR of
the leaf node will not be modified. However, if the deleted
object shares at least one boundarywith theMBR of leaf node,
the MBR of the leaf node needs to be shruken by the deletion.
In such a case, we backtrack to the parent node and update
the leaf node’s MBR accordingly. To reconstruct the MBR, we
select the minimum and maximum boundaries in each
dimension and perform in-place updates to overwrite the
existing MBR. Again, we note that shrinking the MBR also
does not have to be atomic because partially updated MBR
does not affect the invariants of the index. In other words, no
matter what dimension has been updated and flushed to PM,
when a system crashes, the partially updated MBR will still
contain all valid spatial objects in the sub-tree, and itwill guar-
antee correct search results. Therefore, the FBR-tree deletion
algorithm is also failure-atomic and guarantees consistency.
Note that such in-place updates greatly reduce the amount of
I/O since transactions do not need to perform expensive log-
ging for each deletion or insertion.

Fig. 3. Byte-addressable deletion in FBR-tree.

604 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 3, MARCH 2021

Authorized licensed use limited to: UNIST. Downloaded on December 17,2021 at 04:50:01 UTC from IEEE Xplore. Restrictions apply.

3.4 Failure-Atomic Page Split

Insertions and deletions often result in node overflows and
underflows, which respectively require nodes to split and
merge such that the tree height becomes re-balanced. In
disk-based R-trees and B-tree variants [4], [56], per-node
logging or journaling has been used because multiple tree
nodes including a parent node need to be updated atom-
ically. In legacy logging or journaling, unmodified portions
of tree nodes are duplicated in a log or journal file because
the minimum write granularity of disks is a disk page.
Such legacy disk-based logging not only increases the write
traffic but also blocks concurrent access to tree nodes.
Unlike a disk-based R-tree, FBR-tree re-balances the tree
height in a byte-addressable and failure-atomic manner
without explicit logging.

3.4.1 Byte-Addressable Copy-on-Write Split

Fig. 4a shows the steps required to perform byte-address-
able CoW when a node overflows. First, we allocate two
new nodes (node C and D) and copy half of the entries from
an overflow node to these nodes (steps 1 and 2 in the exam-
ple). We note that this is not different from legacy CoW.
However, unlike disk-based CoW, which can atomically
update the parent node via disk-based block I/O, the entire
parent node cannot be atomically updated in byte-address-
able PM. Hence, we need to carefully enforce the ordering
of 8-byte store and clflush instructions to update the par-
ent node in a failure-atomic manner. Once we add the new
MBRs and pointers to the parent node P (step 3 in the exam-
ple), we overwrite the bitmap via a single store instruction
and call clflush to persist it.

If a system crashes before we add the new nodes to the
parent, the index is consistent because nothing has been
changed to the parent node. If a system crashes after we add
the two new nodes to the parent node but before we update
the bitmap, the index is still consistent because the two child
nodes will be considered invalid, i.e., free spaces. PM heap
manager, such as Intel’s PMDK [20] or HPE’s NVMM [30]
should deal with memory leak problems. I.e., a PM heap
manager should create a log when it allocates a PM block.
Then, the heap manager can check whether each PM block is
being used by an application when a system recovers. If not,
the block must be garbage collected. Note that this is not a
requirement specific to our FBR-tree. All other PM-based

data structures also require this feature to prevent memory
leak problems. If a system crashes after the bitmap is
updated, the index is in a consistent state; thus, recovery is
not required.

CoW split updates three bits, two bits to validate new
nodes and another bit to invalidate the overflow node. If the
size of a bitmap is larger than 8 bytes, CoW split does not
provide failure-atomicity because three bits can be in differ-
ent words. Therefore, the maximum number of child nodes
we can store in each tree node is limited to 55. If we want a
tree node to have a larger number of child nodes, as shown
in Fig. 1b, we must use explicit logging to update a bitmap.
However, the size of a bitmap log will still be much smaller
than legacy per-node logging. If a system crashes before we
put a commit mark in the bitmap log, the logged bitmap
will be ignored, and the index will be in its previous consis-
tent state. If a system crashes after we put a commit mark in
the bitmap log, the index will be in a new consistent state.
Therefore, the byte-addressable CoW split algorithm is fail-
ure-atomic.

A drawback of a CoW split is that we need at least two
free spaces on the parent node. If there is only one last free
space in the parent node, the parent node cannot accommo-
date two new child nodes; thus the parent node also has to
split. For example, after we update the bitmap of parent
node P in the example shown in Fig. 4a, R2 will become a
free space. However, if another child node splits again,
node P must split even though there is a single free space.
Such a premature split degrades node utilization.

3.4.2 Byte-Addressable In-Place Split

The byte-addressable CoW split algorithm creates a copy
of all the MBRs of an overflow node, which we find ineffi-
cient. We can reduce the number of memory writes by
reusing the overflow node and creating a single new node
instead of two. Algorithm 2 shows the in-place split algo-
rithm, and Fig. 4b shows the in-place split algorithm steps
with an example.

First, we allocate memory space for a new sibling node
(C in the example) and copy half of the entries to this sibling
node. For the other half, we reuse the overflow node (B in
the example). In the second step, we set the version of the
overflow node to 0, which indicates that the node is splitting
and its MBR in the parent node may not reflect the actual
MBR of the node. Note that we have not added the new sib-
ling node (C) to the parent node, nor have the migrated
entries been invalidated in the overflow node, i.e., we have
not updated the bitmap of overflow node. Therefore, subse-
quent transactions do not miss any child nodes and the cor-
rectness of search operations is not compromised when a
node is in this state. In the next step (step 3), we add the
address and MBR (R11) of the new sibling node (C) to the
parent node. Note that the new MBR (R11) is not valid until
its corresponding bitmap is updated in the next step (step
4). Since we store the version and bitmap in the same 8-byte
word, the version and bitmap are atomically updated.
After validating the new child node, we update the MBR of
the overflow node to make it just small enough to include
the remaining MBRs (step 5). The MBR of the overflow
node must not be updated prior to validating a new child

Fig. 4. Order of memory writes for node split in FBR-tree.

CHO ET AL.: FAILURE-ATOMIC BYTE-ADDRESSABLE R-TREE FOR PERSISTENT MEMORY 605

Authorized licensed use limited to: UNIST. Downloaded on December 17,2021 at 04:50:01 UTC from IEEE Xplore. Restrictions apply.

node. Otherwise, a query that searches for a migrated entry
may fail to find it. For example, suppose a query is search-
ing for R5 in Fig. 4b, which is migrated to node C. If we
reduce the area of R2, before adding C to the parent node,
R5 will not be included in the updated R2* and a concur-
rent query looking for R5 will not visit both node B and C.
As a result it will fail to find R5. To avoid this problem, the
ordering of each update must be strictly enforced. There-
fore, we call mfence and clflush in each step to guarantee
failure-atomicity and consistency. Finally, we increase the
overflow node’s version to indicate the split process has
completed (step 6). At the same time, we update the bitmap
to invalidate the node entries migrated to the right sibling
node. Again, we note that the version and bitmap are atom-
ically updated.

Algorithm 2. split_inplace(Node *N, Entry *new_entry)

1: sibling = create a sibling node;
2: cluster node entries into group A and B
3: add new_entry to either A or B
4: n! version = 0; // indicate this node is splitting
5: persist(n! version);
6: tmp_metadata.bitmap = n!bitmap;
7: for i = 0; i < size; i++ do
8: if n! branch[i] is in group B then
9: addEntry(sibling, n! child[i]);
10: tmp_metadata.bitmap[i] = 0;
11: end if
12: end for
13: sibling! version = 1;
14: persist(sibling); // persist a new sibling node
15: tmp_metata.version = 1;
16: n!metadata = tmp_metdata;
17: persist(n!metadata); // persist bitmap and version
18: parent = pop();
19: if parent is full then
20: if parent is root then
21: root_split(parent, sibling);
22: else
23: split(parent, sibling);
24: end if
25: else
26: AddEntry(parent, sibling);
27: end if

3.5 Failure-Atomic Node Merge

If deleting a key from a node causes an underflow, FBR-tree
redistributes entries between sibling nodes or merges two
nodes if they fit in a single node. In this section, we compare
two merge operation methods–(1) byte-addressable CoW
merge and (2) byte-addressable in-place merge.

3.5.1 Byte-Addressable Copy-on-Write Merge

The byte-addressable CoWmerge algorithm is similar to the
byte-addressable CoW split, but it performs the memory
writes in reverse order. Fig. 5a shows the steps required for
a merge operation. In the walking example, we delete an
entry from node B, which causes an underflow. Since the
leaf node B cannot borrow an entry from its sibling node C,
nodes B and C are to be merged. Therefore, we allocate a

new node D and copy R6, R7, R8, and R9 to this new node.
Then, we persist node D (step 1). In the next step, we add
the MBR of node D to the parent node P as in normal inser-
tion algorithm (step 2 and 3). Since the failure-atomic bit-
map update will invalidate two under-utilized nodes and
validate the new merged node atomically, the CoW merge
algorithm is failure-atomic.

3.5.2 Byte-Addressable In-Place Merge

Differing from the CoW split, the CoWmerge does not cause
the node utilization problem. However, CoW operations
require more memory copy operations than in-place updates.
Thus,wedesign and implement the in-placemerge algorithm.

As shown in Fig. 5b, when a node underflows, we copy
all entries from a sibling node to the underflow node (step
1), and update the bitmap to validate the migrated entries
(step 2). We set the version of node B to 0 to indicate that a
rebalancing operation is updating the underflow node and
its MBR in the parent node may not enclose all the MBRs of
the node. In the next step (step 3), the MBR of node B in the
parent node is updated to include all the entries migrated
from an underutilized node. Then, the bitmap of the parent
node and its version number are updated atomically to
invalidate the underflow node C (step 4). Once the under-
flow node is removed from the parent node, the version of
the merged node is increased (step 5) to indicate the merge
operation is completed.

4 CONCURRENCY AND CONSISTENCY

4.1 Lock-Free Search

With the increasing prevalence of many-core systems, the
importance of concurrent data structures also increases.
One challenge for concurrent data structures is the lock con-
tention between concurrent transactions. If a transaction
accesses a data structure while it is being modified by
another transaction, it may access the data structure in an
inconsistent state and return incorrect results. Various lock
methods have been used to protect data structures from
concurrent accesses. However, due to synchronization over-
head, lock methods often degrade the concurrency level
and degrade performance. To reduce the synchronization
overhead, various optimistic synchronization methods, i.e.,
lock-free search algorithms have been proposed in the

Fig. 5. Order of memory writes for node merge in FBR-tree.

606 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 3, MARCH 2021

Authorized licensed use limited to: UNIST. Downloaded on December 17,2021 at 04:50:01 UTC from IEEE Xplore. Restrictions apply.

literature [14], [18], [25]. With optimistic synchronization,
search operations access data structures without acquiring
shared locks. Instead, search operations optimistically
access each node of the data structures and rollback when
they later find that they have accessed inconsistent nodes.

Algorithm 3. Search(Node *N, Query *Q)

1: hitCount = 0;
2: if n != leaf then
3: version = n! version;
4: initialize child_queue;
5: while true do
6: for i=0; i<n! size; i++ do
7: if branchOverlap(n!branch[i],q) && n!bitmap[i]==1

then
8: child_queue.push(n!branch[i]);
9: end if
10: end for
11: if version==n!version or n!version==0 then
12: – this node has not changed or it is being split
13: while !child_queue.empty() do
14: ret = Search(child_queue.front(), q);
15: if ret = BACKTRACK then
16: continue;
17: end if
18: child_queue.pop();
19: end while
20: break;
21: else
22: – this node has changed
23: remove all entries in childqueue
24: version = n!version;
25: end if
26: end while
27: else if n is leaf then
28: version = n! version;
29: initialize obj_queue;
30: for i=0; i< size; i++ do
31: if branchOverlap(n!branch[i],q) && n!bitmap[i]==1

then
32: – add an overlapping object to a result set
33: end if
34: end for
35: if version==n!version then
36: – this node has not changed
37: return a result set
38: else
39: – this node has changed
40: – remove objects found in this node from the result set
41: – backtrack to parent node and restart search
42: return BACKTRACK;
43: end if
44: end if
45: return resultSet

FBR-tree takes such an optimistic approach, and the non-
blocking search operations of the FBR-tree guarantee system-
wide progress and consistency. Each 8-byte store instruction
executed by the FBR-tree update algorithms preserves the
invariants of R-trees. Therefore, even if a write transaction is
making changes to an FBR-tree that are partially updated,
concurrent read transactions will find the invariants of FBR-

tree remain unchanged. I.e., concurrent read transactions can
construct a consistent view of tree nodes without waiting for
write transactions to release the exclusive lock.

The detailed algorithm of lock-free search in FBR-tree is
shown in Algorithm 3. In FBR-tree nodes, a version number
is stored along with a bitmap in each node to indicate the
node is in a transient inconsistent tree state, i.e., when an
entry in a tree node is added or deleted, its version number
is increased. When a search query visits a tree node, it
remembers its version number. Later, when the query is
done accessing the node, it verifies that the version number
has not changed. If the version has changed, the query
knows that the node has been modified. Then, the query
reads the node again to reflect the modifications. We note
that such version-based lock-free control is commonly used
in numerous lock-free concurrent structures [15].

A rollback operation is expensive, as it may repeat reading
the same node many times. However, as we will show in
Section 5, the rollback operation occurs very rarely. Therefore,
lock-free search with rollback operations is often less expen-
sive than the reader-writer lock mechanism because a reader-
writer lock requires read transactions performmemorywrites
for each node visit [15], [18]. Besides, a write transaction
updates only a few cachelines in a tree node. Therefore, read-
ing the same node often benefits fromCPU cache hits.

4.2 Serializability

Let us consider the serializability of concurrent read and
write transactions. We assume each write transaction inserts
a single spatial object. If a write transaction inserts multiple
objects into different leaf nodes, multidimensional range
queries that perform backtracking in a lock-free manner
may encounter phantom reads and work in read uncommitted
mode [46]. That is, range queries may find some, but not all
of the objects inserted by a concurrent write transaction.

Note that FBR-tree insertion, deletion, split, and merge
algorithms do not allow lock-free writes. I.e., we use legacy
exclusive locking to avoid write-write conflicts. This is
because the FBR-tree must guarantee not only byte-address-
able consistency but also durability as an additional challenge.

4.2.1 Non-Splitting Insertion

Let us consider the most straightforward case first – a write
transaction that does not split a node. Consider the example
shown in Fig. 2a. Suppose a read transaction accesses node B
while another write transaction attempts to store MBR R into
the same node. If the read transaction reads the node prior to
its bitmap being updated, the read transaction returns with-
out reading R because the bitmap is not updated. In this case,
the two transactions are serializable without incurring any
consistency issue (read ! write). If the write transaction
updates the bitmap before the read transaction returns, our
search algorithm makes the read transaction access the node
again. Thus, it will read the new MBR R. In this case, the two
transactions are also serializable (write ! read). We omit a
discussion of deletions due to its symmetrywith insertions.

4.2.2 Byte-Addressable CoW Split

Now, consider the byte-addressable CoW split using the
example shown in Fig. 4a. Suppose a read transaction

CHO ET AL.: FAILURE-ATOMIC BYTE-ADDRESSABLE R-TREE FOR PERSISTENT MEMORY 607

Authorized licensed use limited to: UNIST. Downloaded on December 17,2021 at 04:50:01 UTC from IEEE Xplore. Restrictions apply.

accesses node B and returns to its parent node P while
another write transaction is making changes to P using
CoW. If the version of node P is not yet changed, the read
transaction does not have to read the new spatial object
written by the write transaction. Thus, the read transaction
will successfully return, and the two transactions are serial-
izable (read ! write). If the write transaction has already
updated the bitmap of node P, the read transaction will dis-
card the results found in leaf node B and visit new child
nodes C and D. Again, the two transactions are serializable
(write! read).

4.2.3 Byte-Addressable in-Place Split: Proof Sketch

As for the in-place split, we update the version of overflow
node twice as shown in Fig. 4b. Therefore, the serializability
for the in-place split is rather complicated.

Fig. 6 shows the state transition diagram with concurrent
in-place updates and read queries, i.e., it shows all possible
execution orderings of concurrent read and write transac-
tions. The solid arrow indicates the version change of an
overfull node and its parent node. In FBR-tree, whenever a
tree node is updated, its version number is updated. The
dashed arrow indicates the version change of a node—the
node version when a read transaction accesses the first
MBR in the node, and the version when it is done with
accessing all the MBRs of the node.

i) Case A in Fig. 6 is trivial. If a read transaction accesses
an overfull node and returns to its parent node prior to the
overfull node’s version being set to zero, the transactions
are serializable (read ! write). If the version of overfull
node (n.V) is not 0, then the read query checks whether the
version numbers have been changed. If they have been
changed, the query reads the nodes again to guarantee seri-
alizability (write! read).

ii) In the case of B, a read transaction starts accessing an
overfull node before a write transaction splits it. When the
read transaction is done with the overfull node, it finds out
that the overfull node is now being split. However, since
the version of overfull node (n.V) is 0, not 1, the overfull
node has not deleted any migrated entries. That is, the read
transaction has processed all the sub-trees of the overfull
node, and it will return correct search results. Therefore, the
read transaction does not need to access its new sibling
node and guarantees serializability (read!write).

iii) Case C also guarantees serializability (read ! write).
In case of C, a query visits an overfull node after it verifies
the version of its parent node, as shown in Algorithm 3.

Even if the overfull node splits and a new sibling node is
added to the parent node, the query will not detect the split
and return the same search results as in the case when the
node has not split.

iv) In the case of D, a read transaction accesses an over-
full node that is being split. Although a new sibling node
could have been created, the overfull node has not deleted
migrated entries. I.e., the in-place split algorithm deletes
migrated entries when we set the version (n.V) to one.
Therefore, the read transaction ignores its new sibling node
and backtracks to the parent node, which guarantees the
serializability (read!write).

v) Case E is similar to C. I.e., a read transaction verifies
the version of the parent node before it visits its overfull
child node. Therefore, the read transaction will not detect a
new sibling node and return the same search results with
the case when the node has not split. As such, it guarantees
serializability (read!write).

vi) Case F is the opposite case of B. I.e., a read transaction
starts accessing an overfull node while it is being split.
When the read transaction is done with accessing the over-
full node, it will find out the overfull node has completed
the split. Therefore, the read transaction could have missed
some sub-trees that were migrated to its new sibling node.
To guarantee correct search results, our search algorithm
makes the query backtrack to the parent node and restart
tree traversals from the parent node.

vii) In the case of G, a read transaction accesses an over-
full node after its new sibling node has already been added
to the parent node. I.e., if the query range overlaps the MBR
of the new sibling node, the read transaction will access the
right sibling node when it backtracks to the parent node.
I.e., it guarantees serializability (write ! read). Although
the MBR of the overfull node could have been shrunken in
the parent node, the read transaction may access the sub-
trees that are migrated to the new sibling node due to the
overlap between the overfull node and the right sibling
node. Therefore, some sub-trees can be visited multiple
times, which is not necessary. To avoid unnecessary multi-
ple visits to the same sub-trees, we make read transactions
to track the versions of visited tree nodes. Alternatively,
read transactions may perform deduplication, which may
hurt the search performance due to redundant node visits.

viii) In the case of H, a read transaction will detect the
version of an overfull node is changed while it is reading
the MBRs in the node. Since the read transaction could have
missed some sub-trees that were migrated to the sibling
node, the read transaction has to rollback and read the
MBRs of the overfull node again to guarantee serializability
(write! read).

ix) The case I does not occur in FBR-tree since the version
of a tree node monotonically increases except when a node
splits. Even if both child and parent nodes split recursively,
the overfull child and parent nodes will keep the entries
migrated to their new sibling nodes until they finish splits.
Therefore, concurrent read transactions can access those
nodes in a non-blocking manner.

We note that serializability is optional in many scientific
applications and in database OLAP transactions [46]. If an
application does not require serializability and strong con-
sistency, our search algorithm may omit to check the

Fig. 6. State transitions with concurrent in-place updates (n: overfull
node, P: parent node).

608 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 3, MARCH 2021

Authorized licensed use limited to: UNIST. Downloaded on December 17,2021 at 04:50:01 UTC from IEEE Xplore. Restrictions apply.

version metadata and rollback operations to improve the
concurrent query performance.

4.3 Recoverability

If a byte-addressable data structure enables lock-free search
with persistent memory, the recovery process can be greatly
simplified when a system crashes [18], [38]. I.e., even if a
system crashes while a write transaction is making changes
to an FBR-tree, subsequent transactions will find the par-
tially written FBR-tree preserves the invariants of FBR-tree,
and it can construct a consistent view of FBR-tree. The only
corner case a recovery process needs to take care of is the
node whose version is 0, which means rebalancing opera-
tion has not completed when a system crashes. Suppose a
system crashes before the version of an overfull node is set
to zero (state 1 in Fig. 6). Since nothing has been changed in
the index, recovery is trivial. If a recovery process finds a
node’s version is 0, it has to determine whether it is in state
2 or 3. If a node is in state 2, its MBR in the parent node will
match the actual MBR or the overfull node. Also, the over-
full node will not have any duplicate sub-trees with its sib-
ling node. If the recovery process finds a node is in state 2, it
recovers from the failure by simply setting the version of
the overfull node to a positive number. If a node is in state
3, its MBR in the parent node may not match the actual
MBR of the overfull node, and there must be a sibling node
with the same sub-trees with the overfull node. To recover
from state 3, the recovery process invalidates duplicate sub-
trees by updating the overfull node’s version and bitmap.

5 EVALUATION

We designed and implemented variants of FBR-trees and
evaluate their performance on a workstation that has two
Intel Xeon Gold 6230 processors (20 cores, 2.1 GHz, 20 x
32 KB instruction cache, 20 x 32 KB data cache, 20 x 1024 KB
L2 cache, and 27.5 MB L3 cache), 375 GB of DDR4 DRAM
and 732 GB Intel Optane DC Persistent Memory (DCPM).
To create and manage FBR-trees in DCPM, we use Persis-
tent Memory Development Kit (PMDK), which is designed
by Intel to facilitate programming for persistent memory.
To make use of atomic 8-byte instructions, we allocate a sin-
gle large pool for each index and call pmemobj_alloc()
for each tree node inside the pool, which returns an 8-byte
offset to the node in the pool. For failure-atomicity, we care-
fully enforce the ordering of mfence and clwb instruction
rather than using the PMDK transaction APIs, which per-
forms expensive logging. We note that providing a

directory name as the pool path allows the pool to dynami-
cally create memory-mapped files, which removes the user-
imposed limit on the size of the pool.

In the evaluation experiments, we used two datasets.
One is a time series multidimensional taxi service trajectory
dataset that has more than 80 million polylines and a total
of nine attributes.1 Since the real dataset is not large enough
to sufficiently utilize 732 GB persistent memory of our
testbed, we generate a synthetic 80 GB 3D point datasets in
random distribution. For both datasets, we generated syn-
thetic range queries simulating a varying number of users
posing queries to the index, modeled as a Poisson process.
The workload generator creates range queries from various
synthetic distributions such as uniform, zipfian, and Z-
order curve. We present the performance results of query
workloads in uniform distribution and Z-order curve, but
the results of other workloads are not significantly different.

When inserting spatial objects, our implementation of
FBR-tree uses the least enlargement algorithm [13] to select
a child node. Although there exist numerous hueristics
when selecting a child node, we note that those optimiza-
tions are irrelevant to the byte-addressability and persis-
tency of FBR-tree, and FBR-tree can employ such
optimizations to improve the efficiency of index.

5.1 Byte-Addressable CoW Split Versus
In-Place Split

In the first set of experiments shown in Figs. 7, 8, and 9, we
insert 80 million Taxi trajectory polylines into an FBR-tree
and measure the average query latency while increasing the
size of bitmaps, i.e., the node degree. Unlike disk-based
data structures, each node size does not have to match the
disk block size. I.e., the tree node size is a performance tun-
ing parameter that can be set arbitrarily in in-memory data
structures. In disk-based R-trees, the degree of a node
decreases as the dimension increases, which aggravates the
well-known curse of dimensionality problem. However, the
FBR-tree node size does not have to match the disk block
size. Thus, the degree of a node in FBR-tree nodes is inde-
pendent of the dimension. When the bitmap size is 7 bytes,
i.e., when the degree of a node is 55, FBR-tree does not
require bitmap logging when rebalancing because the bit-
map can be atomically updated via 8-byte store instruction.
For larger bitmap sizes, FBR-tree requires bitmap logging
because the bitmap that spans multiple words cannot be
updated atomically without logging.

Fig. 7. Insertion performance with varying node size (AVG. of 5 Runs). We varied the degree of tree nodes by increasing the bitmap size. A larger
node degree reduces the tree height at the cost of increased processing time of each node, which offsets the performance gain obtained by reducing
the tree height.

1. The dataset is available at https://archive.ics.uci.edu/ml/

CHO ET AL.: FAILURE-ATOMIC BYTE-ADDRESSABLE R-TREE FOR PERSISTENT MEMORY 609

Authorized licensed use limited to: UNIST. Downloaded on December 17,2021 at 04:50:01 UTC from IEEE Xplore. Restrictions apply.

https://archive.ics.uci.edu/ml/

In the experiments, we compare the performance of three
rebalancing methods. CoW denotes the performance of byte-
addressable copy-on-write split, In-place denotes the
performance of byte-addressable in-place split, and Log-

ging denotes the performance of legacy per-node logging.
(traversal) denotes the tree traversal time, which
includes the MBR computations and LLC misses caused by
node visits, and (clflush) denotes the time to update PM,
i.e., the overhead of pmemobj_alloc(), store, mfence,
and clflush instructions.

Fig. 7 shows the performance of insert queries. Overall,
the non-byte-addressable legacy Logging, demonstrates
the worst performance because it duplicates entire dirty
nodes to the logging space, which is dynamically allocated
and deallocated. CoW also shows worse performance than
In-place but better performance than Logging. This is
because CoW does not duplicate the parent node when a
node splits, but Logging creates a copy of the parent node.
When a node splits, In-place calls pmemobj_alloc()

only once for a new sibling node. However, CoW calls pme-
mobj_alloc() twice for two new nodes, and Logging

calls the pmemobj_alloc() once more for the parent node
update. Therefore, the number of clflush required for
Logging is approximately 12 and 23 percent greater than
that of In-place and CoW, respectively. In particular, In-
place is up to 19.8 percent faster than CoW in terms of node
update time (clflush). Relative to tree traversal time
(traversal), In-place is also approximately 5.1 per-
cent faster than CoW because In-place invalidates cache-
lines from CPU caches less frequently than CoW and
Logging. Therefore, In-place spends less time selecting
a child node.

The CoW split algorithm’s side effect is that it leaves free
space in the middle of an array because the old entry for an
overflowing child node is marked as free space. Such frag-
mentation can degrade the tree node lookup performance.
Because of the free space in the middle, the ordering of
MBRs in each tree node can be different depending on

whether we use CoW or In-place, which accounts for the
difference in traversal time.

Fig. 7c shows the number of bit flips. PM technologies
only support a limited number of writes per cell, and bit
flipping consumes most of the power required for PM; thus,
the number of bit flipping is an important performance met-
ric in PM systems. The results demonstrate that In-place
reduces the number of bits flipped by up to 23 and 36 per-
cent over CoW and Logging, respectively.

Fig. 8 shows the range query performance. With larger
bitmap sizes, the node degree increases and tree height is
reduced. However, a large number of node degree requires
more comparisons against MBRs in each node; therefore,
search performance degrades as the degree increases.
Although the search performance in read-only workloads is
slightly affected by CoW and In-Place split algorithms, it
is known that the search performance is highly dependent
on various heuristic MBR reduction algorithms rather CoW

or In-place [13]. We note that such heuristic MBR reduc-
tion techniques are irrelevant to the byte-addressable persis-
tent memory, and beyond the scope of this work. For the
rest of the experiments, we set the bitmap size to 23 bytes
(183 bits) because this gave the fastest insertion performance
with all three schemes.

Fig. 9 shows the performance of splitting insert queries,
i.e., the queries that result in node splits. In particular, the
rebalancing methods make a significant difference in node
split performance. We note that Fig. 7 shows how different
node split algorithms affect the average insertion perfor-
mance, i.e., the split overhead is averaged over all other
insert queries that do not split nodes. Since a node split
modifies more than three nodes, it calls a much larger num-
ber of clflush instructions than the average. When the
node degree is 247, the legacy logging scheme flushes more
than 388 cachelines. Due to such a large number of cacheline
flushes, the time taken to flush cachelines accounts for over
94 percent (94 percent for In-Place, 96 percent for CoW,
and 97 percent for Logging). The node split time increases
linearly as the degree of node increases. However, it is note-
worthy that the overall average insertion performance,
shown in Fig. 7a does not change significantly because the
frequency of node split decreases as the node size increases.

5.2 Index Size Effect

In the experiments shown in Fig. 10, we generated a very
large number of synthetic 3D points in uniform distribution
and varied the number of indexed data points to evaluate
the scalability of FBR-tree. Overall, In-place consistently

Fig. 8. Search performance with varying rebalancing methods.

Fig. 9. Performance of insert queries that split overfull nodes. In-place updates reduces the number of cacheline flushes and improves the node split
performance.

610 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 3, MARCH 2021

Authorized licensed use limited to: UNIST. Downloaded on December 17,2021 at 04:50:01 UTC from IEEE Xplore. Restrictions apply.

outperforms CoW by 6.5�17 percent. If we insert 3200 mil-
lion records, both CoW and In-place create FBR-trees with
a total size of about 170 GB. Insertion of 3200 million records
into an empty FBR-tree on our testbed machine takes about
7.4 and 8 hours for CoW and In-place, respectively. How-
ever, we observe that the average insertion time is rather
insensitive to the index size because the insertion time
depends on the tree height, which increases on a log scale,
but not by the index size. Fig. 10 shows the average inser-
tion time increases only by 45 and 51 percent for CoW and
In-place as we increase the number of indexed data from
200 million to 3200 million.

5.3 Concurrency and Recoverability

In the experiments shown in Fig. 11, we evaluate the perfor-
mance of multi-threaded FBR-trees on Optane DCPM. We
implemented the lock-free search algorithm we described in
Section 4.1 and the crabbing protocol [46] as a baseline,
which uses std::shared_mutex class in C++17.

In the experiments shown in Fig. 11a, we increase the
number of concurrent threads that submit insert and search
queries into FBR-trees with 1 million Taxi trajectory poly-
lines. Each thread alternates between three insert queries
and seven search queries. We use a relatively small dataset
for this experiment because lock-contention occurs more
frequently when the index is small. As the number of con-
current threads increases, the throughput of lock-free imple-
mentations improves up to 32 threads while std::

shared_mutex implementation does not scale well over 16
threads due to the lock contention. Note that the crabbing
protocol we use for insert transactions must hold an exclu-
sive lock on a parent node until its child node splits, or it
determines that its child node has sufficient free space such
that a split is not required. Therefore, due to lock contention
in upper-level tree structures, both CoW and In-place that
use the crabbing protocol do not scale well and they fail to
benefit from high parallelism. This result shows that lock
contention becomes a dominant performance factor rather
than the memory access operations. In contrast, the lock-

free implementations of CoW and In-place gain up to 2.6x
and 2.4x higher throughputs than the crabbing protocol ver-
sions, respectively. We note that lock-free read algorithm
also suffers from concurrent access to the same node, i.e., it
performs rollback operations if it detects a node version
change. However, Fig. 11b shows the probability of roll-
backs, i.e., the number of rollback operations divided by the
number of visited nodes, is as low as 0.06 percent when 64
threads are concurrently accessing the same FBR-tree.

It is noteworthy that the performance of lock-free imple-
mentations becomes saturated when the number of threads
exceeds the number of cores in a single socket, which is
because of NUMA effects. It has been reported that NUMA
effects for Optane DCPM are much more significant than
they are for DRAM [1]. We note that our testbed machine
has 6 interleaved DCPM’s across two NUMA sockets. With
interleaved DCPMs, we believe there is not much that user-
level applications can do to avoid NUMA effects. However,
with non-interleaved DCPMs, user-level applications may
create a separate pool for each NUMA node and decide
which pool to use. However, we note that NUMA locality
in a hierarchical tree structure is a hard problem. Suppose a
tree node splits and we need to decide which pool to use for
the new node. If we place the new tree node in the same
NUMA node with the overfull node, the whole tree struc-
ture will reside in a single NUMA node. If we place the new
tree node in a different NUMA node in a round-robin fash-
ion, it will not make much difference from the case when
we use interleaved DCPMs. We leave the optimization of
hierrachical tree structures for non-interleaved PM pools as
our future work.

In the experiments shown in Fig. 11c, we run 40 threads
that alternate submitting a different number of insert and
search queries. We note that the range query execution time
is much higher than the insertion time. Although a read
transaction does not call clflush instructions, a multidi-
mensional range query traverses a much larger number of
tree nodes up and down because there can be multiple child
nodes that overlap a given query. On the contrary, the num-
ber of nodes that a write transaction visits is limited by the
tree height.

Similar to the results shown in Fig. 11a, the shared lock
implementations suffer more from lock contention as we sub-
mit more insert queries. Although write transactions in lock-
free search implementations also use exclusive write locks,
search transactions can access tree nodes without acquiring
shared locks. Therefore, the lock contention is much less seri-
ous than shared lock implementations. However, we note
that a write transaction in lock-free search implementations

Fig. 10. Insertion performance with varying index size.

Fig. 11. Performance of multi-threaded FBR-tree.

CHO ET AL.: FAILURE-ATOMIC BYTE-ADDRESSABLE R-TREE FOR PERSISTENT MEMORY 611

Authorized licensed use limited to: UNIST. Downloaded on December 17,2021 at 04:50:01 UTC from IEEE Xplore. Restrictions apply.

can be blocked if another thread’s write transaction holds an
exclusive lock. As our workload runs multiple threads that
submit queries in a batch, the blocked write transaction also
blocks subsequent read transactions in the same thread. As a
result, as we submit more insert queries, lock contention gets
worse and the throughput decreases.

The experiments shown in Fig. 11d are similar to those
shown in Fig. 11c except that we submit clustered queries.
That is, instead of the Taxi trajectory dataset, we generate
synthetic 3D points using Z-order curve. Z-curve order is
one of the well known space-filling curves that preserve
spatial locality. If we insert data points in the order of
Z-values, transactions are likely to access the same tree
nodes and suffer more from lock contention. However,
interestingly, Fig. 11d shows that the throughput of all
implementations are higher than the Taxi trajectory dataset.
This is because the Z-curve workload has a very high local-
ity and all implementations benefit from CPU cache hits.

It is also noteworthy that the throughput of lock-free
implementations improves if insert queries account for
more than 40 percent. This is because range queries are
much slower than insert queries in R-trees. I.e., each concur-
rent thread submits a fewer number of long running
queries. Therefore, the throughput improves. However, if
we submit a larger number of insert queries, the shared lock
implementations suffer from a larger number of exclusive
locks, and the throughput degrades.

Note that these experiments with multi-threaded FBR-
trees not only evaluate the scalability but also show the
instant recoverability of FBR-tree. We run a large number of
search queries while write transactions, which make various
tree nodes transiently inconsistent, are often suspended by
the OS. A large number of read transactions concurrently
access those partially updated nodes but return correct
results. Even if a system crashes and partially updated tree
nodes are persistently stored, concurrent read transactions
can construct a consistent view of index because the invari-
ants of FBR-tree are not violated. Therefore, read transac-
tions can return correct search results. We also performed
software error testing to validate the crash consistency of
FBR-trees empirically and verified that partially updated
FBR-tree nodes do not affect the invariants of index. It
should be noted that the nodes with version 0 affect the per-
formance, but they do not affect correctness since duplicate
records can be detected and removed from result sets.

5.4 PM Latency Effect

Although Intel’s Optane DCPM is on the market, it is not
the only emerging byte-addressable persistent memory

technology, but other emerging persistent memory technolo-
gies, such as STT-MRAM [16], PCM [54], and battery-backed
NVDIMM are expected to offer a large performance spec-
trum [23]. Therefore, we use Quartz, a DRAM-based PM
latency emulator [31], [51] to vary the PM latency whenmea-
suring the performance of FBR-tree. We note that Quartz has
been used in numerous previous studies [3], [17], [18], [24],
[33], [38], [41], [45], [52], [52]. Quartz models PM latency by
inserting stall cycles at the boundaries of a small time inter-
val called epoch. In our experiments, the minimum andmaxi-
mum epochs are set to 5 and 10 nsec, respectively. We
assume that PM bandwidth is the same as that of DRAM
because Quartz does not allow us to emulate latency and
bandwidth simultaneously.

We note that we run this experiments on a different
testbed since Quartz is not supported by the latest 7th and
8th Intel Xeon processors, which is required by Optane
DCPM, but only by old Haswell processors. Therefore, we
run Quartz experiments on a workstation that has four Intel
Xeon Haswell-EX E7-4809 v3 processors (8 cores, 2.0 GHz,
8 x 32 KB instruction cache, 8 x 32 KB data cache, 8 x 256 KB
L2 cache, and 20 MB L3 cache) and 64 GB of DDR3 DRAM.

In the experiments shown in Fig. 12, we insert 80 million
polylines in batches and breakdown the insertion time spent
on each query as the read and write latencies of PM vary. In
Fig. 12a, we set the read latency of PM to that of DRAM but
increase the write latency. Therefore, tree traversal times
are unaffected by PM write latency; however, the cacheline
flush overhead increases as PM write latency is increased.
In-place calls fewer cacheline flushes than CoW; thus, the
performance gap between In-place and CoW is widened
up to 9 percent due to the difference in flush overhead.

In the experiments shown in Fig. 12b, we vary both PM
read and write latencies using Quartz on the Haswell proces-
sor testbedmachine.We also run the same experiments using
Optane DCPM on the other Gold processor testbed. The read
latency of the local node memory in Haswell testbedmachine
is approximately 100 nsec. The average insertion time
increases as we increase both read and write latencies. Inter-
estingly, insertion performance is more sensitive to PM write
latency than read latency due to the CPU cache effects.

In the experiments shown in Fig. 12c,we generate synthetic
range queries in uniform distribution and submit 10,000
queries in a batch. The average selection ratio of the range
queries is set to 1.9 percent. Note that we do not show the
results of other selection ratios because no critical differences
are observed.Aswe increase the read latency of PM, the query
latency also increases; however, this does not result in a differ-
ence in the relative performance of the two splitmethods.

Fig. 12. Performance with Varying PM Latency (AVG. of 5 Runs). We vary the PM latencies using the PM emulator on Intel Haswell processors and
compare the performance against Optane DCPM on Intel Gold processors.

612 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 3, MARCH 2021

Authorized licensed use limited to: UNIST. Downloaded on December 17,2021 at 04:50:01 UTC from IEEE Xplore. Restrictions apply.

6 CONCLUSION

In this study, we have designed and implemented Failure-
atomic Byte-addressable R-tree to obtain the most benefit
from byte-addressability and the high-performance of PM.
We carefully control the order of store and cacheline flush
instructions and prevent single store instructions from mak-
ing the FBR-tree inconsistent. Our performance study demon-
strates that the FBR-tree reduces legacy logging overhead. In
addition, the lock-free range query algorithm shows up to 2.6
times higher query processing throughput than the shared
lock-based crabbing concurrency protocol. We also show that
our FBR-tree on PM improves the performance of range query
on HDF datasets by three orders of magnitude against the
standardHDF-EOS range query functions.

ACKNOWLEDGMENTS

This work was supported in part by the R&D program of
National Research Foundation of Korea (NRF) under Grants
NRF-2016M3C4A7952587 and NRF-2018R1A2B3006681, in
part by IITP under Grant 2018-0-00549, and in part by
Electronics and Telecommunications Research Institute (ETRI)
under Grant 20ZS1310 funded by theKorean government.

REFERENCES

[1] J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and S. Swanson,
“An empirical guide to the behavior and use of scalable persistent
memory,” in Proc. 18th Conf. File Storage Technol., 2020, pp. 169–182.

[2] H. Andrade, T. Kurc, A. Sussman, and J. Saltz, “Efficient execution
of multiple query workloads in data analysis applications,” in
Proc. ACM/IEEE Conf. Supercomputing, 2001, p. 34

[3] J. Arulraj, A. Pavlo, and S. R. Dulloor, “Let’s talk about storage &
recovery methods for non-volatile memory database systems,” in
Proc. ACM SIGMOD Int. Conf. Manage. Data, 2015, pp. 707–722.

[4] S. Chen and Q. Jin, “Persistent B+-trees in non-volatile main mem-
ory,” Proc. VLDB Endowment, vol. 8, no. 7, pp. 786–797, 2015.

[5] X. Chen, Y. Wang, E. Schoenfeld, M. M. Saltz, J. H. Saltz, and
F. Wang, “Spatio-temporal analysis for New York state SPARCS
data,” in Proc. Summit Clin. Res. Informat., 2017, pp. 483–492.

[6] J. Condit et al., “Better I/O through byte-addressable, persistent mem-
ory,” inProc. 22ndACMSymp.Operating Syst. Princ., 2009, pp. 133–146.

[7] P. Cudre-Mauroux, E. Wu, and S. Madden, “TrajStore: An adap-
tive storage system for very large trajectory data sets,” in Proc.
IEEE 26th Int. Conf. Data Eng., 2010, pp. 109–120.

[8] R. Fang, H.-I. Hsiao, B. He, C. Mohan, and Y. Wang, “High perfor-
mance database logging using storage class memory,” in Proc.
27th Int. Conf. Data Eng., 2011, pp. 1221–1231.

[9] F. Giannotti, M. Nanni, F. Pinelli, and D. Pedreschi, “Trajectory
pattern mining,” in Proc. 13th ACM SIGKDD Int. Conf. Knowl. Dis-
cov. Data Mining, 2007, pp. 330–339.

[10] S. Goil and A. N. Choudhary, “High performance multidimen-
sional analysis and data mining,” in Proc. ACM/IEEE Conf. Super-
computing, 1998, pp. 21–21.

[11] M. Goldfarb, Y. Jo, and M. Kulkarni, “General transformations for
GPU execution of tree traversals,” in Proc. Int. Conf. High Perf.
Comput. Netw. Storage Anal., 2013, pp. 10:1–10:12.

[12] M. Gowanlock and H. Casanova, “Indexing of spatiotemporal tra-
jectories for efficient distance threshold similarity searches on the
GPU,” in Proc. 28th IEEE Int. Parallel Distrib. Process. Symp., 2015,
pp. 387–396.

[13] A. Guttman, “R-trees: A dynamic index structure for spatial
searching,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 1984,
pp. 47–57.

[14] M. Herlihy, “Wait-free synchronization,” ACM Trans. Program.
Lang. Syst., vol. 13, no. 1, pp. 124–149, Jan. 1991.

[15] M. Herlihy and N. Shavit, The Art of Multiprocessor Programming.
San Francisco, CA, USA: Morgan Kaufmann, 2008.

[16] Y. Huai, “Spin-transfer torque MRAM (STT-MRAM): Challenges
and prospects,” AAPPS Bull., vol. 18, no. 6, pp. 33–40, 2008.

[17] J. Huang, K. Schwan, andM. K. Qureshi, “NVRAM-aware logging
in transaction systems,” Proc. VLDB Endowment, vol. 8, no. 4,
pp. 389–400, 2014.

[18] D. Hwang, W.-H. Kim, Y. Won, and B. Nam, “Endurable transient
inconsistency in byte-addressable persistent B+-trees,” in Proc.
16th USENIX Conf. File Storage, 2018, pp. 187–200.

[19] Intel, “Intel and Micron produce breakthrough memory tech-
nology,” 2018. [Online]. Available: https://newsroom.intel.com/
news-releases/intel-and- micron-produce-breakthrough-memory-
technology

[20] Intel, “PMDK: Persistent memory development kit,” 2018.
[Online]. Available: https://github.com/pmem/pmdk

[21] J. Izraelevitz, T. Kelly, and A. Kolli, “Failure-atomic persistent
memory updates via JUSTDO logging,” in Proc. 21st Int. Conf.
Architectural Support Program. Lang., 2016, pp. 427–442.

[22] H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, and H. T. Shen,
“Discovery of convoys in trajectory databases,” Proc. VLDB
Endowment, vol. 1, no. 1, pp. 1068–1080, Aug. 2008.

[23] Y. Jin, M. Shihab, and M. Jung, “Area, power, and latency consid-
erations of STT-MRAM to substitute for main memory,” in Proc.
Memory Forum 41st Int. Symp. Comput. Architecture, 2014.

[24] W.-H. Kim, J. Kim, W. Baek, B. Nam, and Y. Won, “NVWAL:
Exploiting NVRAM in write-ahead logging,” in Proc. 21st Int.
Conf. Architectural Support Program. Lang. Operating Syst., 2016,
pp. 385–398.

[25] A. Kogan and E. Petrank, “A method for creating fast wait-free
data structures,” in Proc. 17th ACM SIGPLAN Symp. Princ. Pract.
Parallel Program., 2012, pp. 141–150.

[26] A. Kolli, S. Pelley, A. Saidi, P. M. Chen, and T. F. Wenisch, “High-
performance transactions for persistent memories,” in Proc. 21st
Int. Conf. Architectural Support Program. Lang. Operating Syst., 2016,
pp. 399–411.

[27] T. Kurc et al., “A simulation and data analysis system for large
scale, data-driven oil reservoir simulation studies,” Concurrency
Comput.: Pract. Experience, vol. 17, pp. 1441–1467, 2005.

[28] T. Kurc, C. Chang, R. Ferreira, A. Sussman, and J. Saltz,
“Querying very large multi-dimensional datasets in ADR,” in
Proc. ACM/IEEE Conf. Supercomputing, 1999, pp. 12–12.

[29] Y. Kwon, D. Nunley, J. P. Gardner, M. Balazinska, B. Howe, and
S. Loebman, “Scalable clustering algorithm for N-body simula-
tions in a shared-nothing cluster,” in Proc. 22nd Int. Conf. Sci. Stat-
ist. Database Manage., 2010, pp. 132–150.

[30] H. E. Lab, “Memory driven computing,” 2018. [Online]. Available:
https://www.labs.hpe.com/next-next/mdc

[31] H. E. Lab, “Quartz,” 2018. [Online]. Available: https://github.
com/HewlettPackard/quartz

[32] E. Lee, H. Bahn, and S. H. Noh, “Unioning of the buffer cache and
journaling layers with non-volatile memory,” in Proc. 11th USE-
NIX Conf. File Storage Technol., 2013, pp. 73–80.

[33] S. K. Lee, K. H. Lim, H. Song, B. Nam, and S. H. Noh, “WORT:
Write optimal radix tree for persistent memory storage systems,”
in Proc. 15th USENIX Conf. File Storage Technol., 2017, pp. 257–270.

[34] Z. Li et al., “MoveMine: Mining moving object data for discovery
of animal movement patterns,” ACM Trans. Intell. Syst. Technol.,
vol. 2, no. 4, pp. 37:1–37:32, Jul. 2011.

[35] D. Morozov and T. Peterka, “Efficient delaunay tessellation
through K-D tree decomposition,” in Proc. Int. Conf. High Perform.
Comput. Netw. Storage Anal., 2016, pp. 728–738.

[36] B. Nam, H. Andrade, and A. Sussman, “Multiple range query
optimization with distributed cache indexing,” in Proc. ACM/
IEEE Conf. Supercomputing, 2006, pp. 35–35.

[37] B. Nam and A. Sussman, “A comparative study of spatial index-
ing techniques for multidimensional scientific datasets,” in Proc.
16th Int. Conf. Sci. Statist. Database Manage., 2004, pp. 171–180.

[38] M. Nam, H. Cha, Y. Ri Choi, S. H. Noh, and B. Nam, “Write-opti-
mized dynamic hashing for persistent memory,” in Proc. 17th
USENIX Conf. File Storage Technol., 2019, pp. 31–44.

[39] G. Oh, S. Kim, S.-W. Lee, and B. Moon, “SQLite optimization with
phase change memory for mobile applications,” Proc. VLDB
Endowment, vol. 8, no. 12, pp. 1454–1465, 2015.

[40] J. Ou, J. Shu, and Y. Lu, “A high performance file system for non-
volatile main memory,” in Proc. 11th Eur. Conf. Comput. Syst.,
2016, Art. no. 12.

[41] I. Oukid, J. Lasperas, A. Nica, T. Willhalm, and W. Lehner,
“FPTree: A hybrid SCM-DRAM persistent and concurrent B-tree
for storage class memory,” in Proc. ACM SIGMOD Int. Conf.
Manage. Data, 2016, pp. 371–386.

CHO ET AL.: FAILURE-ATOMIC BYTE-ADDRESSABLE R-TREE FOR PERSISTENT MEMORY 613

Authorized licensed use limited to: UNIST. Downloaded on December 17,2021 at 04:50:01 UTC from IEEE Xplore. Restrictions apply.

https://newsroom.intel.com/news-releases/intel-and- micron-produce-breakthrough-memory-technology
https://newsroom.intel.com/news-releases/intel-and- micron-produce-breakthrough-memory-technology
https://newsroom.intel.com/news-releases/intel-and- micron-produce-breakthrough-memory-technology
https://github.com/pmem/pmdk
https://www.labs.hpe.com/next-next/mdc
https://github.com/HewlettPackard/quartz
https://github.com/HewlettPackard/quartz

[42] V. Pascucci and R. J. Frank, “Global static indexing for real-time
exploration of very large regular grids,” in Proc. ACM/IEEE Conf.
Supercomputing, 2001, pp. 45–45.

[43] A. Rudoff, “Programming models for emerging non-volatile
memory technologies,” login, vol. 38, no. 3, pp. 40–45, Jun. 2013.

[44] P. Sehgal, S. Basu, K. Srinivasan, and K. Voruganti, “An empirical
study of file systems on NVM,” in Proc. 31st Int. Conf. Massive Stro-
age Syst., 2015, pp. 1–14.

[45] J. Seo, W.-H. Kim, W. Baek, B. Nam, and S. H. Noh, “Failure-
atomic slotted paging for persistent memory,” in Proc. 22nd Int.
Conf. Architectural Support Program. Lang. Operating Syst., 2017,
pp. 91–104.

[46] A. Silberschatz, H. Korth, and S. Sudarshan, Database Systems Con-
cepts. New York, NY, USA: McGraw-Hill, 2005.

[47] C. A. N. Soules, G. R. Goodson, J. D. Strunk, and G. R. Ganger,
“Metadata efficiency in versioning file systems,” in Proc. 2nd USE-
NIX Conf. File Storage Technol., 2003, pp. 43–58.

[48] F. Tauheed, L. Biveinis, T. Heinis, F. Sch€urmann, H. Markram,
and A. Ailamaki, “Accelerating range queries for brain simu-
lations,” in Proc. 28th Int. Conf. Data Eng., 2012, pp. 941–952.

[49] S. Venkataraman, N. Tolia, P. Ranganathan, and R. H. Campbell,
“Consistent and durable data structures for non-volatile byte-
addressable memory,” in Proc. 9th USENIX Conf. File Storage Tech-
nol., 2011, Art. no. 5.

[50] M. R. Vieira, P. Bakalov, andV. J. Tsotras, “On-line discovery of flock
patterns in spatio-temporal data,” in Proc. 17th ACM SIGSPATIAL
Int. Conf. Advances Geographic Inf. Syst., 2009, pp. 286–295.

[51] H. Volos, G. Magalhaes, L. Cherkasova, and J. Li, “Quartz: A light-
weight performance emulator for persistent memory software,” in
Proc. 16th Annu. Middleware Conf., 2015, pp. 37–49.

[52] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight
persistent memory,” in Proc. 16th Int. Conf. Architectural Support
Program. Lang. Operating Syst., 2011, pp. 91–104.

[53] M. S. Warren, “2HOT: An improved parallel hashed Oct-tree
N-body algorithm for cosmological simulation,” in Proc. Int. Conf.
High Perform. Comput. Netw. Storage Anal., 2013, Art. no. 72.

[54] H.-S. P. Wong et al., “Phase change memory,” Proc. IEEE, vol. 98,
no. 12, pp. 2201–2227, Dec. 2010.

[55] J. Xu and S. Swanson, “NOVA: A log-structured file system for
hybrid volatile/non-volatile main memories,” in Proc. 14th USE-
NIX Conf. File Storage Technol., 2016, pp. 323–338.

[56] J. Yang, Q. Wei, C. Chen, C. Wang, and K. L. Yong, “NV-Tree:
Reducing consistency const for NVM-based single level systems,”
in Proc. 13th USENIX Conf. File Storage Technol., 2015, pp. 167–181.

[57] Y. Zhang and S. Swanson, “A study of application performance
with non-volatile main memory,” in Proc. 31st Int. Conf. Massive
Stroage Syst., 2015, pp. 1–10.

[58] J. Zhao, S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi, “Kiln: Closing
the performance gap between systems with and without persis-
tence support,” in Proc. 46th Annu. IEEE/ACM Int. Symp. Micro-
architecture, 2013, pp. 421–432.

[59] P. Zuo and Y. Hua, “A write-friendly hashing scheme for non-vol-
atile memory systems,” in Proc. 33st Int. Conf. Massive Storage Syst.
Technol., 2017.

[60] P. Zuo, Y. Hua, and J. Wu, “Write-optimized and high-perfor-
mance hashing index scheme for persistent memory,” in Proc.
13th USENIX Symp. Operating Syst. Des. Implementation, 2018,
pp. 461–476.

Soojeong Cho received the BS degree in com-
puter science and engineering from Dankook Uni-
versity, Korea, in 2018. She is currently working
toward the graduate degree with the School of
Electrical and Computer Engineering, UNIST
(Ulsan National Institute of Science and Technol-
ogy), Korea. Her research interests include per-
sistent memory and big data processing systems.

Wonbae Kim received the BS degree in com-
puter science and engineering from the Ulsan
National Institute of Science and Technology,
Korea, in 2015. He is currently working toward
the PhD degree with the School of Electrical and
Computer Engineering, UNIST (Ulsan National
Institute of Science and Technology), Korea. His
research interests include big data processing
systems, machine learning platforms, and persis-
tent memory.

Sehyeon Oh received the BS degree in computer
science and engineering from the Ulsan National
Institute of Science and Technology, Korea, in
2018. He is currently working toward the graduate
degree with the School of Electrical and Computer
Engineering, UNIST (Ulsan National Institute of
Science and Technology), Korea. His research
interests include embedded database systems and
persistentmemory.

Changdae Kim received the BS, MS, and PhD
degrees in computer science from the Korea
Advanced Institute of Science and Technology
(KAIST), South Korea. He is a research fellow at
ETRI. His research interests include computer archi-
tecture, operating systems, and cloud computing.

Kwangwon Koh received the MS degree in com-
puter science from Yonsei University, South
Korea, and the PhD degree in computer science
from the Korea Advanced Institute of Science
and Technology (KAIST), South Korea, in 2008.
He is a research fellow at ETRI. He has worked
on various projects including virtual machine
monitor for ARM architecture, supercomputing
system for genome processing, and scalable
operating system for many-core processors. He
currently focuses on the software stack of a

multi-tier memory system. His research interests include system soft-
ware for parallel computing, virtualization, and multi-tier memory system.

Beomseok Nam (Member, IEEE) received the BS
and MS degrees from Seoul National University,
South Korea, and the PhD degree in computer sci-
ence from the University of Maryland, College Park,
Maryland, in 2007. He is an associate professor at
SungKyunKwan University, Korea. Before that he
was an assistant/associate professor at UNIST
(Ulsan National Institute of Science and Technol-
ogy), South Korea. His research interests include
data-intensive computing, database systems, and
embedded system software. He is a member of
IEEE, ACM, andUSENIX.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

614 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 3, MARCH 2021

Authorized licensed use limited to: UNIST. Downloaded on December 17,2021 at 04:50:01 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

